
The Pigeonhole Principle

It is easy to see, and follows immediately from Proposition F2 in the Functions section,
that no function from a set of size at least k + 1 to a set of size k can be 1-1. Thus, some
two elements of the domain have the same image. The Pigeonhole Principle, in its simplest
form, is a rephrasing of this statement.

Proposition PHP1. (The Pigeonhole Principle, simple version.) If k+1 or more pigeons
are distributed among k pigeonholes, then at least one pigeonhole contains two or more
pigeons.

Proof.
The contrapositive of the statement is: If each pigeonhole contains at most one pigeon,

then there are at most k pigeons. This is easily seen to be true.

The same argument can be used to prove a variety of different statements. We prove
the general version of the Pigeonhole Principle and leave the others as exercises.

Proposition PHP2. (The Pigeonhole Principle.) If n or more pigeons are distributed
among k > 0 pigeonholes, then at least one pigeonhole contains at least �n

k � pigeons.

Proof.
Suppose each pigeonhole contains at most �n

k � − 1 pigeons. Then, the total number
of pigeons is at most k(�n

k � − 1) < k(n
k ) = n pigeons (because �n

k � − 1 < n
k ≤ �n

k �).

Exercises. Prove:
(a) If n objects are distributed among k > 0 boxes, then at least one box contains at most
�N

k � objects.
(b) Given t > 0 pigeonholes h1, h2, . . . , ht, and t integers n1, n2, . . . , nt, if

[∑t
i=1(ni−1)

]
+1

pigeons are distributed among these t pigeonholes, then there exists at least one i suct that
pigeonhole hi contains at least ni pigeons.
(c) Given a collection of n numbers, at least one of the numbers is at least as large as the
average.
(d) Given a collection of n numbers, at least one of the numbers is no larger than the
average.

Example PHP1. Prove that if seven distinct numbers are selected from {1, 2, . . . , 11},
then some two of these numbers sum to 12.

Let the pigeons be the numbers selected. Define six pigeonholes corresponding to the
six sets: {1, 11}, {2, 10}, {3, 9}, {4, 8}, {5, 7}, {6}. (Notice that the numbers in each of the
first five sets sum to 12, and that there is no pair of distinct numbers containing 6 that
sum to 12.) When a number is selected, it gets placed into the pigeonhole corresponding
to the set that contains it. (This means at most one number can go into the pigeonhole
corresponding to {6}. This does not cause trouble.) Since seven numbers are selected
and placed in six pigeonholes, some pigeonhole contains two numbers. By the way the
pigeonholes were defined, these two numbers sum to 12.
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Another way to write up the above proof is: Since seven numbers are selected, the
Pigeonhole Principle guarantees that two of them are selected from one of the six sets
{1, 11}, {2, 10}, {3, 9}, {4, 8}, {5, 7}, {6}. These two numbers sum to 12.

In Example PHP1, the quantity seven is the best possible in the sense that it is
possible to select six numbers from {1, 2, . . . , 11} so that no two of the numbers selected
sum to 12. One example of six such numbers is 1, 2, 3, 4, 5, 6.

Proving things with the Pigeonhole Principle. There are four steps involved. First,
decide what the pigeons are. They will be the things that you’d like several of to have
some special property. Second, set up the pigeonholes. You want to do this so that when
you get two pigeons in the same pigeonhole, they have the property you want. To use the
Pigeonhole Principle, it is necessary to set things up so that there are fewer pigeonholes
than pigeons. Sometimes the way to do this relies on some astute observation. Third,
give a rule for assigning the pigeons to the pigeonholes. It is important to note that the
conclusion of the Pigeonhole Principle holds for any assignment of pigeons to pigeonholes,
so it holds for any assignment you describe. Pick the rule so that when “enough” pigeons
occupy the same pigeonhole, that collection has the property you want. Fourth, apply the
Pigeonhole Principle to your setup and get the desired conclusion.

Exercise. Prove the general version of Example PHP1: If n+1 numbers are selected from
{1, 2, . . . , 2n − 1}, then some two of these numbers sum to 2n. Show that it is possible
to select n numbers so that no two of them sum to 2n. Formulate and prove similar
statements for collections of numbers selected from {1, 2, . . . , 2n}.
Example PHP2. Prove that if five points are selected from the interior of a 1×1 square,
then there are two points whose distance is less than

√
2/2.

Let the pigeons be the five points selected. Define the four pigeonholes corresponding
to the four 1/2×1/2 subsquares obtained by joining the midpoints of opposite sides of the
square. When a point is selected is is placed into a pigeonhole according to the subsquare
that contains it, and points on the boundary of these subsquares (and interior to the
whole square) can be assigned arbitrarily. Since five points are selected and placed in four
pigeonholes, some pigeonhole contains two points. Since these points are on the interior of
the square, the distance between them is less than the length of a diagonal of a subsquare,
which is

√
2/2.

Exercises. Prove that if four points are selected from the interior of a unit circle, then
there are two points whose distance apart is less than

√
2. How many points must be

selected from the interior of an equilateral triangle of side two in order to guarantee that
there are two points whose distance apart is less than one?

Example PHP3. For a subset X ⊆ {1, 2, . . . 9}, define σ(X) =
∑

x∈X x. (For example
σ({1, 6, 8}) = 1+6+8 = 15.) Prove that among any 26 subsets of {1, 2, . . . 9}, each having
size at most three, there are subsets A and B such that σ(A) = σ(B).

For X ⊆ {1, 2, . . . 9} with |X| ≤ 3, the possible values of σ(X) lie between 0 (corre-
sponding to X = ∅) and 24 (corresponding to X = {7, 8, 9}). Since there are 25 possible
values for σ(X) and 26 subsets are selected, we have by the Pigeonhole Principle that the
selection contains subsets A and B such that σ(A) = σ(B).
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Exercise. Write up Example PHP3 to make the pigeons and pigeonholes explicit.

Exercise. How many subsets of {1, 2, . . . 10}, each containing at least three and at most
five elements, must be selected in order to grarantee that the selection contains subsets
A, B and C such that σ(A) = σ(B) = σ(C)?

Example PHP4. Prove that if 10 integers are selected from {1, 2, . . . , 18}, the selection
includes integers a and b such that a|b (that is, a divides b – there exists an integer k such
that ak = b).

Let the pigeons be the 10 integers selected. Define nine pigeonholes corresponding
to the odd integers 1, 3, 5, 7, 9, 11, 13, 15, and 17. Place each integer selected into the
pigeonhole coresponding to its largest odd divisor (which must be one of 1, 3, 5, . . . , 17).
Notice that if x gets placed in the pigeonhole corresponding to the odd integer m, then
x = 2km for some integer k ≥ 0. Since 10 integers are selected and placed in nine
pigeonholes, some pigeonhole contains two integers a and b, where a < b. Suppose this
pigeonhole corresponds to the odd integer t. Then, a = 2rt and b = 2st, where r < s, so
that a2s−r = b. Since s − r is a positive integer, it follows that a|b.

Here is an alternative write up. The largest odd divisor of an integer between 1 and
18 is one of the nine numbers 1, 3, 5, 7, 9, 11, 13, 15, 17. Since 10 integers are selected, the
Pigeonhole Principle guarantees that some two of them have the same largest odd divisor,
t. Let these two numbers be a and b, where a < b. Then, a = 2rt and b = 2st, where
r < s, so that a2s−r = b. Since s − r is a positive integer, it follows that a|b.
Exercise. Prove that if n + 1 integers are selected from {1, 2, . . . 2n}, then the selection
includes integers a and b such that a|b.
Example PHP5. Prove that if 11 integers are selected from among {1, 2, . . . , 20}, then
the selection includes integer a and b such that a − b = 2.

Let the pigeons be the 11 integers selected. Define 10 pigeonholes corresponding to the
sets {3, 1}, {4, 2}, {7, 5}, {8, 6}, {11, 9}, {12, 10}, {15, 13}, {16, 14}, {19, 17}, {20, 18}. Place
each integer selected into the pigeonhole corresponding to the set that contains it. Since 11
integers are selected and placed into 10 pigeonholes, some pigeonhole contains two pigeons.
By the way the pigeonholes were defined, these two integers differ by two.

Exercise. Prove an alternative write up (as above) of Example PHP5.

Exercise. Prove that if 11 integers are selected from among {1, 2, . . . , 20}, then the
selection includes integers a and b such that b = a + 1.

Exercise. Prove that if n + 1 integers are selected from among {1, 2, . . . , 2n}, then the
selection includes integers a and b such that b = a + 1. This implies that if n + 1 integers
are selected from among {1, 2, . . . , 2n}, then the selection includes integer a and b such
that gcd(a, b) = 1. Why is that?

Example PHP6. Over a 44 day period, Gary will train for triathlons at least once per
day, and a total of 70 times in all. Show that there is a period of consecutive days during
which he trains exactly 17 times.

For i = 1, 2, . . . , 44, let xi be the number of times Gary trains up to the end of day
i. Then 1 ≤ x1 < x2 < x3 < · · · < x44 = 70. We need to find subscripts i and j
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such that xi + 17 = xj . This implies that Gary trains exactly 17 times in the period of
days i + 1, i + 2, . . . , j. Therefore, we want one of x1, x2, . . . , x44 to be equal to one of
x1 + 17, x2 + 17, . . . , x44 + 17. Using the inequality for the xi s it follows that
18 ≤ x1 + 17 < x2 + 17 < · · · < x44 + 17 = 87. Thus, the 88 numbers x1, x2, . . . , x44,
x1 + 17, x2 + 17, . . . , x44 + 17 can take on at most 87 different values. Hence, by the
Pigeonhole Principle, some two of them must be equal. The inequalities imply that one of
x1, x2, . . . , x44 must equal one of x1 + 17, x2 + 17, . . . , x44 + 17, which is what we wanted.

Exercise. Over a 30 day period, Rick will walk the dog at least once per day, and a total
of 45 times in all. Prove that there is a period of consecutive days in which he walks the
dog exactly 14 times.

Example PHP7. A party is attended by n ≥ 2 people. Prove that there will always be
two people in attendance who have the same number of friends at the party. (Assume that
the relation “is a friend of” is symmetric, that is, if x is a friend of y then y is a friend of
x.)

Each person either is, or is not, a friend of each of the the other n − 1 people in
attendance. Thus, the possible values for the number of friends a person can have in
attendance at the party are 0, 1, . . . , n − 1. However, it can not be the case that there is
someone at the party with 0 friends and someone else with n − 1 friends: if a person is
friends with everyone then (since “is a friend of” is symmetric) everyone at the party has
at least one friend there. Thus, the possible values for the number of friends a person can
have in attendance at the party are 0, 1, . . . , n − 2 or 1, 2, . . . , n − 1. In either case, there
are n numbers (of friends among the people in attendance) that can take on at most n− 1
different values. By the Pigeonhole Princple, two of the numbers are equal. Thus, some
two people in attendance who have the same number of friends at the party.

Exercise. Ten baseball teams are entered in a round-robin touranment (meaning that
every team plays every other team exactly once) in which ties are not allowed. Prove that
if no team loses all of its games, then some two teams finish the tournament with the same
number of wins.

Example PHP8. We prove that any collection of eight distinct integers contains distinct
integers x and y such that x − y is a multiple of 7,

By the Division Algorithm, every integer n can be written as n = 7q + r, where
0 ≤ r ≤ 6. Since there are eight integers in the collection but only seven possible values
for the remainder r on division by 7, the Pigeonhole Principle asserts that the collection
contains integers x and y that leave the same remainder on division by 7, that is, there
exists s with 0 ≤ s ≤ 6 such that x = 7q1 + s and y = 7q2 + s. For this x and y we have
x− y = 7q1 + s− (7q2 + s) = 7(q1 − q2). Since (q1 − q2) is an integer, x is a multiple of 7.

Exercise. Prove that in and collection of n+1 distinct integers, there are distinct integers
x and y such that x − y is a multiple of n.
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