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6 CHAPTER 1. DEFINITIONS

1.1 Dynamical preliminaries

In this section, we will introduce some simple notions in the study of topo-
logical dynamical systems: periodic points, non-wandering, irreducibilty and
mixing. Each can be regarded as a type of recurrence property.

We will always work in the topological category and, more specifically,
usually with metric spaces. Let (X, d) be a metric space. For any x in X
and ε > 0, we will let X(x, ε) denote the open ball of radius ε centred at
X. This notation is preferable the more common B(x, ε) when dealing with
more than a single space.

There is a wide range of notions of topological dynamical systems, but
for us here it will be a homeomorphism f : X → X. We begin with the
simplest of the concepts, that of a periodic point.

Definition 1.1.1. Let (X, d, f) be as above. We say that x in X is a fixed-
point of f if f(x) = x. If n is a positive integer and x is in X, we say that x
is a periodic point of period n if fn(x) = x. The least such positive integer
n is called the period of x. For any positive integer m, we let Perm(X, f)
denote the set of all periodic points of period m. We also let

Per(X, f) = ∪m≥1Perm(X, f)

denote the set of all periodic points.

Next, we consider the notion of non-wandering. As we mentioned above,
this is a kind of recurrence condition on the points of X. There are a number
of these available, but this is the most natural for the systems which we will
consider later.

Definition 1.1.2. Let (X, d, f) be as above and let x be any point of X. We
say that x is non-wandering if, for every non-empty open set, U , containing
x, there is a positive integer n such that fn(U)∩U is non-empty. Any point
which is not non-wandering is called wandering.

We let NW (X, f) denote the set of non-wandering points of X. We say
that (X, d, f) is non-wandering if every point of X is non-wandering.

Let us make a few simple remarks about the definition.

1. A point is non-wandering if and only if, for every non-empty set U
containing the point, there is a z in U and positive integer n with
fn(z) also in U . (If y is in fn(U) ∩ U , let z = f−n(y).)
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2. Every periodic point is clearly non-wandering. Moreover, if the periodic
points of X are dense, then every point is non-wandering.

3. The set of non-wandering points is f -invariant. That is, x is non-
wandering if and only if f(x) is also.

4. The set of non-wandering points is closed. To see this, we show the
compliment is open. If x is wandering, then there is an open set U
containing x such that fn(U) and U are disjoint for every positive
integer n. But then, every point of U is also wandering, using the same
set U as neighbourhood.

Next, we turn to the definition of irreducibility.

Definition 1.1.3. We say the system (X, d, f) is irreducible if, for every
(ordered) pair of non-empty open sets, U, V , there is a positive integer n
such that fn(U) ∩ V is non-empty.

It is clear that every irreducible system is non-wandering. The converse
is false. For example the identity map on a set X (having at least two points)
is non-wandering but not irreducible.

We note the following standard result (for example, see Theorem 5.9 of
[?]).

Theorem 1.1.4. Let (X, d, f) be as above with X compact. The following
conditions are equivalent.

1. (X, d, f) is irreducible.

2. (X, d, f−1) is irreducible.

3. There is a dense Gδ-set in X such that every point x in this set has a
forward orbit, {fn(x) | n ≥ 0}, which is dense in X.

4. There exists a point x whose forward orbit is dense in X.

Finally, we turn to the definition of mixing.

Definition 1.1.5. We say the system (X, d, f) is mixing if, for every (or-
dered) pair of non-empty open sets, U, V , there is a positive integer N such
that fn(U) ∩ V is non-empty for all n ≥ N .

We observe that every mixing system is also irreducible and hence non-
wandering as well. The converse is false. Consider the case that X consists of
two points which the map f exchanges. This is irreducible, but not mixing.
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1.2 An introduction to Smale spaces

In this section, we will provide a heuristic discussion of Smale spaces. This
is intended as motivation and will be rather short on rigour. It is important
to proceed in this way because the rigourous definition - which we will see in
the next section - is really quite opaque without a preliminary discussion to
provide some kind of insight.

We will consider a compact metric space (X, d) and a homeomorphism
f : X → X. We will require some extra structure. This will take quite some
time to describe.

First, for every point x in X, we will have two closed sets Ex and Fx,
which we will call the local stable set of x and the local unstable set of x,
respectively, having a number of special properties. We require

P1
Ex ∩ Fx = {x}

P2 The cartesian product Ex × Fx is homeomorphic to a neighbourhood of
x in X.

This second item is really too vague. The proper definition in the next
section will actually specify this homeomorphism and a number of its prop-
erties. But for the moment, this will be enough. That is, locally, X is the
product of Ex and Fx.

It is worth noting at this point that the sets Ex and Fx are not unique.
For example, if we make both smaller, so long as x is still in the interior of
the cartesian product, the result would also satisfy our conditions. They are
unique in the sense that any two such choices for Ex will be equal in some
neighbourhood of x.

Next, we want to require that these sets be invariant under f . This
is a little too much to ask, especially in view of the comments of the last
paragraph. Instead, we only require invariance in a local sense.

P3 For all x in X,

f(Ex) ∩ V = Ef(x) ∩ V
f(Fx) ∩ V = Ff(x) ∩ V

for some neighbourhood, V , of f(x).
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Finally, we come to the crucial conditions: f is contracting on the sets
Ex while it is expanding on Fx. For various technical reasons, it is much
better to say that f−1 is contracting on Fx. Specifically, there is a constant
0 < λ < 1 such that

P4 for all y, z in Ex, we have

d(f(y), f(z)) ≤ λd(y, z)

P5 and for all y, z in Fx, we have

d(f−1(y), f−1(z)) ≤ λd(y, z).

This condition also re-inforces our earlier statement that exact invariance
of Ex is not reasonable. We expect that f(Ex) will be smaller than Ef(x).

The next section will provide the rigourous definition of Smale space.
Alternately, the reader can pass on to the examples in the subsequent section.
Most of these should be understandable with the vague notion of Smale space
which we have now, although there will be a little new notation in the next
section.

1.3 The definition of Smale space

We are now ready to give a precise definition of a Smale space in this sec-
tion. The definition is rather long. As we go, we will try to provide some
comparison with the heuristic version given in the last section.

We begin with a compact metric space (X, d). We let f : X → X be a
homeomorphism of X.

We assume that there is a constant εX and a map defined on

∆εX = {(x, y) | d(x, y) ≤ εX}

taking values in X. The map should be continuous in the natural product
topology. The image of (x, y) is denoted [x, y]. We assume that this satisfies
certain axioms.

Before beginning the axioms, let us mention that if one has the heuristic
description of Smale space in the last section, then [x, y] should be thought
of as the intersection of the sets Ex and Fy. If we had been more rigourous in
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the earlier discussion, we should have added hypotheses that such sets would
meet in exactly one point, provided x and y are within εX .

We require [, ] to satisfy the following

B1 [x, x] = x,

B2 [x, [y, z]] = [x, z], whenever both sides are defined,

B3 [[x, y], z] = [x, z], whenever both sides are defined,

B4 [f(x), f(y)] = f([x, y]), whenever both sides are defined.

In terms of the description of the last section and the idea that [x, y] is
the intersection of Ex and Fy, B1 and B4 are equivalent to P1 and P3 of the
last section. The axioms B2 and B3 should be regarded as implying a kind
of compatibility between the local product structures of X at nearby points.

Finally, we require that there is a constant 0 < λ < 1 such that, for all x
in X, we have the following two conditions.

C1 For y, z such that d(x, y), d(x, z) ≤ εX and [y, x] = x = [z, x], we have

d(f(y), f(z)) ≤ λd(y, z).

C2 For y, z such that d(x, y), d(x, z) ≤ εX and [x, y] = x = [x, z], we have

d(f−1(y), f−1(z)) ≤ λd(y, z).

These axioms are obviously analogous to P4 and P5 of the last section.

Definition 1.3.1. A Smale space is any quadruple (X, d, f, [, ]) satisfying the
axioms B1, B2, B3, B4, C1 and C2.

A word of warning is in order. The most annoying thing in dealing with
Smale spaces is that the bracket map is only defined on points which are
close. It is very important to check this at all times, because it is quite
easy to be lead to false conclusions if this is ignored. As an example, it
is tempting to say that, if x, y are in X and n is a positive integer and
d(x, y), d(fn(x), fn(y)) are both less than εX , then

[fn(x), fn(y)] = fn([x, y]).
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In fact, this may be false, unless d(fk(x), fk(y)) is less than εX for every
1 ≤ k ≤ n.

For convenience, we define, for each x in X and 0 < ε ≤ εX , sets

Xs(x, ε) = {y | d(x, y) ≤ ε, [y, x] = x} (1.1)

Xu(x, ε) = {y | d(x, y) ≤ ε, [x, y] = x}. (1.2)

These will be referred to as the local stable set and local unstable set at
x. We quickly observe the alternate characterization of these points.

Lemma 1.3.2. Suppose d(x, y) ≤ εX .

1. [x, y] = x if and only if [y, x] = y.

2. [x, y] = y if and only if [y, x] = x.

Proof. We prove only the ”only if” part of the first statement. The others
are similar. We calculate

[y, x] = [y, [x, y]] by hypothesis,

= [y, y] by axiom B2,

= y by axiom B1.

Lemma 1.3.3. Suppose that x and y are in X and d(x, y), d(x, [x, y]) and
d(y, [x, y]) are all less than εX . Then we have

[x, y] ∈ Xs(x, εX)

[x, y] ∈ Xu(y, εX)

Proof. For the first, we check

[[x, y], x] = [x, x] by hypothesis B3,

= x by hypothesis B1.

For the second, we check

[y, [x, y]] = [y, y] by hypothesis B2,

= y by hypothesis B1.
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The sets Xs(x, ε) and Xu(x, ε) are exactly the sets Ex and Fx of the last
section, except that we have added a parameter ε to allow us to control their
size. We have now set things up in such a way that our earlier hypothesis
P2 is now a consequence of the other axioms.

Theorem 1.3.4. There is 0 < ε′X ≤ εX/2 such that, for every 0 < ε ≤ ε′X ,
the map

[, ] : Xu(x, ε)×Xs(x, ε)→ X

is a homeomorphism to its image, which is a neighbourhood of x. We will
denote this range by U(x, ε).

Proof. First we note that the map is well-defined, since if both y and z are
within ε of x and ε ≤ εX/2, then d(y, z) ≤ εX by the triangle inequality.
Moreover, since [, ] is jointly continuous, we may find 0 < δ ≤ εX such that,
for all x, y with d(x, y) ≤ δ, we have d(x, [x, y]) ≤ εX/2 and d(x, [y, x]) ≤
εX/2. We choose 0 < ε′X ≤ εX/2 so that for all y, z with d(x, y) ≤ ε′X and
d(x, z) ≤ ε′X , we have d(x, [y, z]) ≤ δ. Then we can define a map h on a
neighbourhood of x by h(y) = ([y, x], [x, y]). By the choice of ε′X this map is
defined on the range of [, ]. It is also clearly continuous. It is clear from the
axioms B1, B2 and B3 that the composition [, ] ◦h is the identity. Moreover,
if we begin with y in Xu(x, ε) and z in Xs(x, ε), then we have

h([y, z]) = ([[y, z], x], [x, [y, z]])

= ([y, x], [x, z]) by Axioms B2 and B3,

= (y, z) by Lemma 1.3.2.

The conclusion follows.

The first important fact which we want to establish is that the choice
of the bracket map is unique (up to the choice of its domain). Once this is
established, then we can speak of (X, d, f) being a Smale space when such a
bracket exists.

We begin with the following lemma.

Lemma 1.3.5. Suppose that (X, d, f, [, ]) is a Smale space. Then there is a
constant 0 < ε1 satisfying the following, for all 0 < ε ≤ ε1.

ES If x and y are in X and d(fn(x), fn(y)) ≤ ε, for all n ≥ 0, then y is in
Xs(x, ε).
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EU If x and y are in X and d(fn(x), fn(y)) ≤ ε, for all n ≤ 0, then y is in
Xu(x, ε).

Proof. Choose 0 < ε1 ≤ εX so that, for all x, y with d(x, y) < ε1, we have
d([y, x], x) < εX . It follows then that for x, y satisfying the hypothesis of
ES, we have [fn(y), fn(x)] is in Xu(fn(x), εX), for all n ≥ 0. Now we apply
hypothesis B4 to note that

f−1[fn(y), fn(x)] = [fn−1(y), fn−1(x)]

provided n is positive. Then we apply hypothesis C2 to assert

d(fn−1(x), [fn−1(y), fn−1(x)]) = d(f−1fn(x), f−1[fn(y), fn(x)])

≤ λd(fn(x), [fn(y), fn(x)]).

Then an easy induction shows that, for all n ≥ 0, we have

d(x, [y, x]) ≤ λnd(fn(x), [fn(y), fn(x)])

≤ λnεX .

Since λ < 1, we conlcude that x = [y, x] and hence the conclusion. We have
shown the first statement is true; the proof of the second is analogous and
we omit the details.

This lemma has an immediate consequence of some interest, that is, the
systems we are considering are expansive. This means that there is a positive
constant (here, ε1) so that any two distinct points, no matter how close, may
be separated by at least this constant, by applying the map f (or f−1) a
number of times to both.

Corollary 1.3.6. The map f is expansive for the constant ε1; i.e. if x and
y are in X and d(fn(x), fn(y)) ≤ ε1, for all integers n, then x = y.

Theorem 1.3.7. Let (X, d, f, [, ]) be a Smale space and let ε1 be as in the
last lemma. If x, y are in X and d(x, y), d(x, [x, y]), d(y, [x, y]) are all less
than ε1/2, then

{[x, y]} = {z | d(fn(x), fn(z)) < ε1/2,

d(f−n(y), f−n(z)) < ε1/2, for all n ≥ 0}
= Xs(x, ε1/2) ∩Xu(y, ε1/2).
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Proof. The last lemma asserts that the second set in the statement is con-
tained in the third. It is easy to check from the definitions and the axioms
C1 and C2 that the reverse containment also holds.

It follows from the definitions, the triangle inequality and expansiveness
that the second set is at most a single point. Finally, we note that [x, y] is
contained in the second set by Lemma 1.3.2 and the conclusion follows.

We note that this theorem says, among other things, that the bracket
map is uniquely determined by (X, d, f), provided that it exists.
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In this chapter, we will introduce a number of examples of Smale spaces.

2.1 Shifts of Finite Type

The following class of examples are, in a certain sense, the most important.
These are the shifts of finite type ( or occassionally, the subshifts of finite
type). We will first give the abstract definition. We will not provide any
proofs of the assertions we make. Most are fairly easy and all can be found
in [?].

Let A denote a finite non-empty set, sometimes called the alphabet. We
consider the space of doubly infinite sequences in A

AZ = {(an)n∈Z | an ∈ A, for all n ∈ Z}.

For each a in AZ and pair of integers i ≤ j, we let

a[i,j] = (ai, ai+1, . . . , aj),

whch is in Aj−i+1. We define a metric on AZ by

d(a, b) = inf{1, 2−|n| | n ≥ 1, a[1−n,n] = b[1−n,n]}.

where a = (an)n∈Z, b = (bn)n∈Z are in AZ. The most useful interpretation of
this metric is the following easy result.

Lemma 2.1.1. Let a, b be in A. For any n ≥ 0, we have d(a, b) < 2−n if
and only if ai = bi, for −n ≤ i ≤ n+ 1.

This is a compact metric space whose topology is generated by sets which
are both closed and open. We call such sets clopen. For an example of such
a set, fix a finite length sequence (am, am+1, . . . , an) of elements in A, for
integers m ≤ n and we let

U = {b ∈ AZ | bi = ai,m ≤ i ≤ n}.

We define the shift map σA or just σ by

(σA(a))n = an+1

for any a in AZ and n in Z. If one writes out the elements of AZ as an infinite
string, it is a little hard to make sense of the map; it looks like nothing is
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happening. The point is that one must keep track of the 0 entry of the
sequence. We can do this by inserting a dot between the entries 0 and 1.
Then our map looks like

σA(. . . a−2a−1a0.a1a2 . . .) = (. . . a−2a−1a0a1.a2 . . .)

so that every entry is moved one place to the left. (Sometimes for emphasis,
we call σA the left shift.) It is easy to check that σA is a homeomorphism of
AZ.

We define the bracket on X as follows: for a and b in AZ, we define

[a, b]n =

{
bn n ≤ 0
an n ≥ 1

for all n in Z. At this point, the bracket is defined for all pairs a and b
and we leave it as an easy exercise to see that conditions B1, B2 and B3
are satisfied. Condition B4 however, is only satisfied if we set εAZ = 1; for
if d(a, b) < 1, then a0 = b0 and a1 = b1 and it is then an easy matter
to check that [σ(a), σ(b)] = σ[a, b]. Turning to condition C1, suppose that
d(a, b), d(a, c) < 1 and [b, a] = a and [c, a] = a. It follows from the first
condition that a0 = b0 = c0 and from the second that an = bn = cn, for all
n ≥ 1. Assuming that b 6= c, d(b, c) = 2n, where n is the greatest integer
(necessarily negative) such that bn 6= cn. It easily follows that d(σ(b), σ(c)) =
2n−1 = 2−1d(b, c). The condition C2 is proved in an analogour way.

Here we extend the class of systems considered in the last section by
taking subsystems. Of course, we must establish a convenient condition for
the subsystem to retain the property of being a Smale space.

If w = (w1, . . . , wn) is a finite sequence in elements of A, we say that w is
a word in A. Given a in AZ, we say that w appears in a if, for some k ∈ Z,

(ak+1, . . . , ak+n) = (w1, . . . , wn).

Let F be a finite (possibly empty) collection of words in A. We define

XF = {a ∈ AZ | no word in F appears in a}.

It is easy to see that this is a closed subset of AZ. It is possible for this
to be empty at this stage. Moreover, it is invariant under σA; a is in XF if
and only if σA(a) is.
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The restriction of σA to XF is denoted by σF or just σ. Any non-empty
system obtained as (XF , σF) is called a shift of finite type.

Now that we have given the abstract definition, we will not use it again.
We will instead produce two classes of examples of shifts of finite type. How-
ever, our classes are exhaustive in the sense that every shift of finite type is
topologically conjugate to one in each class.

First, we let N be a positive integer and let A be an n×N -matrix with
entries which are either 0 or 1. The (i, j) entry of A is denoted A(i, j).

We define

ΣA = {(an)n∈Z | A(ai, ai+1) = 1, for all i ∈ Z}.

and σA is the left shift map on this space. This is the shift of finite type
associated with the collection of words

F = {(i, j) | A(i, j) = 0}.

It is best to think of N states which are labelled 1, . . . , N . The matrix
describes which transitions between states are allowed. The transition from
i to j is allowed when A(i, j) = 1. Then the elements of ΣA can be thought
of as infinite sequences of states where each successive transition is allowed.

We construct another example of a shift of finite type as follows. Let G
be a (finite) directed graph. That is, G consists of a vertex set, G0, and an
edge set, G1, and two maps i, t : G1 → G0. This can be viewed geometrically
as follows. Each vertex is a point and each edge, e, is drawn as an arrow
from i(e) (”i” for ”initial”) to t(e) (”t” for ”terminal”).

We then define

ΣG = {(en)∞n=−∞ | en ∈ G1, t(en) = i(en+1), for all n},

which can be viewed as the space of doubly infinite paths in the graph. We
assume the graph has at least one cycle so that ΣG is non-empty. We define
a metric on ΣG exactly as before, by

d(e, f) = inf{1, 2−|n| | n ≥ 1, e[1−n,n] = f[1−n,n]}.

where e = (en)∞−∞, f = (fn)∞−∞ are in ΣG. The map σG is just the left shift
on these sequences of edges.

To see this is a shift of finite type, we let A = G1 and F = {(e, f) | t(e) 6=
i(f)}. It is easy to see that XF = ΣG.
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We want to describe one more method of constructing a shift of finite
type. If A is any N ×N -matrix with non-negative integer entries, we define
ΣA as follows. Let G be the directed graph with G0 = {1, 2, . . . , N} and an
edge set G1 so that from vertex i to vertex j there are exactly A(i, j) edges.
We then define ΣA = ΣG. It is easy to see that the result, up to a relabelling
of symbols, is independent of G.

However, this creates a small problem. If A is an N ×N -matrix with 0-1
entries, we now have two distinct definitions of ΣA. In the first, the symbol
set for our shift is {1, 2, . . . , N}, while in the second it is the set of edges
of some graph and the number of symbols is just the total number of ones
in the matrix. We will never quite resolve this problem except to say that
usually, in this case, we mean the latter. We will, however, describe methods
that take us back and forth between these two constructions.

Let A be an N × N -matrix with 0-1 entries. We have our shift ΣA

as first described above. Next, we construct a graph G with vertex set
G0 = {1, 2, . . . , N} and edge set G1 = {(i, j) | A(i, j) = 1}. We set i(i, j) = i
and t(i, j) = j; that is, (i, j) is an edge from i to j. We claim that the
two shifts ΣA and ΣG are topologically conjugate. If (an) is any sequence in
ΣA, then ((an, an+1)n∈Z) is in ΣG. This map is clearly continuous and shift
commuting. It is easy to check that it is both injective and surjective and
hence a topological conjugacy.

Somewhat less obviously, there is a way to begin with a directed graph
G and find a square matrix, A, with 0-1 entries so that ΣG and ΣA are
topologically conjugate. We let N be the number of edges in G and list the
edge set G1 = {e1, e2, . . . , eN}. We define A(i, j) = 1, if t(ei) = i(ej) and
A(i, j) = 0 otherwise. If (an) in is ΣA, then (ean) is in ΣG. This is clearly a
continuous, shift commuting map. We leave it to the reader to check that it
is a bijection.

So we have ways to pass back and forth between our two classes of shifts
of finite type. A word of warning is in order. These are not inverses to each
other. That is, if one begins with a 0-1 matrix A, constructs a graph G and
then from the graph constructs a 0-1 matrix A′, then A′ will not be A.

Finally, we mention that any shift of finite type is conjugate to one in
either class above. We will not give a proof of this fact, but we will use it
frequently.

Now let us turn to the issue of why such a system is a Smale space. We
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will use the graph version ΣG. For any e = (en)n∈Z in ΣG, we define the sets

Ee = {e′ ∈ ΣG | e′n = en, for all n ≥ 0}
Fe = {e′ ∈ ΣG | e′n = en, for all n ≤ 0}

It is clear that these two sets intersect exactly at e. Moreover, given e′ in Ee
and e′′ in Fe, we form the sequence

fn =

{
e′n n ≤ 0
e′′n n ≥ 0

It is easy to check that the construction is a homeomorphism between Ee×Fe
and the set {f ∈ ΣG | f0 = e0} which is a neighbourhood of e.

Let us consider the contracting/expanding structure of σ on these sets.
If e′, e′′ are both in Ee, then e′n = en = e′′n for all n ≥ 0 and so d(e′, e′′) =
2−n, where n is the largest positive integer such that en 6= fn. Similarly,
d(σ(e′), σ(e′′)) = 2−m, where m is the largest positive integer such that
σ(e′)m 6= σ(e′′)m. Then from the definiton of σ, we see that m = n + 1
and so

d(σ(e′), σ(e′′)) =
1

2
d(e′, e′′).

In exactly the same way, it can be shown that, if e′ and e′′ are in Fe, then

d(σ−1(e′), σ−1(e′′)) =
1

2
d(e′, e′′).

If we want to consider the more rigourous definition of Smale space, we
define the operation [, ] as follows. We set εX = 1/2. Now if e and f are
in ΣG and d(e, f) ≤ εX , it follows from the definition of the metric that we
must have e0 = f0. In this case, we set

[e, f ] =

{
fn n ≤ 0
en n ≥ 0

The important thing to observe at this point is that [e, f ] is again in ΣG.
This is a consequence of the definition of ΣG and is not true for more general
closed subsets of the space of bi-infinite sequences.
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2.2 Anosov Diffeomorphisms

We will begin with a very specific example and then discuss some general-
izations. Consider the matrix

A =

[
2 1
1 1

]
.

Observe that det(A) = 1. We first regard A as a linear map of R2. As
det(A) = 1, AZ2 = Z2 and so A induces a map, f , of the quotient T2 =
R2/Z2, which is the 2-torus. Let q denote the quotient map from R2 to T2.
The metric we put on T2 is the quotient one. This means that for points
x, y in R2 which are sufficiently close, d(q(x), q(y)) = |x− y|. We claim that
(T2, f) is a Smale space. (Actually, (R2, A) would have been a Smale space,
except for the fact that R2 is not compact; this is a crucial axiom.)

To see the local product structure, we need a description of the eigenvalues
and eigenvectors of A. Let γ = (1 +

√
5)/2, which satisfies γ2 = γ + 1 and

γ > 1. The eigenvalues of A are λ2 and λ−2. The associated eigenvectors are
v1 = (γ, 1) and v2 = (−1, γ). For any point x in R2, we define

Eq(x) = {q(x+ tv2) | |t| ≤ ε}
Fq(x) = {q(x+ tv1) | |t| ≤ ε}

where ε > 0 is some sufficiently small fixed parameter. If y = x + tv2, z =
x+ sv2, for |s|, |t| ≤ ε, then we have

d(f(q(y)), f(q(z))) = d(q(Ay), q(Az))

= |Ay − Az|
= |A(x+ tv2)− A(x+ sv2)|
= |(t− s)Av2|
= |(t− s)γ−2v2|
= γ−2|(t− s)v2|
= γ−2d(q(y), q(z))

This shows the contracting nature of f on Eq(x), since γ−2 < 1. The con-
tracting nature of f−1 on Fq(x) is done in a similar way. The fact that
the vectors v1, v2 form a basis for R2 means that the map sending the pair
(q(x+ tv2), q(x+ sv1) in Eq(x)×Fq(x) to q(x+ tv2 + sv1 is a homeomorphism
to a neighbourhood of q(x) in T2.
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To see the bracket operation in this example, we can do no better than our
original discussion. The point [q(x), q(y)] is the unique point in Eq(x) ∩Fq(y).

There are many generalizations of this example possible. First, let A be
any N × N matrix with integer entries and determinant either 1 or -1. In
exactly the same fashion as above, we can construct a map f of the N -torus,
TN . If we assume that the matrix has no eigenvalues of absolute value 1,
then we construct Eq(x) as before, using all eigenvectors whose associated
(complex) eiganvalues have absolute value less than 1. Similarly, Fq(x) is
constructed from all eigenvectors whose eigenvalues are greater than 1 in
absolute value. Obviously, some care must be taken in the case ob complex
eigenvalues and eigenvectors, but we leave this to the reader to sort out.

These are all examples of Anosov diffeomorphisms. Let M be a compact
Riemannian manifold and let f be a diffeomorphism of M . We say that
(M, f) is an Anosov diffeomorphism if we may find constants C ≥ 0 and
0 < λ < 1 and a splitting of the tangent space of M

TM = Es ⊕ EU

into Tf -invariant sub-bundles such that, for all n ≥ 1, we have

‖ T (fn)ξ ‖ ≤ Cλn ‖ ξ ‖ for all ξ ∈ Es,

‖ T (f−n)η ‖ ≤ Cλn ‖ η ‖ for all η ∈ Eu.

The equations above look reminiscent of the definition of Smale space,
but slightly different. This can be improved. In Exercises 6.4.1 and 6.4.2 of
[?], it is shown that the definition givenabove is equivalent to requiring the
existence is a Riemannian metric in which we have

‖ (Tf)ξ ‖ ≤ λ ‖ ξ ‖ for all ξ ∈ Es,

‖ T (f−1)η ‖ ≤ λ ‖ η ‖ for all η ∈ Eu.

which looks considerably more like the condition we want.

2.3 Basic sets of Axiom A Systems

We will now spend a short time discussing Smale’s Axiom A systems. In
a certain sense this doesn’t belong in a section on examples; particularly
since we won’t present any explicit ones. However, this class of dynamical
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systems has been of great interest and, in a certain sense, be regarded as the
raison d’etre for Smale spaces. We refer the reader to [?] for more extensive
discussions.

Smale’s program for differential dynamics begins with a compact mani-
fold, M , with a diffeomorphism f : M → M . We consider the set of non-
wandering points, NW (f). The key ingredient in the definition of Axiom is
to suppose that the tangent bundle of M , when restricted to NW (f) has a
global splitting

TNW (f)M = Es ⊕ Eu

and the same conditions hold on these spaces as for Anosov diffeomorphisms:
for all n ≥ 1, we have

‖ T (fn)ξ ‖ ≤ Cλn ‖ ξ ‖ for all ξ ∈ Es,

‖ T (f−n)η ‖ ≤ Cλn ‖ η ‖ for all η ∈ Eu.

To say this another way, an Anosov diffeomorphism is an Axiom A system
in which every point is non-wandering.

The other requirement for Axiom A systems is that the periodic points
are dense in the non-wandering set. From our point of view here, this is
needed to prove that the non-wandering set is actually a Smale space.

Smale also proved that the non-wandering set for an Axiom A system
had a canonical decomposition into a finite number of irreducible pieces. We
will not make this notion of irreducible precise at the moment (although we
will in section ??). These sets, Smale called basic sets.

Theorem 2.3.1. If (M, f) is an Axiom A system, then (NW (f), f | NW (f))
and all the basic sets are Smale spaces.

We will not give a proof. The essential features of a proof may be found
in section 6.4 of [?]. (See especially 6.4.9 and 6.4.13.)

Smale proposed the class of Axiom A systems for study for several reasons.
First, he believed that they should be generic in a certain sense. Second, they
should display structural stability: any sufficiently small perubation of such a
map should actually be topologically conjugate to the original map. It seems
that they may actually coincide with the class of structurally stable maps.
Finally, Smale hoped that they could be classified by relatively simple com-
binatorial data in the same sort of fashion that Morse-Smale systems could
be described. We will not concern ourselves here with all the developments
of this program, but [] is an excellent reference.
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One of Smale’s great insights was that, even though one began with a sys-
tem which was smooth, the non-wandering set itself would not usually be a
sub-manifold. The first example of this was the horse-shoe. It is a diffeomor-
phism of the two-sphere where the non-wandering set consists of a repelling
fix-point, an attracting fix-point and an invariant Cantor set where stable
and unstable sub-bundles of the tangent bundle are both one-dimensional.
This phenomenon has now become very well known and the non-wandering
set is very typically some sort of fractal object. This is our motivation for
moving from the smooth category to the topological one.

2.4 Solenoids

We begin this section with a simple class of examples. Let K be a finite
directed graph. We regard this as a topological space, with a metric d. Let
f : K → K be a map satisfying the following conditions.

1. f maps vertices to vertices.

2. f is continuous.

3. f is surjective.

4. the restriction of f to each edge is locally expanding; that is, there are
constants δ > 0, λ > 1 such that, if x, y are on the same edge and
d(x, y) ≤ δ, then d(f(x), f(y)) ≥ λd(x, y).

5. f is ‘flattening’ at the vertices; that is, there is a constant k ≥ 1
such that each vertex, v, has a neighbourhood V such that fk(V ) is
homeomorphic to an open interval with fk(v) in its interior.

Let us consider an explicit example: suppose K has one vertex v, and
two edges a and b. We describe f as a→ aab and b→ ab. By this, we mean
that a is divided into three equal length subintervals. The first is mapped
homeomorphically onto a (and is uniformaly stretched by 3), the second is
mapped to a also and the third to b. The interval b is divided into two equal
subintervals. The first is mapped to a (uniformly stretched by 2) and the
second to b.

For the locally expanding axiom, the constant δ = 1
6

(notice that there
are two distinct points in the interior of the a edge both mapped to v) and



2.5. SUBSTITUTION TILING SYSTEMS 25

λ = 2. In the flattening axiom, we may use k = 1. Notice that the image
of a small open ball around v (which looks like a point with four ‘legs’ is an
interval containing the start of the a edge and the end of the b edge.

Now we let X be the inverse limit of the system

K
f← K

f← K
f← · · · .

More explicitly, we write

X = {(x0, x1, x2, . . .) | xn ∈ K, f(xn+1) = xn, for all n ≥ 0}.

We define a metric d on X by

d((x0, x1, x2, . . .), (y0, y1, y2, . . .)) =
∑
n≥0

2−nd(xn, yn),

for all (x0, x1, x2, . . .), (y0, y1, y2, . . .) in X. The map on X, also denoted by
f , is defined as

f(x0, x1, x2, . . .) = (f(x0), f(x1), f(x2), . . .),

for all (x0, x1, x2, . . .) in X. Notice that the inverse is given by

f−1(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

In this example, the local contracting sets are totally disconnected, while
the local expanding sets are homeomorphic to intervals in the real line.

This example (or a small variation of it) is due to R.F. Wiliams. He also
gave a more general construction where the space K is a branched manifold,
of arbitrary dimension. In these examples, the local contracting set is totally
disconnected, while the local exanding expanding set is homeomorphic to an
open ball in Euclidean space. However, it should be possible to give some
kind of definition which does not use any kind of manifold structure. The
resulting space should have quite general looking local expanding sets.

2.5 Substitution Tiling Systems

We work in Euclidean space Rd, d ≥ 1. In fact, all our examples with be
with d = 1, 2. For x in Rd and r > 0, we let B(x, r) denote the open ball of
radius r centred at x.
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We assume to have a finite number of subsets p1, . . . , pN of Rd. These
should be homeomorphic to a closed ball, but in fact, we may even assume
for the moment that each is a polyhedron. We may also allow that two of
them are the same subset, but carry different labels. We call these sets the
proto-tiles.

We also have a constant λ > 1 and, for each i = 1, . . . , N , ω(pi) which
is a collection of subsets, each of which is a translate of one of the originals,
whose interiors are pairwise disjoint and whose union is the set λpi.

We define a tile to be any translate of of one of the proto-tiles. We extend
our definition of ω by setting ω(pi + x) = ω(pi) + λx, for any i and x in Rd.

A partial tiling T is a collection of tiles whose interiors are pairwise dis-
joint. A tiling is a partial tiling whose union is Rd. We may extend our
definition of ω to collections of tiles by ω(T ) = ∪t∈Tω(t). Note that this is
again a partial tiling. This now also allows us to iterate ω; ωk(pi) makes
sense for any k ≥ 1.

If T is a partial tiling, x in is Rd and r > 0, we use a slight abuse of
notation by setting

T ∩B(x, r) = {t ∈ T | t ⊂ B(x, r)}.

We define Ω to be the set of tilings T such that, for any r > 0, there is k ≥ 1,
1 ≤ i ≤ N and x in Rd such that

T ∩B(0, r) ⊂ ωk(pi) + x.

The first basic facts are summarized as follows.

Lemma 2.5.1. 1. Ω is non-empty.

2. ω(Ω) = Ω.

The next step is to introduce a metric on Ω. The idea is that two elements,
T, T ′ are close if, after a small translation, they agree on a large ball around
the origin. More precisely, d(T, T ′) is the infimum of all ε > 0 such that,
there exist x, x′ in Rd such that

(T − x) ∩B(0, ε−1) = (T ′ − x′) ∩B(0, ε−1).

(If no such ε > 0 exists, we set d(T, T ′) = 1.)
We say that Ω has finite local complexity or FLC if, for every r > 0,

modulo translation, there are only finitely many collections T ∩ B(x, r), T
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in Ω, x in Rd. In the case that our proto-tiles are polyhedra and in the
substitution ω, tiles meet full face to full face, this is automatic.

The remaining important properties are summarized below.

Lemma 2.5.2. 1. ω is continuous.

2. Ω is compact if and only if it has finite local complexity.

3. ω : Ω→ Ω is injective if and only if Ω contains no periodic tilings.

Theorem 2.5.3. Suppose the substitution tiling system ω has finite local
complexity and that the space Ω contains no periodic tilings. Then (Ω, ω, d)
is a Smale space.

Proof. We choose a constant εω > 0 such that (2εω)−1 is greater than the
diameter of each prototile and such that each prototile contains an open ball
of radiuus 2εω.

It is then a fairly simple matter to check that, if T and T ′ are two tilings
in Ω with d(T, T ′) ≤ εω, the x and x′ such that (T − x) ∩ B(0, ε−1ω ) =
(T ′ − x′) ∩B(0, ε−1ω ) are unique. We then define

[T, T ′] = T ′ − x′ + x.

While the precise details are slightly more complicated, it is fairly easy
to see why this makes Ω a Smale space. We give the main ideas.

First, it is quite easy to prove that, for ε > 0 sufficiently small, we have

Ωs(T, ε) = {T ′ | T ∩B(0, ε−1) = T ′ ∩B(0, ε−1)}
Ωu(T, ε) = {T + x | x ∈ B(0, ε)}.

Next, it is a simple matter to see that if T and T ′ agree on B(0, ε), then
ω(T ) and ω(T ′) agree on B(0, λε). This immediately translates into the fact
that, if [T, T ′] = T ′, then

d(ω(T ), ω(T ′)) ≤ λ−1d(T, T ′).

Finally, it is clear that ω(T + x) = ω(T ) + λx. Using the fact that ω is
injective, we also see that ω−1(T + x) = ω−1(T ) + λ−1x. This translates into
the fact that, if [T, T ′] = T , then T ′ = T + x and

d(ω−1(T ), ω−1(T + x)) = d(ω−1(T ), ω−1(T ) + λ−1x)

= λ−1|x|
= λ−1d(T, T + x).



28 CHAPTER 2. EXAMPLES



Chapter 3

Basic theory

29



30 CHAPTER 3. BASIC THEORY

3.1 Stable and Unstable Equivalence

In this section, we want to introduce and investigate the notions of stable
and unstable equivalence for the points of a Smale space.

Before stating the definitions, we establish the following preliminary re-
sult.

Lemma 3.1.1 (flochomeo). Let x be in X and 0 < δ < εX . If y is in
Xs(x, εX − δ), then

f(X(y, δ) ∩Xs(x, εX))

is an open subset of Xs(f(x), εX) in its relative topology.
Also, if f(y) is in Xu(f(x), εX − δ), then

f−1(X(f(x), δ) ∩Xu(f(x), εX))

is an open subset of Xu(f(x), εX) in its relative topology.

Proof. We will only consider the first statement, the other being similar. We
first note that the fact that the range is contained in the given set follows
from the definitions and the properties of the map f . We must show that
the range is open. Begin with z in X(y, δ) ∩Xs(x, εX). Choose 0 < δ′ < εX
sufficiently small so that f−1(X(f(z), δ′)) ⊂ X(z, δ−d(y, z)). It follows from
the triangle inequality that

f−1(X(f(z), δ′) ∩Xs(f(x), εX)) ⊂ X(y, δ).

We also note for any w in X(f(z), δ′) ∩Xs(f(x), εX), we have

[f−1(w), x] = f−1([w, f(x)]) = f−1(f(x)) = x

and so f−1(w) is also in Xs(x, εX). From this we see that X(f(z), δ′) ∩
Xs(f(x), εX) is in the image of X(y, δ)∩Xs(x, εX) and so the range is open,
as desired.

Definition 3.1.2. Let (X, d, f) be a Smale space. We say two points x, y in
X are stably equivalent and write x

s∼ y if

lim
n→+∞

d(fn(x), fn(y)) = 0.

We say that x, y are unstably equivalent and write x
u∼ y if

lim
n→−∞

d(fn(x), fn(y)) = 0.
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It is immediate that each of these is an equivalence relation. It is also
fairly clear that x

s∼ y (or x
u∼ y) if and only if f(x)

s∼ f(y) (or f(x)
u∼ f(y),

respectively).
It should also be fairly clear from the definitions of the last section that

if y is in Xs(x, εX), then one can show inductively that, for every positive n,
fn(y) is in Xs(fn(x), εX) and that

d(fn(y), fn(x)) ≤ λnd(x, y)

and since λ < 1, we have x
s∼ y. One might even have anticipated this result

from the fact that we called Xs(x, εX) the local stable set of x. In a similar
way, every point in Xu(x, εX) is unstably equivalent to x.

We can take these last comments a step further by observing that if fn(y)
is in Xs(fn(x), εX) for any positive integer n, then fn(x)

s∼ fn(y) and hence,
x

s∼ y. We will show that this is a complete description.

Proposition 3.1.3. Let x be in X and 0 < ε ≤ εX . The equivalence class
of x under

s∼ is ⋃
n≥0

f−n(Xs(fn(x), ε))

and its equivalence class under
u∼ is⋃

n≥0

fn(Xs(f−n(x), ε)).

Proof. We will show only the first statement. The second is obtained in the
same way. We have already argued that any point in the set given is in the
stable equivalence class of x. Conversely, suppose that y

s∼ x. Then we may
choose N ≥ 0 sufiiciently large so that

d(fn(x), fn(y)) ≤ ε′ = min{ε, ε1}

for all n ≥ N , where ε1 is as given in Lemma ??. By Lemma ??, we have
fN(y) is in Xs(fN(x), ε). This completes the proof.

Let us consider an example. Let G be a graph and XG be the associated
shift of finite type. Recall from the definitions that for any e and f in XG,
we have f is in Xs(e, εX) if and only if en = fn, for all n ≥ 0. It follows
that σN(f) is in Xs(σN(e), εX) if and only if en = fn, for all n ≥ N . So we
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see that e
s∼ f if and only if there is some N ≥ 0 such that en = fn, for

all n ≥ N . This is usually refered to as right tail equivalence. Analogous
statements are available for unstable equivalence, including the notion of left
tail equivalence.

Henceforth, the
s∼ equivalence class of a point x in X is denoted Xs(x)

while its unstable class is denoted by Xu(x). These are called the stable
and unstable sets of x, respectively. We could have introduced the notation
ealier, but its similarity with that of the local stable and unstable sets seemed
premature before we had established the last result.

Theorem 3.1.4. Let (X, d, f) be a mixing Smale space and let x be in X.
Then Xs(x) and Xu(x) are dense in X.

Proof. Let δ be positive and let y be in X. We will show that Xs(x) meets
X(y, δ). First, we choose εX > δ′ > 0 such that if d(x′, y′) < δ′, then
d([x′, y′], y′) < δ/2. Considering fn(x), n ≥ 0, find a subseqence fni(x) which
converges to some point x0 in X. Let U = X(y, δ/2) and V = X(x0, δ

′/2)
and apply the definition of mixing to find a positive integer N . Then find
ni ≥ N such that fni(x) is in X(x0, δ

′/2). From the choice of N , there is z
in U with fni(z) in V . This means that fni(z) and fni(x) are in X(x0, δ

′/2).
It follows that w = f−ni [fni(x), fni(z)] is well-defined. More over, fni(w) is
in Xu(fni(z), δ/2). It follows that d(w, z) ≤ λniδ/2 and from this that w is
in X(y, δ). On the other hand, fni(w) is in Xs(fni(x), δ/2) and from this it
follows that w is in Xs(x). This completes the proof.

For a given x in X, the set Xs(x) is a subset of X and has a relative
topology from X. However, there is another much more natural topology on
it. To see this, we will use the description of Xs(x) given in the last result.
Notice that for a given n, we have

f−n(Xs(fn(x), ε)) ⊂ f−n−1(Xs(fn+1(x), ε)).

To see this, let y be in the former set. This means fn(y) is in Xs(fn(x), ε). It
follows from the definitions that fn+1(y) is in Xs(fn+1(x), ε) and this implies
the result.

Now each set, f−n(Xs(fn(x), ε)) is given the relative topology of X and
the set Xs(x) is given the inductive limit topology. A subset, U , is open if
and only if its intersection with f−n(Xs(fn(x), ε)) is open, for all but finitely
many n. The unstable set is given a topology in a similar fashion.
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Just to get an idea of what is happening here, let us consider the first
example of the Anosov diffeomorphism given in 2.2. Let x = q(0, 0). The rea-
son this is a nice choice is that it is fixed and that simplifies our computation
of the stable set of x. The local stable set is

Xs(x, ε) = {q(tv2) | |t| ≤ ε}

where q is the quotient map from R2 to T2 and v2 = (−1, γ) is the contracting
eigenvector for A. It is easy to check then that

f−n(Xs(x, ε)) = {q(tv2) | |t| ≤ γ2nε}

and that

Xs(x) = {q(tv2) | t ∈ R}.

Moreover, this set is dense in T 2 and rather horrid in the relative topology. In
particular, it is not locally compact. However, the inductive limit topology
makes the map from t ∈ R to q(tv2) a homeomorphism.

Theorem 3.1.5. Let x be a point in the Smale space (X, d, f).

1. The sets Xs(x) and Xu(x), endowed with the inductive limit topology
above, are locally compact and Hausdorff.

2. A sequence yn converges to y in Xs(x) if and only if it converges to y
in the usual topology of X and [yn, y] = y, for all n sufficiently large.

3. A sequence yn converges to y in Xu(x) if and only if it converges to y
in the usual topology of X and [y, yn] = y, for all n sufficiently large.

4. Sets of the form Xs(y, ε), where y is in Xs(x) and 0 < ε ≤ εX , form a
neighbourhood base for the inductive limit topology on Xs(x).

5. Sets of the form Xu(y, ε), where y is in Xu(x) and 0 < ε ≤ εX , form a
neighbourhood base for the inductive limit topology on Xu(x).

Proof. That Xs(x) is Hausdorff follows from the fact that each set in the
inductive limit is Hausdorff. We consider the fact that it is locally compact.
Let y be a point of Xs(x), which means that fN(y) is in Xs(fN(x), εX),
for some N ≥ 0. By replacing N by N + 1 if necessary, we may assume
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that d(fN(y), fN(x)) < εX . Choose 0 < δ < εX − d(fN(y), fN(x)) and let
U = f−N(Xs(fN(x), δ)). This set is equal to

f−N(X(fN(x), δ)) ∩ f−N(Xs(fN(x), εX))

and, hence, open in the relative topology of f−N(Xs(fN(x), εX)). We want
to show the same is true for each of the sets U ⊂ f−n(Xs(fn(x), εX)), for
every n ≥ N . For each such n, fn(U) is open in the relative topology of
Xs(fn(x), εX), from Lemma ??. The desired conclusion follows since f is
a homeomorphism. So the set U is open in the inductice limit topology of
Xs(x). Its closure is compact in f−N(Xs(fN(x), εX)) and hence in Xs(x).
This completes the proof of the first part.

For the second statement, suppose that yn converges to y in the relative
topology. Repeating the argument in the first part, for some N ≥ 0, y is in
f−N(Xs(fN(x), εX)) and for some 0 < δ, the set

U = f−N(Xs(fN(x), δ))

is a neighbourhood of y in Xs(x). So for all n sufficiently large, yn is in
U . Also for all n sufficiently large, yn is sufficiently close to y so that
d(f−k(yn), f−k(y)) < εX , for all 0 ≤ k ≤ N . Then we have

[yn, y] = f−N [fN(yn), fN(y)]

= f−N(fN(y))

= y

because both fN(yn) and fN(y) are in Xs(fN(x), εX).
Now suppose that yn converges to y and [yn, y] = y, for all n sufficiently

large. Then for some N , fN(y) is in Xs(fN(x), εX) and, again replacing N
by N + 1 if necessary, we may assume that d(fN(y), fN(x)) < εX . Then for
n sufficiently large, we have d(fN(yn), fN(x)) ≤ εX and we can compute

[fN(yn), fN(x)] = [[fN(yn), fN(y)], fN(x)]

= [fN [yn, y], fN(x)]

= [fN(y), fN(x)]

= fN(x)

This means that fN(yn) is converging to fN(y) in the relative topology of
Xs(fN(x), εX) and, hence, yn is converging to y in the relative topology
of f−N(Xs(fN(x), εX)). Now we note that the inclusion of this set in the
inductive limit is continuous and the desired conclusion follows.
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There is one more equivalence relation on the points of X which is quite
important. It is just the intersection of stable and unstable equivalence, but
it has a number of very nice features which we will exploit.

Definition 3.1.6. Two points x and y in X are homoclinic if they are both
stably and unstably equivalent. That is, we have

lim
|n|→∞

d(fn(x), fn(y)) = 0.

In this case, we write x
h∼ y. Here, we denote the equivalence class of x by

Xh(x).

It is worth considering an example at this point. If we once again think

about our shift of finite type XG, we see that e
h∼ f if and only if en = fn for

all but finitely many n.

3.2 Shadowing

In this section we discuss a critical property of Smale spaces called shadowing.
First of all, if a is in Z ∪ {−∞} and b is in Z ∪ {∞}, then we say that

I = (a, b) = {n ∈ Z | a < n < b} is an interval in Z.
We begin with a pair of definitions.

Definition 3.2.1. Let (X, d) be a compact metric space and let f : X → X
be a homeomorphism. For any ε > 0, an ε-pseudo-orbit over a non-empty
interval, I, is a collection of points xn, for each n in I, such that

d(f(xn), xn+1) ≤ ε

provided n and n+ 1 are in I.

Observe first that if x is in X, then for any I, the points xn = fn(x) are
an ε-pseudo-orbit, for any positive ε. That is, orbits are pseudo-orbits.

Definition 3.2.2. Let ε > 0 and δ > 0. If xn and yn are ε-pseudo-orbits
over the same interval I, then we say that one δ-shadows the other if

d(xn, yn) ≤ δ
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for all n in I. If x is in X, we also say that xn is δ-shadowed by (the orbit
of) x, if

d(xn, f
n(x)) ≤ δ

for all n in I.

Our objective is to prove the following result.

Theorem 3.2.3. Let (X, d, f) be a Smale space. For any δ > 0, there is an
ε > 0 such that every ε-pseudo-orbit in X is δ-shadowed by an orbit of X.

We will need the following result in the proof.

Lemma 3.2.4. Suppose that 0 < δ1 ≤ εX . Then there is ε > 0 such that, if
d(f(x), x′) < ε, then for all z in Xs(x, δ1), d(x′, f(z)) ≤ εX and [x′, f(z)] is
in Xs(x′, δ1).

Proof. First, it is clear that [x′, f(z)] is well-defined and in the local stable
set of x′. We must find ε so that d(x′, [x′, f(z)]) ≤ δ1.

Consider the set

A = {(x, y, z) | d(x, y), d(y, z) ≤ εX/2, [y, z] = z}

which is compact in X ×X ×X. Consider also the function h defined on A
by

h(x, y, z) = d(x, [x, z])− d(y, z)

which is clearly continuous and hence uniformly continuous. On the set,

B = {(x, y, z) ∈ A | x = y}

which is compact, we have

h(x, y, z) = h(y, y, z)

= d(y, [y, z])− d(y, z)

= d(y, z)− d(y, z)

= 0.

Therefore, there is ε > 0 such that, if d(x, y) < ε and (x, y, z) ∈ A, then

|h(x, y, z)| < δ1(1− λ).
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Also choose ε sufficiently small so that ε < (1− λ)δ1.
Now consider x, x′, z as in the statement. First we have d(x, z) < ε and

hence

d(x′, f(z)) ≤ d(x′, f(x)) + d(f(x), f(z))

≤ ε+ λd(x, z)

≤ (1− λ)δ1 + λδ1

≤ δ1

≤ εX

Also, we have (x′, f(x), f(z)) is in the set A and d(x′, f(x)) < ε and so
we conclude that

d(x′, [f(x), f(z)]) ≤ h(x′, f(x), f(z)) + d(f(x), f(z))

≤ δ1(1− λ) + λd(x, z)

≤ δ1(1− λ) + λδ1

= δ1

This completes the proof.

Proof of Theorem 3.2.3. First we choose 0 < δ1 ≤ εX/2 such that

[Xu(x, δ1), X
s(x, δ1)] ⊂ X(x, δ),

for all x in X. Next, we choose ε > 0 as in Lemma ?? which holds for both
(X, d, f) and (X, d, f−1).

We will first show the conclusion holds in the case where I = (a, b) is
finite and a < 0 and b > 0. For each a < i < b − 1, we define a map
gi : Xs(xi, δ1) → Xs(xi+1, δ1) by gi(z) = [xi+1, f(z)]. The fact that gi is
well-defined follows from the conclusions of the last Lemma.

In an analogous fashion, we may define a map hi : Xu(xi, δ1)→ Xu(xi−1, δ1)
by hi(z) = [f−1(z), xi−1], for a + 1 < i < b. We let g and h be the union of
the functions gi, a < i < b− 1, and hi, a+ 1 < i < b, respectively.

We define sets

Si =
[
hb−1+i(Xu(xb−1, δ1), g

1−a+i(Xs(xa+1, δ)
]
,

for every a < i < b, and we claim that any point x in S0 will shadow the
pseudo-orbit. It is clear that

hb−1+i(Xu(xb−1, δ1) ⊂ Xu(xi, δ1)

g1−a+i(Xs(xa+1, δ1) ⊂ Xs(xi, δ1)
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and then from the choice of δ1, we have Si ⊂ X(xi, δ). Then it suffices for us
to show that f(Si) = Si+1.

Choose y in Xs(xa+1, δ1) and z in Xu(xb−1, δ1). Let y′ = gi−a−1(y) and
z′ = hi−b(z) so that we have [h(z′), y′] ∈ Si and [z′, g(y′)] ∈ Si+1. Any
element of Si can be obtained in this way. We will show that f carries the
former to the latter. In the following computation, one must verify that all
bracket operations are defined. We leave this tedious aspect of the proof to
the reader. We have

f([h(z′), y′]) = f(
[[
f−1(z′), xi

]
, y′
]
)

=
[
f(
[
f−1(z′), xi

]
), f(y′)

]
= [[z′, f(xi)]), f(y′)]

= [z′, f(y′)]

= [z′, [xi+1, f(y′)]]

= [z′, g(y′)]

This completes the proof.
We now address the problem when the interval is infinite. In fact, we

consider the case only for I = Z and leave the half-open cases for the reader.
We begin by considering In = (−n, n), for any positive integer n. Notice

that the choice of δ1 is independent of n. This also means that every point
of

S(n) =
[
hn−1(Xu(xn−1, δ1)), g

n−1(Xs(x−n+1, δ1))
]

will δ-shadow the pseudo-orbit over the interval In. Each set S(n) is closed
and it follows directly from the definitions that S(n) ⊃ S(n+1) for all n. The
intersection of all S(n) is non-empty and any point in this intersection will
δ-shadow the pseudo-orbit over all of Z. This completes the proof.

At this point we note the following corollary.

Corollary 3.2.5. Let (X, d, f) be a Smale space. Then the set of periodic
points for f , Per(X, f), is dense in NW (X, f). In particular, if X is non-
wandering, then Per(X, f) is dense in X.

Proof. Let x0 be a non-wandering point of X and let ε0 be positive. Let
δ = ε1/2, where ε1 is the expansiveness constant for (X, d, f) ??. Choose
ε2 > 0 so that every ε2-pseudo-orbit is δ-shadowed by an orbit. Let ε be the
minimum of ε0, δ and ε2 and let V = X(x0, ε) Since x0 is non-wandering,
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there is a positive integer n and a point x in V , with fn(x) also in V . Now
we define xin+j = f j(x), for any i in Z and 0 ≤ j < n. It is easy to verify
that this is a ε-pseudo-orbit over Z. Then we may find a point y whose orbit
δ-shadows xn. In particular, y is in X(x, δ) and hence in X(x0, ε0). We claim
that y is periodic. To see this we note that, for any integer i, xn+i = xi and
so we have

d(f i(y), f i+n(y)) ≤ d(f i(y), xi) + d(xi+n, f
i+n(y))

≤ δ + δ

≤ ε1.

Applying the expansiveness condition ?? to the points y and fn(y), we see
that are equal and hence, y is periodic.

3.3 Decomposition of Smale spaces

Smale spaces admit very simple descriptions of how they decompose into
’irreducible’ pieces (meant in the non-technical sense. These fall into two
classes: the first describes how the non-wandering set is decomposes into
basic pieces, while the second describes how the wandering set fits around
them.

3.3.1 Decomposition of the non-wandering set

We have introduced the notions of non-wandering, irreducibility and mixing
and we have noticed that mixing implies irreducibity, which implies non-
wandering. These implications hold in generality and the converses do not.

We now want to restrict our consideration to the case of Smale spaces.
The converse directions are still false. For example, the finite disjoint union
of irreducible Smale spaces is still non-wandering but no longer irreducible.
The remarkable fact which we will prove is that every non-wandering Smale
space arises in exactly this way; that is, it may be decomposed into a finite
number of irreducible components.

Theorem 3.3.1. Let (X, d, f) be a non-wandering Smale space. Then there
are open, closed, pairwise disjoint, f -invariant subsets X1, . . . , Xn of X,
whose union is X, and so that (Xi, d, f |Xi) is irreducible, for each 1 ≤ i ≤ n.
Moreover, these sets are unique up to relabelling.
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Proof. We define an equivalence relation ∼ on the periodic points of f in
X as follows. Let x and y be periodic points in X. We say x ∼ y if,
Xs(x)∩Xu(y) and Xu(x)∩Xs(y) are non-empty. First, we must show that
this is an equivalence relation. In the case x = y, then x is in both sets,
so the relation is reflexive. It is clearly symmetric. Finally we suppose that
x ∼ y and y ∼ z. We will prove that Xu(x)∩Xs(z) is non-empty. The other
set, Xs(x) ∩ Xu(z), is done in a similar way and so x ∼ z. Let p be the
product of the periods of x, y and z. Let u be any point in Xu(x) ∩ Xs(y)
and let w be any point of Xu(y)∩Xs(z). Then as n tends to plus infinity, the
sequences fnp(u) and f−np(w) both tend to y Choose n suficiently large so
that d(fnp(u), f−np(w)) is less than εX . Let v = [f−np(w), fnp(u)]. Now the
point v is stably equivalent to f−np(w) which is stably equivalent to f−np(z)
which is just z, by the choice of p. Similarly, v is unstably equivalent to x
and this completes the proof.

Next, we want to observe that if x and y are periodic points with d(x, y) ≤
εX , then x ∼ y. This is because [x, y] and [y, x] are in the sets Xs(x)∩Xu(y)
and Xu(x) ∩Xs(y), respectively.

Let x be a periodic point and consider the closure of its equivalence class
in X. This is certainly closed and, by the result of the last paragraph, it
is also open. Moreover, any point, x, is the limit of a sequence of periodic
points. Again by the result of the last paragraph, these will eventually all lie
in the same equivalence class and so x will be in its closure.

This means that these closures of equivalence classes cover all of X. They
are all closed and open. For any point x, all periodic points within εX/2 of
x must all be equivalent and so x will lie in at most one of these sets. That
is, these sets form a partition of X into clopen sets. As X is compact, this
partition must be finite.

It is also easily seen that for any periodic points x, y, x ∼ y if and only
if f(x) ∼ f(y). This implies that f permutes the elements of the partition.
We let X1, . . . , Xn denote the orbits of the elements of the partition under
f . That is, we choose an element of our partition, Z. Since f permutes the
partition, there is a positive integer m so that

X1 = ∪i∈Zf i(Z) = ∪m−1i=0 f
i(Z).

If this is not all of X, then we choose another element of our partition and
repeat to get X2. We continue in this way until X is covered.

It remains only to show that the restriction of f to Xi is irreducible. We
will do this for X1 using Z and m as above. Let U and V be non-empty open
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sets in X1. Then for some i, j, U ∩ f i(Z) and V ∩ f j(Z) are nonempty. Now
f j−i(U)∩f j(Z) and V ∩f j(Z) are both non-empty open sets in f j(Z), which
is one on the elements of our partition of X. We may find periodic points x
in the former and y in the latter. By the construction of the elements of the
partition, x and y must be limits of periodic points in the same equivalence
class. Again using our continuity result, this means that x ∼ y. Choose a
point z in Xu(x) ∩ Xs(y) Let p be the product of the periods of x and y.
Then as n goes to +∞, fnp(z) tends to y which is in V . So find n > i − j
sufficiently large so that fnp(z) is in V . Similarly, we may find l < 0, so that
f lp(z) is in f j−i(U). This means that fnp(z) is in V and in f j−i+(n−l)p(U).
This proves that f |X1 is irreducible.

As for the uniqueness of this decomposition, it suffices to show that if W
is any clopen f -invariant subset of X with f |W irreducible, then W is equal
to one of the Xi. Given such a set W , let 1 ≤ i ≤ N . The sets U = W ∩Xi

and V = (X −W )∩Xi are clopen and f -invariant. If both were non-empty,
this would contradict the ireducibilty of f |Xi. So Xi is either disjoint from
W or a subset of it. In the latter case, we consider the sets W ∩ Xi and
W ∩ (X−Xi) which are clopen and f -invariant. If second is also non-empty,
this would contradict the irreducibilty of f |W . We conclude that W = Xi if
W ∩Xi is non-empty. This completes the proof.

We have now seen that every non-wandering Smale space can be de-
composed into irreducible pieces in a very nice fashion. The second result
concerns the difference between the conditions of irreducibilty and mixing.
The latter implies the former and the converse is still false for Smale spaces.
As an example, take any mixing Smale space X. Let N be a positive integer
and consider X × {1, . . . , N} with the homeomorphism f × σ, where σ is a
cyclic permutation of {1, . . . , N}. This new system is still irreducible. How-
ever, if U and V are non-empty open subsets of X × {1}, then fn(U) ∩ V is
non-empty only if n is a multiple of N and this means that our new system
is not mixing ( if N > 1). We will next show that this type of situation only
way irreducible, non-mixing Smale spaces can arise. More precisely, we have
the following result.

Theorem 3.3.2. Let (X, d, f) be an irreducible Smale space. Then there are
open, closed, pairwise disjoint sets X1, X2, . . . , XN whose union is X. These
sets are cyclicly permuted by f and fN |Xi is mixing for every 1 ≤ i ≤ N .

Proof. In fact, we have already done most of the work already in the proof
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of the last result. We proceed exactly as before arriving at the point where
we have partitioned X into the closures of the ∼-equivalence classes. This is
a finite partition of X into clopen sets. In this situation, we denote them as
X1, X2, . . . , XN .

We must show that f permutes them cyclicly. If not, the union of some
finite subcollection is f -invariant, as is its compliment. If we let U denote
this union and V be its compliment, then fn(U) ∩ V is empty for every n
and so X is not irreducible.

Next, we must show that fN |Xi is mixing, for any fixed i. We consider
the case i = 1 only. To see this, let U and V be non-empty open sets in
X1. Choose periodic points x and y in U and V , respectively. Let p be the
product of their periods. It is clear that N divides p; let q = p/N . For
each 0 ≤ i < q, the point yi = f iN(y) is a periodic point in X1. It follows,
just as in the last proof, that x is equivalent to each of these. So we may
find zi ∈ Xu(x) ∩ Xs(yi). Because x and y are fixed by fp, the sequence
fnp(zi) converges to x as n tends to minus infinity and to yi as n tends to
plus infinity. Note that f iN(V ) is a neighbourhood of yi, for each 0 ≤ i < q.
Therefore, we may find mi < 0 < ni such that fmp(zi) ∈ U for m ≤ mi and
fnp(zi) ∈ f iN(V ), for all n ≥ ni.

We let

K = max{niq | 0 ≤ i < q} −min{miq | 0 ≤ i < q}.
and we claim that (fN)k(U) ∩ V is not empty for k ≥ K. It follows that
(X1, f

N) is mixing as desired. We may write k = lq − i, where 0 ≤ i < q.
If k ≥ K, then we may write l = n −m, where n ≥ ni and m ≤ mi for all
0 ≤ i < q. This means that z = fmqN(zi) = fmp(zi) ∈ U . We also have

(fN)k(z) = (fN)k(fnqN(zi))

= f−iN(fnp(zi))

∈ f−iN(f iN(V ))

= V.

This completes the proof.

3.3.2 Decomposition of the wandering set

Before beginning, a few words of warning are in order regarding Smale spaces
with wandering points.
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Smale’s key idea for Axiom A systems was that the non-wandering set
should have a hyperbolic structure and it was this idea that Ruelle interpreted
in purely topological terms to give the definition of Smale space. Somewhat
curiously, Ruelle did not require that every point in a Smale space be non-
wandering.

Let us consider a couple of examples to clarify the point. As we showed
in ??, every shift of finite type, is a Smale space and may contain wandering
points: consider the matrix

A =

[
1 1
0 1

]
.

The shift space ΣA is homeomorphic to the two-point compactification of the
integers Z, {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,+∞} with the map σ(n) = n − 1.
Here the non-wandering set is {−∞,+∞}.

On the other hand, Smale’s horseshoe (see []) is an Axiom A system, but
it is not a Smale space. The point being that the hyperbolic structure does
not exist on the whole manifold, but only on the non-wandering set. The
restriction of the map to its non-wandering set, is a Smale space.

A simpler example than the horseshoe may be obtained by considering
X = [0, 1] (which is not a manifold) with the map f(x) = x2. The non-
wandering set is {0, 1}. Again, (X, f) is not a Smale space as, for any x 6= 0, 1,
every point in (0, 1) is stably and unstably equivalent to x. This situation is
curious when compared to the shift of finite type above. They are remarkably
similar dynamically, yet one is a Smale space and the other is not. The
resolution of this paradox is the gap that exists between 0 and 1. One may
check from the definitions given in ?? that in ΣA, we have [x, y] = y for all
x, y ≤ 0 while [x, y] = x for all x, y ≥ 1 and is not defined otherwise.

There is one final subtlety to mention. It is not too difficult to produce
an example of a dynamical system (X, f) is such that NW (f) has wandering
points: meaning that a point x may be non-wandering in X and hence lie in
NW (f), but may be wandering when considered as an element of NW (f).
in other terms, we have NW (f | NW (f)) 6= NW (f). This seems odd at
first, but the idea is that, for a given x with neighbourhood U , the points
which lie in fn(U) ∩ U may themselves be wandering.

In [], Dankner gives an example of such a system where X is a com-
pact manifold, f is a diffeomorphism and NW (f) has a hyperbolic struc-
ture. This phenomenon is prevented in an Axiom A system by Smale’s
condition that the periodic points be dense in the non-wandering set. It is
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this condition (only) that Dankner’s example fails to satisfy. Just like the
horseshoe, Dankner’s example is not a Smale space, but its restriction to its
non-wandering set is a Smale space (having wandering points).

We now describe our decomposition for the wandering set of a Smale
space (X, d, f). First, let X1, . . . , Xn be the irreducible components of X
given in Theorem ??.

Lemma 3.3.3. Let x be a wandering point in the Smale space. The set of
accumulation points of {fn(x) | n ≥ 1} is contained in one of the irreducible
components of (X, f) as given in Theorem ??. Similarly, set of accumulation
points of {fn(x) | n ≤ 0} is contained in one of the irreducible components
of (X, f). Moreover, these two components are distinct.

Proof. Suppose that {fn(x) | n ≥ 1} has accumulation points x1 and x2 in
Xj. Let ε1 > 0 any expansive constant for (X, f). Choose ε1 > ε2 > 0 such
that every ε2-pseudo-orbit in X is ε1/2-shadowed by an orbit. It follows from
the hypotheses that we may find positive integers k < l < m such that

d(fk(x), x1), d(f l(x), x2), d(fm(x), x1) < ε2/2.

Thus the bi-infinite sequence obtained by repeating fk(x), fk+1(x), fm−1(x)
is an ε2-pseudo-orbit and hence is ε1/2-shadowed by the orbit of some point x′.
Then fm−k(x′) also ε1/2-shadows this pseudo-orbit, we see that d(fm−k+i(x′), f i(x′)) ≤
ε1, for all integers i. By expansiveness, we conclude that x′ is periodic (of
period m− k). We also note that

d(x′, x1) ≤ d(x′, fk(x)) + d(fk(x), x1) ≤ ε1/2 + ε2/2 < ε1,

and

d(f l−k(x′), x2) ≤ d(f l−k(x′), f l(x)) + d(f l(x), x2) ≤ ε1/2 + ε2/2 < ε1,

Choosing a sequence of values of ε1 approaching zero, for each, we have
a periodic point whose orbit lies within ε1 of x1 and x2. Of course, each
orbit must lie in a single irreducible component of X and by passing to a
subsequence we may assume all orbits lie in the same irreducble component.
It follows that x1 and x2 are in the same component.

A similar argument deals with accumulation points of {fn(x) | n ≤ 0}.
Now suppose that x1 is an accumulation point of {fn(x) | n ≥ 1} x2 is an
accumulation point of {fn(x) | n ≤ 0} and assume that these points are in
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the same irreducible component of X. Let δ > 0. Find ε > 0 such that any
ε-pseudo-orbit is δ-shadowed by an orbit. Next, find integers k ≥ 1 and l ≤ 0
such that

d(fk(x), x1), d(f l(x), x2) < ε/2.

As x1 and x2 are in the same irreducible component of X, we may find x′ in
X and a positive integer n with

d(x′, x1) < ε/2, d(fn(x′), x2) < ε/2.

Then the sequence x, f(x), . . . , fk−1(x), x′, f(x′), . . . , fn−1(x′), f l(x), f l+1(x), . . . , x
is an ε-pseudo-orbit and is δ-shadowed by an orbit. This means we can find
a point in X(x, δ)∩ fk+n+l(X(x, δ)). As δ was arbitrary, we conclude that x
is non-wandering, which is a contradiction.

Definition 3.3.4. Let Xi and Xj be irreducible components of the Smale
space (X, f).

1. Let W (Xi, Xj) denote the set of wandering points x in X such that the
set of accumulation points of {fn(x) | n ≤ 0 is contained in Xi while
the set of accumulation points of {fn(x) | n ≥ 1 is contained in Xj

2. We define Xi ≺ Xj if W (Xi, Xj) is non-empty. We also define Xi � Xj

if either Xi ≺ Xj or Xi = Xj.

Theorem 3.3.5. The relation � is a partial order on the set of irreducible
components of a Smale space (X, f). Moreover, the wandering set of X may
be written as a disjoint union

X \NW (f) = ∩Xi≺Xj
W (Xi, Xj).

Proof.
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4.1 Introduction

In this section, we give some basic definitions of maps and factor maps be-
tween dynamical systems and establish basic properties of them, particularly
in the case that both domain and range are Smale spaces.

Definition 4.1.1. Let (X, f) and (Y, g) be dynamical systems. A map π :
(Y, g)→ (X, f), is a continuous function π : Y → X such that π ◦ g = f ◦ π.
A factor map from (Y, g) to (X, f) is a map for which π : Y → X is also
surjective.

As a very simple example, suppose that G and H are two graphs. A
graph homomorphism θ : H → G consists of two maps θ0 : H0 → G0 and
θ1 : H1 → G1 such that tG ◦ θ1 = θ0 ◦ tH and iG ◦ θ1 = θ0 ◦ iH . In an obvious
way, θ induces a map from θ : (ΣH , σ)→ (ΣG, σ).

Definition 4.1.2. Let (Y, g) and (X, f) be dynamical systems and let

π : (Y, g)→ (X, f)

be a map. We say that π is finite-to-one if there exists a positive integer M
such that

#π−1{x} ≤M,

for all x in X.

We note the following easy result.

Theorem 4.1.3. Let (Y, g) and (X, f) be dynamical systems and let

π : (Y, g)→ (X, f)

be a map. If y is a periodic point of g, then π(y) is a periodic point of f .
Moreover, if π is finite-to-one, the converse also holds.

Proof. From π ◦ g = f ◦ π, it follows that π ◦ gn = fn ◦ π, for every integer n
and that π maps orbits onto orbits. Then we observe that a point is periodic
if and only if its orbit is finite. Both conclusions follow.

We now want to state a couple of technical results which will be useful
later. The first is purely topological.
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Lemma 4.1.4. Let π : Y → X be a continuous map and let x0 be in X with
π−1{x0} = {y1, y2, . . . , yN} finite. For any ε > 0, there exists δ > 0 such that
π−1(X(x0, δ)) ⊂ ∪Nn=1Y (yn, ε).

Proof. If there is no such δ, we may construct a sequence xk, k ≥ 1 in X
converging to x0 and a sequence yk, k ≥ 1 with π(yk) = xk and yk not in
∪Nn=1Y (yn, ε). Passing to a convergent subsequence of the yk, let y be the
limit point. Then we know that y is not in ∪Nn=1Y (yn, ε) since that set is
open, while π(y) = limk π(yk) = limk x

k = x0. This is a contradiction to
π−1{x0} = {y1, y2, . . . , yN}.

Lemma 4.1.5. Let π : (Y, g) → (X, f) be a finite-to-one factor map be-
tween Smale spaces and suppose that (X, f) is non-wandering. There exists
a periodic point x in X such that

#π−1{x} = min{#π−1{x′} | x′ ∈ X}.

Proof. Choose x0 in X which minimizes #π−1{x0} and let
π−1{x0} = {y1, . . . , yN}. Choose εY /2 > ε > 0 so that the sets Y (yn, ε), 1 ≤
n ≤ N are pairwise disjoint. Apply the last Lemma to find δ satisfying the
conclusion there for this ε.

As (X, f) is non-wandering, the periodic points are dense, so choose a
periodic point x in X(x, δ). We claim that, for any 1 ≤ n ≤ N , the set
π−1{x}∩Y (yn, ε) contains at most one point. Note that from this, it follows
at once that #π−1{x} ≤ N = #π−1{x0}. The reverse inequality is trivial
from the choice of x0 and the proof will be complete. Suppose that both y
and y′ are in π−1{x} ∩ Y (yn, ε). As they both map to x under π, they are
both periodic. As ε < εY /2, we may bracket y and y′. We have

π[y, y′] = [π(y), π(y′)] = [x, x] = x.

This implies that [y, y′] is also periodic. The periodic points y and [y, y′] are
stably equivalent and hence must be equal. Similarly, the periodic points y′

and [y, y′] are unstably equivalent and hence must be equal. We conclude
that y = y′ as desired.

The most important basic fact about maps between Smale spaces is that
they must preserve the bracket, as follows.
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Theorem 4.1.6. Let (Y, g) and (X, f) be Smale spaces and let

π : (Y, g)→ (X, f)

be a map. There exists επ > 0 such that, for all y1, y2 in Y with d(y1, y2) ≤ επ,
then both [y1, y2], [π(y1), π(y2)] are defined and

π([y1, y2]) = [π(y1), π(y2)].

Proof. Let εX , εY be the Smale space constants for X and Y , respectively. As
Y is compact and π is continuous, we may find a constant ε > 0 such that,
for all y1, y2 is in Y with d(y1, y2) < ε, we have d(π(y1), π(y2)) < εX/2. From
the continuity of the bracket map, we may choose επ such that 0 < επ < εY
and for all y1, y2 in X with d(y1, y2) ≤ επ, we have

d(y1, [y1, y2]), d(y2, [y1, y2]) < ε.

Now assume y1, y2 are in Y with d(y1, y2) ≤ επ. It follows that, [y1, y2] is
defined and we have the estimates above. Then, inductively for all n ≥ 0,
we have

d(gn(y1), g
n[y1, y2]) ≤ λnd(y1, [y1, y2]) ≤ ε

and also
d(g−n(y2), g

−n[y1, y2]) ≤ λnd(y2, [y1, y2]) ≤ ε

It follows from the choice of ε that, for all n ≥ 0, we have

d(π(gn(y1)), π(gn[y1, y2])) ≤ εX/2

d(fn(π(y1)), f
n(π[y1, y2])) ≤ εX/2

and similarly
d(f−n(π(y2)), f

−n(π[y1, y2])) ≤ εX/2.

On the other hand, these two estimates are also satisfied replacing
fn(π[y1, y2]) by fn[π(y1), π(y2)] and so, by expansiveness of (X, f), we have
the desired conclusion.

4.2 s/u-resolving maps and s/u-bijective maps

In this section, we discuss special classes of maps called s-resolving, u-
resolving, s-bijective and u-bijective maps. These maps possess many nice
properties.
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It is an easy consequence of the definitions that if (Y, g) and (X, f) are
Smale spaces and

π : (Y, g)→ (X, f)

is a map, then π(Y s(y)) ⊂ Xs(π(y)) and π(Y u(y)) ⊂ Xu(π(y)). We recall
the following definition due to David Fried [?].

Definition 4.2.1. Let (X, f) and (Y, g) be Smale spaces and let

π : (Y, g)→ (X, f)

be a map. We say that π is s-resolving (or u-resolving) if, for any y in Y ,
its restriction to Y s(y) (or Y u(y), respectively) is injective.

The following is a useful technical preliminary result.

Proposition 4.2.2. Let (X, f) and (Y, g) be Smale spaces and let

π : (Y, g)→ (X, f)

be an s-resolving (or u-resolving) map. With επ as in Theorem ??, if y1, y2
are in Y with π(y1) in Xu(π(y2), εX) (or π(y1) in Xu(π(y2), εX), respectively)
and d(y1, y2) ≤ επ, then y2 ∈ Y u(y1, επ) (y2 ∈ Y s(y1, επ), respectively).

In particular, if π(y1) = π(y2) and d(y1, y2) ≤ επ, then y2 ∈ Y u(y1, επ)
(y2 ∈ Y s(y1, επ), respectively).

Proof. It follows at once the from hypotheses that

π[y1, y2] = [π(y1), π(y2)] = π(y1).

On the other hand [y1, y2] is stably equivalent to y1 and, since π is s-resolving,
[y1, y2] = y1. This completes the proof.

Resolving maps have many nice properties, the first being that they are
finite-to-one. We establish this, and a slight variant of it, as follows.

Theorem 4.2.3. Let (X, f) and (Y, g) be Smale spaces and let

π : (Y, g)→ (X, f)

be an s-resolving map. There is a constant M ≥ 1 such that
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1. for any x in X, there exist y1, . . . , yK in Y with K ≤M such that

π−1(Xu(x)) = ∪Kk=1Y
u(yk),

and

2. for any x in X, we have #π−1{x} ≤ M . In particular, π is finite-to-
one.

Proof. Cover Y with balls of radius επ/2, then extract a finite subcover,
whose elements we list as Bm, 1 ≤ m ≤ M . We claim this M satisfies the
desired conclusions.

For the first statement, given x in X and y in π−1(Xu(x)), it is clear that
Y u(y) ⊂ π−1(Xu(x)). We must show that there exist at most M unstable
equivalence classes in π−1(Xu(x)). For this, it suffices to show that if yi, 1 ≤
i ≤M+1, are in Y with π(yi) and π(yj) unstably equivalent, for all i, j, then
yi and yj are unstably equivalent for some i 6= j. Choose n ≤ 0 such that
fn(π(yi)) is in Xu(fn(π(yj)), εX), for all 1 ≤ i, j ≤ M + 1. From the pigeon
hole principle, there exists distinct i and j such that gn(yi) and gn(yj) lie in
the same Bm, for some 1 ≤ m ≤ M . These points satisfy the hypotheses of
?? and it follows that they are unstably equivalent. Then yi are yj are also
unstably equivalent.

For the second statement, suppose π−1{x} contains distinct points
y1, . . . , yM+1. Let δ denote the minimum distance, d(yi, yj), over all i 6= j.
Choose n ≥ 1 such that λnεπ < δ. Consider the points gn(yi), 1 ≤ i ≤M +1.
By the pigeon-hole principle, there exists i 6= j with gn(yi) and gn(yj) in the
same set Bm. We have

π(gn(yi)) = fn(π(yi)) = fn(x) = fn(π(yj)) = π(gn(yj)).

From Proposition ??, gn(yi) is in Y u(gn(yj), επ). This implies that yi is in
Y u(yj, λ

nεπ). As λnεπ < δ, this is a contradiction.

Although the definition of s-resolving is given purely at the level of the
stable sets as sets, various nice continuity properties follow.

Theorem 4.2.4. Let (X, f) and (Y, g) be Smale spaces and let

π : (Y, g)→ (X, f)
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be either an s-resolving or a u-resolving map. For each y in Y , the maps

π : Y s(y)→ Xs(π(y)), π : Y u(y)→ Xu(π(y))

are continuous and proper, where the sets above are given the topologies of
Proposition ??.

Proof. From the symmetry of the statement, it suffices to consider the case
that π is s-resolving.

We use the characterization of limits in Y s(y) and Xs(π(y)) given in
Proposition ??. From this, and Theorem ??, it is easy to see that π is
continuous on Y s(y). The same argument covers the case of π on Y u(y).

To see the map π on Y s(y) is proper, it suffices to consider a sequence yn
in Y s(y) such that π(yn) is convergent in the topology of Xs(π(y)), say with
limit x, and show that it has a convergent subsequence. As Y is compact
in its usual topology, we may find y′ which is a limit point of a convergent
subsequence ynk

, k ≥ 1. It follows that

π(y′) = π(lim
k
ynk

) = lim
k
π(ynk

) = lim
n
π(yn) = x.

We also have, for k sufficiently large,

π[ynk
, y′] = [π(ynk

), π(y′)] = [π(ynk
), x] = x,

since π(ynk
) is converging to x in the topology on Xs(π(y)) and using Propo-

sition ??. We know that π−1{x} is finite and contains y′ and [ynk
, y′], for

all k sufficiently large. Moreover, y′ is the limit of the sequence [ynk
, y′]. It

follows that there is K such that [ynk
, y′] = y′, for all k ≥ K. From this, we

see that y′ is in Y s(ynk
) = Y s(y) and that the subsequence ynk

converges to
y′ in Y s(y).

To see the map π on Y u(y) is proper, we begin in the same way with a
sequence yn such that π(yn) has limit x in the topology ofXu(π(y)). Again we
obtain a subsequence ynk

with limit y′ in Y . Then we have, for k sufficiently
large,

π[ynk
, y′] = [π(ynk

), π(y′)] = [π(ynk
), x] = π(ynk

),

since π(ynk
) is converging to x in the topology on Xu(π(y)) and using Propo-

sition ??. On the other hand, [ynk
, y′] and ynk

are stably equivalent and
since π is s-resolving, this implies they are equal. It follows that y′ is in
Y u(ynK

) = Y u(y) and ynk
is converging to y′ in the topology of Y u(y).
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There has been extensive interest in s/u-resolving maps. We will need a
slightly stronger condition, which we refer to as s/u-bijective maps.

Definition 4.2.5. Let (X, f) and (Y, g) be Smale spaces and let

π : (Y, g)→ (X, f)

be a map. We say that π is s-bijective (or u-bijective) if, for any y in Y ,
its restriction to Y s(y) (or Y u(y), respectively) is a bijection to Xs(π(y)) (or
Xu(π(y)), respectively).

It is relatively easy to find an example of a map which is s-resolving, but
not s-bijective and we will give one in a moment. However, one important
distinction between the two cases should be pointed at at once. The image
of a Smale space under an s-resolving map is not necessarily a Smale space.
The most prominent case is where the domain and range are both shifts of
finite type and the image is a sofic shift, which is a much broader class of
systems. (See [?].) This is not the case for s-bijective maps (or u-bijective
maps).

Theorem 4.2.6. Let (Y, g) and (X,φ) be Smale spaces and let

π : (Y, g)→ (X, f)

be either an s-bijective map or a u-bijective map. Then (π(Y ), f |π(Y )) is a
Smale space.

Proof. The only property which is not clear is the existence of the bracket: if
y1 and y2 are in Y and d(π(y1), π(y2)) < εX , then it is clear that [π(y1), π(y2)]
is defined, but we must see that it is in π(Y ). If π is s-bijective, then
[π(y1), π(y2)] is stably equivalent to π(y1) and hence in the set π(Y s(y1)) and
hence in π(Y ). A similar argument deals with the case π is u-bijective.

If π : (Y, g)→ (X, f) is a factor map and every point in the system (Y, g)
is non-wandering (including the case that (Y, g) is irreducible), then it follows
that the same is true of (X, f) and in this case, any s-resolving factor map
is also s-bijective, as we will show.

Example 4.2.7. Consider (Y, g) to be the shift of finite type associated with
the following graph:

v1
��

// v2
��

v3
��

// v4
��
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and (X, f) to be the shift of finite type associated with the following graph:

w1
�� **

44 w2
��

It is clear that there is a factor map from (Y, g) to (X, f) obtained by mapping
the loops in the first graph to those in the second 2-to-1, while mapping the
other two edges injectively. The resulting factor map is s-resolving and u-
resolving but not s-bijective or u-bijective.

Theorem 4.2.8. Let (X, f) and (Y, g) be Smale spaces and let

π : (Y, g)→ (X, f)

be an s-resolving factor map. Suppose that each point of (Y, g) is non-
wandering. Then π is s-bijective.

Before beginning the proof, we need a version of Lemma ?? for local
stable sets.

Lemma 4.2.9. Let π : (Y, g)→ (X, f) be a factor map between Smale spaces
and suppose x0 in X is periodic and π−1{x0} = {y1, y2, . . . , yN}. Given
ε0 > 0, there exist ε0 > ε > 0 and δ > 0 such that

π−1(Xs(x0, δ)) ⊂ ∪Nn=1Y
s(yn, ε).

Proof. First, since x0 is periodic, so is each yn. Choose p ≥ 1 such that
gp(yn) = yn, for all 1 ≤ n ≤ N , and hence fp(x0) = x0. The system
(Y, gp) is also a Smale space. Choose ε0 > ε > 0 to be less than the Smale
space constant for this. Also, choose ε sufficiently small so that the sets
Y (yn, ε), 1 ≤ n ≤ N are pairwise disjoint and so that gp(Y (yn, ε))∩Y (ym, ε) =
∅, for m 6= n. Use the Lemma ?? to find δ such that π−1{x} ⊂ ∪Nn=1Y (yn, ε),
for all x in X(x0, δ).

Now suppose that x is in Xs(x0, δ) and π(y) = x. It follows that y is
in Y (ym, ε), for some m. Now consider k ≥ 1. We have π(gkp(y)) = fkp(x)
which is in Xs(x0, λ

kpδ) ⊂ X(x, δ). It follows that gkp(y) is in ∪Nn=1Y
s(yn, ε)

for all k ≥ 1. It then follows from the choice of ε and induction that gkp(y)
is in Y s(ym, ε) for all k ≥ 1. This means that y is in Y s(ym, ε).

We are now prepared to give a proof of Theorem ??.
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Proof. In view of the structure Theorem ??, it suffices for us to consider the
case that (X, f) is irreducible. First, choose a periodic point x0 satisfying
the conclusion of Lemma ??. Let π−1{x0} = {y1, . . . , yN}. We will first show
that, for each 1 ≤ n ≤ N , π : Y s(yn)→ Xs(x0) is open and onto. We choose
ε0 > 0 so that the sets Y (yn, ε0), 1 ≤ n ≤ N, are pairwise disjoint. We then
choose ε0 > ε > 0 and δ > 0 as in Lemma ??. Let x be any point in B(x0, δ).
We know that π−1({x}) is contained in ∪Nn=1Y

s(yn, ε0). As the map π is
s-resolving, it is injective when restricted to each of the sets Y s(yn, ε). This
means that π−1{x} contains at most one point in each of these sets. On the
other hand, it follows from our choice of x0 that π−1{x} contains at least N
points. We conclude that, for each n, π−1{x}∩Y s(yn, ε) contains exactly one
point. Let Wn = π−1(X(x, δ)) ∩ Y s(yn, ε). The argument above shows that
π is a bijection from Wn to Xs(x0, δ), for each n. It is clearly continuous
and we claim that is actually a homeomorphism. To see this, it suffices to
show that, for any sequence yk in Wn such that π(yk) converges to some x
in Xs(x0, δ), it follows that yk converges to some y in Wn. As ε < ε0, the
closure of Wn is a compact subset of Y s(yn, ε0). So the sequence yk has limit
points; let y be one of them. By continuity, π(y) = x. On the other hand,
there is a unique point y′ in Wn such that π(y′) = x. Thus, y and y′ are both
in Y s(yn, ε0) and have image x under π. As π is s-resolving, y = y′ and so y
is in Wn. So the only limit point of the sequence yk is y′ and this completes
the proof that π is a homeomorphism.

Since Wn is an open subset of Y s(yn, ε), we know that
Y s(yn) = ∪l≥0g−l(Wn) and the topology is the inductive limit topology. Sim-
ilarly, Xs(x0) = ∪l≥0f−l(Xs(x0, δ)) and the topology is the inductive limit
topology. It follows at once that π is a homeomorphism from the former to
the latter.

Now we turn to arbitrary point y in Y and x = π(y) in X and show
that π : Y s(y) → Xs(x) is onto. We choose x0 and {y1, . . . , yN} to be
periodic points as above so that π : Y s(yn)→ Xs(x0) are homeomorphisms.
By replacing x0 by another point in its orbit (which will satisfy the same
condition), we may assume that x is in the closure of Xs(x0). Then, we
may choose yn such that y is in the closure of Y s(yn). There exists a point
y′ is Y s(yn) in Y u(y, εY /2) and so that x′ = π(y′) is in Xu(x, εX/2). The
map π may be written as the composition of three maps. The first from
Y s(y, εY /2) to Y s(y′, εY ) sends z to [y′, z]. The second from Y s(y′, εY ) to
Xs(x′) is simply π. The third is the map from Xs(x′, εX/2) to Xs(x, εX)
sends z to [x, z]. Each is defined on an open set containing y, y′ and x′,
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respectively and is an open map. The conclusion is that there exists some
ε′ > 0 such that π(Y s(y, ε′)) = U is an open set in Xs(x) containing x. It
then follows that

Xs(x) = ∪l≥0f−l(U) = ∪l≥0π(g−l(Y s(y, ε))) ⊂ π(Y s(y)).

This completes the proof.

Now we want to observe that although the property of a map being s-
bijective is defined purely at the level of stable sets, continuity properties
follow as a consequence.

Theorem 4.2.10. Let (X, f) and (Y, g) be Smale spaces and let

π : (Y, g)→ (X, f)

be an s-bijective (or u-bijective) map. Then for each y in Y , the map
π : Y s(y) → Xs(π(y)) (or π : Y u(y) → Xu(π(y)), respectively) is a homeo-
morphism.

Proof. The proof is the general fact that if A,B are locally compact Haus-
dorff spaces and f : A → B is a continuous, proper bijection, then f is a
homeomorphism. This can be seen as as follows. Let A+ and B+ denote
the one-point compactifications of A and B, respectively. That the obvious
extension of f to a map between these spaces is continuous follows from the
fact that f is proper. Since this extension is a continuous bijection between
compact Hausdorff spaces, it is a homeomorphism. The result follows from
this argument and Theorem ??.

As we are discussing s/u-resolving maps between shifts of finite type, we
describe a simple condition on the underlying graphs which is related.

Definition 4.2.11. Let G and H be graphs. A graph homomorphism θ :
H → G is left-covering if it is surjective and, for every v in H0, the map
θ : t−1{v} → t−1{θ(v)} is a bijection. Similarly, π is right-covering if it
is surjective and, for every v in H0, the map θ : i−1{v} → i−1{θ(v)} is a
bijection.

The following result is obvious and we omit the proof.

Theorem 4.2.12. If G and H are graphs and θ : H → G is a left-covering
(or right-covering) graph homomorphism, then the associated map
θ : (ΣH , σ) → (ΣG, σ) is an s-bijective (or u-bijective, respectively) factor
map.
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4.3 Degree

Definition 4.3.1. Let π : (Y, g) → (X, f) be a finite-to-one map between
two dynamical systems. We define the degree of π, denoted deg(π) by

deg(π) = inf{#π−1{x} | x ∈ X}.

We re-state Theorem ??, just for emphasis.

Theorem 4.3.2. Let π : (Y, g)→ (X, f) be a factor map between two Smale
spaces. If (X, f) is non-wandering, then there exists a periodic point x in X
with

deg(π) = #π−1{x}

Consider an s-resolving map π : (Y, g) → (X, f) between two Smale
spaces. By definition, if we have two points y, y′ in Y with π(y) = π(y′) and

lim
n→∞

d(gn(y), gn(y′)) = 0,

then y = y′. In fact, the second condition may be relaxed considerably.

Lemma 4.3.3. Let π : (Y, g) → (X, f) be an s-resolving map between two
Smale spaces. Let y, y′ be in Y with π(y) = π(y′) and

lim inf
n→+∞

d(gn(y), gn(y′)) < επ

(as in Lemma ??). Then y = y′.

Proof. The hypothesis means that we have infinitely values of n ≥ 0 such
that

d(gn(y), gn(y′)) < επ

For such n, it follows from Lemma ?? that gn(y) is in Y u(gn(y′), επ). From
this, we see that

d(gn−j(y), gn−j(y′)) ≤ λjεpi,

for all j ≥ 0. Letting j = n and using the fact that there are infinitely many
positive n for which the estimate holds, we see y = y′.

We know already that there exists a periodic point with minimum fibre
size. We next want to show that for an s-resolving map, points in the quotient
having a dense forward orbit will also have minimum size fibres.
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Theorem 4.3.4. Let π : (Y, g) → (X, f) be a s-resolving (or u-resolving)
map between two Smale spaces. If (X, f) is irreducible, then for every point
x in X with a dense forward orbit (backward orbit, respectively) we have

deg(π) = #π−1{x}

Proof. We assume that π is s-resolving. Suppose that π−1{x} = {y1, . . . , yk},
so that k ≥ deg π = d by definition. We know there is a point x′ in X with
precisely d pre-images under π. Find a sequence of positive integers ni such
that fni(x), i ≥ 1, converges to x′. By passing to a subsequence, we may
assume that the sequence gni(yj), i ≥ 1, converges for each j = 1, 2, . . . k. By
Lemma ??, the limit points of these sequences are all distinct, but clearly
they all lie in π−1{x′}. We conclude that k ≤ d.

We would now like to understand a little more about how stable and
unstable equivalence behaves on pre-images of points. Of course, if the map
is s-resolving, no two points in a pre-image of a singleton can be stably
equivalent. However, we can also show the degree of the map is also a lower
bound on the number of unstable classes.

Theorem 4.3.5. Let π : (Y, g) → (X, f) be a s-resolving (or u-resolving)
map between two Smale spaces. For any x in X, there exists at least deg(π)
points in π−1{x}, no two of which are either stably or unstably equivalent.

Proof. As we mentioned above, the fact that π is s-resolving means no two
points in the pre-image of x can be stably equivalent. It suffices to prove
that there are at least d = deg(π) distinct unstable classes. If not, we
may replace x by fk(x) (for some large negative value of k to assume that
there are d− 1 points in π−1{x} such that the επ/2-balls around them cover
π−1{x}. Now choose x′ in X with a dense forward orbit and an increasing
sequence ni such that fni(x′) convergse to x. By passing to a sebsequence,
we may assume that gni(y′) also converges, for each y′ in π−1{x′}. Each
must converge to some point in π−1{x}. This means that there are a pair of
distinct elements of π−1{x′} satisfying the hypotheses of Lemma 4.3.3, which
is a contradiction.
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5.1 Products of Smale spaces

First, if (X, dX) and (Y, dY ) are metric spaces, we let dX × dY be the metric
on the product space X × Y defined by

dX×Y ((x, y), (x′, y′)) = max{dX(x, x′)dY (y, y′)},

for all x, x′ in X and y, y′ in Y .

Theorem 5.1.1. If (X, dX , f) and (Y, dY , g) are Smale spaces, then so is
there product (X × Y, dX × dY , f × g).

Proof. Let εX×Y = min{εX , εY } and define

[(x, y), (x′, y′)] = ([x, x′], [y, y′]),

for all (x, y), (x′, y′) in X × Y with dX×Y ((x, y), (x′, y′)) ≤ εX×Y . It is a
routine matter to verify the axioms are satisfied.

We will note that (X × Y )s((x, y), ε) = Xs(x, ε)× Y s(y, ε) and similarly
for the local unstable sets. Similar formulae also holds for the global stable
and unstable sets.

5.2 Fibred products

We first review the standard construction of the fibred product.

Definition 5.2.1. Let X, Y1 and Y2 be topological spaces and π1 : Y1 → X
and π2 : Y2 → X be continuous maps. The fibred product of π1 and π2 is

Z = {(y1, y2) ∈ Y1 × Y2 | π1(y1) = π2(y2).

We have natural maps ρi : Z → Yi defined by ρi(y1, y2) = yi, for i = 1, 2
which satisfy π1 ◦ ρ1 = π2 ◦ ρ2.

Theorem 5.2.2. Let X, Y1 and Y2 be topological spaces, π1 : Y1 → X and
π2 : Y2 → X be continuous maps and let Z, ρ1, ρ2 be their fibred product. For
each of the following properties, if π1 has the property, then so does ρ2 and
if π2 has the property, then so does ρ1:

1. injective
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2. surjective

3. finite-to-one.

Proof. Let y1 be in Y1. It is easy to see that

ρ−11 {y1} = {y1} × π−12 {π1(y1)}

The first statement follows at once. The second case is obviously similar.

It is clear from the defintions that if the three spaces are each part of
a dynamical system and the maps are maps of the systems, then the fibred
product is also a dynamical system and the maps ρ1 and ρ2 are maps of
systems. We are interested in analogue of the result above for Smale spaces
and s/u-resolving maps and s/u-bijective maps.

Theorem 5.2.3. Let X, Y1 and Y2 be Smale spaces and π1 : Y1 → X and
π2 : Y2 → X be maps. Also, let (Z, ζ), ρ1, ρ2 be their fibred product. If π1
is s-resolving (u-resolving, s-bijective and u-bijective) then ρ2 is s-resolving
(u-resolving, s-bijective and u-bijective, respectively). A similar statement
holds for π2 and ρ1.

Proof. We first suppose that π1 is s-resolving. Let (y1, y2), (y
′
1, y
′
2) be stably

equivalent in Z and suppose that the have the same image under ρ2. The
first part means that y1 and y′1 are stably equivalent and the second simply
means that y2 = y′2. It follows that π1(y1) = π2(y2) = π2(y

′
2) = π1(y

′
1). Then

y1 = y′1 since π1 is s-resolving.
Next, we assume that π1 is s-bijective. Suppose that (y1, y2) is in Z, y′2

is in Y2 and ρ2(y1, y2) and y′2 are stably equivalent. It follows that y2 and
y′2 are stably equivalent. Therefore, π2(y2) = π1(y1) and π2(y2) are stably
equivalent. As π1 is s-bijective, we may find y′1 which is stably equivalent
to y1 and π1(y1) = π2(y2). This means that (y′1, y

′
2) is in Z and it is clearly

stably equivalent to (y1, y2).
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In this section, we introduce the notion of a Markov partition for a non-
wandering Smale space. We prove the existence of such items. Finally, we
draw important conclusions from the existence. One of these is that, for any
irreducible Smale space (X, d, f), there is a positive integer N , an irreducible
0-1 N ×N matrix A and a map

π : ΣA → X

from the associated shift of finite type to X.
This means that the shifts of finite type have a certain universal property

among Smale spaces. Furthermore, we will prove that if, in the situation
above, X is totally disconnected, then the map π can be chosen to be an
isomorphisim.

6.1 Rectangles

Let us first introduce the notion of a rectangle in a Smale. This is a feature
of the local product structure which we showed in ??.

Definition 6.1.1. Let (X, d, f) be a Smale space. We say that R ⊂ X is a
rectangle if it has diameter less than εX/2 and [R,R] = R.

It is worth noting that the inclusion [R,R] ⊃ R always holds for a set of
diameter less than εX .

Proposition 6.1.2. Let A and B be non-empty subsets of a Smale space X
such that d(x, y) ≤ εX , for all x in A and y in B, and so that the diameters
of A, B and [A,B] are all less than εX/2. Then R = [A,B] is a rectangle.

Proof. Let x, x′ be in A and y, y′ be in B. From the hypotheses, we see that
both [[x, y], [x′, y′]], [x, [x′, y′]] and [x, y′] are all defined and it follows from
the definition that they are equal. This implies that [R,R] ⊂ R and hence
the conclusion.

Proposition 6.1.3. 1. If R and R′ are rectangles, then so is R ∩R′.

2. If R is a rectangle, then so is f(R) (and f−1(R)), provided f(R)
(f−1(R), respectively) has sufficiently small diameter.
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Proof. It is clear that the diameter of the intersection is smaller than the
diameter of either set. Moreover, we have

[R ∩R′, R ∩R′] ⊂ [R,R] = R.

In a similar way, [R ∩R′, R ∩R′] ⊂ R′ and hence [R ∩R′, R ∩R′] ⊂ R ∩R′.
The second part is clear from the fact [f(R), f(R)] = f [R,R], provided both
sides are defined.

The following will be useful.

Theorem 6.1.4. Let R and R′ be rectangles whose union has diameter
lessthan εX/2. The following are equivalent.

1. [R,R′] = R ∩R′,

2. for all x in R ∩R′, we have [R, x] ⊂ [R′, x] and [x,R] ⊃ [x,R′],

3. for some x in R ∩R′, we have [R, x] ⊂ [R′, x] and [x,R] ⊃ [x,R′].

Proof. We assume the first condition and prove the second holds. Let x be
in R ∩R′. Then we have

[R, x] = [[R,R′], x] = [R ∩R′, x] ⊂ [R′, x].

A similar argument shows the other condition holds.
It is clear that the second condition inplies the third. We now show the

third implies the first. First, we note that from the first part of Proposition
6.1.3, we have

R ∩R′ = [R ∩R′, R ∩R′] ⊂ [R,R′].

Letting x be as in condition three, we also have

[R,R′] = [[R, x], R′] ⊂ [[R′, x], R′] = [R′, R′] = R′.

Using the other containment, we also have [R,R′] ⊂ R. This completes the
proof.

Definition 6.1.5. Let A be a subset of a Smale space X. We define its
stable boundary, denoted ∂s(A), as those points x which are boundary points
of A∩Xs(x) in the relative topology of Xs. Similarly, the unstable boundary,
denoted ∂u(A), as those points x which are boundary points of A ∩Xu(x) in
the relative topology of Xu.
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6.2 Markov partitions

Definition 6.2.1. We say that R is a Markov partition for X if it is a finite
collection of rectangles satisfying the following conditions.

1. For each R in R, the diameters of R and f−1(R) are both less than
εX/2.

2. Each rectangle is a regular closed set.

3. The union of the rectangles is all of X.

4. The interiors of the rectangles are pairwise disjoint.

5. If R and R′ are rectangles in R and Int(R) ∩ Int(f−1(R′)) is non-
empty, then

[f−1(R′), R] = f−1(R′) ∩R.

(Here, Int(A) denotes the interior of the set A.)

The first condition is really a technical one for convenience. We refer to
the last condition as the Markov property and it is the crucial one. If R and
R′ are in R and are such that Int(R) ∩ Int(f−1(R′)) is non-empty, then we
write

R ; R′.

This means that if R and f−1(R′) meet in a non-trivial fashion (not just
on their boundaries), then f−1(R′) ”stretches completely across” R in the
stable direction, while R ”stretches completely across f−1(R′) in the unstable
direction. Notice that this kind of thing is reasonable since the map f−1 will
expand the stable sets and contract the unstable ones. Let us make this more
precise.

Let us give two examples before we continue. First, we consider A, an N×
N matrix with 0-1 entries., and its associated shift of finite type, (XA, σA).
For each integer 1 ≤ i ≤ N , we define

Ri = {a ∈ XA | a0 = i}.

There is a small problem in this example with the diameters of the sets (or
rather their f -preimages) being too large. But if we ignore this, it is easy
to verify that {R1, . . . , RN} is a Markov partition and we leave this to the
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reader. It is a particularly nice one because the sets are actually clopen
rather than just regular closed. Let us point out one very important feature
since it will become a running theme in what follows later. In this example,
we have Ri ; Rj (meaning that Ri meets f−1(Rj)) if and only if A(i, j) = 1.

For our second example, we consider the substitution tiling systems as
described in Section ??. We list our prototiles p1, . . . , pN and define, for each
1 ≤ i ≤ N , the set

Ri = {T | 0 ∈ t ∈ T, t is a translate of pi}.

This means that Ri consists of all those tiles where the origin in Rd lies in a
tile which is a translate of pi. If the origin in the tiling lies on the boundary
of several tiles, then this tiling will lie in several of the Ri’s. We leave it to
the reader to verify that these form a Markov partition. One can also check
that Ri ; Rj here exactly when a translate of pj appears in the inflation of
pi, ω(pi).

We let ∂s(R) (∂s(R)) denote the union of the stable boundaries (unstable
bounaries, respectively) of all the elements of a Markov partition R.

We also note that from the Markov property, one can show

f(∂s(R)) ⊂ ∂s(R)

f−1(∂u(R)) ⊂ ∂u(R).

We now state Bowen’s fundamental result on the existence of Markov
partitions.

Theorem 6.2.2 (MPexist). Let (X, d, f) be a non-wandering Smale space
and let ε be any psoitive real number. Then there exists a Markov partition
for X, with each element having diameter less than ε.
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In this section, we will discuss certain measures on a given Smale space,
(X, f). First of all, we will restrict our attention to Borel probability mea-
sures; that is, measures µ which are defined on the σ-algebra of Borel subsets
of X, B(X), are positive and have µ(X) = 1. We say that such a measure,
µ, is f -invariant (or simply invariant), if

µ(f−1(E)) = µ(E)

for every Borel set E ∈ B(X).
Let us first mention that there are a lot of such measures. To any periodic

point, x in X, we may take counting measure on the orbit of x and normalize
it so as to have measure 1. That is, if n is the least positive integer such that
fn(x) = x, we let

µ =
1

n

n∑
i=1

δf i(x)

where δy denotes the atomic measure concentrated at y. Since Smale spaces
have many periodic points (??), there are many invariant measures.

Here, we will concentrate our attention on one specific measure which will
be called the Bowen measure, characterized by a specific property. We will
show that it has a number of nice features. This should not give the reader
the impression that the others are not important. There is a great deal of
interest in other measures.

7.1 The Parry Measure

We will consider first a shift if finite type. We will write, quite explicitly, a
measure and show that it has many nice features. This is called the Parry
measure. One drawback is that seems at the outset to depend on the symbolic
presentation of the shift. The fact that it does not will be described in the
next subsection.

Let N be a positive integer and let A be an N × N matrix with 0, 1
entries. We lat XA, σA be the shift of finite type as in section ??.

We could immediately give the definition of the Parry measure 7.1.1, but
we will we take a few moments to put the construction into a more general
framework.

Recall that XA is a closed subset of Πn∈Z{1, 2, . . . , N} which we will
denote by X̃. Also σA is the restriction to XA of the shift map on X̃, which
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we denote by σ. Let p = (p(1), . . . , p(N)) be a probability vector. That is,
we have

p(i) ≥ 0, for all i =1, . . . ,N
N∑
i=1

p(i) = 1.

Also, let P denote a stochastic N ×N matrix. That is, we have

P (i, j) ≥ 0, for all i, j∑
j

P (i, j) = 1, for all i.

Also assume that p is a left eigenvector for P ; that is, pP = λp, for some
scalar λ. If one sums the entries of the two sides of the equation pP = λp,
one finds that λ = 1. So we see that∑

i

p(i)P (i, j) = p(j), for all j.

Given this data one can form a Borel probability measure µ on X̃ called
a Markov measure. One begins by defining µ on the so-called cylinder sets.
If k ≤ l are integers and (ξk, . . . , ξl) is a sequence with 1 ≤ ξi ≤ N , for
k ≤ i ≤ l, then we define

U(k, l, ξ) = U(k, l, (ξk, . . . , ξl)) = {x ∈ X̃ | xi = ξi, for all k ≤ i ≤ l}.

We define

µ(U(k, l, ξ)) = µ(U(k, l, (ξk, . . . , ξl))) = p(ξk)P (ξk, ξk+1) · · ·P (ξl−1, ξl).

Of course, a cylinder set for a given k, l can be written as the disjoint union
of cylinder sets for fixed k′ ≤ k and l′ ≥ l. The fact that our measure is
additive on cylinder sets follows from the basic properties of p and P . This
measure then extends uniquely to a probability measure on X̃ as explained
in detail in [?]. The invariance of the measure under σ is immediate.

For our Smale space (XA, σA), we would like this measure to be concen-
trated on the set XA ⊂ X̃. For this, we require 0 ≤ Pi,j ≤ A(i, j), which is
just to say that P (i, j) = 0 whenever A(i, j) = 0.
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For the Parry measure, we make the following special choices for the
vector and matrix. We apply the Perron-Frobenius Theorem to the matrix
A, noting again our assumption that it is irreducible. This asserts that the
matrix has an eigenvalue, λ, which is a positive real number and larger in ab-
solute value than all other eigenvalues. Moreover, its (algebraic) multiplicity
is one and there is an associated eigenvector, u, whose entries are all positive
real numbers. This means that it is the right eigenvector for A; we have

N∑
j=1

A(i, j)u(j) = u(i),

for all i = 1, . . . , N . We call λ the Perron eigenvalue of A and u the right
Perron eigenvector. Of course, the matrix also has a left Perron eigenvctor,
which we denote by v. This can be obtained by applying the theorem to the
matrix AT . Here, we have

N∑
j=1

A(j, i)v(j) = v(i),

for all i = 1, . . . , N .
We may normalize the vectors u and v so that

∑
i u(i)v(i) = 1. Now we

choose the probability vector

p = (u(1)v(1), . . . , u(N)v(N))

and the stochastic matrix

P (i, j) = λ−1A(i, j)u(j)u(i)−1

for all i, j. It is straight-forward to verify the correct conditions hold.
Let us note that for this choice of matrix we have the following simple

formula for the Parry measure of a cylinder set.

Theorem 7.1.1. Let A be an irreducible N ×N 0, 1-matrix with associated
Perron eigenvalue λ and right and left eigenvectors u and v, respectively. Let
(XA, σA) be the shift of finite type associated with A. If k ≤ l are any integers
and ξ = (ξk, · · · , ξl) is any sequence with 1 ≤ ξi ≤ N , for k ≤ i ≤ l and
A(ξi, ξi+1) = 1, for all k ≤ i < l, then the Parry measure of the corresponding
cylinder set is given by

µ(U(k, l, ξ)) = µ(U(k, l, (ξk, . . . , ξl))) = λk−lv(ξk)u(ξl).
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We will not give a proof; it is a simple computation using the formulae
above.

The basic feature of a Smale space is the local product structure. We
want to see that the Parry measure respects this. More specifically, we will
show that, locally, it decomposes as a product measure.

Suppose that k ≤ 0 ≤ l, let ξ be as above and let x be in U(ξ). We define

U s(l, ξ, x) = {y ∈ U(ξ) | yi = xi, for all i ≥ 0}
Uu(k, ξ, x) = {y ∈ U(ξ) | yi = xi, for all i ≤ 0}

Of course, these are just subsets of the local stable and unstable sets at x
and [, ] defines a homeomorphism from Uu(k, ξ, x)× U s(l, ξ, x) to U(k, l, ξ).

We define measures, µsx and µux on U s(0, (x0), x) and Uu(0, (x0), x), re-
spectively, by setting

µsx(U
s(k, ξ, x)) = λkv(ξk)

µux(U
u(l, ξ, x)) = λ−lu(ξl)

for any ξ as above with k ≤ 0 ≤ l such that x ∈ U(k, l, ξ).
Of course, one must repeat the type of calculations which we meantioned

earlier to show that these are additive on the cylinder sets and extend to
measures. It is easy to see that we obtain the desired product structure;
specifically, we have

µ(U(k, l, ξ)) = µsx(U
s(k, ξ, x))µux(U

u(l, ξ, x))

It is important to note that the measures µsx and µux are not themselves
invariant, even in the case that x is a fixed point of f . The following formulae
are easily checked

µsσ(x)(σ(U s(k, ξ, x))) = µsσ(x)(U
s(k − 1, ξx0, σ(x)))

= λk−1v(ξk)

= λ−1µsx(U
s(k, ξ, x))

and

µuσ−1(x)(σ
−1(Uu(l, ξ, x))) = µuσ−1(x)(U

s(l + 1, ξx0, σ
−1(x)))

= λ−(l+1)u(ξl)

= λ−1µux(U
u(l, ξ, x))
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We may summarize the properties of these measures in the following
theorem. Most of these we have already established or discussed. The others
are easy computations from the formulae.

Theorem 7.1.2. Let (XA, σA) be an irreducible shift of finite type given by
a N ×N 0, 1 matrix A. Let the measures µ, µsx, µ

u
x be given as above.

1. µ is a σA-invariant probability measure on X.

2. For any x in A and 0 < ε < εX/2, the map [, ] is a homeomporphism
from V u(x, ε)× V s(x, ε) to a neighbourhood of in X and

µ ◦ [, ] = µux × µsx,

on this set.

3. For any x in X and y in V s(x, εX/2), we have

µux(E) = µuy([E, y]),

whenever E is a Borel subset of V u(x, εX/2) such that [E, y] is con-
tained in V u(y, εX/2).

4. For any x in X and y in V u(x, εX/2), we have

µsx(E) = µsy([y, E]),

whenever E is a Borel subset of V s(x, εX/2) such that [y, E] is contained
in V s(y, εX/2).

7.2 The Bowen Measure

Now we want to find to extend the situation to general Smale spaces and
find a Measure which has the same nice features as the Parry measure. At
the same time, this will provide a description of the Parry measure whihc is
independent of the symbolic presentation.

The key ingredient here is the notion of entropy. We will not give a
definition, since this would take us rather far afield and because there are
a number of excellent references [?]. We summarize by saying that, to any
invariant measure, µ, on X, we may assign a number 0 ≤ h(f, µ) ≤ +∞.

In ergodic theory, one tends to take the measure µ as part of the given
data. Here, µ is considered as a variable.
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Definition 7.2.1. For a Smale space (X, f), the Bowen measure is the mea-
sure which maximizes h(f, µ), as µ varies over the set of all invariant Borel
probability measures on X.

Of course, it is not clear such a measure exists and if it does, it may not
be unique. It turns out that the situation for Smale spaces is as nice as one
might hope. The following may be found as Theorem 18.3.9 and Theorem
20.1.3 of [?].

Theorem 7.2.2. For any irreducible Smale space (X, f), the Bowen measure
exists. Moreover, there is a unique measure µ which maximizes the entropy
and h(f, µ) is finite.


