C^*-algebras and Tilings, Aperiodic Order, CIRM, Luminy

Ian F. Putnam, University of Victoria

September 10, 2007

1. C^*-algebra basics

2. C^*-algebras from dynamics

3. Morita equivalence

4. C^*-algebras from projection tilings

5. K-theory for C^*-algebras
Part 1: C^*-algebra basics

Definition 1. A C^*-algebra is a set A:

- A is an algebra over \mathbb{C}, the complex numbers (Not nec. commutative or unital)
- there is an involution $a \rightarrow a^*$, $a \in A$
- A has a norm, $\| \|$,

such that

- $(a + \lambda b)^* = a^* + \overline{\lambda}b^*$, $a, b \in A$,
- $(ab)^* = b^*a^*$, $a, b \in A$,
- A is complete in $\| \|$,
- $\| a^*a \| = \| a \|^2$, $a \in A$.

Examples:

- \mathbb{C}, the complex numbers,

- For $n \geq 1$, $M_n(\mathbb{C})$, $n \times n$ complex matrices. $\ast = \text{conjugate transpose.}$

- For \mathcal{H} a complex Hilbert space, $\mathcal{B}(\mathcal{H})$, the bounded linear operators on \mathcal{H}. $\ast = \text{adjoint.}$

- Any $A \subset \mathcal{B}(\mathcal{H})$ which is an algebra, closed under \ast, closed in the norm topology.
Let X be a compact, Hausdorff space.

$$C(X) = \{ f : X \rightarrow \mathbb{C} \mid f \text{ continuous } \}.$$

It is a C^*-algebra with pointwise algebraic operations, $\ast =$ pointwise complex conjugation, $\|\|\|$ is the supremum norm.

We can generalize: if the space X is locally compact, replace $C(X)$ with $C_0(X)$, the continuous complex functions which vanish at infinity. This is unital if and only if X is compact.

These are both commutative.

Gelfand-Naimark Theorem: Every commutative C^*-algebra arises in this way. $C_0(X)$ and $C_0(Y)$ are isomorphic if and only if X and Y are homeomorphic.

Theorem 2. The functor $X \rightarrow C_0(X)$ is an equivalence of categories between locally compact, Hausdorff spaces and commutative C^*-algebras.
• Can we extend standard topological notions to C^*-algebras?

• Are the some geometric constructions of non-commutative C^*-algebras?
Gelfand-Naimark dictionary:

<table>
<thead>
<tr>
<th>Topology</th>
<th>Commutative C^*-alg’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>closed set</td>
<td>closed ideal</td>
</tr>
<tr>
<td>$Y \subset X$</td>
<td>$I = { f \in C(X) \mid f</td>
</tr>
<tr>
<td>Borel measure</td>
<td>functional</td>
</tr>
<tr>
<td>μ</td>
<td>$\varphi_\mu(f) = \int_X f , d\mu$</td>
</tr>
<tr>
<td></td>
<td>$\varphi_\mu : C_0(X) \to \mathbb{C}$</td>
</tr>
<tr>
<td>K-theory</td>
<td>K-theory</td>
</tr>
</tbody>
</table>
An application: Hilbert space $L^2[0, 1]$.

Let $Cut = \{p2^{-k} \mid p, k \in \mathbb{Z}\} \cap [0, 1]$.

For each $a < b$ in Cut, let $\chi_{[a,b)}$ denote the characteristic function of $[a, b)$, which we regard as an operator on $L^2[0, 1]$ by pointwise multiplication.

Let A be the closed linear span of $\{\chi_{[a,b)} \mid a < b, a, b \in Cut\}$ in $B(L^2[0, 1])$.

This is a commutative, unital C^*-algebra. Hence, $A \cong C(X)$, for some X. What is X?

It should be a space where our functions $\chi_{[a,b)}$ are continuous: from $[0, 1]$, remove each point a in Cut and replace it with two points a^-, a^+. Topologically, imagine a^- as a left endpoint of $[0, a]$ and a^+ as a right endpoint for $[a, 1]$, separated by a gap. This is X and it is a Cantor set.
Part 2: C^*-algebras from dynamics

Situation 1: Topological equivalence relations

Let X be a compact, Hausdorff space.

R an equivalence relation on X.

$r, s : R \to X$ are the projections:

$$r(x, y) = x, s(x, y) = y, (x, y) \in R.$$

Assume R has an étale topology: r, s are open and local homeomorphisms.

Idea: if (x, y) is in R, there are open sets $x \in U$, $y \in V$ and a (unique) homeomorphism $\rho : U \to V$ such that

$$\rho(x) = y,$$

$$\{(u, \rho(u)) \mid u \in U\} \subseteq R.$$
$C^*(R)$:

First look at $C_c(R)$, the continuous, complex-valued functions of compact support on R. It is a linear space in an obvious way. Define a product and involution:

$$(f \cdot g)(x, y) = \sum_{(x, z) \in R} f(x, z) g(z, y),$$

$$f^*(x, y) = \overline{f(y, x)}.$$

Complete in a norm to get a C^*-algebra, $C^*(R)$.

Example: $X = \{1, 2, \ldots, N\}, R = X \times X$.

$C^*(R) = M_N(\mathbb{C})$.

Start with $C(X) = \mathbb{C}^N = span\{\chi_1, \ldots, \chi_N\}$ and add $e_{i,j}$ such that

$$e_{i,j}^* e_{i,j} = \chi_j,$$

$$e_{i,j} e_{i,j}^* = \chi_i,$$
The last example illustrates a general property:

\[f \in C(X) \rightarrow \delta(f)(x, y) = \begin{cases} f(x) & x = y \\ 0 & x \neq y \end{cases} \]

embeds \(C(X) \) as a unital subalgebra of \(C^*(R) \).

Assume \(U, V \subset X \) are clopen, \(\rho : U \rightarrow V \) as before, let \(w(x, y) = 1, x \in U, y = \rho(x), w(x, y) = 0, \) otherwise.

\[
\begin{align*}
w^*w &= \delta(\chi_U), \\
ww^* &= \delta(\chi_V), \\
w\delta(f)w^* &= \delta(f \circ \rho)
\end{align*}
\]

if \(f \) is supported in \(U \).

Example: \(X \) locally compact, \(R = = \) (equality).

\[
C^*(R) = C_0(X).
\]
Example (Kellendonk): $\mathcal{P} = \{p_1, \ldots, p_N\}$, a finite set of prototiles in \mathbb{R}^d. Each has a distinguished interior point $x(p_i)$ called a puncture.

Translate: $x(p_i + y) = x(p_i) + y, y \in \mathbb{R}^d$

Suppose Ω a compact, translation invariant collection of tilings which are made from translates of \mathcal{P}.

$$\Omega_{punc} = \{T \in \Omega \mid x(t) = 0, \text{ for some } t \in T\}.$$

$$R_{punc} = \{(T, T + x) \mid T, T + x \in \Omega_{punc}, x \in \mathbb{R}^d\}$$ is an étale groupoid.

Let $T \in \Omega$, $t_1, t_2 \in T$:

$$U = \{T' \mid t_1 - x(t_1), t_2 - x(t_1) \in T'\}$$

$$V = \{T' \mid t_1 - x(t_2), t_2 - x(t_2) \in T'\}$$

$$\rho(T') = T' + x(t_1) - x(t_2).$$
Situation 2: Actions of countable groups

G a countable abelian (for notation) group, X a loc. cmpct Hausdorff space, φ an action of G on X:

$$s \in G, \varphi^s : X \to X,$$

is a homeomorphism.

Action is free if $\varphi^s(x) = x \Rightarrow s = 0$.

$C_0(X) \times_\varphi G$: Generators: $C_0(X)$, $u_s, s \in G$, Relations:

\[
\begin{align*}
 u_0 &= 1, \\
 u_su_t &= u_{s+t}, \\
 u_s^* &= u_{-s}, \\
 u_sf u_s^* &= f \circ \varphi^{-s} \\
 u_sf &= (f \circ \varphi^{-s})u_s
\end{align*}
\]

$s, t \in G, f \in C_0(X)$.

12
Consider all formal sums

$$\sum_{s \in G} f_s u_s$$

where only finitely many $f_s \in C(X)$ are non-zero. The rules above define product and involution. We give this a norm and then complete.

Idea: Each s in G defines an automorphism of $C_0(X)$: $f \rightarrow f \circ \varphi^{-s}$. Here $\delta(f) = f u_0$ and $C_0(X) \subset C_0(X) \times_\varphi G$ and all these automorphisms become inner. u_s is a unitary. (Caution: u_s is in $C_0(X) \times_\varphi G$ only if X is compact.)

Example: $X = \{1, \ldots, N\}, G = \mathbb{Z}_N$, φ is addition, mod N. $C(X) \times G \cong M_N$.

13
Gelfand-Naimark dictionary (for free actions):

<table>
<thead>
<tr>
<th>Dynamics (X, G, φ)</th>
<th>C^*-alg. $C_0(X) \times \varphi G$</th>
</tr>
</thead>
<tbody>
<tr>
<td>closed invariant set $Y \subset X$</td>
<td>two-sided closed ideal $I = {\sum_s f_s u_s \mid f_s</td>
</tr>
<tr>
<td>invariant measure μ</td>
<td>trace $\tau_\mu(\sum_s f_s u_s) = \int_X f_0 d\mu$</td>
</tr>
</tbody>
</table>

\[
\tau_\mu(ab) = \tau_\mu(ba)
\]
Comparison of topological equivalence relations and actions of countable groups.

Start with \((X, G, \varphi)\).

Let \(R_\varphi = \{(x, \varphi^s(x)) \mid x \in X, s \in G\}\), is an equivalence relation. The classes are the orbits.

If \(G\) acts freely \((\varphi^s(x) = x \text{ only if } s = e)\), this can be given an étale topology. The local homeomorphisms are \(\varphi^s, s \in G\).

\[C(X) \times_\varphi G \cong C^*(R_\varphi). \]
Situation 3: Continuous group actions

G a locally compact abelian group, X a locally compact Hausdorff space, φ an action of G on X:

$$s \in G, \varphi^s : X \to X,$$

is a homeomorphism.

$C_c(X \times G)$ is a linear space and is given a product and involution:

$$(f \cdot g)(x, s) = \int_G f(x, t) g(\varphi^t(x), s - t) d\lambda(t),$$

$$f^*(x, s) = f(\varphi^{-s}(x), s),$$

f, g in $C_c(X \times G)$, x in X, s in G,

λ is Haar measure on G.

G discrete:

$$u_s(x, t) = \begin{cases}
1 & t = s \\
0 & t \neq s
\end{cases}$$
Part 4: Morita equivalence for C^*-algebras
(Rieffel, Muhly-Renault-Williams)

“Morita equivalence is more natural than isomorphism” - A. Connes.

If A and B are Morita equivalent ($A \sim B$), then

- A and B have isomorphic lattices of closed two-sided ideals
- there is a bijection between classes of representations as operators on Hilbert space
- A and B have isomorphic K-theory
What is not preserved:

- linear dimension
- commutativity

Example 1: $M_m(\mathbb{C}) \sim M_n(\mathbb{C})$ are Morita equivalent for all $m, n \geq 1$.
Example 2: φ a free, wandering action of G on X. $q : X \rightarrow X/R\varphi$ is the quotient map. Wandering implies that the space of orbits $X/R\varphi$ is Hausdorff in the quotient topology.

$$A = C_0(X) \times \varphi G \sim B = C_0(X/R\varphi)$$ are Morita equivalent.

e.g. $C_0(\mathbb{R}) \times \mathbb{Z} \sim C(S^1)$.

Moral: if the quotient $X/R\varphi$ is a bad space (there is some recurrence in φ), then $C_0(X) \times \varphi G$ is its non-commutative replacement.
Example 3: \(X \) locally compact, Hausdorff, \(\varphi \) an action of \(G \), \(\psi \) an action of \(H \),

\[\varphi^s \circ \psi^t = \psi^t \circ \varphi^s, s \in G, t \in H. \]

If the actions \(\varphi \) and \(\psi \) are both wandering, then

\[A = C_0(X/R_{\varphi}) \times_{\psi} H \]
\[B = C_0(X/R_{\psi}) \times_{\varphi} G \]
\[C = C_0(X) \times_{\varphi \times \psi} (G \times H) \]

are all Morita equivalent.

Example 4: If \(\varphi \) is an \(\mathbb{R} \)-action on \(X \) and has a transversal \(T \), let \(\psi \) be the Poincaré first return map on \(T \). Under mild conditions,

\[C_0(X) \times_{\varphi} \mathbb{R} \sim C_0(T) \times_{\psi} \mathbb{Z}. \]
Example 5: Let Ω be a continuous hull. It has an action of \mathbb{R}^d and we consider the C^*-algebra $C(\Omega) \times \mathbb{R}^d$.

Recall

$$\Omega_{punc} = \{ T \in \Omega \mid x(t) = 0, \text{ some } t \in T \}$$

and

$$R_{punc} = \{ (T, T + x) \mid , T, T + x \in \Omega_{punc} \}$$

and the C^*-algebra $C^*(R_{punc})$.

- Ω_{punc} is a transverse to the \mathbb{R}^d-action,

- restricting the \mathbb{R}^d-orbits to Ω_{punc} gives R_{punc} which is étale

- every \mathbb{R}^d orbit in Ω meets Ω_{punc}.

$C^*(R_{punc})$ and $C(\Omega) \times \mathbb{R}^d$ are Morita equivalent.
Part 5: C^*-algebras for projection method tilings (Forrest-Hunton-Kellendonk)

Data:

- \mathbb{R}^d, physical space (to be tiled),
- H, internal space, locally cpct ab. group,
- $\pi : \mathbb{R}^d \times H \to \mathbb{R}^d$, $\pi^\perp : \mathbb{R}^d \times H \to H$,
- $\mathcal{L} \subset \mathbb{R}^d \times H$, discrete, co-compact (lattice),
- $\pi|\mathcal{L}, \pi^\perp|\mathcal{L}$ one-to-one, $L = \pi^\perp(\mathcal{L})$ dense in H,
- $W \subset H$, compact, regular, $\lambda(\partial W) = 0$.

22
A point x in $\mathbb{R}^d \times H$ is non-singular if
$$\pi^\perp(x + \mathcal{L}) \cap \partial W = \emptyset.$$
\mathcal{N} is the set of non-singular points.

$$\Lambda_x = \pi\{y \in x + \mathcal{L} \mid \pi^\perp(y) \in W\}$$
is a Delone set, called a regular model set.

The hull Ω is the completion of
$$\{\Lambda_x \mid x \in \mathcal{N}\}.$$

Comments:

• \mathcal{N} is invariant under the actions of \mathbb{R}^d and \mathcal{L},

• $\Lambda_{x+s} = \Lambda_x$, if $s \in \mathcal{L}$,

• $\Lambda_{x+u} = \Lambda_x + u$, if $u \in \mathbb{R}^d$.

23
Lemma 3. Suppose $x_n \in \mathcal{N}$ converges to $x \in \mathbb{R}^d \times H$. Λ_x converges in Ω (i.e. is Cauchy in the tiling metric) if and only if, for every $s \in L$, the sequence $\pi^\perp(x_n)$ is eventually either in $W + s$ or in its complement.

Theorem 4. For $s \in L$,

$$\Lambda_x \to \chi_{W+s}(x), \ x \in \mathcal{N} \cap H$$

extends to a continuous function on Ω.

Definition 5. Consider A, the C^*-algebra of operators on $L^2(H, \lambda)$ generated by $C_0(H)$ and $\chi_{W+s}, s \in L$. Let \hat{H} be its spectrum; i.e. $A \cong C_0(\hat{H})$.

The action of L on E extends to \hat{H}. $L \subset H$ is dense implies that \hat{H} is totally disconnected.
Theorem 6. The hull Ω is homeomorphic to

$$\mathbb{R}^d \times \hat{H}/\mathcal{L}$$

The actions of \mathbb{R}^d and \mathcal{L} on $\mathbb{R}^d \times \hat{H}$ are commuting, free and wandering:

Theorem 7. $C_0(\mathbb{R}^d \times \hat{H}/\mathcal{L}) \times \mathbb{R}^d$ is Morita equivalent to

$$C_0(\hat{H}) \times L.$$

The actions of $G = \mathbb{R}^d$ and $\mathcal{L} \cong L$ on $\mathbb{R}^d \times \hat{H}$ are commuting and wandering:

$$\mathbb{R}^d \times \hat{H}/\mathbb{R}^d \cong \hat{H}.$$
Further reductions:

Assume $H = \mathbb{R}^N$. So $L \cong \mathcal{L} \cong \mathbb{Z}^{d+N}$, as an abstract group: $C_0(\hat{H}) \times \mathbb{Z}^{d+N}$. The action is by translation by the vectors L, which is a dense subgroup of \mathbb{R}^N.

\hat{H} is \mathbb{R}^N disconnected along the boundaries of W and its translates by L. In many cases, this can be done in other ways, e.g. by lines.

Example: Fibonacci: $d = 1, N = 1, L = \mathbb{Z} + \alpha \mathbb{Z}$. $W = [a, b]$. \hat{H} is \mathbb{R}^1 disconnected along the $\mathbb{Z} + \alpha \mathbb{Z}$-orbits of a and b (one orbit or two?).

Example: Penrose: $d = 2, N = 2, L$ is the subgroup of the plane generated by $\exp(2\pi ij/5), j = 0, 1, 2, 3, 4$. \hat{H} is the plane disconnected along the 5 lines through the origin and $\exp(2\pi ij/5), j = 0, 1, 2, 3, 4$, and all translates of them by L.
Example: TTT (Tübingen triangle tiling) Same is the Penrose, but rotate the 5 original lines by $\pi/10$.

Example: Octagonal tiling: $d = 2$, $N = 2$, L is the subgroup generated by $exp(\pi ij/4), j = 0, 1, 2, 3$. \mathring{H} is the plane disconnected along the 4 lines through the origin and $exp(\pi ij/4), j = 0, 1, 2, 3$, and all translates by L.

One more reduction (still with $H = \mathbb{R}^N$). List a set of generators of L: s_1, \ldots, s_{d+N}. Act on a disconnected $H = \mathbb{R}^N$. The action of the first N of them is free and wandering: let \mathring{H}_0 denote the quotient, which is a Cantor set. It is really a disconnected N-torus. Our C^*-algebra is Morita equivalent to

$$C(\mathring{H}) \times \mathbb{Z}^{d+N} = C(\mathring{H}_0) \times \mathbb{Z}^d.$$
Part 6: K-theory for C^*-algebras

To a C^*-algebra, A, there are associated two abelian groups, $K_0(A)$ and $K_1(A)$. These are based on

- projections $p^2 = p = p^*$
- unitaries $u^* = u^{-1}$,

respectively, in A. It is a recepticle for such data and also an invariant for A. There is (by now) quite a lot of machinery for computing it.
$K_0(A)$: Assume A with unit.

p is a projection if $p^2 = p = p^*$.

Equivalence of projections:

- **Murray-von Neumann similarity**
 \[p \sim_s q \quad \exists v, v^*v = p, vv^* = q, \]

- **unitary eq.**
 \[p \sim_u q \quad \exists v^* = v^{-1}, vpv^{-1} = q \]

- **homotopy**
 \[p \sim_h q \quad \exists t \rightarrow pt, p_0 = p, p_1 = q \]

Note that v above must be in A.

Addition of projections: if p, q are orthogonal ($pq = 0$), then $p + q$ is a projection.

$M_n(A)$ is the set of $n \times n$ matrices with entries from A. It is a C^*-algebra. Its unit is 1_n. For $a \in M_n(A), b \in M_m(A)$,

\[
a \oplus b = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in M_{m+n}(A).
\]
$P_n(A)$, projections in $M_n(A)$.

$$P_1(A) \subset P_2(A) \subset P_3(A) \subset$$

by identifying p and $p \oplus 0$. Let $P(A) = \cup_n P_n(A)$.

Equivalence: In $P(A)$, we have $\sim = \sim_s = \sim_u = \sim_h$.

Problem: $p + p_0 \sim q + p_0 \not\Rightarrow p \sim q$.

Define $p \approx q$ if and only if $p \oplus 1_n \sim q \oplus 1_n$, for some n. $[p]$ is the class modulo \approx.

Addition: $p, q \in P(A)$, $p = p \oplus 0$, $q \sim 0 \oplus q$, which are orthogonal, and so

$$[p] + [q] = [p \oplus q]$$

is a well-defined addition.

$P(A)/\sim$ is a semi-group with identity, $[0]$. $K_0(A)$ is its Grothendieck group, i.e. formal differences of classes of $P(A)$:

$$K_0(A) = \{[p] - [q] \mid p, q \in P(A)\}.$$

It has a natural positive cone:

$$K_0(A)^+ = \{[p] - [0] \mid p \in P(A)\}.$$
Example: \mathbb{C}

Consider matrices over \mathbb{C}:

Lemma 8. Two projections p and q in $M_n(\mathbb{C})$ are similar if and only if $\text{rank}(p) = \text{rank}(q)$.

Rank is not going to generalize easily to other C^*-algebras, but recall, for a projection $\text{rank}(p) = \text{Trace}(p)$.

Proposition 9. The map $\text{Tr} : K_0(\mathbb{C}) \to \mathbb{Z}$

$$\text{Tr}([p] - [q]) = \text{Trace}(p) - \text{Trace}(q)$$

is an isomorphism. Under this, $K_0(\mathbb{C})^+ = \{0, 1, 2, 3, \ldots\} = \mathbb{Z}^+$.

31
Example: \(C(S^2) \)

If \(p \in M_n(C(S^2)) \), then \(\text{Trace}(p(x)) \) is continuous in \(x \). If \(p \) is also a projection, its value is integral.

\[[p] - [q] \in K_0(C(S^2)) \rightarrow \text{Trace}(p(x)) - \text{Trace}(q(x)) \]

is a homomorphism, but is not injective. There is a projection \(p \in M_2(C(S^2)) \) such that at every point \(p(x) \) is similar to \(1 \oplus 0 \), but this similarity cannot be made continuous over \(S^2 \).

Proposition 10. If \(X \) is totally disconnected, let \(C(X, \mathbb{Z}) \) be the group of continuous integer-valued functions on \(X \). The function \(Tr : K_0(C(X)) \rightarrow C(X, \mathbb{Z}) \) defined by

\[Tr([p] - [q])(x) = \text{Trace}(p(x)) - \text{Trace}(q(x)) \]

is an isomorphism. Under this, \(K_0(C(X))^+ = C(X, \mathbb{Z}^+) \).

\(U \subset X \) clopen, \(\chi_U \) is a projection in \(C(X) \) and also in \(C(X, \mathbb{Z}) \). The map takes \([\chi_U] - [0]\) to \(\chi_U \).

Proposition 11. For a minimal action of \mathbb{Z} on a Cantor set X, $K_0(C(X) \times \varphi \mathbb{Z})$ is isomorphic to

$$C(X, \mathbb{Z})/\{f - f \circ \varphi \mid f \in C(X, \mathbb{Z})\}$$

and $K_0(C(X) \times \varphi \mathbb{Z})^+$ is the image of $C(X, \mathbb{Z}^+)$.

Inclusion $C(X) \subset C(X) \times \mathbb{Z}$ gives

$$K_0(C(X)) \cong C(X, \mathbb{Z}) \rightarrow K_0(C(X) \times \mathbb{Z}).$$

Surjectivity: every projection in $C(X) \times \mathbb{Z}$ is similar to one in $C(X)$.

Let $U \subset X$ be clopen. χ_U is a projection in $C(X)$, but

$$\chi_U \sim_u u_1 X U u_1^* = \chi_U \circ \varphi^{-1} = \chi_{\varphi(U)}.$$

If one replaces \mathbb{Z} by \mathbb{Z}^d, $d > 1$, more sophisticated methods (spectral sequences) are needed.
Recall, every \(\varphi \)-invariant measure \(\mu \) gives a trace \(\tau_\mu \) on \(C(X) \times \mathbb{Z} \). This yields a map

\[
\hat{\tau}_\mu : K_0(C(X) \times \mathbb{Z}) \to \mathbb{R}.
\]

If \(U \) is clopen, \(\hat{\tau}_\mu[\chi_U] = \mu(U) \).

Theorem 12. \(a \) in \(K_0(C(X) \times \mathbb{Z}) \) is in \(K_0(C(X) \times \mathbb{Z})^+ \) if and only if \(a = 0 \) or \(\hat{\tau}_\mu(a) > 0 \), for all \(\mu \).

For \(d > 1 \), the inclusion \(C(X) \subset C(X) \times \mathbb{Z}^d \) induces \(C(X, \mathbb{Z}) \to K_0(C(X) \times \mathbb{Z}^d) \) which is not onto.

Theorem 13 (Gap labelling: B-B-G, B-OO, K-P).

\[
\hat{\tau}_\mu(K_0(C(X) \times \mathbb{Z}^d)) = \hat{\tau}_\mu(C(X, \mathbb{Z})) = \{ \mu(U) \mid U \text{ clopen} \} + \mathbb{Z}.
\]
There are some very sophisticated machinery for computing this.

Connes’ analogue of the Thom isomorphism:

\[K_i(C(X) \times \mathbb{R}^d) \cong K_{i+d}(C(X)). \]

Can be used in the case \(X = \Omega \), the continuous hull. \(K_i(C(X)) \) is closely related (especially in low dimensions) to the cohomology of \(X \).

However, this isomorphism does not respect the order structure on \(K_0 \).