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From gene families and genera to incomes and internet file sizes:
why power-laws are so common in nature

William J. Reed
Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8W 3P4

Barry D. Hughes
Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia

We present a simple explanation for the occurrence of power-law tails in statistical distributions, by
showing that if stochastic processes with exponential growth in expectation are killed (or observed)
randomly, the distribution of the killed or observed state exhibits power-law behavior in one or both
tails. This simple mechanism can explain power-law tails in the distributions of the sizes of incomes,
cities, internet files, biological taxa and in gene family and protein family frequencies.
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Distributions with power-law behavior in one or both
tails are ubiquitous in physics, biology, geography, eco-
nomics, insurance, lexicography, internet ecology, etc.
Associated names include Zipf’s law (word frequencies,
city sizes), Pareto’s law (incomes) and the rank-size prop-
erty (cities, firms etc.) There have been many attempts
to explain why such distributions are so common, includ-
ing notions of self-organized criticality [1] and highly op-
timized tolerance [2]. We shall show that power-law tail
behavior can arise from a very simple mechanism that
can explain its occurrence in many instances.

The basic idea is that if a process that grows exponen-
tially, in a loose sense, is ‘killed’ (or observed once) ‘ran-
domly’, the distribution of the killed (observed) state will
follow power laws in one or both tails. Consider the sim-
ple case of deterministic exponential growth X(t) = eµt

killed at a random time T which is exponentially distrib-
uted with parameter ν. The killed state X̄ = eµT has
the probability density function fX̄(x) = (ν/µ)x−ν/µ−1

for x > 1, giving power-law behavior over its full range.
We shall consider four stochastic processes all exhibit-
ing exponential or geometric growth in expectation. We
denote expectation by E, and freely use the conditional
expectation identity E[f(X)] = EY {E[f(X)|Y ]}.

Geometric Brownian motion (GBM): where dBt has a
normal distribution with mean 0 and variance dt,

dX = µXdt+ σXdBt, E(Xt|X0) = X0 exp(µt). (1)

Discrete multiplicative process: with {Zn} independent
identically distributed random variables with mean µ,

Xn+1 = ZnXn, E(Xn|X0) = X0µ
n. (2)

Homogeneous birth-and-death process: with birth and
death rates λ and δ,

P (Xt+h = n+ 1|Xt = n) = λnh+ o(h),
P (Xt+h = n− 1|Xt = n) = δnh+ o(h),

P (Xt+h = n|Xt = n) = 1− (λ+ δ)nh+ o(h),
E(Xt|X0) = X0e

(λ−δ)t.

(3)

Galton-Watson branching process: with {Zi} indepen-
dent identically distributed random variables represent-
ing numbers of offspring and E(Zi) = µ,

Xn+1 = Z1 + Z2 + · · ·+ ZXn , E(Xn|X0) = X0µ
n. (4)

We consider the killed state of these processes when
killing occurs at random. For the discrete-time processes
(2) and (4), we assume that the discrete hazard is con-
stant: if the process has not been killed by time n−1, the
probability of it being killed at time n is a constant p, in-
dependent of n, giving the geometric distribution for the
generation number N corresponding to the killed state:

P (N = n) = p(1− p)n−1, n = 1, 2, 3, . . . ; (5)

we exclude killing in the zeroth generation. For the
continuous-time processes (1) and (3), we assume a con-
stant hazard rate ν, giving the exponential distribution

P (killed at time ≥ t) = e−νt. (6)

To find the distribution of the killed state we use the mo-
ment generating function (mgf) E[eXs] for the continuous
state processes (1) and (2), and the probability generating
function (pgf) E[sX ] for the discrete state processes (3)
and (4). The pgf of the geometric distribution (5) is

E[sN ] = ps[1− (1− p)s]−1. (7)

A number of plots can reveal power-law behavior in an
empirical size distribution. If there is lower-tail power-
law behavior, a plot of the empirical cumulative distribu-
tion function (cdf) on logarithmic axes should be close to
linear at its lower end. Equivalently a logarithmic plot of
the (ascending) rank against size should be close to lin-
ear at the lower end. For upper-tail power-law behavior
a logarithmic plot of the empirical survivor function (or
complementary cdf) should be linear at its upper end, as
should be a logarithmic plot of descending rank against
size. One can also look for linearity in a plot of frequen-
cies against size on logarithmic axes. However many sizes
(especially extreme ones) will not occur at all or occur
only once, and so some binning will probably be required.
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FIG. 1: Distribution of the sizes of 19,399 places in the U.S.A
in 1999. Logarithmic rank-size plots of the smallest 500 places
(upper panel) and the largest 500 places (lower panel) suggest
power-law behavior in both tails of the distribution.

Killed geometric Brownian motion. Let X̄ be the killed
state and let Ȳ = log X̄. The mgf of Ȳ is E[exp(Ȳ s)] =
ET {E[exp(YT s)|T ]}. Since YT − Y0 = log(XT /X0) has
the normal distribution N((µ−σ2/2)T, σ

√
T ) [3], we find

E[exp(YT s)|T ] = exp[Y0s+ (µ− σ2/2)Ts+ 1
2σ

2Ts] and

E[exp(Ȳ s)] = eY0sαβ(α− s)−1(β + s)−1, (8)

where Y0 = logX0, while α and −β (α, β > 0) are the
roots of the quadratic 1

2σ
2s2 +(µ− 1

2σ
2)s−ν = 0. Equa-

tion (8) is the mgf of the probability density function
fȲ (y) = A

{
e−α(y−Y0)H(y−Y0)+eβ(y−Y0)H(Y0−y)

}
, an

asymmetric Laplace distribution; A = αβ/(α + β) and
the Heaviside function H is positive if its argument is
positive, and zero if its argument is negative. It follows
that the distribution of X̄ is a two-sided Pareto or double
Pareto distribution, with density

fX̄(x) =
{
AX−β0 xβ−1 if x ≤ X0,
AXα

0 x
−α−1 if x > X0,

(9)

which exhibits power-law behavior in both tails.
Equation (9) has been used to explain the upper-tail

power-law phenomenon observed for incomes (Pareto’s
law of incomes) [4] and city sizes (the rank-size law) [5].
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FIG. 2: Distribution of the total money income of 216 mil-
lion people in U.S.A in 2000. The left and right panels show
(on logarithmic axes) the cumulative frequency distributions
(binned) in the lower and upper tails respectively (unbinned
cumulative frequency plots, like those in Fig. 1, are not avail-
able since income data is only published in binned form). The
plots suggest power-law behavior in both tails.
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FIG. 3: Logarithmic rank-size plots for the upper tail of the
distribution of 734,814 http response sizes at the University
of North Carolina at Chapel Hill Main Link [10].

It is assumed that both individual incomes and settle-
ment sizes evolve as GBM, while the time that an indi-
vidual has been earning and the time a settlement has
been in existence can reasonably be modelled as having
exponential distributions, based on the assumption that
the workforce and the population of settlements are grow-
ing at a fixed rate. The predicted lower-tail power-law
behavior has been shown to occur in the empirical dis-
tributions of both incomes and human settlement sizes,
facts previously unrecognized. Figures 1 and 2 illustrate
empirical power-law behavior in both tails of settlement
size and income distributions, using recent U.S. data [6].

Killed discrete multiplicative process. We distinguish
three cases for the multiplicative process Xn+1 = ZnXn:
(a) monotonic increasing, when P (Zn > 1)) = 1;
(b) monotonic decreasing, when P (Zn < 1) = 1;
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FIG. 4: Logarithmic plots of the observed sizes of 1829 gen-
era of North American vascular plants. The left-hand panel
is a rank-size plot for the largest 50 genera. The straight-
line behavior suggests upper-tail power-law behavior in the
genus size distribution. The right-hand panel shows frequency
against genus size (crosses) along with a similar plot with bin-
ning (boxes), so that each bin contains at least two genera.

(c) bidirectional, when P (Zn > 1) > 0, P (Zn < 1) > 0.
Again let Ȳ = log X̄, so that Ȳ = logX0 +

∑N
j=1 Uj ,

where N is distributed geometrically with parameter p
in accord with Eq. (5), and Uj = logZj . For brevity
we write the mgf of each Uj as E[exp(sUj)] = MU (s).
It follows that E[exp(Ȳ s)] = Xs

0EN [MU (s)N ] and we
recognize EN [MU (s)N ] as the pgf (7) of N evaluated at
MU (s). Writing for brevity q = 1− p, we have

E[exp(Ȳ s)] = X0
sspMU (s)[1− qMU (s)]−1.

The tail behavior of the density of Ȳ is determined by
singularities in the mgf from solutions of MU (s) = 1/q.
Since MU (0) = 1 and M ′′U (s) > 0, provided that the mgf
of U exists in the neighbourhood of s = 0 [7], real zeros
of MU (s)− 1/q are simple zeros. There are three cases.

(a) Uj > 0 (i.e. Zj > 1) with probability 1, so the
process {Xn} is increasing. Because MU (s) is increasing
with MU (s)→∞ as s→∞ and MU (s)→ 0 as s→ −∞,
there is a unique simple zero of MU (s)− 1/q at s+ > 0,
giving a simple pole of E[exp(Ȳ s)] at s+ and so an upper
power-law tail in the distribution of the killed state X̄.

(b) Uj < 0 (i.e. Zj < 1) with probability 1, so the
process {Xn} is decreasing. Because MU (s) is decreasing
with MU (s)→ 0 as s→∞ and MU (s)→∞ as s→ −∞
and there is unique simple zero of MU (s)−1/q at s− < 0,
giving a simple pole of E[exp(Ȳ s)] at s− and so a lower
power-law tail in the distribution of the killed state X̄.

(c) P (Uj > 0) > 0 and P (Uj < 0) > 0, so the process
{Xn} can both increase and decrease. Here MU (s)→∞
as s tends to∞ or −∞. As MU (s) is convex, E[exp(Ȳ s)]
has two isolated singularities of opposite sign, both sim-
ple poles, and X̄ has power-law behavior in both tails.

A multiplicative model for growth in file sizes coupled
with a model which yielded geometric killing was used by
Huberman and Adamic [8] to explain upper-tail power-

law behavior in the size (number of pages) of World-Wide
Web sites. Mitzenmacher [9] used a similar model (with
Zn assumed to have a lognormal distribution) to explain
the phenomenon of power-law behavior in both tails of
the distribution of the size of computer files. Sample data
with the characteristic power-law rank-size property is
shown in Figure 3.

Killed birth-and-death process. Let X̄ be the value of
X at the time of killing. It can be shown [11] that in the
case λ > δ the distributions of X̄ can exhibit power-law
behavior in the upper tail. Precisely, as n→∞,

P (X̄ = n) ∼ k1n
−[1+ν/(λ−δ)] for λ > δ. (10)

We have ‘stretched exponential’ behavior in the case
λ = δ, and P (X̄ = n) ∼ k2(λ/δ)nn−[1+ν/(δ−λ)] for λ < δ.
Reed and Hughes [11] used this model to explain the dis-
tribution of the size (number of species) of live biological
genera. It is assumed that species are created from ex-
isting species by speciations which occur independently
and at random; and that species likewise suffer individual
extinctions independently and at random. Thus the evo-
lution of the number of living species can be represented
by a birth-and-death process (e.g. [12]). Genera are as-
sumed to be created in a similar fashion to species [13],
so that the time since origination of a live genus is expo-
nentially distributed and the current size of such a genus
is that of a randomly killed birth-and-death process (i.e.
of X̄). Figure 4 shows a logarithmic rank-size plot for the
largest 50 genera of North American vascular plants; and
a frequency plot of all 1829 living genera of such plants.
The rank-size plot is approximately linear, as is the fre-
quency plot for larger genera, consistent with upper-tail
power-law behavior as predicted by the model.

Let Ȳ be the number of population elements that have
existed up until the time of killing. It can be shown [14]
in the case λ > δ + ν that Ȳ also exhibits upper-tail
power-law behavior. That is, as m→∞

P (Ȳ = m) ∼ c1m−[1+ν/(λ−δ)] for λ > δ + ν. (11)

This result may explain upper-tail power-law behavior in
the size distribution of extinct fossil taxa (e.g. [15]), with
killing corresponding to a cataclysmic extinction event
(when the whole taxon is destroyed), with such events
assumed to occur in a Poisson process with rate ν.

The upper-tail power-law behavior of the distribution
of the size of living genera has long been known. Yule [13]
developed the eponymous Yule distribution to fit such
data,using essentially the above model with δ = 0. He
assumed that the size of a genus was that of a killed pure
birth (or Yule) process. That similar behavior occurs for
the distribution of extinct taxa has been observed [15].

The randomly killed birth and death process may also
provide a better model for power-law distributions in
gene family and protein family size distributions [16].
Assume that the size of a gene family evolves as homo-
geneous birth and death death process [17] so that new
genes in the family can arise from existing ones inde-
pendently at random, and similarly may be lost. If gene
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FIG. 5: Distribution of family names in the 1990 U.S. Census.
We show a logarithmic plot of rank against frequency for the
most common 250 names. The upper left point corresponds
to the most common name.

families evolve in a Yule process then time in existence of
family is exponentially distributed, and a power-law tail
results, in the same way as in the taxon model above.

Killed Galton–Watson branching process. The pgf for
the number Xn of individuals in the nth generation of a
Galton–Watson branching process Xn+1 = Z1 + Z2 +
· · · + ZXn , started with one individual for the zeroth
generation, is given [18] by Gn(s) = Gn−1(g(s)). Here
g(s) = G1(s) is the pgf for the number of offspring of
an individual. The pgf G(s) = E(sX̄) of the state X̄
of the branching process killed on the production of the
Nth generation according to the geometric distribution
(5) is G(s) =

∑∞
n=1Gn(s)p(1 − p)n−1, and it satisfies

the functional equation G(s) = pg(s) + (1 − p)G(g(s)).

Functional equations of this kind were encountered in
stochastic processes by Hughes, Shlesinger and Mon-
troll [19], who observed a close analogy with real-space
renormalization methods and antecedents in the theory
of nondifferentiable functions, and noncontinuable ana-
lytic functions. By analysing the singular behavior of
the solutions of the functional equation, we have argued
elsewhere [20] that if the offspring distribution has fi-
nite mean µ = g′(1) = E(Zj), the dominant behavior
P (X̄ = m) ∼ R(m)m−1−κ will be found as m → ∞,
where κ = log[(1−p)−1]/ logµ and R(m) has log-periodic
oscillations, that is, R(m) is periodic in logm with period
logµ. The existence of the oscillations can be rigorously
proved [20] when the offspring distribution is geometric,
but the oscillations are of very small amplitude. Recently,
Gluzman and Sornette [21] have reviewed the existence
of log-periodic oscillations mirroring underlying scale hi-
erarchies in several areas of physics.

Since Galton proposed the branching process as a
model for family names (and Watson partially solved the
problem of the probability of extinction of a name), we
have investigated the applicability of the killed branch-
ing process model to the size distribution of names (under
the hypothesis that new names can enter either via im-
migration in a Poisson process, or from a mutation of any
existing name, which can occur with constant probabil-
ity). Figure 5 shows the rank-size plot for US surnames
[22]. The closeness of the points to a straight line (corre-
sponding to power-law behavior) is impressive. Similar
plots of data [23] for Isle of Man surnames in 1881 and
Chinese family names show the same linearity. Grouped
frequency plots also provide evidence of power law tails.

[1] P. Bak, C. Tang, and K. Wiesenfeld, (1987) Phys. Rev.
Lett. 59, 381 (1987).

[2] M. Newman, Nature 405, 412 (2000).
[3] See, for example, Chapter 3 of X. Mao, Stochastic Dif-

ferential Equations (Horwood, Chichester, 1997).
[4] W.J. Reed Econ. Lett. 74, 15 (2001).
[5] W.J. Reed, J. Regional Sci. 42, 1 (2002).
[6] For data, see ferret.bls.census.gov/macro/032001/perinc/

new01 001.htm.
[7] If U has no mgf, use the characteristic function E(eitU ).

For a symmetric stable density of order β < 2, we have
E(eitU ) = exp(−b|t|β), and P (0 < X̄ < x) ∼ C1/| log x|β
as x→ 0, while P (X̄ > x) ∼ C2/(log x)β as x→∞.

[8] B.A. Huberman and L.A. Adamic Nature 401, 131
(1999); L.A. Adamic and B.A. Huberman Comm. ACM
44, 55 (2001).

[9] M. Mitzenmacher, preprint, www.eecs.harvard.edu/
˜michaelm/NEWWORK/papers.html (2001).

[10] Data for 7 days (April 2001) courtesy of Dr J.S. Marron,
www.orie.cornell.edu/̃ marron/OR778NetworkData/
OR778home.html.

[11] W.J. Reed and B.D. Hughes, J. Theor. Biol., in press
(2002).

[12] D.M. Raup, Paleobiology 11, 45 (1982).
[13] G.U. Yule, Phil. Trans. Roy. Soc. Lond. B 213, 21

(1924).
[14] B.D. Hughes and W.J. Reed (2001), preprint.
[15] e.g. by B. Burlando, J. Theor. Biol. 163, 161 (1993). A

branching process model was proposed by J. Chu and C.
Adami, Proc. Nat. Acad. Sci. (U.S.A.) 96, 15017 (1999).

[16] M.A. Huynen and E. van Nimwegen, Mol. Biol. Evol. 15,
583 (1998); J. Qian, N.M. Luscombe and M. Gerstein, J.
Mol. Biol. 313, 673 (2001).

[17] cf. J.S. Bader, arxiv.org/abs/physics/9908032 (1999).
[18] T.E. Harris, The Theory of Branching Processes

(Springer, Berlin, 1963).
[19] B.D. Hughes, M.F. Shlesinger and E.W. Montroll, Proc.

Nat. Acad. Sci. (U.S.A.) 78 3287 (1981); M.F. Shlesinger
and B.D. Hughes, Physica 109A, 597 (1981).

[20] W.J. Reed and B.D. Hughes, submitted to Physica A.
[21] D. Sornette, Phys. Rep.297, 239 (1998); S. Gluzman and

D. Sornette, Phys. Rev. E 65, 036142 (2002).
[22] See www.census.gov/ftp/pub/genealogy/www/ freq-

names.html.
[23] See www.geocities.com/hao510/namefreq and www.ee.

surrey.ac.uk/Contrib/manx/famhist/fnames/sn1881.htm.


