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Abstract

This article provides a brief introduction to scale-free networks
(SFNs). The notion of SFN is defined and some examples given. Prop-
erties frequently exhibited by SFNs are discussed. The importance of
the phenomenon of preferential attachment in generating SFNs is il-
lustrated with two examples for the spread of a persistent disease. The
models are similar in that they both yield a total infected population
(1) which is geometrically distributed, and growing exponentially in
expectation; and (2) in which the average distance from the original
source of infection grows in a similar way over time. However one
model, which has preferential attachment (infection), yields an SFN,
while the other which has homogeneous infectivity does not. The pos-
sible application of the theory of SFNs to resource management is
briefly discussed.

Keywords: power-law; preferential attachment; small world network;
network resilience; persistent disease model.
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1 Introduction.

As the Internet and the World-Wide Web (WWW) have grown and become

ever more influential and pervasive in daily live, so has the interest in studying

the properties of complex and evolving networks of which they are exemplars.

While the Internet and WWW are ultimately the product of human choice

and technological ingeneuity they are of such complexity that, in many ways,

it is convenient to think of them as organic entities evolving according to their

own rules. This viewpoint is reflected in the term internet ecology which has

been coined to describe such an approach to understanding their properties.

It has been discovered that other evolving networks share many properties

with the WWW and Internet. These include networks of collaboration among

scientists and movie actors; citation networks; telephone-call networks; net-

works of human sexual contacts; ecological and food webs and networks of

metabolic reactions and of protein interactions. In this paper no attempt

will be made to describe all of these networks. Rather the reader is referred

to three excellent and comprehensive review articles (Albert and Barabási,

2002; Dorogovtsev and Mendes, 2002 and Newman, 2003). Likewise this

article will not attempt to cover all of the ground in these survey articles.

Rather the aim is to provide a gentle introduction to the subject, in the hope

that some of the ideas may prove useful to modellers in the fields of resource

management and ecology. To illustrate some of the ideas concerning SFNs

discussed in Sec. 2, two very simple models for the spread of a disease are

3



developed in Sec. 3 and contrasted.

2 What are scale-free networks?

Mathematically a network is simply a graph (directed or otherwise) compris-

ing nodes (or vertices) some of which are joined by links (or edges). The

degree of a node is simply the number of links attached to that node. For a

directed graph each node has an in-degree and an out-degree. The degree dis-

tribution of the network is simply the frequency distribution of the degrees

of all nodes in the network. The network is called scale-free if its degree

distribution exhibits power-law behaviour, at least in its upper tail i.e. if

pk ∼ k−γ as k →∞

All of the three survey articles cited in the Introduction have logarithmic

plots of the degree distributions of networks such as the WWW, Internet

routers, collaboration networks, citation networks etc. to illustrate that they

possess the scale-free property. The term scale-free is used because the degree

distribution looks essentially the same when looked at on any scale – or

technically that ∑
k≥a pk∑
k≥b pk

depends only on the ratio a/b and not on the individual scales of a and b.

Scale-free networks (SFNs) often exhibit the following properties:

Small-world property. This is the property that the length of the shortest

path between any two nodes is small compared to the size of the network. A
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well-known example of this is the “six degrees of separation” concept of the

social psychologist S. Milgram (1967) who observed that there was a path of

typical length about 6 linking any two people in the U.K. More technically

the idea can be expressed as the property that the diameter of the network

(maximum path length between any two nodes) is bounded by a polynomial

in log n where n is the number of nodes in the network (see e.g. Baldi et al.,

2003)

Clustering. This is the property that the network comprises many clusters

or cliques. Within in each cluster there is a high density of links, but between

clusters the density of links is much lower.

Network resilience. If the removal of one or more nodes results in a

considerable increase in the distance between nodes (or indeed causes some

nodes to become disconnected) then the efficiency of the network (at least as

a communications network) will be diminished. The resilience of the network

is its vulnerability to removal of nodes. Albert et al. (2000) claim that the

Internet and WWW are highly resilient to random removal of nodes, but are

highly vulnerable to deliberate attack on the nodes of highest degree.

Albert and Barabási (2002) give two conditions which they identify as

being necessary for a network to have the scale-free property, viz.

(i) growth – the network grows over time;

(ii) preferential attachment – nodes with a high degree are more likely

to create links to new nodes than nodes with a low degree.

5



One can see that the WWW satisfies both of these conditions. New nodes

are being added constantly and at the same time well-connected nodes (e.g.

Google, Adobe etc.) are more likely to be linked to new nodes than more

obscure, low-degree nodes (e.g. the Web page of the author).

In the following Section we present two network models for the spread of

a persistent disease, which illustrate the importance of preferential attach-

ment. While similar in some respects (growth in size, mean distance from

original source of infection) the models differ in the important respect that

one exhibits the scale-free property, while the other does not. One provides a

crude model for the spread of a sexually transmitted disease, while the other

could provide a crude model for the spread of, for example, oral herpes.

3 Simple models for the spread of an infec-

tious disease.

The spread of an infectious disease within a community can be represented

by a growing tree network, with infected individuals represented by nodes,

and with any two nodes A and B considered connected if A infected B or

vice versa. Suppose that one individual introduced the infection into the

community at time t = 0 and that in the infinitesimal time increment (t, t +

h) any infected individual i can infect a new individual with probability

λi(t)h+ o(h) and that all new infections are independent. It will be assumed

that the disease is persistent, so that once infected an individual remains

infectious.
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For some diseases it is reasonable to assume that individuals are homoge-

neous with respect to their infectivity, and thus that λi(t) ≡ λ (a constant).

However when considering a sexually-transmitted disease, it is important to

recognize the fact that individuals vary greatly in their promiscuity, so that

the above homogeneity assumption is not appropriate. The two cases are

considered in turn in the following sub-sections.

3.1 A homogeneous model.

Let the number of individuals infected (nodes) at time t be denoted by N(t)

and assume N(0) = 1. Let K(t) denote the number of links to a specified

node (call it node *), so that K(t)− 1 is the number of individuals infected

by * by time t. Let

pk,n(t) = P(K(t) = k,N(t) = n)

with pk,n(t) = 0 for n < 0 or k < 0. Then conditioning on what happens in

(t, t + h) one obtains

pk,n(t + h) = pk−1,n−1(t)λh + pk,n−1(t)λh(n− 2) + pk,n(t)[1− λhn] + o(h)

The first term on the right-hand side corresponds to a new node infected by

* in (t, t + h), while the second term corresponds to a new node infected by

a node other than *. The third term corresponds to no new infections in

(t, t + h). Subtracting pk,n(t) from both sides, dividing by h and passing to

the limit as h → 0 yields the following Kolmogorov forwards equation

d

dt
pk,n = λpk−1,n−1 + λ(n− 2)pk,n−1 − λnpk,n. (1)
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Summing over, in turn n and k, yields the following differential equations for

pn(t) = P(N(t) = n) and pk(t) = P(K(t) = k):

d

dt
pk = λpk−1 − λpk (2)

and

d

dt
pn = λ(n− 1)pn−1 − λnpn. (3)

The first of these equations is easily recognized as the Kolmogorov equation

of a Poisson process and the second as the Kolmogorov equation of a Yule

process (homogeneous pure birth process – see e.g. Karlin and Taylor, 1975).

From standard results it follows that

pn(t) = e−λt(1− e−λt)n−1 (4)

i.e. that N(t) follows a geometric distribution with parameter e−λt and

E(N(t)) = eλt var(N(t)) = eλt(1− eλt). (5)

Also one can show

E

(
1

N(t)

)
=

λte−λt

1− e−λt
(6)

Now let t∗ denote the time of infection of node *, so that K(t∗) = 1. It then

follows from standard results on the Poisson process that for t ≥ t∗

pk(t) = e−λ(t−t∗) [λ(t− t∗)]k−1

(k − 1)!
(7)

i.e. that K(t)− 1 follows a Poisson distribution with parameter λ(t− t∗).

Both the Poisson process and the Yule process exhibit what is known

as the order statistic property (Feigin, 1979). For such processes it can be
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shown that the ordered event times have the same distribution as that of the

order statistics of independent identically distributed random variables (iid

rvs). For example for the Poisson process the event times in [0, t] have the

same distribution as iid rvs uniformly distributed on [0, t].

From the corresponding result for the Yule process it can be shown that

the times since infection of nodes in existence at time t (other than the primal

node from which the infection originated) are independent random variables

following a truncated exponential distribution with probability density func-

tion (pdf)

f(τ) =
λe−λτ

1− e−λt
, 0 ≤ τ ≤ t.

This gives the distribution of the time in existence t− t∗ of all nodes in the

network (save the primal node). To include the primal node, this distribution

must be mixed with an atomic distribution at τ = t (with mixing weights

E(1/N(t)) and 1−E(1/N(t)). By integrating (7) with respect to this mixed

distribution, and using (6) one obtains the probability mass function (pmf)

of the degree distribution of a randomly chosen node from the network at

time t as:

pk(t) =
e−2λt(λt)k+1

k!(1− e−λt)
+

λ(1− (1 + λt)e−λt)

(k − 1)!(1− e−λt)2

∫ t

0
(λτ)k−1e−2λτdτ . (8)

The integral can be expressed in terms of an incomplete gamma function.

Now let t →∞ so that E(1/N(t)) → 0 to get

pk → 2−k for k = 1, 2, . . . (9)
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a geometric distribution with parameter 1/2. Thus we can conclude that

at a suitably long time after the introduction of the infection, the degree

distribution over the network will follow a geoemetric form, with parameter

1/2. Note that this distribution is not scale free (
∑

k≥a 2−k/
∑

k≥b 2−k = 2b−a

which depends on the scale of a and b not just their ratio).

Other properties of this model can be established e.g. it can be shown

that the distribution of the ring number Rt (the distance of a node to the

primal node) has a distribution over the network

P(Rt = r) =
(λt)r−1

(eλt − 1)(r + 1)!
r = 0, 1, . . .

i.e. Rt + 1 has a zero-truncated Poisson distribution (Chan et al., 2003).

Also E(R(t)) = λt(1− e−λt)−1 ∼ λt as t →∞.

In summary, for this homogeneous model (i) the size of the infected popu-

lation grows exponentially in expectation (and is geometrically distributed);

(ii) after a suitable time the degree distribution follows close to a geometric

form (not scale-free); and (iii) the ring number distribution is related to a

Poisson distribution.

We turn now to a non-homogeneous model for the spread of an STD.

3.2 A non-homogeneous model for the spread of an
STD.

A characteristic of networks of sexual partners is the extreme variability in

degree (numbers of partners) over the network. Indeed, Liljeros et al., (2001)

inferred from data in a Swedish survey, that such networks are scale-free. In
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light of this the homogeneity assumption, used in the previous sub-section,

appears innappropriate for describing the spread of an STD.

In its place suppose that the infectivity rate λi(t) for individual i is of the

form

λi(t) = ρKi(t)

where Ki(t) is the degree of node i. Thus individuals who have already

infected many people are more likely to infect a new person than those in-

dividuals who have to date infected few or no others. This assumption of

preferential attachment captures in a coarse way the idea that promiscu-

ous individuals will be more important than their more restrained fellows in

spreading the STD.

Under this assumption the Kolmogorov equation analogous to (1) is

d

dt
pk,n = ρ(k − 1)pk−1,n−1 + ρ(2n− 4− k)pk,n−1 − ρ(2n− 2)pk,n. (10)

Summing out respectively n and k leads to (analogous to equations (2) and

(3))

d

dt
pk = ρ(k − 1)pk−1 − ρkpk (11)

and

d

dt
pn = 2ρ(n− 2)pn−1 − 2ρ(n− 1)pn. (12)

The first of these equations is the Kolmogorov equation for a Yule process

and so it follows that the distribution of the degree of node * at time t (i.e.

t− t∗ time units after node * was infected) is (for t ≥ t∗)

pk(t) = e−ρ(t−t∗)(1− e−ρ(t−t∗))k−1, for k = 1, 2, . . . (13)
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To solve (12) one needs to specify an initial condition - so assume N(0) =

2 (although infection may begin with one individual with degree one, this

individual will eventually infect another – with probability 1− e−ρt by time

t). The solution to (12) with this initial condition is

pn(t) = e−2ρt(1− e−2ρt)n−2, for n = 2, 3, . . . (14)

i.e. N(t)− 1 is geometrically distributed with parameter e−2ρt with

E(N(t)) = 1 + e2ρt var(N(t)) = e2ρt(1− e2ρt). (15)

Equation (12) is the Kolmogorov equation for a non-homogeneous birth pro-

cess with instananeous birth rate

P( birth in (t, t + h]|N(t) = n) = 2ρ(n− 1).

From this it follows that the number of new infections U(t) = N(t) − 2 by

time t is an order statistic process, so that the times of these new infections

are iid rvs with support on (0, t]. In fact as before, the distribution of the

times since infection, t − t∗, of these new infections follow the trunctaed

exponential distribution

f(τ) =
2ρe−2ρτ

1− e−2ρt
, 0 ≤ τ ≤ t.

As for the homogeneous model in Sec 3.1, the distribution of the degree of a

randomly selected node is found by integrating the pmf (13) with respect to

this density. Doing this and letting t →∞ leads to

lim
t→∞

pk(t) =
∫ ∞
0

2ρe−2ρτe−ρτ (1− e−ρτ )k−1dτ
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=
2Γ(3)Γ(k)

Γ(k + 3)

=
4

k(k + 1)(k + 2)
∼ 4k−3. (16)

Thus for this model at a suitably long time after the introduction of the

infection, the degree distribution over the network of infected individuals

exhibits a power-law behaviour in the upper tail and thus is scale-free, with

exponent -3. It is worth noting that Liljeros et al., (2001) estimated the

exponent for the Swedish network of lifetime sexual partners as −3.1 ± 0.3

for females and −2.6± 0.3 for males.

Chan et al. (2003) obtain the following mean-field approximation to the

distribution of the ring number

P (R(t) = r) =
eλt(λt)r−1

(e2λt + 1)(r − 1)!
r = 1, 2, . . . (17)

with P (R(t) = 0) = 1/(e2λt + 1). This distribution is related to the Poisson

distribution and has mean value (ρt + 1)(1 + e−2ρt)−1 ∼ ρt + 1 (as t →∞).

Comparing the results for this model with those of the homogeneous infec-

tion model it can be seen that they behave similarly in terms of the growth of

the network (both grow exponentially in expectation); and likewise in terms

of ring number (both grow linearly in expectation in t for large t). They

differ however in the degree distributions over the network. The homoge-

neous model produces a geometric degree distribution (non-scale free); while

the non-homogeneous (STD) model produces a degree distribution which is

scale-free. It is the phenomenon of preferential attachment with gives rise to

this scale-free behaviour.
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A more complex two-sex model for the spread of an STD has been devel-

oped (see Reed, 2004). The network in this case is a bipartite graph, with

males able to infect females with infectivity rate λKi(t); and females able to

infect males with infectivity rate ρLj(t), where Ki(t) and Lj(t) are numbers,

respectively, of females infected by male i and of males infected by female

j by time t. For this model as t → ∞, the degree distribution for males

is scale-free with exponent −(2 + ρ/λ); and that for females scale-free with

exponent −(2 + λ/ρ). Typically males are more promiscuous than females,

so one would expect λ > ρ. This implies that the power-law exponent is

smaller in absolute value for males than females, corresponding to a longer

tail in the degree distribution for males. This is in agreement with the results

of Liljeros (2001) et al. mentioned above.

4 Conclusions.

Scale-free and other complex evolving networks have received much atten-

tion in recent years. Whether the results of this research is important for

resource management remains to be seen. One possible application may be in

terms of the resilience of an ecological network to harvesting certain species.

There is some evidence that food webs exhibit small-world and clustering

properties (Williams et al., 2002; Camacho et al., 2002) and it has also been

claimed by Montoya and Solé (2002) that the food webs they have studied

are consistent with a scale-free degree distribution with a small exponent

(≈ 1.1) i.e with a very long tail. If indeed food webs are scale-free, they
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may be vulnerable to the harvesting of certain well-connected nodes (key-

stone species). Knowledge of the resilience of such ecological networks may

provide important information to resource managers.

With respect to disease control and prevention, knowledge of the nature

of the network of connections among susceptible individuals may prove to

be of great value. A disease will spread much faster on a SFN than on a

more homogeneous network, and treating or isolating individuals with a high

degree of connectivity may prove to be the most effective way of controlling

the disease. There has been debate recently as to whether networks of sexual

partners, if indeed scale-free, have a power-law exponent greater or less than

3 (Jones and Handcock, 2003). If less than three Jones and Handcock claim

that no epidemic threshold would exist for STDs, in which case the infection

could persist indefinitely regardless of interventions such as vaccination or

barrier contraceptives etc.
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