SEMIGROUPS GENERATED BY SIMILARITY ORBITS

L. GRUNENFELDER, M. OMLADIČ, H. RADJAVI, A. SOUROUR

Abstract. We investigate the semigroups in $M_n(F)$ generated by the similarity orbit of single matrices.

0. Introduction

Question. What is the semigroup in $M_n(F)$ generated by the similarity orbit of a single matrix of rank k?

In section 1 and 2 we consider the semigroup S in $M_n(F)$ generated by the similarity orbit of an invertible matrix A. In this case S is of course a semigroup in $GL_n(F)$, and it is a normal subgroup if and only if $\det A$ is a root of unity in F^*. For a non-scalar A, except when $n = 2$ and $|F| = 3$, these normal subgroups are isomorphic to semi-direct products $S \cong SL_n(F) \rtimes U$, where U is the cyclic subgroup of F^* generated by $\det A$.

Some bounds for the number of similarity factors required are found in section 2. Let $(A)_m = \{A_1 A_2 \ldots A_m | A_j \sim A \text{ for } j = 1, 2, \ldots, m\}$. If $A = \lambda I$ is scalar, then of course $(A)_m$ is the singleton $\{\lambda^m I\}$. If A is not scalar, an obvious necessary condition for T to be in $(A)_m$ is that $\det(T) = (\det(A))^m$. We prove that this condition is sufficient if m is large enough. We find a bound on m in terms of the number of linear invariant factors of A; this bound never exceeds $4n$.

In section 3 we find that the semigroup in $M_n(F)$ generated by the similarity orbit of a singular matrix A with rank $A = r < n$ consists of all matrices of rank less than or equal to r.

1. Semigroups generated by the similarity orbit of an invertible matrix

The semigroup S in $GL_n(F)$ generated by the similarity orbit of a matrix A of finite multiplicative order is automatically a normal subgroup of $GL_n(F)$. It is therefore useful to characterize the normal subgroups of $SL_n(F)$ and of $GL_n(F)$ first. Recall that $SL_n(F)$ is perfect, i.e. $SL_n(F)_{ab} = SL_n(F)/[SL_n(F), SL_n(F)]$ is trivial, and

Research supported in part by the NSERC of Canada and by the Ministry of Science and Technology of Slovenia.

Typeset by AMS-TeX
PSL\(_n(F)\) is simple when \(n \neq 2\) and \(|F| \neq 2, 3\). Moreover, \(Z(\mathrm{SL}_n(F)) = Z(\mathrm{GL}_n(F)) \cap \mathrm{SL}_n(F)\) for every field \(F\).

Lemma 1.1. Let \(H\) be a normal subgroup of \(\mathrm{SL}_n(F)\), where \(n \neq 2\) and \(|F| \neq 2, 3\). Then either

1. \(H\) consists of scalar matrices and is therefore a cyclic subgroup generated by an \(n\)-th root of unity, or
2. \(H\) contains a non-scalar matrix and is equal to \(\mathrm{SL}_n(F)\).

Proof. If \(Z = Z(\mathrm{SL}_n(F)) = \mathrm{SL}_n(F) \cap Z(\mathrm{GL}_n(F))\) is the center of \(\mathrm{SL}_n(F)\), i.e. the cyclic subgroup of \(n\)-th roots of unity, then the obvious commutative diagram

\[
\begin{array}{cccccc}
1 & 1 & 1 \\
\downarrow & \downarrow & \downarrow \\
1 & \longrightarrow & H \cap Z & \longrightarrow & Z & \longrightarrow & Z/H \cap Z & \longrightarrow & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
1 & \longrightarrow & H & \longrightarrow & \mathrm{SL}_n(F) & \longrightarrow & \mathrm{SL}_n(F)/H & \longrightarrow & 1 \\
\downarrow & \eta & \downarrow & \downarrow & \downarrow & \downarrow \\
1 & \longrightarrow & \eta(H) & \longrightarrow & \mathrm{PSL}_n(F) & \longrightarrow & \mathrm{PSL}_n(F)/\eta(H) & \longrightarrow & 1 \\
\downarrow & \downarrow \\
1 & 1 & 1 & 1
\end{array}
\]

has exact rows and columns. Now, either \(\eta(H) = 1\) or \(\eta(H) = \mathrm{PSL}_n(F)\), since \(\mathrm{PSL}_n(F)\) is simple. If \(\eta(H) = 1\) then \(H \cap Z = H\), so that \(H \subset Z\). If \(\eta(H) = \mathrm{PSL}_n(F)\) then \(Z/H \cap Z \cong \mathrm{SL}_n(F)/H\) is abelian, hence trivial, since \(\mathrm{SL}_n(F)\) is perfect (i.e. \(\mathrm{SL}_n(F)_{ab}\) is trivial), so that \(H = \mathrm{SL}_n(F)\). □

Observe that the exact sequence of groups

\[
1 \rightarrow \mathrm{SL}_n(F) \rightarrow \mathrm{GL}_n(F) \xrightarrow{\det} F^* \rightarrow 1
\]

splits; for example the homomorphism \(s : F^* \rightarrow \mathrm{GL}_n(F)\) defined by \(s(x) = x \oplus I_{n-1}\) is a section. Thus \(\mathrm{GL}_n(F) \cong \mathrm{SL}_n(F) \rtimes F^*\), the semidirect product, where the action \(\alpha : F^* \times \mathrm{SL}_n(F) \rightarrow \mathrm{SL}_n(F)\) is given by \(\alpha(x, A) = s(x)As(x)^{-1}\).

Proposition 1.2. Let \(G\) be a normal subgroup of \(\mathrm{GL}_n(F)\), where \(n \neq 2\) and \(|F| \neq 2, 3\). Then, either

1. \(G\) consists of scalar matrices and therefore \(G \subset Z(\mathrm{GL}_n(F)) \cong F^*\), or
2. \(G\) contains a non-scalar matrix and is a semidirect product \(G \cong \mathrm{SL}_n(F) \rtimes U\), where \(U = \det(G) \subset F^*\).
Proof. The commutative diagram

\[
\begin{array}{cccc}
1 & 1 & 1 \\
\downarrow & \downarrow & \downarrow \\
G \cap \text{SL}_n(F) & \longrightarrow & G & \longrightarrow & U & \longrightarrow & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\text{SL}_n(F) & \longrightarrow & \text{GL}_n(F) & \longrightarrow & F^* & \longrightarrow & 1 \\
\end{array}
\]

has exact rows and columns. The bottom sequence is split by the homomorphism \(s : F^* \to \text{GL}_n(F) \) defined by \(s(x) = x \oplus I_{n-1} \), so that \(\text{GL}_n(F) \cong \text{SL}_n(F) \rtimes F^* \). The action \(\alpha : F^* \times \text{SL}_n(F) \to \text{SL}_n(F) \) is given by \(\alpha(x, A) = s(x)As(x)^{-1} \).

If \(G \) consists of non-scalar matrices then the assertion is obvious. If \(G \) contains a non-scalar matrix \(A \) then for some \(S \in \text{SL}_n(F) \) the element \([S, A] = SAS^{-1}A^{-1} \) of \(G \cap \text{SL}_n(F) \) is not scalar. For, suppose to the contrary that \([S, A] = SAS^{-1}A^{-1} = \lambda_S I \), i.e. \(SAS^{-1} = \lambda_S A \), for all \(S \in \text{SL}_n(F) \). Then \(\lambda : \text{SL}_n(F) \to F^* \) is a homomorphism of groups and in particular \(\lambda_{[S,T]} = 1 \) for all \(S, T \in \text{SL}_n(F) \). Since \(\text{SL}_n(F) \) is perfect, i.e. \([\text{SL}_n(F), \text{SL}_n(F)] = \text{SL}_n(F) \), it follows that \(\lambda_S = 1 \) and hence \([S, A] = I \) for all \(S \in \text{SL}_n(F) \), which means that \(A \) is scalar. Thus, if \(G \) contains a non-scalar matrix then so does \(G \cap \text{SL}_n(F) \), and \(G \cap \text{SL}_n(F) = \text{SL}_n(F) \) by Lemma 1.1. Then \(\det^{-1}(U) = G \), hence the top exact sequence of the diagram splits, and \(G \cong \text{SL}_n(F) \times U \). □

Corollary 1.3. If \(n \neq 2 \) and \(|F| \neq 2, 3 \) then the subgroup \(G \) of \(\text{GL}_n(F) \) generated by the similarity orbit of a non-scalar invertible matrix \(A \) is of the form \(G \cong \text{SL}_n(F) \rtimes U \), where \(U \) is the cyclic subgroup of \(F^* \) generated by \(\det A \).

To determine the semigroup \(S \) (as opposed to the group) generated by the similarity orbit of an invertible matrix is more complicated. Since every square matrix has a rational canonical form it is useful to start with the companion matrix of a polynomial, i.e. a cyclic matrix.

Lemma 1.4. The semigroup \(S \) in \(\text{GL}_n(F) \) generated by the similarity orbit of the companion matrix \(A \) of the polynomial \(p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \) with \(\det A = a_0 \neq 0 \) contains the diagonal matrix \(I_{n-1} \oplus a_0^2 \) and the scalar matrix \(a_0^2 I \).

Proof. If \(Q \) is the involution obtained from the identity \(I \) by reversing the order of the rows then \(B = QAQ \) is the matrix obtained from \(A \) by first reversing the order of the rows of \(A \) to get a matrix \(C \) and then reversing the order of the columns of \(C \) to get \(B \). Then

\[
BA = \begin{pmatrix} I_{n-1} & X \\ 0 & a_0^2 \end{pmatrix}
\]

for some \(X \), where \(I_{n-1} \) is the identity matrix of size \(n - 1 \). If \(a_0^2 \neq 1 \) then \(BA \) is similar to \(I_{n-1} \oplus a_0^2 \), as can be seen by replacing the last vector in the standard
ordered basis \(\{e_i | 1 \leq i \leq n \} \) of \(\mathbb{F}^n \) by \(e_n + (1/(a_0^2 - 1)) \sum_{i=1}^{n-1} x_i e_i \). Thus we are done in this case, since by a cyclic permutation similarity argument \(a_0^2 I \) is in \(S \). If \(a_0^2 = 1 \) then \(BA = I + N \) with \(N^2 = 0 \). Since \(I + N \) is similar to \(I - N \), which is easily seen by replacing \(e_n \) by \(-e_n \) in the standard ordered basis of \(\mathbb{F}^n \), it follows that \((I + N)(I - N) = I \) is in \(S \). \(\square \)

Proposition 1.5. The semigroup \(S \) in \(\text{GL}_n(\mathbb{F}) \) generated by the similarity orbit of an invertible matrix \(A \) contains an upper-triangular matrix \(U \) with \(\det U = \det A^2 \), a diagonal matrix \(D \) with \(\det D = \det A^4 \) and a non-zero scalar matrix \(\lambda I \) with \(\lambda = \det A^{4n} \).

Proof. We may assume without loss of generality that \(A \) is in rational canonical form. Apply Lemma 1.4 to each companion matrix in the rational decomposition of \(A \) to get an upper-triangular matrix \(BA \simeq (I + N) \oplus D \), where \(B \) is similar to \(A \), \(D \) is diagonal, \(\det D = \det A^2 \) and \(N^2 = 0 \). Again, since \((I + N) \oplus D \) is similar to \((I - N) \oplus D \), it follows that \((I + N) \oplus D)((I - N) \oplus D) = I \oplus D^2 \). Cyclically permuting the diagonal entries of \(I \oplus D^2 \) yields \(n \) mutually similar diagonal matrices. The product of these diagonal matrices is the scalar matrix \(\lambda I \in S \), where \(\lambda = \det A^{4n} \). \(\square \)

Corollary 1.6. Let \(S \) be the semigroup in \(\text{GL}_n(\mathbb{F}) \) generated by the similarity orbit of an invertible matrix \(A \). Then \(S \) is a normal subgroup of \(\text{GL}_n(\mathbb{F}) \) if and only if \(\det A \) is a root of unity. If \(d = \det A \) is a root of unity and \(A \) is not scalar then \(S \cong \text{SL}_n(\mathbb{F}) \ltimes \ltimes d > \), except when \(n = 2 \) and \(|\mathbb{F}| = 2, 3 \). In particular, if \(d = 1 \) then \(S = \text{SL}_n(\mathbb{F}) \), except when \(n = 2 \) and \(|\mathbb{F}| = 2, 3 \).

Proof. If \(d = \det A \) is not a root of unity then \(\det S \neq 1 \) for all \(S \in S \) and the semigroup \(S \) is not a subgroup of \(\text{GL}_n(\mathbb{F}) \). If \(d^m = 1 \) then \(I = D^m = XSA \text{A}^{-1} \) in \(\text{SL}_n(\mathbb{F}) \) for some \(X \in \text{SL}_n(\mathbb{F}) \) and some \(S \in \text{GL}_n(\mathbb{F}) \), where \(D \) is the diagonal matrix of Proposition 1.5. Thus, \(A^{-1} = S \text{A}^{-1} X \in S \) and \(S \) is a subgroup of \(\text{GL}_n(\mathbb{F}) \). Now apply Proposition 1.2. \(\square \)

In the two exceptional cases \(n = 2 \) and \(|\mathbb{F}| = 2, 3 \) the group \(\text{PSL}_n(\mathbb{F}) \) is not simple and \(\text{SL}_n(\mathbb{F}) \) is not perfect. These cases have to be considered separately.

The group \(\text{GL}_2(\mathbb{Z}_2) \) is not abelian and \(|\text{GL}_2(\mathbb{Z}_2)| = 6 \), so that \(\text{PSL}_2(\mathbb{Z}_2) \cong \text{SL}_2(\mathbb{Z}_2) \cong \text{GL}_2(\mathbb{Z}_2) \cong S_3 \), the symmetric group on three symbols. The only proper normal subgroup of \(\text{GL}_2(\mathbb{Z}_2) \) is therefore the cyclic subgroup \(C_3 \) of order 3 generated by

\[
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\text{ or its inverse }
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}.
\]

Proposition 1.7. If \(I \neq \lambda \in \text{GL}_2(\mathbb{Z}_2) \) then \(S \cong C_3 \) if \(A \) has order 3 and \(S = \text{GL}_2(\mathbb{Z}_2) \) otherwise. \(\square \)

In the case of \(\text{GL}_2(\mathbb{Z}_3) \) we have \(|\text{GL}_2(\mathbb{Z}_3)| = 48 \) and \(Z(\text{GL}_2(\mathbb{Z}_3)) \cong C_2 \) is the cyclic subgroup of order 2 generated by \(2I \). In the commutative diagram with exact rows
and columns

\[
\begin{array}{ccc}
Z & \longrightarrow & Z \\
\downarrow & & \downarrow \\
\text{SL}_2(\mathbb{Z}_3) & \longrightarrow & \text{GL}_2(\mathbb{Z}_3) \\
\eta & \downarrow & \eta \\
\text{PSL}_2(\mathbb{Z}_3) & \longrightarrow & \text{PGL}_2(\mathbb{Z}_3) \quad \overset{\text{det}}{\longrightarrow} \quad \mathbb{Z}_3^* \\
\end{array}
\]

the determinant map is split by the homomorphism \(s : \mathbb{Z}_3^* \to \text{GL}_2(\mathbb{Z}_3) \) defined by \(s(2) = \text{diag}[2, 1] \). Moreover, the Sylow 2-subgroups of \(\text{SL}_2(\mathbb{Z}_3) \) and \(\text{PSL}_2(\mathbb{Z}_3) \) are normal, they are a copy of the quaternion group \(Q \) generated by the two matrices

\[
X = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
\quad \text{and} \quad
Y = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},
\]

and a copy of the Klein 4-group \(V \) generated by \(\eta(X) \) and \(\eta(Y) \), respectively. We have a commutative diagram with exact rows and columns

\[
\begin{array}{ccc}
Z & \longrightarrow & Z \\
\downarrow & & \downarrow \\
Q & \longrightarrow & \text{SL}_2(\mathbb{Z}_3) \\
\eta & \downarrow & \eta \\
V & \longrightarrow & \text{PSL}_2(\mathbb{Z}_3) \quad \longrightarrow \quad \text{C}_3
\end{array}
\]

in which the canonical projection \(p : \text{SL}_2(\mathbb{Z}_3) \to \text{C}_3 \) is split by the homomorphism \(t : \text{C}_3 \to \text{SL}_2(\mathbb{Z}_3) \), where

\[
t(x) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},
\]

the image of a generator of \(\text{C}_3 \), generates a Sylow 3-subgroup of order 3 in \(\text{SL}_2(\mathbb{Z}_3) \). Observe that \(s(\mathbb{Z}_3^* \text{SL}_2(\mathbb{Z}_3) \to \text{GL}_2(\mathbb{Z}_3) \) acts on \(t(\text{C}_3) \) and on \(Q \) while \(t(\text{C}_3) \) acts on \(Q \) by conjugation, so that \(\text{C}_3 \rtimes \mathbb{Z}_3^* \cong S_3 \). Thus, \(\text{PSL}_2(\mathbb{Z}_3) \cong V \rtimes \text{C}_3, \text{SL}_2(\mathbb{Z}_3) \cong Q \rtimes \text{C}_3 \) and \(\text{GL}_2(\mathbb{Z}_3) \cong \text{SL}_2(\mathbb{Z}_3) \rtimes \mathbb{Z}_3^* \cong Q \rtimes S_3 \). There are three Sylow 2-subgroups of order 16 in \(\text{GL}_2(\mathbb{Z}_3) \), namely \(Q \rtimes \mathbb{Z}_3^* \) and its conjugates. They intersect in the normal subgroup \(Q \). The proper normal subgroups of \(\text{GL}_2(\mathbb{Z}_3) \) are therefore \(Z \cong \text{C}_2, Q \) and \(\text{SL}_2(\mathbb{Z}_3) \).

Proposition 1.8. Let \(I \neq A \in \text{GL}_2(\mathbb{Z}_3) \).

1. If \(\text{det} A = 1 \) then \(S = Z, Q, \text{SL}_2(\mathbb{Z}_3) \) depending on whether the order of \(A \) is 2, 4 or divisible by 3.
2. If \(\text{det} A = 2 \) then \(S = \text{GL}_2(\mathbb{Z}_3). \quad \square \)
The main result of [S] will be used repeatedly in the next section. We record it here, without proof, for future reference.

Theorem 1.9. Let \(A \in \text{GL}_n(\mathbb{F}) \) be non-scalar and let \(\beta_j, \gamma_j \ (1 \leq j \leq n) \) be elements of \(\mathbb{F}^* \) such that \(\prod_{j=1}^{n} \beta_j \gamma_j = \det A \). Then there exist matrices \(B \) and \(C \) in \(\text{GL}_n(\mathbb{F}) \) with eigenvalues \(\beta_1, \ldots, \beta_n \) and \(\gamma_1, \ldots, \gamma_n \), respectively, such that \(A = BC \). Furthermore, \(B \) and \(C \) can be chosen so that \(B \) is lower triangularizable and \(C \) is simultaneously upper triangularizable. \(\square \)

2. **Some bounds on the number of similarity factors required**

In this section we have to assume that the field \(\mathbb{F} \) has enough elements, \(|\mathbb{F}| > 2n \) should suffice. The following result of Cater [C], which we quote here without proof, will be used in our considerations.

Lemma 2.1. If \(M \) is a non-scalar in \(\text{GL}_n(\mathbb{F}) \) and \(\det M = x_1x_2\ldots x_n \) then there is a factorization \(M = A_1A_2\ldots A_n \) with \(\det A_i = x_i \) and \(\text{rank}(A_i - I) = 1 \) for \(i = 1, 2, \ldots, n \). \(\square \)

Observe that the properties of the matrices \(A_i \) of Lemma 2.1 imply that \(A_i \) is similar to \((I_2 + J_2) \oplus I_{n-2} \) if \(x_i = 1 \) and similar to \(x_i \oplus I_{n-1} \) if \(x_i \neq 1 \). Here is an immediate consequence of Cater’s result.

Proposition 2.2. Let \(A \) be a non-scalar element of \(\text{GL}_n(\mathbb{F}) \) such that \(\text{rank}(A - I) = 1 \). If \(\det T = \det A^n \) then \(T = A_1A_2\ldots A_n \), where \(A_i \) is similar to \(A \) for \(i = 1, 2, \ldots, n \).

Proof. The conditions imposed on \(A \) imply that \(A \) is similar to \((I_2 + J_2) \oplus I_{n-2} \) if \(\det A = 1 \) and similar to \(A \oplus I_{n-1} \) if \(\det A \neq 1 \). By Cater’s Lemma 2.1 we see that \(T = A_1A_2\ldots A_n \), where \(\det A_i = \det A \) and \(\text{rank}(A_i - I) = 1 \), and hence where \(A_i \) is similar to \(A \) for \(i = 1, 2, \ldots, n \). \(\square \)

Corollary 2.3. If \(T \) is in \(\text{SL}_n(\mathbb{F}) \) then \(T = A_1A_2\ldots A_k \) for some \(k \) such that \(0 \leq k \leq n \), where \(A_i \) is similar to \(A = (I_2 + J_2) \oplus I_{n-2} \) for \(i = 1, 2, \ldots, k \). \(\square \)

Lemma 2.4. If \(A \in \text{GL}_n(\mathbb{F}) \) is cyclic, then every \(T \in \text{GL}_n(\mathbb{F}) \) with distinct eigenvalues and \(\det T = \det A^2 \) has a factorization \(T = A_1A_2 \), where \(A_i \) is similar to \(A \) for \(i = 1, 2 \).

Proof. The matrix \(A \) is similar to the companion matrix of its characteristic polynomial \(p(x) = a_0 + a_1x + \ldots + a_{n-1}x^{n-1} + x^n \). Thus we may assume that

\[
A = \begin{pmatrix}
0 & a_0 \\
1 & a_1 \\
& \ddots \\
& & \ddots \\
& & & 1 & a_{n-1}
\end{pmatrix}.
\]
It is easy to see that via a suitable diagonal similarity A is similar to a matrix of the form
\[
B = \begin{pmatrix}
0 & b_0 \\
x_1 & b_1 \\
& \ddots \\
& & \ddots \\
x_{n-1} & b_0 \\
\end{pmatrix}
\]
where $x_1, x_2, \ldots, x_{n-1}$ can be chosen arbitrarily in F^*, and where the determinant condition $b_n x_1 x_2 \ldots x_{n-1} = a_0$ holds. Then
\[
S = \begin{pmatrix}
a_{n-1} & x_{n-1} \\
& \ddots \\
& & \ddots \\
b_1 & x_1 \\
b_0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & a_0 \\
1 & a_1 \\
& \ddots \\
& & \ddots \\
& & & 1 & a_{n-1}
\end{pmatrix}
= \begin{pmatrix}
x_{n-1} & \ast \\
& \ddots \\
& & \ddots \\
x_1 & \ast \\
\end{pmatrix}
\]
is upper-triangular, and the first factor of S is similar to B via the similarity given by the involution obtained by reversing the order of the rows of the identity matrix. Since $x_1, x_2, \ldots, x_{n-1}$ and $b_0 a_0$ can be taken to be the distinct eigenvalues of T we conclude that T is similar to S, and thus T is of the desired form. □

Proposition 2.5. Suppose that $|F| > 2n$. If the rational canonical form of A has no scalar direct summand then there exists a $T \in \text{GL}_n(F)$ with distinct eigenvalues and $\det T = \det A^2$ such that $T = A_1 A_2$ with A_1 and A_2 similar to A. Furthermore, the eigenvalues of T can be chosen outside a given subset E of F^* if $|F| \geq 2(|E| + n)$.

Proof. Assume without loss of generality that A is in rational canonical form $A = R_1 \oplus R_2 \oplus \cdots \oplus R_m$. By hypothesis each rational cell R_i has size $k_i \geq 2$. Let $n_0 = 0$ and $n_j = n_{j-1} + k_j$ for $j = 1, 2, \ldots, m$. We want to apply Lemma 2.4 in sequence to each rational cell R_i. First choose $n_1 - 2$ distinct elements x_1, \ldots, x_{n_1-2} of F^* outside E. Then choose distinct elements x_{n_1-1} and x_{n_1} outside $E' = E \cup \{x_1, \ldots, x_{n_1-2}\}$ such that $x_1 x_2 \ldots x_{n_1} = \det R_1^2$. This is possible if $|F^*| > 2(|E'| + 2 = 2(|E| + n_1 - 1)$. We have now used n_1 distinct elements of F^*. Now let $E_1 = E \cup \{x_1, \ldots, x_{n_1}\}$, and choose in the same way distinct elements $x_{n_1+1}, \ldots, x_{n_2}$ of F^* outside E_1 such that $x_{n_1+1} \ldots x_{n_2} = \det R_2^2$. This is possible if $|F^*| > 2(|E_1| + k_2 - 1) = 2(|E| + n_2 - 1)$. Continue this process to obtain a sequence $\{x_1, x_2, \ldots, x_n\}$ of distinct elements of F^* outside E with $x_{n_j+1} \ldots x_{n_{j+1}} = \det R_j^2$ for $j = 0, 1, \ldots, m-1$. This is possible if $|F^*| > 2(|E| + n - 1)$. Now let $T_j = \text{diag}[x_{n_{j+1}}, \ldots, x_{n_{j+1}}]$. Applying Lemma 2.4, we get factorizations $T_j = R_j' R_j''$ with R_j' and R_j'' each similar to R_j. Then $T = T_1 \oplus T_2 \oplus \ldots \oplus T_m = R' R''$, where $R' = R_1' \oplus R_2' \oplus \ldots \oplus R_m'$ and $R'' = R_1'' \oplus R_2'' \oplus \ldots \oplus R_m''$ are both similar to A. □

Theorem 2.6. If the rational canonical form of A has no scalar direct summand then every matrix B with $\det B = \det A^4$ is of the form $B = A_1 A_2 A_3 A_4$, where A_i is similar to A for $i = 1, 2, 3, 4$.

Proof. Use Theorem 1.9 to write $B = LU$, where L is lower-triangular and U is upper-triangular, each with the same spectrum as the operator T of Proposition 2.5.
Thus L and U are both similar to T. It then follows from Proposition 2.5 that $B = LU = A_1A_2A_3A_4$, where A_i is similar to A for $i = 1, 2, 3, 4$. □

Corollary 2.7. Let $A \in \text{GL}_n(F)$ be such that its rational canonical form has no scalar direct summand, and let k be any natural number. Then every matrix $B \in \text{GL}_n(F)$ with $\det B = \det A^{4k}$ is of the form $B = A_1A_2\ldots A_{4k}$, where A_i is similar to A for $i = 1, 2, \ldots, 4k$. □

Corollary 2.8. If the rational canonical form of $A \in \text{SL}_n(F)$ has no scalar direct summand then every matrix $B \in \text{SL}_n(F)$ is of the form $B = A_1A_2A_3A_4$ where A_i is similar to A for $i = 1, 2, 3, 4$.

For a matrix $A \in \text{GL}_n(F)$ whose rational canonical form has a scalar direct summand of size one the bound on the similarity factors depends on the multiplicity of this summand. The ‘worst’ case occurs when that scalar direct summand has multiplicity $n-2$, i.e. when A is diagonalizable with an eigenvalue of multiplicity $n-1$.

Theorem 2.9. If the rational canonical form of $A \in \text{GL}_n(F)$ has a scalar direct summand of multiplicity $r - 1 \leq n - 2$ then every non-scalar $T \in \text{GL}_n(F)$ with $\det T = \det A^{4r}$ is of the form $T = A_1A_2\ldots A_{4r}$, where A_i is similar to A for $i = 1, 2, \ldots, 4r$.

Proof. Without loss of generality we may assume that the matrix A is in rational canonical form $A = cI_{r-1} \oplus R_1 \oplus \ldots \oplus R_m$, where each rational cell R_j has size at least 2. Apply Proposition 2.5 with $E = \{c^2\}$ to $R_1 \oplus R_2 \oplus \ldots \oplus R_m$ to get a matrix $B = A_1A_2 = c^2I_{r-1} \oplus \text{diag}[d_0, d_1, \ldots, d_{n-r}] = D_0 \oplus \text{diag}[d_1, d_2, \ldots, d_{n-r}] = D_0 \oplus D_1$ so that the entries $c^2, d_0, d_1, \ldots, d_{n-r}$ are all distinct, with A_1 and A_2 similar to A. This is possible if $|F^*| > 2(n - r)$. Then $D_0 = c^2I_{r-1} \oplus d_0$ and $\text{rank}(\frac{1}{c^2}D_0 - I_r) = 1$. Setting $\alpha = (-1)^{r-1}(d_0/c^2)^r$ and applying Lemma 2.1 we conclude that

$$
\begin{pmatrix}
1 & \alpha \\
& \ddots & \ddots \\
& & 1 & 0
\end{pmatrix} = M_1M_2\ldots M_r
$$

with $\det M_i = d_0/c^2 \neq 1$ and $\text{rank}(M_i - I_r) = 1$. Thus M_i is similar to $I_{r-1} \oplus \frac{d_0}{c^2} = \frac{1}{c^2}D_0$. Multiplying by c^{2r} we get the matrix

$$
P =
\begin{pmatrix}
c^{2r} & c^{2r}\alpha \\
& \ddots & \ddots \\
& & c^{2r} & 0
\end{pmatrix} = P_1P_2\ldots P_r
$$
with $P_i = c^2 M_i$ similar to D_0 for $i = 1, 2, \ldots, r$. Moreover, by repeated applications of Theorem 1.7 we can find a diagonal matrix $Q = \text{diag}[q_1, q_2, \ldots, q_{n-r}]$ with distinct diagonal entries, distinct from the eigenvalues of P, such that $\det Q = \det D_i^t$ and $Q = Q_1 Q_2 \ldots Q_r$, where Q_i is similar to D_i for $i = 1, 2, \ldots, r$. Thus, $C = P \oplus Q$ is cyclic, $\det C = \det(P) \det(Q) = \det B^r$ and $C = B_1 B_2 \ldots B_r = A_1 A_2 \ldots A_{2r}$, where $B_i = P_i \oplus Q_i$ is similar to $B = D_0 \oplus D_1$ for $i = 1, 2, \ldots, r$ and A_j is similar to A for $j = 1, 2, \ldots, 2r$.

Thus, by Theorem 1.9, every matrix $T \in \text{GL}_n(F)$ with $\det T = \det C^2 = \det B^{2r} = \det A^{4r}$ is of the form

$$T = C_1 C_2 = B_1 B_2 \ldots B_{2r} = A_1 A_2 \ldots A_{4r}$$

with C_i is similar to C, B_j is similar to B and A_k is similar to A. \qed

Corollary 2.10. If $A \in \text{GL}_n(F)$ is not scalar and $s = \text{lcm}(1, 2, \ldots, n - 1)$, then every $T \in \text{GL}_n(F)$ with $\det T = \det A^{4s}$ is of the form $T = A_1 A_2 \ldots A_{4s}$. \qed

3. **Semigroups generated by the similarity orbit of a singular matrix**

We first prove a preliminary result for the similarity semigroup when rank $A = n - 1$ and then apply it to to show that in the general when rank $A < n$ the similarity semigroup of A consists of all matrices of rank less than or equal to rank A.

Proposition 3.1. The semigroup in $M_n(F)$ generated by the similarity orbit of a matrix A with rank $A = n - 1$ consists of all matrices of rank less than or equal to $n - 1$.

Proof. Let S be the semigroup generated by the similarity orbit of the matrix A of rank $n - 1$ in $M_n(F)$. The proof will be in four steps.

Step 1) We first show that S contains a matrix $C = X \oplus 0$ for some invertible X of size $n - 1$. By Fitting’s Lemma, see for example [B], we have $F^n = \text{im} A^m \oplus \ker A^m$ for some natural number m, so that we may assume that $A = Y \oplus N$, where Y is invertible and N is nilpotent in Jordan canonical form. Then $B = Y \oplus N^T$ is similar to A and $AB = Y^2 \oplus I \oplus 0 = X \oplus 0$, where X is invertible of size $n - 1$.

Step 2) Next we can prove that S contains a matrix $Y = \lambda I_{n-1} \oplus 0$, where $\lambda \neq 0$ and I_{n-1} is the identity matrix of rank $n - 1$. In the matrix $C = X \oplus 0$ of step 1) the matrix X is invertible and we can get the result by applying Proposition 1.5.

Step 3) Now we show that S contains for each $r = 0, 1, \ldots, n - 1$ a matrix of the form $\lambda I_r \oplus N$, where N is nilpotent of maximal rank $n - r - 1$. This is certainly true for $r = n - 1$ by step 2). If $r = n - 2$ and $Y = \lambda I_{n-1} \oplus 0$ is the matrix obtained in step 2) then

$$\left(\begin{array}{ccc}
\lambda & & \\
& \ddots & \\
& & \lambda \\
\end{array}\right) \left(\begin{array}{ccc}
\lambda & & \\
& \ddots & \\
& & \lambda \\
\end{array}\right) = \left(\begin{array}{ccc}
\lambda^2 & & \\
& \ddots & \\
& & \lambda^2 \\
\lambda^2 & & \\
& \ddots & \\
& & \lambda^2 \\
\end{array}\right),$$
that is
\[Q^{-1} Y Q S^{-1} Y S = \lambda^2 I_{n-2} \oplus \lambda^2 \begin{pmatrix} \frac{1}{-1} & \frac{1}{-1} \\ \frac{1}{-1} & \frac{1}{-1} \end{pmatrix}, \]
which is similar to
\[\begin{pmatrix} \lambda^2 I_{n-2} & \lambda^2 \\ 0 & \lambda^2 \\ 0 & 0 \end{pmatrix} = \lambda^2 I_{n-2} \oplus \lambda^2 J_2. \]
Here we used the similarities
\[Q^{-1} Y Q = Q^{-1} Y = \lambda I_{n-2} \oplus \begin{pmatrix} \lambda & 0 \\ -\lambda & 0 \end{pmatrix} \quad \text{and} \quad S^{-1} Y S = Y S = \lambda I_{n-2} \oplus \begin{pmatrix} \lambda & \lambda \\ 0 & 0 \end{pmatrix}, \]
where the elementary matrix \(Q = E_{n,n-1} \) is obtained from \(I_n \) by adding the \((n-1)\)-th row to the \(n\)-th row and \(S = Q^T \) is the transpose.

Now proceed by backward induction on \(r \) using
\[\lambda^{2(n-r-1)} \begin{pmatrix} I_r & J_{n-r} \\ J_{n-r} & I_{n-r} \end{pmatrix} \lambda^2 \begin{pmatrix} I_{r-1} & J_2 \\ J_2 & I_{n-r-1} \end{pmatrix} = \lambda^{2(n-r)} \begin{pmatrix} I_{r-1} & 0 \\ 0 & J_{n-r+1} \end{pmatrix} \]
which is the same as
\[\lambda^{2(n-r-1)} (I_r \oplus J_{n-r}) \lambda^2 (I_{r-1} \oplus J_2 \oplus I_{n-r-1}) \simeq \lambda^{2(n-r)} (I_{r-1} \oplus J_{n-r+1}), \]
or the same as
\[(I_r \oplus J_{n-r}) (I_{r-1} \oplus J_2 \oplus I_{n-r-1}) = I_{r-1} \oplus J_{n-r+1}, \]
where \(J_s \) is the nilpotent Jordan cell of size \(s \) and rank \(s - 1 \).

Sep 4) Finally we prove that \(\mathcal{S} \) contains every matrix of the form \(Z \oplus 0 \) for every invertible matrix \(Z \) of size \(n - 1 \). By step 3) the big Jordan cell \(J_n \) is in \(\mathcal{S} \) and so are its transpose \(J_n^t \) and all their powers. Moreover \(J_n J_n^t = I_{n-1} \oplus 0 \) is idempotent of rank \(n - 1 \) and \(J_n^k (J_n^T)^k = I_{n-k} \oplus O_k \) is idempotent of rank \(n - k \). Thus \(\mathcal{S} \) contains all idempotents of rank less than or equal to \(n - 1 \). Then
\[\begin{pmatrix} I_{n-1} & x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_{n-1} & 0 \\ y^t & 0 \end{pmatrix} = \begin{pmatrix} I_{n-1} + xy^t & 0 \\ 0 & 0 \end{pmatrix} \]
yields the result. This is all we need to proceed with the general case when rank \(A < n \) and the final argument is done in the proof of the next theorem. \(\Box \)
Theorem 3.2. The semigroup S in $M_n(F)$ generated by the similarity orbit of a matrix A of rank $r < n$ consists of all matrices of rank $\leq r$.

Proof. Let rank $A = r = n - u$. The argument used in step 1) of Proposition 3.1 shows that S contains a matrix of the form $X \oplus O_u$ for some invertible matrix X of size r. That S contains a matrix $Y = \lambda I_r \oplus O_u$ for some scalar $\lambda \neq 0$ again follows from Proposition 1.5 as in step 2) of Proposition 3.1. As in step 3) of Proposition 3.1 with $n = r + 1$ we show that for each $s = 0, 1, \ldots, r$ the semigroup S contains a matrix of the form $\lambda I_s \oplus N \oplus O_{u-1}$, where $N \simeq J_{r-s+1}$ is nilpotent of maximal rank $r - s$. As in step 4) of Proposition 3.1 it now follows that S contains all matrices of the form $Z \oplus O_u$ for every invertible matrix Z of size r.

This shows in particular that $K = J_{r+1} \oplus O_{u-1}$, all its powers and their transposes are in S. But then $K^l(K^l)^T = I_{r-l} \oplus O_{n-r-l}$ is in S for $l = 1, 2, \ldots, r$, and hence S contains all idempotents of rank $\leq r$, and hence all matrices of the form $C \oplus O_w$ for invertible C and $u \leq w \leq n$.

Now we want to prove that if $B \in M_n(F)$ and rank(B) = $v \leq r$ then $B \in S$. By Fitting’s Lemma $B \simeq B_0 \oplus N$, where B_0 is invertible of size $s \geq 0$ and N is nilpotent of rank $v - s$. More precisely,

$$B \simeq B_0 \oplus N \simeq B_0 \oplus J_{s_1} \oplus J_{s_2} \oplus \ldots \oplus J_{s_t} \oplus O_w =$$

$$(B_0 \oplus (I_{s_1-1} \oplus 0) \oplus \ldots \oplus (I_{s_t-1} \oplus 0) \oplus O_w)(I_s \oplus J_{s_1} \oplus \ldots \oplus J_{s_t} \oplus O_w)$$

when N is in Jordan form. Since $n = s + s_1 + s_2 + \ldots + s_t + w = v + t + w$ it follows that the number of Jordan cells is $t = n - v - w \leq n - v$. The first factor on the right is similar to $B_0 \oplus I_{v-s} \oplus O_{w+t}$, hence belongs to S. The second factor is in the semigroup generated by the similarity orbit of

$$I_v \oplus O_{w+t} \simeq I_s \oplus (I_{s_1-1} \oplus 0) \oplus (I_{s_2-1} \oplus 0) \oplus \ldots \oplus (I_{s_t-1} \oplus 0) \oplus O_w \in S,$$

since J_{s_j} is in the semigroup generated by the similarity orbit of $I_{s_j-1} \oplus 0$ in $M_{s_j}(F)$ for $j = 1, 2, \ldots, t$ by step 3) in the proof of Proposition 3.1. This proves that B is in S. \qed

References

L. Grunenfelder and H. Radjavi: Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 3J5

M. Omladič: Department of Mathematics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

A. Sourour: Department of Mathematics and Statistics, University of Victoria, Victoria, B.C. Canada