Splitting factor maps into u- and s-bijective maps.

Dina Buric

September 16, 2019

- Dynamical systems
- 2 Motiviation
- 3 Problem
- Results so far
- 5 Finding factor maps that split

1st example-Shifts of finite type

Let G be a finite directed graph which consists of a vertex set G^0 , an edge set G^1 , and two maps $r,s:G^1\to G^0$. The source vertex of edge e is given by s(e) and the range vertex is given by r(e).

Definition

We define

$$\Sigma_G = \{(x_n)_{n \in \mathbb{Z}} \mid x_n \in G^1, \ r(x_n) = s(x_{n+1}) \ \text{ for all } n \text{ in } \mathbb{Z}\}$$

With the left shift map $\sigma: \Sigma_G \to \Sigma_G$,

$$\sigma(x)_n = x_{n+1}.$$

2nd example: Hyperbolic toral automorphism

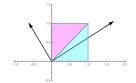
Let
$$\hat{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

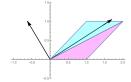
Define $A: \mathbb{T}^2 \to \mathbb{T}^2$ by

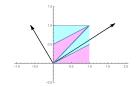
$$A([x]) = [\hat{A}x]$$

where x is in \mathbb{R}^2 and [x] denotes its equivalence class in $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$. By the integer components and the determinant, A is an invertible map.

Eigenvalues :
$$\gamma$$
 and $-\gamma^{-1}$, where $\gamma = \frac{1+\sqrt{5}}{2} > 1$.
Eigenvectors: $v_u = \begin{bmatrix} \gamma \\ 1 \end{bmatrix}$ and $v_s = \begin{bmatrix} -\gamma^{-1} \\ 1 \end{bmatrix}$.







Notice
$$\mathbb{R}^2 = \{tv_u \mid t \in \mathbb{R}\} \oplus \{tv_s \mid t \in \mathbb{R}\} = E^u \oplus E^s$$

 $\operatorname{\mathsf{mod}}\ \mathbb{Z}^2$

For general \hat{A} in $GL_d(\mathbb{R})$ we define,

$$E^{s} = \{x \in \mathbb{R}^{d} \mid ||\hat{A}^{n}x|| \to 0, \ n \to +\infty\}$$
$$E^{u} = \{x \in \mathbb{R}^{d} \mid ||\hat{A}^{n}x|| \to 0, \ n \to -\infty\}$$

Definition

We say a matrix \hat{A} is hyperbolic if \hat{A} is in $GL_d(\mathbb{R})$ and,

$$\mathbb{R}^d = E^s \oplus E^u$$
.

With these in mind, the A from our example, is a hyperbolic toral automorphism.

Globally: Let f be a homeomorphism.

Definition

We say two points x, y in X are stably equivalent and write $x \stackrel{s}{\sim} y$ if

$$\lim_{n\to+\infty}d(f^n(x),f^n(y))=0$$

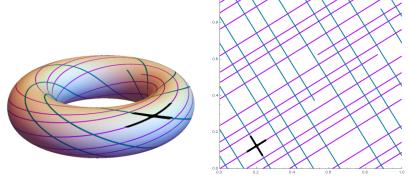
We let $X^s(x)$, the set of y with $x \stackrel{s}{\sim} y$.

We say that x, y are unstably equivalent and write $x \stackrel{u}{\sim} y$ if

$$\lim_{n\to-\infty}d(f^n(x),f^n(y))=0$$

We let $X^{u}(x)$ be the set of y with $x \stackrel{u}{\sim} y$.

On a hyperbolic toral automorphism the global unstable and stable sets wrap around densely.



The local stable and unstable sets are given by moving a little bit along the eigendirections. Locally, \mathbb{T}^2 can be viewed as $\mathbb{R} \times \mathbb{R}$.

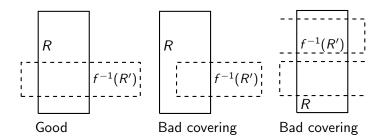
The HTA can be modeled using symbolic dynamics by way of Markov partitions, where $\pi:(\Sigma_G,\sigma)\to(\mathbb{T}^n,A)$ is a finite-to-one factor map.

- Adler and Weiss 1967 for the case of dimension d = 2.
- Sinai 1968 any finite dimension d.
- Bowen 1970, for basic sets of Axiom A diffeomorphisms.

Markov Property

When $int(R) \cap f^{-1}(int(R'))$ is non-empty, then for all x in R and y in $f^{-1}(R')$, [y,x] is defined and we have,

$$[f^{-1}(R'), R] = f^{-1}(R') \cap R.$$

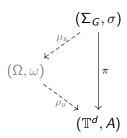


Definition

A factor map π , has a splitting, if it is a composition of a u and s-bijective map.

Definition

A factor map π , has a splitting, if it is a composition of a u and s-bijective map.



Definition

We say that $\pi:(X,f)\to (Y,g)$ is s-bijective if, for any x in X, its restriction to $X^s(x)$ is a bijection to $Y^s(\pi(x))$.

Theorem

Let $\pi:(X,f)\to (Y,g)$ be an s-bijective map. Then for every x in X, the map $\pi:X^s(x,\epsilon)\to Y^s(\pi(x),\epsilon')$ is a local homeomorphism.

A *u*-bijective map is defined and characterized analogously.

Given (\mathbb{T}^d, A) , we can find a factor map π .

$$(\Sigma_G, \sigma)$$

$$\downarrow^{\pi}$$

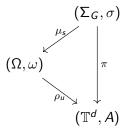
$$(\mathbb{T}^d, A)$$

Given (\mathbb{T}^d, A) , we can find a factor map π .

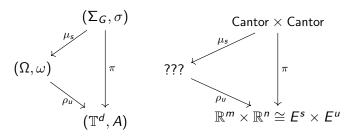
where m + n = d.

Note: This map cannot be s-bijective nor u-bijective.

Suppose we also have μ_s , an s-bijective map and ρ_u , a u-bijective map such that,



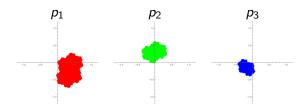
Suppose we also have μ_s , an s-bijective map and ρ_u , a u-bijective map such that,



What must ??? look like locally? What is a candidate space for ??? ?

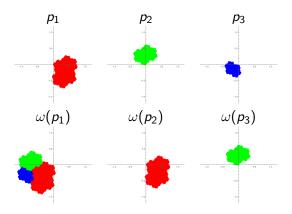
3rd Example: Substitution tiling systems, $(\Omega, \mathcal{P}, \omega)$

Prototiles, $\mathcal{P} = \{p_1, p_2 \dots, p_n\}$. Each $p_i \subseteq \mathbb{R}^d$ is the closure of its interior.



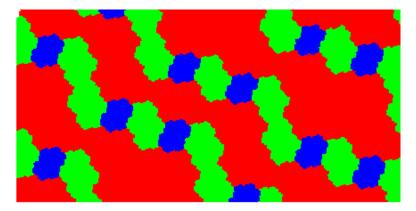
A tile t is a translation of some prototile.

A substitution rule $\omega(p_i)$ that inflates, possibly rotates and subdivides with translates of prototiles.



A partial tiling is a collection of tiles whose interiors are pairwise disjoint. A tiling is a partial tiling whose union is \mathbb{R}^d . The substitution can be iterated and extended to all tilings.

We define Ω to be the set of tilings T such that if $P \subseteq T$ then $P \subseteq \omega^k(t)$ for some tile t.

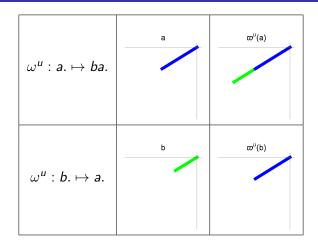


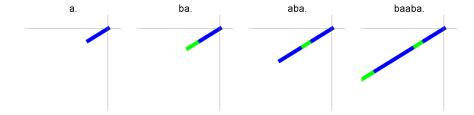
Forcing the border

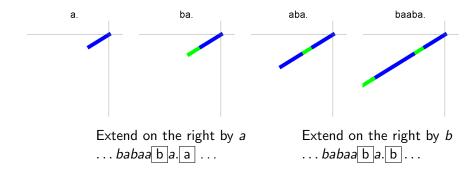
Definition

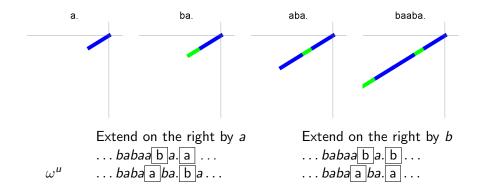
A tiling system $(\Omega, \mathcal{P}, \omega)$ forces its border if there is a $k \geq 1$ such that, if T and T' are two tilings containing a tile t, then the patches in $\omega^k(T)$ and $\omega^k(T')$ consisting of all tiles which meet $\omega^k(t)$ are identical.

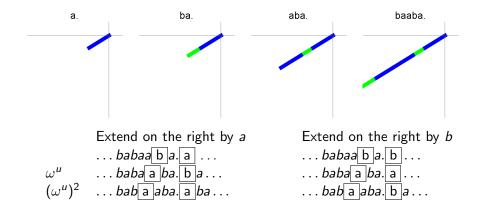
Tiling example 2-Fibonacci

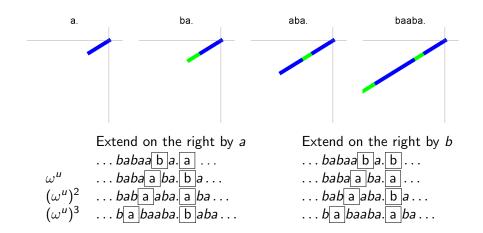




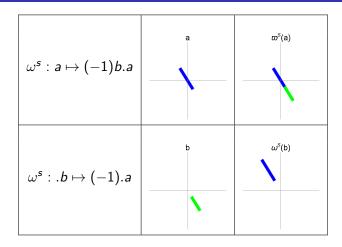




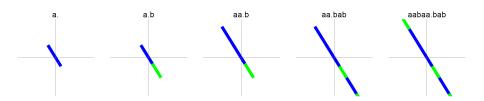




Tiling example 3: Also Fibonacci



ω^s : Does force border $(a \mapsto (-1)b.a$ and $b \mapsto (-1)a.)$

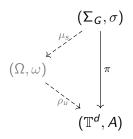


Definition

A factor map π , has a splitting, if it is a composition of a u and s-bijective map.

Definition

A factor map π , has a splitting, if it is a composition of a u and s-bijective map.



Is there a necessary and sufficient condition for a given factor map, π , to have a splitting?

Theorem

If a splitting for the factor map $\pi:\Sigma \to \mathbb{T}^d$ exists then,

for every x in \mathbb{R}^d for which q(x) is periodic in \mathbb{T}^d , there exist open sets $U \subseteq E^s$ and $V \subseteq E^u$ containing 0, with the property that for all y and \overline{y} in $V \setminus (\partial^u \mathcal{R} - x)$,

$$U \cap (\partial^{s} \mathcal{R} - y - x) = U \cap (\partial^{s} \mathcal{R} - \overline{y} - x).$$

To understand the condition, let us first define \mathcal{R} .

Constructing R

Let $\nu: G^1 \to \mathbb{Z}^d$ be a labelling of the edges of a finite graph G. Let $\nu(e)^s$ be the projection onto E^s through E^u .

Define $\pi^s:\Sigma_G o E^s$ by,

$$\pi^{s}(x) = \sum_{n \leq 0} \hat{A}^{-n} \nu(x_n)^{s}$$

Define $\pi^u:\Sigma_G\to E^u$ by,

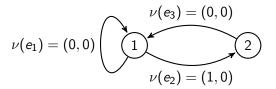
$$\pi^{u}(x) = -\sum_{n\geq 1} \hat{A}^{-n} \nu(x_n)^{u}$$

and $\pi': \Sigma_G \to \mathbb{R}^d$ by,

$$\pi'(x) = \pi^s(x) + \pi^u(x) \in \mathbb{R}^d$$

Let G_{fib} be the following finite directed graph with labelling map,

$$\nu: G^1_{\mathsf{fib}} \to \mathbb{Z}^2.$$



Suppose we take $x=\ldots e_2e_3e_2e_3e_2e_3.e_2e_3e_2e_3...$ from $\Sigma_{G_{\mathrm{fib}}}$.

Visualizing the map π^s

$$\pi^{s}(x) = \sum_{n \leq 0} A^{-n} \nu(x_n)^{s} = \lim_{k \to \infty} \left(\sum_{n=0}^{-k} A^{-n} \nu(x_n) \right)^{s}$$

$$\downarrow^{s}$$

$$\downarrow^$$

Markov partition

Definition

Let $\mathcal{R}_{G,\nu}$ be defined by the following sets, for $i \in G^0$,

$$R_i^s = \pi^s \{ x \in \Sigma_G \mid r(x_0) = i \} \subseteq E^s$$

$$R_i^u = \pi^u \{ x \in \Sigma_G \mid r(x_0) = i \} \subseteq E^u$$

and

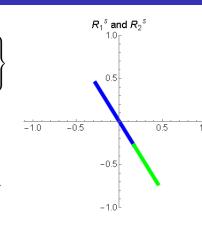
$$\mathcal{R}_{G,\nu} = \{ R_i^s + R_i^u \mid i \in G^0 \}$$

$$\begin{split} R_1^s &= \pi^s \{ x \in \Sigma_{G_{\text{fib}}} \mid r(x_0) = 1 \} \\ &= \left\{ \sum_{n \geq 0} a_n (-\gamma)^{-n} (1,0)^s \mid a_n a_{n+1} = 0 \\ a_0 &= 0 \right\} \\ &= \text{blue set} \end{split}$$

$$R_2^s = \pi^s \{ x \in \Sigma_{G_{fib}} \mid r(x_0) = 2 \}$$

$$= \left\{ \sum_{n \ge 0} a_n (-\gamma)^{-n} (1, 0)^s \mid a_n a_{n+1} = 0 \\ a_0 = 1 \right\}$$

= green set

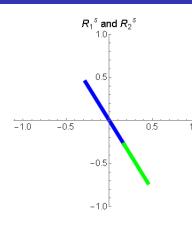


$$egin{aligned} \mathcal{R}_1^s &= \pi^s \{ x \in \Sigma_{G_{\mathrm{fib}}} \mid r(x_0) = 1 \} \ &= \left\{ \sum_{n \geq 0} a_n (-\gamma)^{-n} (1,0)^s \mid a_n a_{n+1} = 0 \\ a_0 &= 0
ight\} \ &= \mathsf{blue} \; \mathsf{set} \end{aligned}$$

$$R_2^s = \pi^s \{ x \in \Sigma_{G_{fib}} \mid r(x_0) = 2 \}$$

$$= \left\{ \sum_{n \ge 0} a_n (-\gamma)^{-n} (1, 0)^s \mid a_n a_{n+1} = 0 \\ a_0 = 1 \right\}$$

= green set

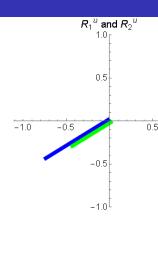


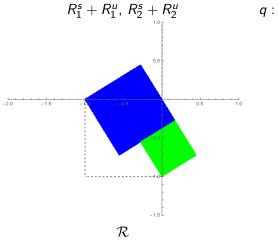
$$\begin{split} R_1^u &= \pi^u \{ x \in \Sigma_{G_{\text{fib}}} \mid r(x_0) = 1 \} \\ &= \left\{ -\sum_{n \geq 1} a_n(\gamma)^n (1,0)^u \mid \begin{array}{l} a_n \in \{0,1\} \\ a_n a_{n+1} = 0 \end{array} \right\} \\ &= \text{blue set} \end{split}$$

$$R_2^u = \pi^u \{ x \in \Sigma_{G_{fib}} \mid r(x_0) = 2 \}$$

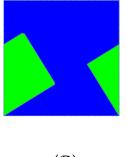
$$= \left\{ -\sum_{n \ge 1} a_n(\gamma)^n (1,0)^u \mid \begin{array}{l} a_n \in \{0,1\} \\ a_n a_{n+1} = 0 \\ a_0 = 0 \end{array} \right\}$$

$$= \text{green set}$$





 $q: \mathbb{R}^2 \to \mathbb{T}^2 \mod \mathbb{Z}^2$ map.



 $q(\mathcal{R})$

Theorem

If \mathcal{R} is regular, the collection $\{R_i + m \mid 1 \leq i \leq I, m \in \mathbb{Z}^d\}$ are pairwise disjoint and tile \mathbb{R}^d then,

- **1** The map $\pi = q \circ \pi' : \Sigma_G \to \mathbb{T}^d$ is a finite -to-one factor map.
- **3** There is a dense G_δ in \mathbb{T}^d , B, such that if x is in B then $\#\pi^{-1}\{x\}=1$.

Graph Iterated Function system property

Theorem

The collection of sets $\mathcal{R}_{(G,\nu)}$ satisfies the following equations,

$$AR_i^u = \bigcup_{s(e)=i} R_{r(e)}^u - \nu(e)^u,$$

$$R_j^s = \bigcup_{r(e)=j} AR_{r(e)}^s + \nu(e)^s,$$

for
$$1 \le i, j \le I$$
.

$\mathsf{Theorem}$

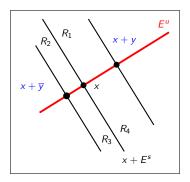
If a splitting for the factor map $\pi:\Sigma o \mathbb{T}^d$ exists then,

for every x in \mathbb{R}^d for which q(x) is periodic in \mathbb{T}^d , there exist open sets $U \subseteq E^s$ and $V \subseteq E^u$ containing 0, with the property that for all y and \overline{y} in $V \setminus (\partial^u \mathcal{R} - x)$,

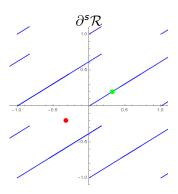
$$U \cap (\partial^{s} \mathcal{R} - y - x) = U \cap (\partial^{s} \mathcal{R} - \overline{y} - x).$$

The stable boundaries around a periodic point (for the map A) should look the same in the E^u direction.

The condition is satisfied if the boundary around a periodic point looks something like this...

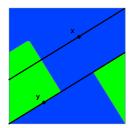


Our G_{fib} example does not satisfy the condition



Idea for proof

Suppose the condition fails.



Choose x and y unstably equivalent and stably equivalent to a periodic point, where x has one preimage under π while y has two preimages under π . Contradicts properties of u and s-bijective maps. No splitting for the map $\pi: \Sigma_{G_{\text{fib}}} \to \mathbb{T}^2$ exists.

Does there exist another SFT for which the factor map splits?

Theorem (Putnam,2005)

Let (Y,g) be an irreducible Smale space. Then there exists a shift of finite type (Σ,σ) , another irreducible Smale space (Ω,ω) , and

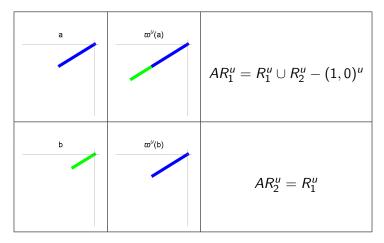
$$\mu: (\Sigma, \sigma) \to (\Omega, \omega)$$

 $\rho: (\Omega, \omega) \to (Y, g)$

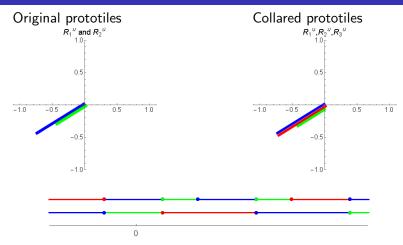
factor maps, such that μ is s-bijective and ρ is u-bijective.

How do we find it, explicitely?

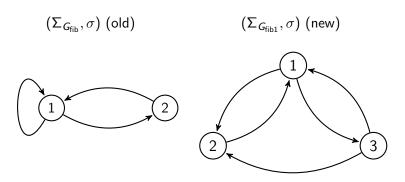
The GIFS for our G_{fib} Markov partition gives a tiling substitution.



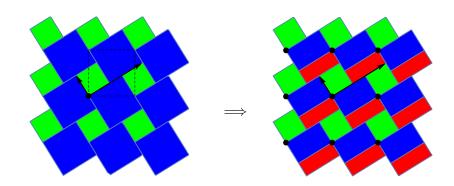
The collared tiling system $(\Omega_1, \mathcal{P}_1, \omega_1)$ forces its border.



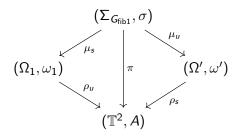
Non-conjugate shifts of finite type



New Markov partition.



From Anderson and Putnam 1998 and Wieler 2005.



 (Ω_1, ω_1) collared fibonacci (tiling example 2) (Ω', ω') collared fibonacci substitution (tiling example 3)

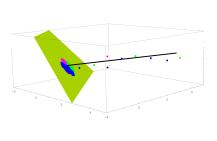
A three dimensional example

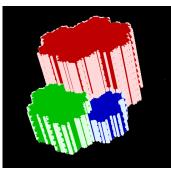
Let
$$\hat{B} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
. The induced map B defines an HTA of \mathbb{T}^3 .

Eigenvalues:
$$\beta > 1$$
, $\alpha, \overline{\alpha}$, where $\beta^3 - \beta^2 - \beta - 1 = 0$.

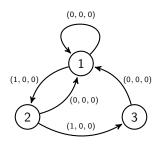
Expanding line and contracting plane.

The Markov partition is given by the following (viewed in \mathbb{R}^3).



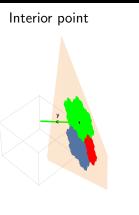


Unstable (Tribonacci)

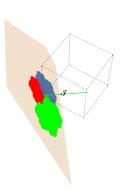


$$AR_1^u = R_1^u \cup R_2^u - (1,0,0)^s$$
 $R_1^s = AR_1^s \cup AR_2^s \cup AR_3^s$
 $AR_2^u = R_1^u \cup R_3^u - (1,0,0)^s$ $R_2^s = AR_1^s + (1,0,0)^s$
 $AR_3^u = R_1^u$ $R_3^s = AR_2^s + (1,0,0)^s$

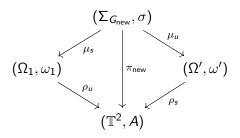
Stable (Rauzy)



Boundary point



No splitting for the factor map exists.



 (Ω_1, ω_1) collared tribonacci substitution (Ω', ω') collared Rauzy substitution (tiling example 1)

We know:

- Existence of splitting for $\pi \implies$ condition on boundaries of MP.
- Forcing the border of $(\Omega, \omega) \implies \exists$ a map π that splits.
- We have an example of a factor map that splits, but the corresponding tiling system (Ω, ω) does not force its border.

Questions:

- Does the condition being satisfied imply the existence of a splitting?
- If we randomly label a graph of the SFT what sort of sets in \mathbb{R}^d are possible? Under which conditions?
- What does all of this have to do with lan's homology theory for Smale spaces?

- Adler, R. L. and B. Weiss (1967). "Entropy, a complete metric invariant for automorphisms of the torus". In: Proceedings of the National Academy of Sciences 57.6, pp. 1573—1576. ISSN: 0027-8424. DOI: 10.1073/pnas.57.6.1573. eprint: https://www.pnas.org/content/57/6/1573.full.pdf. URL: https://www.pnas.org/content/57/6/1573.
- Anderson, Jared E. and Ian F. Putnam (1998). "Topological invariants for substitution tilings and their associated C*-algebras". In: Ergodic Theory Dynam. Systems 18.3, pp. 509–537. ISSN: 0143-3857. DOI: 10.1017/S0143385798100457. URL: http://dx.doi.org/10.1017/S0143385798100457.
- Bowen, Rufus (1970). "Markov partitions and minimal sets for Axiom A diffeomorphisms". In: *Amer. J. Math.* 92,

pp. 907-918. ISSN: 0002-9327. DOI: 10.2307/2373402. URL: https://doi.org/10.2307/2373402.

Sinai, Ya. G. (1968). "Construction of Markov partitions". In: Functional Analysis and Its Applications 2.3, pp. 245–253. ISSN: 1573-8485. DOI: 10.1007/BF01076126. URL: https://doi.org/10.1007/BF01076126.

Wieler, Susana (2005). "Symbolic and Geometric Representations of Unimodular Pisot Substitutions". MA thesis. University of Victoria.

Thank you for your attention!