A Survey of Permutation Codes

Peter J. Dukes

July 17, 2016
Permutation codes
Peter Dukes

Outline
Introduction
Classical codes and error-correction
Permutation codes
Motivation
Some bounds
Construction methods
Analysis of a challenging case with algebraic combinatorics
Open problems
References

Introduction
Classical codes and error-correction
Permutation codes
Motivation
Some bounds
Construction methods

Analysis of a challenging case with algebraic combinatorics

Open problems

References
A *binary code* of *length* \(n \) and *distance* \(d \) is a subset \(C \) of \(\{0, 1\}^n \) such that any two distinct words in \(C \) differ in at least \(d \) positions.

Example. \(\{000000, 000111, 111000, 111111\} \) is a binary code of length \(n = 6 \) and minimum distance \(d = 3 \).

Some nice algebraic constructions exist; for instance, the ideal

\[
\langle x^3 + x + 1 \rangle \subset \mathbb{F}_2[x]/\langle x^7 - 1 \rangle
\]

leads to a code with \(n = 7 \), \(d = 3 \), and \(|C| = 16 \).
A *binary code* of *length* n and *distance* d is a subset C of $\{0, 1\}^n$ such that any two distinct words in C differ in at least d positions.

Example. $\{000000, 000111, 111000, 111111\}$ is a binary code of length $n = 6$ and minimum distance $d = 3$.

Some nice algebraic constructions exist; for instance, the ideal

$$\langle x^3 + x + 1 \rangle \subset \mathbb{F}_2[x]/\langle x^7 - 1 \rangle$$

leads to a code with $n = 7$, $d = 3$, and $|C| = 16$.
A binary code of length \(n \) and distance \(d \) is a subset \(C \) of \(\{0, 1\}^n \) such that any two distinct words in \(C \) differ in at least \(d \) positions.

Example. \(\{000000, 000111, 111000, 111111\} \) is a binary code of length \(n = 6 \) and minimum distance \(d = 3 \).

Some nice algebraic constructions exist; for instance, the ideal
\[
\langle x^3 + x + 1 \rangle \subset \mathbb{F}_2[x]/\langle x^7 - 1 \rangle
\]
leads to a code with \(n = 7, d = 3, \) and \(|C| = 16 \).
Hamming distance

The function $d_H : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \mathbb{Z}_{\geq 0}$ defined by

$$d_H(x, y) = |\{i : x_i \neq y_i\}|$$

is a metric on $\{0, 1\}^n$ called Hamming distance.

Binary codes are sets in $\{0, 1\}^n$ which are well-separated under d_H.

Applications: data compression, error-correction, and the “prisoner’s hat problem”.
Hamming distance

The function $d_H : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \mathbb{Z}_{\geq 0}$ defined by

$$d_H(x, y) = |\{i : x_i \neq y_i\}|$$

is a metric on $\{0, 1\}^n$ called **Hamming distance**.

Binary codes are sets in $\{0, 1\}^n$ which are well-separated under d_H.

Applications: data compression, error-correction, and the “prisoner’s hat problem”.
Hamming distance

The function $d_H : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \mathbb{Z}_{\geq 0}$ defined by

$$d_H(x, y) = |\{i : x_i \neq y_i\}|$$

is a metric on $\{0, 1\}^n$ called *Hamming distance*.

Binary codes are sets in $\{0, 1\}^n$ which are well-separated under d_H.

Applications: data compression, error-correction, and the “prisoner’s hat problem”.
Consider the code C_7 containing 0000000, 1101000, and closed under cyclic shifts and complements. This is the code coming from the ideal $\langle x^3 + x + 1 \rangle$ mentioned earlier.

The minimum Hamming distance of C_7 is 3. We have

$$|C_7| = 16 = \frac{2^7}{\binom{7}{0} + \binom{7}{1}}.$$

So every binary word is either in C_7, or within one bit of a unique word in C_7. That is, if we send words chosen from C_7, the transmission is robust against one error.
Consider the code C_7 containing 0000000, 1101000, and closed under cyclic shifts and complements. This is the code coming from the ideal $\langle x^3 + x + 1 \rangle$ mentioned earlier.

The minimum Hamming distance of C_7 is 3. We have

$$|C_7| = 16 = \frac{2^7}{\binom{7}{0} + \binom{7}{1}}.$$

So every binary word is either in C_7, or within one bit of a unique word in C_7. That is, if we send words chosen from C_7, the transmission is robust against one error.
Distance between permutations

Hamming distance d_H makes sense in S_n if we write permutations in “one line notation” as rearrangements of the alphabet $\{1, 2, \ldots, n\}$.

Example.

35412 and 32415 are at distance 2.

This distance is still a metric; however, observe that $d_H = 1$ is never achieved for permutations.
Distance between permutations

Hamming distance d_H makes sense in S_n if we write permutations in “one line notation” as rearrangements of the alphabet $\{1, 2, \ldots, n\}$.

Example.

\[
\begin{align*}
35412 \quad & \text{and} \\
32415 \quad & \text{are at distance 2.}
\end{align*}
\]

This distance is still a metric; however, observe that $d_H = 1$ is never achieved for permutations.
Distance between permutations

Alternatively, for $\sigma, \tau \in S_n$, their Hamming distance is the number of non-fixed points of $\sigma \tau^{-1}$.

Example.

35412 \rightarrow (134)(25)
32415 \rightarrow (134)

have quotient (25), with $d_H = 2$ non-fixed points.

With this, it is clear that d_H is translation-invariant:

$d_H(\sigma, \tau) = d_H(\sigma \alpha, \tau \alpha) = d_H(\alpha \sigma, \alpha \tau)$.
Distance between permutations

Alternatively, for $\sigma, \tau \in S_n$, their Hamming distance is the number of non-fixed points of $\sigma \tau^{-1}$.

Example.

\[
\begin{align*}
35412 & \rightarrow (134)(25) \\
32415 & \rightarrow (134)
\end{align*}
\]

have quotient (25), with $d_H = 2$ non-fixed points.

With this, it is clear that d_H is translation-invariant:

\[
d_H(\sigma, \tau) = d_H(\sigma \alpha, \tau \alpha) = d_H(\alpha \sigma, \alpha \tau).
\]
A **permutation code** of length n and distance d is a subset $\Gamma \subseteq S_n$ such that the distance between distinct members of Γ is at least d.

Example.

\[\{1234, 2143, 3412\}\]

is a permutation code of length 4 and distance 4. So is

\[\{1234, 2143, 3412, 4321\}\].

Including any additional permutation will decrease the minimum distance.
Permutation codes

A permutation code of length n and distance d is a subset $\Gamma \subseteq S_n$ such that the distance between distinct members of Γ is at least d.

Example.

\{1234, 2143, 3412\}

is a permutation code of length 4 and distance 4. So is

\{1234, 2143, 3412, 4321\}.

Including any additional permutation will decrease the minimum distance.
A permutation code of length \(n \) and distance \(d \) is a subset \(\Gamma \subseteq S_n \) such that the distance between distinct members of \(\Gamma \) is at least \(d \).

Example.

\[\{1234, 2143, 3412\} \]

is a permutation code of length 4 and distance 4. So is

\[\{1234, 2143, 3412, 4321\} \].

Including any additional permutation will decrease the minimum distance.
A toy application

Suppose we wish to transmit information using amplitude modulation on electrical power lines.

Using an ordinary binary code has the disadvantage of introducing possibly long stretches of low (or high) voltage.

A permutation code enjoys the property that the sum of amplitudes on each codeword is a constant. So over a relatively short block of time, the average deviation from ambient voltage is zero.

Yet we have sent data with error-correction!
A toy application

Suppose we wish to transmit information using amplitude modulation on electrical power lines.

Using an ordinary binary code has the disadvantage of introducing possibly long stretches of low (or high) voltage.

A permutation code enjoys the property that the sum of amplitudes on each codeword is a constant. So over a relatively short block of time, the average deviation from ambient voltage is zero.

Yet we have sent data with error-correction!
A toy application

Suppose we wish to transmit information using amplitude modulation on electrical power lines.

Using an ordinary binary code has the disadvantage of introducing possibly long stretches of low (or high) voltage.

A permutation code enjoys the property that the sum of amplitudes on each codeword is a constant. So over a relatively short block of time, the average deviation from ambient voltage is zero.

Yet we have sent data with error-correction!
A toy application

Suppose we wish to transmit information using amplitude modulation on electrical power lines.

Using an ordinary binary code has the disadvantage of introducing possibly long stretches of low (or high) voltage.

A permutation code enjoys the property that the sum of amplitudes on each codeword is a constant. So over a relatively short block of time, the average deviation from ambient voltage is zero.

Yet we have sent data with error-correction!
The question

Given n and d, how large can a permutation code be with these parameters?

The maximum is denoted $M(n, d)$; this is increasing in n and decreasing in d.

- finding a nice code gives a lower bound
- (linear) algebraic arguments offer upper bounds

Example. $M(n, 2) = n!$.
Example. $M(n, n) = n$.
The question

Given n and d, how large can a permutation code be with these parameters?

The maximum is denoted $M(n, d)$; this is increasing in n and decreasing in d.

- finding a nice code gives a lower bound
- (linear) algebraic arguments offer upper bounds

Example. $M(n, 2) = n!$.
Example. $M(n, n) = n$.
The question

Given \(n \) and \(d \), how large can a permutation code be with these parameters?

The maximum is denoted \(M(n, d) \); this is increasing in \(n \) and decreasing in \(d \).

- finding a nice code gives a lower bound
- (linear) algebraic arguments offer upper bounds

Example. \(M(n, 2) = n! \).

Example. \(M(n, n) = n \).
The question

Given n and d, how large can a permutation code be with these parameters?

The maximum is denoted $M(n, d)$; this is increasing in n and decreasing in d.

- finding a nice code gives a lower bound
- (linear) algebraic arguments offer upper bounds

Example. $M(n, 2) = n!$.
Example. $M(n, n) = n$.
Thealternating group A_n (or its coset) gives a maximum permutation code with $d = 3$.

Theorem

For $n \geq 3$, $M(n, 3) = n!/2$.

Proof sketch.

In the group A_n, the quotient of any two permutations is even, so can’t be a transposition. Therefore, $M(n, 3) \geq |A_n| = n!/2$. Conversely, if $|\Gamma| > n!/2$, there must exist two elements in Γ belonging to the same pigeonhole $\{\sigma, (12)\sigma\}$. This contradicts $d = 3$.

The alternating group

The alternating group A_n (or its coset) gives a maximum permutation code with $d = 3$.

Theorem

For $n \geq 3$, $M(n, 3) = n!/2$.

Proof sketch.

In the group A_n, the quotient of any two permutations is even, so can’t be a transposition. Therefore, $M(n, 3) \geq |A_n| = n!/2$.

Conversely, if $|\Gamma| > n!/2$, there must exist two elements in Γ belonging to the same pigeonhole $\{\sigma, (12)\sigma\}$. This contradicts $d = 3$. \qed
Recursive upper bound

Theorem

\[M(n, d) \leq n \ M(n - 1, d). \]

Proof sketch.

Take all codewords which begin with a common symbol, and delete that symbol. After relabelling, this is a permutation code of length \(n - 1 \) and minimum distance \(d \).

Corollary (Johnson bound)

\[M(n, d) \leq n(n - 1) \cdots (d + 1)d = n!/(d - 1)!. \]
Recursive upper bound

Theorem

\[M(n, d) \leq n M(n - 1, d). \]

Proof sketch.

Take all codewords which begin with a common symbol, and delete that symbol. After relabelling, this is a permutation code of length \(n - 1 \) and minimum distance \(d \).

Corollary (Johnson bound)

\[M(n, d) \leq n(n - 1) \cdots (d + 1)d = n!/(d - 1)!. \]
Recursive upper bound

Theorem

\[M(n, d) \leq n \, M(n - 1, d). \]

Proof sketch.

Take all codewords which begin with a common symbol, and delete that symbol. After relabelling, this is a permutation code of length \(n - 1 \) and minimum distance \(d \). □

Corollary (Johnson bound)

\[M(n, d) \leq n(n - 1) \cdots (d + 1)d = n!/(d - 1)!. \]
Sphere-packing upper bound

Theorem

\[M(n, d) \leq \frac{n!}{\sum_{k=0}^{\left\lfloor \frac{d-1}{2} \right\rfloor} \binom{n}{k} D_k} \]

Proof sketch.

The denominator counts the ball \(B \) of radius \(r = \frac{d-1}{2} \) in \(S_n \).

If \(\Gamma \subseteq S_n \) is a permutation code realizing \(M(n, d) \), then the balls of radius \(r \) centred at the codewords must be disjoint. That is,

\[|\Gamma| \cdot |B| \leq n!. \]
Sphere-packing upper bound

Theorem

\[M(n, d) \leq \frac{n!}{\sum_{k=0}^{\left\lfloor \frac{d-1}{2} \right\rfloor} \binom{n}{k} D_k} . \]

Proof sketch.

The denominator counts the ball \(B \) of radius \(r = \frac{d-1}{2} \) in \(S_n \). If \(\Gamma \subseteq S_n \) is a permutation code realizing \(M(n, d) \), then the balls of radius \(r \) centred at the codewords must be disjoint. That is,

\[|\Gamma| \cdot |B| \leq n! . \]
Constructions and lower bounds

- MOLS(n) lead to permutation codes of distance $n - 1$.
 (Colbourn, Kløve, Ling)

- Sharply k-transitive permutation groups lead to maximum permutation codes of distance $n - k + 1$.
 (Deza, Vanstone)

- Permutation polynomials of degree t can be used for distance $n - t$. (Chu)

- Probabilistic techniques have seen success for distance $n - n^{1-\theta}$. (Keevash, Ku)
Constructions and lower bounds

- **MOLS**(n) lead to permutation codes of distance \(n - 1 \).
 (Colbourn, Kløve, Ling)

- Sharply \(k \)-transitive permutation groups lead to maximum permutation codes of distance \(n - k + 1 \).
 (Deza, Vanstone)

- Permutation polynomials of degree \(t \) can be used for distance \(n - t \).
 (Chu)

- Probabilistic techniques have seen success for distance \(n - n^{1-\theta} \).
 (Keevash, Ku)
Constructions and lower bounds

- **MOLS(n)** lead to permutation codes of distance $n - 1$. (Colbourn, Kløve, Ling)
- **Sharply k-transitive permutation groups** lead to maximum permutation codes of distance $n - k + 1$. (Deza, Vanstone)
- Permutation polynomials of degree t can be used for distance $n - t$. (Chu)
- Probabilistic techniques have seen success for distance $n - n^{1-\theta}$. (Keevash, Ku)
Constructions and lower bounds

- **MOLS(n)** lead to permutation codes of distance \(n - 1 \). (Colbourn, Kløve, Ling)

- **Sharply \(k \)-transitive permutation groups** lead to maximum permutation codes of distance \(n - k + 1 \). (Deza, Vanstone)

- **Permutation polynomials** of degree \(t \) can be used for distance \(n - t \). (Chu)

- **Probabilistic techniques** have seen success for distance \(n - n^{1-\theta} \). (Keevash, Ku)
Constructions and lower bounds

- **MOLS**\((n) \) lead to permutation codes of distance \(n - 1 \). (Colbourn, Kløve, Ling)
- **Sharply** \(k \)-transitive permutation groups lead to maximum permutation codes of distance \(n - k + 1 \). (Deza, Vanstone)
- **Permutation polynomials** of degree \(t \) can be used for distance \(n - t \). (Chu)
- **Probabilistic techniques** have seen success for distance \(n - n^{1-\theta} \). (Keevash, Ku)
Other explicit constructions

- **Computer search**
 - Greedy selection of codewords, with modifications
 - Clique search, often assuming automorphisms
- **Partitioning and gluing**
- **Isometric embeddings** of some structure into S_n
MOLS construction

Record the list of row indices for each symbol in each square:

A: 1234, J: 2143, Q: 3412, K: 4321,
MOLS construction

Record the list of row indices for each symbol in each square:

\[A : 1234, \quad J : 2143, \quad Q : 3412, \quad K : 4321, \]
\[\spadesuit : 1423, \quad \heartsuit : 4132, \quad \diamondsuit : 3241, \quad \clubsuit : 2314. \]
MOLS construction

Record the list of row indices for each symbol in each square:
A: 1234, J: 2143, Q: 3412, K: 4321,
A challenging case: $d = 4$

Consider upper bounds on $M(n, 4)$.

Johnson bound: $n!/6$.

Sphere-packing bound: $n!$. This is bad because n is even.

Theorem

$M(n, 4) = (n - 1)!$

Proof idea.

Blob-packing: The blobs $A_\sigma = \{(1i)\sigma : 1 \leq i \leq n\}$, centred at codewords $\sigma \in \Gamma$, must be disjoint in any permutation code of distance 4. We have $|A_\sigma| = n$ for each σ, so $|\Gamma| \leq n!/n$. []
A challenging case: \(d = 4 \)

Consider upper bounds on \(M(n, 4) \).

Johnson bound: \(n!/6 \).

Sphere-packing bound: \(n! \). This is bad because \(n \) is even.

Theorem

\[M(n, 4) = (n - 1)! \]

Proof idea.

Blob-packing: The blobs \(A_\sigma = \{(1i)\sigma : 1 \leq i \leq n\} \), centred at codewords \(\sigma \in \Gamma \), must be disjoint in any permutation code of distance 4. We have \(|A_\sigma| = n \) for each \(\sigma \), so \(|\Gamma| \leq n!/n \).

A challenging case: \(d = 4 \)

Consider upper bounds on \(M(n, 4) \).

Johnson bound: \(n!/6 \).

Sphere-packing bound: \(n! \). This is bad because \(n \) is even.

Theorem

\[M(n, 4) = (n - 1)! \]

Proof idea.

Blob-packing: The blobs \(A_\sigma = \{(1i)\sigma : 1 \leq i \leq n\} \), centred at codewords \(\sigma \in \Gamma \), must be disjoint in any permutation code of distance 4. We have \(|A_\sigma| = n \) for each \(\sigma \), so \(|\Gamma| \leq n!/n \). \(\square \)
Association Schemes

A *k-class association scheme* on a set X is a list of binary relations R_0, \ldots, R_k on X satisfying

- R_0 is the identity
- the relations partition X^2, and
- a strong regularity condition

given x and y with $(x, y) \in R_h$, the number of $z \in X$ for which both $(x, z) \in R_i$ and $(z, y) \in R_j$ is a constant depending only on $h, i, j \in \{0, \ldots, k\}$.

These values p_{ij}^h are called the *structure constants*.
Association Schemes

A \textit{k-class association scheme} on a set X is a list of binary relations R_0, \ldots, R_k on X satisfying

- R_0 is the identity
- the relations partition X^2, and
- a strong regularity condition

Given x and y with $(x, y) \in R_h$, the number of $z \in X$ for which both $(x, z) \in R_i$ and $(z, y) \in R_j$ is a constant depending only on $h, i, j \in \{0, \ldots, k\}$. These values p_{ij}^h are called the \textit{structure constants}.
Association Schemes

A \textit{k-class association scheme} on a set X is a list of binary relations R_0, \ldots, R_k on X satisfying

- R_0 is the identity
- the relations partition X^2, and
- a strong regularity condition

\begin{tabular}{|l|}
\hline
\text{given } x \text{ and } y \text{ with } (x, y) \in R_h, \text{ the number of } \\
\text{z } \in X \text{ for which both } (x, z) \in R_i \text{ and } (z, y) \in R_j \text{ is } \\
a constant depending only on } h, i, j \in \{0, \ldots, k\}. \\
\hline
\end{tabular}

These values p_{ij}^h are called the \textit{structure constants}.
Example. Let $X = \{0, 1\}^n$, R_i be disagreement in i places.

This is the Hamming scheme.
The Conjugacy Scheme

The symmetric group defines an association scheme, called the *conjugacy scheme*, where $X = S_n$, relations are indexed by partitions of n, and $(\sigma, \tau) \in R_\mu$ if and only if $\sigma \tau^{-1}$ belongs to conjugacy class μ.

\[
p_{ij}^h = \frac{|C_i||C_j|}{n!} \sum_{\chi} \frac{\chi(\phi_i)\chi(\phi_j)\chi(\phi_h)}{\chi(id)}
\]
The Conjugacy Scheme

The symmetric group defines an association scheme, called the *conjugacy scheme*, where $X = S_n$, relations are indexed by partitions of n, and $(\sigma, \tau) \in R_\mu$ if and only if $\sigma \tau^{-1}$ belongs to conjugacy class μ.

\[
p^h_{ij} = \frac{|C_i||C_j|}{n!} \sum_{\chi} \frac{\chi(\phi_i)\chi(\phi_j)\chi(\phi_h)}{\chi(id)}
\]
Let \((X, \{R_i\})\) be a \(k\)-class association scheme.

For \(J \subset \{1, \ldots, k\}\), a \(J\)-clique is a subset \(W\) of \(X\) such that for any \(w_1, w_2 \in W\), \((w_1, w_2) \in R_j\) for some \(j \in J\).

In the conjugacy scheme, cliques model permutation codes.
Clique

Let \((X, \{R_i\})\) be a \(k\)-class association scheme.

For \(J \subset \{1, \ldots, k\}\), a **J-clique** is a subset \(W\) of \(X\) such that for any \(w_1, w_2 \in W\), \((w_1, w_2) \in R_j\) for some \(j \in J\).

In the conjugacy scheme, cliques model permutation codes.
Delsarte’s linear programming bound for J-cliques, specialized to permutation codes, is as follows.

\[
\text{maximize: } a_0 + a_1 + \cdots + a_{m-1} \\
\text{subject to: } \sum_{0 \leq i < m} a_i \chi_k(\phi_i) \geq 0 \quad \text{for } 0 \leq k < m, \\
a_0 = 1, \ a_i \geq 0, \quad \text{and} \\
a_i = 0 \quad \text{if } d_H(\text{id}, \phi_i) \notin D.
\]

Using this, one can obtain decent upper bounds on $M(n, d)$ for various small parameters, say up to $n = 15$.
Sharpened bound for distance four

Theorem (joint with N. Sawchuck)

If n is a square integer,

$$M(n, 4) \leq \frac{n!}{(n + 2)}.$$

The proof idea is to show

$$\chi(1) + 3\chi(2) + (n - 2)\chi(3) \geq 0$$

using ‘local optimization’ on integer partitions of n.
Sharpened bound for distance four

Theorem (joint with N. Sawchuck)

If n is a square integer,

$$M(n, 4) \leq \frac{n!}{(n + 2)}.$$

The proof idea is to show

$$\chi(1) + 3\chi(2) + (n - 2)\chi(3) \geq 0$$

using ‘local optimization’ on integer partitions of n.
Sharpened bound for distance four

Theorem (joint with N. Sawchuck)

If n is a square integer,

$$M(n, 4) \leq \frac{n!}{(n + 2)}.$$

The full bound is

$$\frac{n!}{M(n, 4)} \geq 1 + \frac{(n + 1)n(n - 1)}{n(n - 1) - (n - k^2)((k + 1)^2 - n)((k + 2)(k - 1) - n)}$$

for $k^2 \leq n \leq k^2 + k - 2$, which gives the best improvement for $n \approx k^2 + k/2$.
What can we construct with distance four

On the construction side, it is difficult to do much better than greedy for $d = 4$:

$$M(n, 4) \geq \frac{n!}{B_3} = \frac{n!}{1 + \binom{n}{2} + 2\binom{n}{3}}.$$

Can we shrink the gap between these bounds for $M(n, 4)$?
What can we construct with distance four

On the construction side, it is difficult to do much better than greedy for $d = 4$:

$$M(n, 4) \geq \frac{n!}{B_3} = \frac{n!}{1 + \binom{n}{2} + 2\binom{n}{3}}.$$

Can we shrink the gap between these bounds for $M(n, 4)$?
Open problems

- Find or improve bounds on the smallest undecided cases $M(7, 4)$ and $M(7, 5)$. All we know is $343 \leq M(7, 4) \leq 535$ and $77 \leq M(7, 5) \leq 134$.

- Obtain better constructions for $M(n, n-1)$ when n is not a prime power. For general n, we only have $M(n, n-1) \geq n^{1+1/14.8}$, coming from the lower bound on mutually orthogonal latin squares. Some improvements are possible for special values of n.

- Study codes constrained by prescribed distance sets, or (more generally) conjugacy classes. As a special case, one has “equidistant permutation arrays” in which any two distinct codewords have the same distance.

- Add to the growing body of work on other metrics on S_n, such as the Kendall-τ metric or Ulam metric.

- Further study generalizations in two directions: “constant composition codes” and “injection codes”.

- Find or improve bounds on the smallest undecided cases $M(7, 4)$ and $M(7, 5)$. All we know is $343 \leq M(7, 4) \leq 535$ and $77 \leq M(7, 5) \leq 134$.

- Obtain better constructions for $M(n, n-1)$ when n is not a prime power. For general n, we only have $M(n, n-1) \geq n^{1+1/14.8}$, coming from the lower bound on mutually orthogonal latin squares. Some improvements are possible for special values of n.
Open problems

- Find or improve bounds on the smallest undecided cases $M(7, 4)$ and $M(7, 5)$. All we know is $343 \leq M(7, 4) \leq 535$ and $77 \leq M(7, 5) \leq 134$.

- Obtain better constructions for $M(n, n-1)$ when n is not a prime power. For general n, we only have $M(n, n-1) \geq n^{1+1/14.8}$, coming from the lower bound on mutually orthogonal latin squares. Some improvements are possible for special values of n.

- Study codes constrained by prescribed distance sets, or (more generally) conjugacy classes. As a special case, one has “equidistant permutation arrays” in which any two distinct codewords have the same distance.

- Add to the growing body of work on other metrics on S_n, such as the Kendall-τ metric or Ulam metric.

- Further study generalizations in two directions: “constant composition codes” and “injection codes”.

References
Open problems

- Find or improve bounds on the smallest undecided cases $M(7, 4)$ and $M(7, 5)$. All we know is $343 \leq M(7, 4) \leq 535$ and $77 \leq M(7, 5) \leq 134$.

- Obtain better constructions for $M(n, n-1)$ when n is not a prime power. For general n, we only have $M(n, n-1) \geq n^{1+1/14.8}$, coming from the lower bound on mutually orthogonal latin squares. Some improvements are possible for special values of n.

- Study codes constrained by prescribed distance sets, or (more generally) conjugacy classes. As a special case, one has “equidistant permutation arrays” in which any two distinct codewords have the same distance.

- Add to the growing body of work on other metrics on S_n, such as the Kendall-τ metric or Ulam metric.

- Further study generalizations in two directions: “constant composition codes” and “injection codes”.
Open problems

- Find or improve bounds on the smallest undecided cases $M(7, 4)$ and $M(7, 5)$. All we know is $343 \leq M(7, 4) \leq 535$ and $77 \leq M(7, 5) \leq 134$.
- Obtain better constructions for $M(n, n - 1)$ when n is not a prime power. For general n, we only have $M(n, n - 1) \geq n^{1+1/14.8}$, coming from the lower bound on mutually orthogonal latin squares. Some improvements are possible for special values of n.
- Study codes constrained by prescribed distance sets, or (more generally) conjugacy classes. As a special case, one has “equidistant permutation arrays” in which any two distinct codewords have the same distance.
- Add to the growing body of work on other metrics on S_n, such as the Kendall-τ metric or Ulam metric.
- Further study generalizations in two directions: “constant composition codes” and “injection codes”.

▶ Find or improve bounds on the smallest undecided cases $M(7, 4)$ and $M(7, 5)$. All we know is $343 \leq M(7, 4) \leq 535$ and $77 \leq M(7, 5) \leq 134$.
▶ Obtain better constructions for $M(n, n - 1)$ when n is not a prime power. For general n, we only have $M(n, n - 1) \geq n^{1+1/14.8}$, coming from the lower bound on mutually orthogonal latin squares. Some improvements are possible for special values of n.
▶ Study codes constrained by prescribed distance sets, or (more generally) conjugacy classes. As a special case, one has “equidistant permutation arrays” in which any two distinct codewords have the same distance.
▶ Add to the growing body of work on other metrics on S_n, such as the Kendall-τ metric or Ulam metric.
▶ Further study generalizations in two directions: “constant composition codes” and “injection codes”.

References
Open problems

- Find or improve bounds on the smallest undecided cases $M(7,4)$ and $M(7,5)$. All we know is $343 \leq M(7,4) \leq 535$ and $77 \leq M(7,5) \leq 134$.

- Obtain better constructions for $M(n, n-1)$ when n is not a prime power. For general n, we only have $M(n, n-1) \geq n^{1+1/14.8}$, coming from the lower bound on mutually orthogonal latin squares. Some improvements are possible for special values of n.

- Study codes constrained by prescribed distance sets, or (more generally) conjugacy classes. As a special case, one has “equidistant permutation arrays” in which any two distinct codewords have the same distance.

- Add to the growing body of work on other metrics on S_n, such as the Kendall-τ metric or Ulam metric.

- Further study generalizations in two directions: “constant composition codes” and “injection codes”.

References
References

P.J. Dukes, Coding with injections, Designs Codes Cryptography (2012).

P.J. Dukes and N. Sawchuck, Bounds on permutation codes of distance four, J. Algebraic Combinatorics (2010).

- THE END -