UVic Mathematics Competition September 24, 2019

University of Victoria

- No calculators, books or notes are allowed.
- Write solutions in the booklets provided. Clearly separate rough work from solutions.
- All the necessary work to justify an answer and all the necessary steps of a proof must be shown clearly to obtain full credit.
- Partial credit will be given only for substantial progress toward a solution.
- Questions are of equal value.

Duration: 2 hours

Question 1. The polynomial $f(x)=x^{3}-3 x$ has a local maximum at $P=(-1,2)$ and a local minimum at $Q=(1,-2)$. From the graph of $f(x)$, create a new graph by first deleting the portion between P and Q, and then translating the two remaining pieces by $\overrightarrow{P O}$ and $\overrightarrow{Q O}$, so that they join together at the origin. Is the resulting graph that of a polynomial?

Question 2. Find an infinite sequence of sets $A_{1}, A_{2}, A_{3}, \ldots$ such that $\left|A_{n}\right|=n$ for any positive integer n and $\left|A_{m} \backslash A_{n}\right|=1$ for any positive integers $m<n$. (Here, $|A|$ denotes the cardinality of set A and $A \backslash B$ is the set of elements in A but not B.)

Question 3. Is it possible for a rectangle R to contain a rectangle R^{\prime} (with the edges of R and R^{\prime} not necessarily parallel) so that the perimeter of R^{\prime} exceeds that of R ?

Question 4. Suppose n points are placed randomly on a circle. Find the probability that the the convex polygon determined by the given points does not include the centre of the circle in its interior.

