UVIC MATHEMATICS COMPETITION 2022

- All necessary work to justify an answer and all the steps of a proof must be clearly shown to obtain full credit.
- Partial credit will only be awarded for substantial progress towards a solution.
- All questions are worth equal marks.

NO CALCULATORS, NOTES OR BOOKS ALLOWED

1) Show that there exist infinitely many natural numbers n such that the base 3 expansion of n has first and last digits 1 , and the base 5 expansion of n has first and last digits 2 .
2) For an integer n, write $\log ^{(n)}(x)$ for $\log (\log (\cdots \log (x)))$, where \log denotes the natural logarithm, and the logarithm is applied n times. For $x>0$ let $F(x)=x \log x \log (\log x) \cdots \log ^{n}(x)$ where n is the smallest integer such that $\log ^{(n)}(x)<e$.

Is the improper integral

$$
\int_{e}^{\infty} \frac{1}{F(x)} d x
$$

convergent or divergent?
3) Suppose that A and B are 2×2 real matrices such that $A B=B A$. Suppose that A has a non-real eigenvalue and B has a real eigenvalue. Show that B is a multiple of the identity.
4) Let $A B C$ be a triangle such that length of the side $B C$ is twice the length of the side $B A$. Let D be the midpoint of $B C$ and E be the midpoint of $B D$. Prove that the line $D A$ bisects the angle at A of the triangle $A E C$.

