1 (a) If \(S \) is a set of real numbers containing at least 8 elements, prove that there exist three distinct members \(a, b, c \) of \(S \) such that none of \(a + b, b + c, c + a \) is in \(S \).
(b) Find a set \(S \) of real numbers with 7 elements that does not satisfy the property in part (a)

2. For every positive integer \(n \), prove that there exists an \(n \)-digit positive integer all of whose digits are odd and which is divisible by \(5^n \).

3. Determine all strictly increasing functions \(f \) from the reals onto the reals such that \(f(x) + f^{-1}(x) = 2x \) for every real number \(x \), where \(f^{-1} \) is the function-composition inverse of \(f \), i.e. \(f^{-1}(f(x)) = f(f^{-1}(x)) = x \)

4. Find the minimum side length of a square containing 5 non-overlapping unit squares.