Go back to household.tex

<project-file type=“source”/> <content> @incollection{Brauer_2008,

	author = {F. Brauer},
	title = {Compartmental models in Epidemiology},
	booktitle = {Mathematical Epidemiology},
	editor = {F. Brauer and P. van den Driessche and J. Wu},
	publisher = {Springer},
	year = {2008}

}

@article{Newman_PRE2002,

	author = {Newman, M. E. J.},
	title = {Spread of epidemic disease on networks},
	journal = {Phys. Rev. E},
	volume = {66},
	pages = {016128},
	year = {2002}

}

@article{PSV_2001a,

author = {Pastor-Satorras, R. and Vespignani, A.},
year = {2001},
title = {Epidemic dynamics and endemic states in complex networks},
journal = {Phys. Rev. E},
volume = {63},
pages = {066117}

}

@article{PSV_2001b,

author = {Pastor-Satorras, R. and Vespignani, A.},
year = {2001},
title = {Epidemic spreading in scale-free networks},
journal = {Phys. Rev. Lett.},
volume = {86},
pages = {3200--3203}

}

@article{PSV_2002,

author = {Pastor-Satorras, R. and Vespignani, A.},
year = {2002},
title = {Epidemic dynamics in finite size scale-free networks},
journal = {Phys. Rev. E.},
volume = {65},
pages = {035108R}

}

@article{Ball_1983,

author = {Ball, F.},
year = {1983},
title = {The threshold behavior of epidemic models},
journal = {J. Appl. Probab.},
volume = {20},
pages = {227--241}

}

@article{Neal_2007,

author = {Neal, P.},
year = {2007},
title = {Coupling of two {SIR} epidemic models with variable susceptibility and infectivity},
journal = {J. Appl. Probab.},
volume = {44},
pages = {41--57}

}

@article{BallNeal_2008,

author = {Ball, F. and Neal, P.},
year = {2008},
title = {Network epidemic models with two levels of mixing},
journal = {Math. Biosci.},
volume = {212},
pages = {69--87}

}

@article{Volz_JMB56,

author = {E. Volz},
title = {{SIR} dynamics in random networks with heterogeneous connectivity},
journal = {J. Math. Biol.},
pages = {293--310},
year = {2008}

}

@article{Miller_note,

author = {J. C. Miller},
title = {A note on a paper by {E}rik {V}olz: {SIR} dynamics in random networks},
journal = {J. Math. Biol.},
DOI = {10.1007/s00285-010-0337-9},
year = {2010}

}

@article{LMDW_JMB2010,

 	author = {J. Lindquist and J. Ma and P. van den Driessche and F. H. Willeboorsde},
 	title = {Effective degree network disease models},
 	journal = {J. Math. Biol.},
 	volume = {62},
 	pages = {143--164},
 	year = {2010}

}

@article{Erdos-Renyi_1959,

author = {P. Erd\H{o}s and A. R\'enyi},
title = {On random graphs {I}},
journal = {Publicationes Mathematicae},
olume = {6},
pages = {290--297},
year = {1959}

}

@article{Nichols_2011,

title = "Household size is critical to varicella-zoster virus transmission in the tropics despite lower viral infectivity",
journal = "Epidemics",
volume = "3",
number = "1",
pages = "12--18",
year = "2011",
doi = "DOI: 10.1016/j.epidem.2010.11.003",
url = "http://www.sciencedirect.com/science/article/B8JHV-51N22J4-1/2/b615fa293cc55397a13efaff14570776",
author = "R. A. Nichols and K. T. Averbeck and A. G. Poulsen and M. M. al Bassam and F. Cabral et al.",

}

@article{MDW_2011,

author = {J. Ma and P. van den Driessche and F. H. Willeboorsde},
title = {The importance of network topology on vaccination strategies},
journal = {preprint},
year = {2010}

}

@article{Bansal_Interface2007,

author = {S. Bansal and B. T. Grenfell and L. A. Meyers},
title = {When individual behaviour matters: homogeneous and network models in epidemiology},
journal = {J. R. Soc. Interface},
volume = {4},
pages = {879--891},
year = {2007}

}

@book{Keeling-Rohani_Book,

author = {M. J. Keeling and P. Rohani},
title = {Modeling Infectious Diseases in Humans and Animals},
publisher = {Princeton University Press},
year = {2008}

}

@article{MPNSB_JTB_2005,

author = {L. A. Meyers and B. Pourbohloul and M. E. J. Newman and D. M. Skowronski and R. C. Brunham},
title = {Network theory and {SARS}: predicting outbreak diversity},
journal = {J. Theor. Biol.},
volume = {232},
pages = {71--81},
year = {2005}

}

@article{DPMMME_2009,

author = {B. Davoudi and B. Pourbohloul and J. C. Miller and R. Meza and L. A. Meyers and D. J. D. Earn},
title = {Early real-time estimation of infectious disease reproduction number},
 	journal = {preprint},
 	pages = {arXiv:0905.0728v2},
 	year = {2009}

}

@article{Miller-Hyman_2007,

author = {J. C. Miller and J. M. Hyman},
title = {Effective vaccination strategies for realistic social networks},
journal = {Physica A},
volume = {386},
pages = {780--785},
year = {2007}

}

@article{Kiss-Interface_2006,

author = {I. Z. Kiss and D. M. Green and R. R. Kao},
title = {Infectious disease control using contact tracing in random and scale-free networks}, 
journal = {J. R. Soc. Interface},
volume = {3},
pages = {55--62},
year = {2006}

}

@article{Shaban-EtAl_2008,

 	author = {N. Shaban and M. Andersson and A. Svensson and T. Britton},
 	title = {Networks, epidemics and vaccination through contact tracing},
 	journal = {Math. Biosci.},
 	volume = {216},
 	pages = {1-8},
 	year = {2008}

}

@article{Albert_RevModPhys-74,

author = {R. Albert and A. L. Barab\'asi},
  title = {Statistical mechanics of complex networks},
  journal = {Rev. Mod. Phys.},
  volume = {74},
  pages = {47-97},
  year = {2002}

}

@article{Willeboordse_PRL-96,

  author = {F. H. Willeboordse}, 
  title = {Dynamical advantages of scale-free networks},
  journal = {Phys. Rev. Lett.},
  volume = {96},
  pages = {018702},
  year = {2006}

}

@article{Watts-Strogatz_Nature-393,

author = {D. J. Watts and S. H. Strogatz},
title = {Collective dynamics of `small-world' networks},
  journal = {Nature},
  volume = {393},
  pages = {440-442},
  year = {1998}

}

@article{DHM_JMB1990,

author = {O. Diekmann and J. A. P. Heesterbeek and J. A. J. Metz},
title = {On the definition and the computation of the basic reproduction ratio {$R_0$} in models for infectious diseases in heterogeneous populations},
journal = {J. Math. Biol.},
volume = {28},
year = {1990},
pages = {365–382}

}

@article{DW_MB2002,

Author = {P. van den Driessche and J. Watmough},
Date-Added = {2009-11-06 01:55:42 -0800},
Date-Modified = {2009-11-06 01:56:20 -0800},
Journal = {Math. Biosci.},
Pages = {29--48},
Title = {Reproduction numbers and subthreshold endemic equilibria of compartmental models for disease transmission},
Volume = {180},
Year = {2002}

}

@article{DHR_JRSI2009,

title = {The construction of next-generation matrices for compartmental epidemic models},
author = {O. Diekmann and J. A. P. Heesterbeek and M. G. Roberts},
journal = {J. R. Soc. Interface},
year = {2010},
volume = {7}, 
pages = {873-885}

}

@article{Newman_PRL2009,

journal = {Physical Review Letters},
volume = {103},
pages = {058701},
year = {2009},
title = {Random Graphs with Clustering},
author = {M. E. J. Newman}

}

@article{Volz_2010,

title = {Dynamics of infectious disease in clustered networks with arbitrary degree distributions},
author = {E. M. Volz},
year = {2010},
journal = {Preprint},
pages = {arXiv:1006.0970v1}

}

@article{Miller_PRE2009,

journal = {Physical Review E},
volume = {80},
pages = {020901R},
year = {2009},
title = {Percolation and epidemics in random clustered networks},
author = {J. C. Miller}

}

@article{VMGM_PCB2011,

  author = {Volz, E. M. AND Miller, J. C. AND Galvani, A. AND Meyers, L. A.},
  journal = {PLoS Comput Biol},
  publisher = {Public Library of Science},
  title = {Effects of Heterogeneous and Clustered Contact Patterns on Infectious Disease Dynamics},
  year = {2011},
  month = {06},
  volume = {7},
  url = {http://dx.doi.org/10.1371%2Fjournal.pcbi.1002042},
  pages = {e1002042},
  abstract = {
      <title>Author Summary</title>
      <p>The transmission dynamics of infectious diseases are sensitive to the patterns of interactions among susceptible and infectious individuals. Human social contacts are known to be highly heterogeneous (the number of social contacts ranges from few to very many) and to be highly clustered (the social contacts of a single individual tend also to contact each other). To predict the impacts of these patterns on infectious disease transmission, epidemiologists have begun to use random network models, in which nodes represent susceptible, infectious, or recovered individuals and links represent contacts sufficient for disease transmission. This paper introduces a versatile mathematical model that takes both heterogeneous connectivity and clustering into account and uses it to quantify the relative impact of clustered contacts on epidemics and the prediction biases that can arise when clustering and variability in infectious periods are ignored.</p>
    },
  number = {6},
  doi = {10.1371/journal.pcbi.1002042}

}

</content>