Ramsey Games: Avoiding Triangles in Graphs

Jane Butterfield
University of Minnesota - Twin Cities

MathPath 2013

Ramsey theory

Ramsey theory

Alexander Ramsey, first Governor of the Minnesota

Territory

Ramsey theory

The Wrong Ramsey

Alexander Ramsey, first Governor of the Minnesota

Territory

Ramsey theory

The Wrong Ramsey

Alexander Ramsey, first Governor of the Minnesota

Territory

The Right Ramsey

Frank Plumpton Ramsey

Ramsey theory

The Right Ramsey

"How big does something have to be for some thing I'm looking for to show up inside it?"

Frank Plumpton Ramsey

Ramsey theory

The Right Ramsey

"How big does something have to be for some thing I'm looking for to show up inside it?"

Not-much-fun fact: Ramsey died at the age of 26 from complications after an abdominal operation to treat his jaundice.

Frank Plumpton Ramsey

What's the Pattern?

1, 2, 3
$1,4,7,10,13$
$2,6,10,14$

What's the Pattern?

1, 2, 3
$1,4,7,10,13$
$2,6,10,14$
These are called Arithmetic Progressions.

What's the Pattern?

$1,2,3$
$1,4,7,10,13$
$2,6,10,14$
These are called Arithmetic Progressions.
Just to be formal:

Definition

An Arithmetic Progression of length k (called k-AP for short) is a sequence of k numbers such that the difference between any consecutive numbers is constant.

Avoiding Arithmetic Progressions

... to the document camera!

Bartel Leendert van der Waerden

Bartel Leendert van der Waerden

Bartel Leendert van der Waerden

- Dutch (1903-1996)

Bartel Leendert van der Waerden

- Dutch (1903-1996)
- Studied at University of

Amsterdam and the University
of Göttingen (1919-1926)

Bartel Leendert van der Waerden

- Dutch (1903-1996)
- Studied at University of

Amsterdam and the University
of Göttingen (1919-1926)

- Remained in Leipzig during WWII (although Princeton would have taken him). Critical
of Nazis and refused to give up
Dutch nationality.

Bartel Leendert van der Waerden

- Dutch (1903-1996)
- Studied at University of

Amsterdam and the University
of Göttingen (1919-1926)

- Remained in Leipzig during WWII (although Princeton would have taken him). Critical of Nazis and refused to give up Dutch nationality.
- After WWII, repatriated to the Netherlands.

Bartel Leendert van der Waerden

- Dutch (1903-1996)
- Studied at University of Amsterdam and the University of Göttingen (1919-1926)
- Remained in Leipzig during WWII (although Princeton would have taken him). Critical of Nazis and refused to give up Dutch nationality.
- After WWII, repatriated to the Netherlands.

In 1927, proved "Van der Waerden's Theorem"

Bartel Leendert van der Waerden

- Dutch (1903-1996)
- Studied at University of Amsterdam and the University of Göttingen (1919-1926)
- Remained in Leipzig during WWII (although Princeton would have taken him). Critical of Nazis and refused to give up Dutch nationality.
- After WWII, repatriated to the
 Netherlands.

Van der Waerden's Theorem

What has he got to do with Arithmetic Progressions?

Theorem

For any natural number k there exists some number n large enough that any r-coloring of the integers $1,2, \ldots, n$ must contain either a red k-AP or a blue $k-A P$.

Van der Waerden's Theorem

What has he got to do with Arithmetic Progressions?

Theorem

For any natural number k there exists some number n large enough that any r-coloring of the integers $1,2, \ldots, n$ must contain either a red k-AP or a blue $k-A P$.

Van der Waerden's Theorem

What has he got to do with Arithmetic Progressions?

Theorem

For any natural number k there exists some number n large enough that any r-coloring of the integers $1,2, \ldots, n$ must contain either a red k-AP or a blue $k-A P$.

For $k=3$ and $r=2$, it turns out that 9 is big enough.

Van der Waerden Numbers

Just for fun...

	3	4	5	6	7
2 colors	9	35	178	1,132	
3 colors	27	293			
4 colors	76				
5 colors					
6 colors					

Van der Waerden Numbers

Just for fun...

	3	4	5	6	7
2 colors	9	35	178	1,132	$>3,703$
3 colors	27	293	$>2,173$	$>11,191$	$>48,811$
4 colors	76	$>1,048$	$>17,705$	$>91,331$	$>420,217$
5 colors	>170	$>2,254$	$>98,740$	$>540,035$	
6 colors	>223	$>9,778$	$>98,748$	$>816,981$	

Van der Waerden Numbers

Just for fun...

	3	4	5	6	7
2 colors	9	35	178	1,132	$>3,703$
3 colors	27	293	$>2,173$	$>11,191$	$>48,811$
4 colors	76	$>1,048$	$>17,705$	$>91,331$	$>420,217$
5 colors	>170	$>2,254$	$>98,740$	$>540,035$	
6 colors	>223	$>9,778$	$>98,748$	$>816,981$	

Lunchtime challenge: can you 3 -color the numbers $1,2, \ldots, 26$ without making a monochromatic 3-AP?

If you like prime numbers...

Theorem

Green and Tao proved in 2004 that the sequence of prime numbers contains a k-AP for any k.

If you like prime numbers...

Theorem

Green and Tao proved in 2004 that the sequence of prime numbers contains a k-AP for any k.

However, we haven't found them. Some examples:

If you like prime numbers...

Theorem

Green and Tao proved in 2004 that the sequence of prime numbers contains a k-AP for any k.

However, we haven't found them. Some examples:
1,2, 3
1,3,5,7

If you like prime numbers...

Theorem

Green and Tao proved in 2004 that the sequence of prime numbers contains a k-AP for any k.

However, we haven't found them. Some examples:
1,2, 3
1,3,5,7
Dinnertime challenge: what is the longest arithmetic progression of prime numbers you can find?
Here is the longest one currently known:
$43,142,746,595,714,191+23,681,770 \cdot 223,092,870 \cdot n$, for $n=0$ to 25 .

Where are the graph games?

So much for Arithmetic Progressions.

Where are the graph games?

So much for Arithmetic Progressions.
What happens when a mathematician reads chemistry papers?

A crash course in Graph Theory

A crash course in Graph Theory

James Joseph Sylvester

A crash course in Graph Theory

James Joseph Sylvester

A crash course in Graph Theory

- A graph G is a set of vertices $V(G)$ and a collection of edges $E(G)$, where each edge contains two vertices.

James Joseph Sylvester

A crash course in Graph Theory

- A graph G is a set of vertices $V(G)$ and a collection of edges $E(G)$, where each edge contains two vertices.
- The degree, $d(v)$, of a vertex is the number of edges containing it.

A crash course in Graph Theory

- A graph G is a set of vertices $V(G)$ and a collection of edges $E(G)$, where each edge contains two vertices.
- The degree, $d(v)$, of a vertex is the number of edges containing it.
- The max degree of $G, \Delta(G)$, is $\max \{d(v): v \in V(G)\}$.

James Joseph Sylvester

Some important graphs

Some important graphs

- The complete graph, K_{ℓ}, has ℓ vertices, and every two vertices form an edge.

Some important graphs

K_{6}

C_{6}

- The complete graph, K_{ℓ}, has ℓ vertices, and every two vertices form an edge.
- The cycle, C_{ℓ}, has vertices v_{1}, \ldots, v_{ℓ}, and $v_{i} v_{j}$ is an edge iff $|i-j|=1(\bmod \ell)$.

Ramsey + Sylvester = . . .

Graph Ramsey Theory.
Challenges: (back to the document camera)

Graph Ramsey Games

Let's color edges instead of vertices this time.

- Game 1: I will give you a graph and you have to color the edges to avoid a triangle.

Graph Ramsey Games

Let's color edges instead of vertices this time.

- Game 1: I will give you a graph and you have to color the edges to avoid a triangle.
- Game 2: Same as Game 1, but the graph's maximum degree will be at most 4 .

Graph Ramsey Games

Let's color edges instead of vertices this time.

- Game 1: I will give you a graph and you have to color the edges to avoid a triangle.
- Game 2: Same as Game 1, but the graph's maximum degree will be at most 4 .
- Game 3: Same as Game 2, but I will give you the edges one at a time.

Graph Ramsey Games

Let's color edges instead of vertices this time.

- Game 1: I will give you a graph and you have to color the edges to avoid a triangle.
- Game 2: Same as Game 1, but the graph's maximum degree will be at most 4 .
- Game 3: Same as Game 2, but I will give you the edges one at a time.

Which game would you rather play? Why?

Game 1

You should not play this game! Ramsey says:

Theorem

There is some integer n such that any 2 -edge-coloring of K_{n} results in a monochromatic triangle.

Game 1

You should not play this game! Ramsey says:

Theorem

There is some integer n such that any 2 -edge-coloring of K_{n} results in a monochromatic triangle.

In fact, a similar statement is true no matter what graph we are trying to avoid and how many colors we get to use.

Game 2 vs Game 3

- Game 2: Same as Game 1, but the graph's maximum degree will be at most 4 .

Game 2 vs Game 3

- Game 2: Same as Game 1, but the graph's maximum degree will be at most 4 .
- Game 3: Same as Game 2, but I will give you the edges one at a time.

Game 2 vs Game 3

- Game 2: Same as Game 1, but the graph's maximum degree will be at most 4 .
- Game 3: Same as Game 2, but I will give you the edges one at a time.

I have a lot more power in Game 3! Let's play... (to the document camera!)

What if aliens invaded earth?

I can win Game 1, but how? The truth is, we aren't sure!

What if aliens invaded earth?

I can win Game 1, but how? The truth is, we aren't sure!
$R(k)$: the smallest n such that any 2 -coloring of the edges of K_{n} produces a monochromatic copy of K_{k}.

What if aliens invaded earth?

I can win Game 1, but how? The truth is, we aren't sure!
$R(k)$: the smallest n such that any 2 -coloring of the edges of K_{n} produces a monochromatic copy of K_{k}.

We know $R(1)$ and $R(2)$ (homework!) and $R(3)$ (harder; bonus homework!)

What if aliens invaded earth?

I can win Game 1, but how? The truth is, we aren't sure!
$R(k)$: the smallest n such that any 2 -coloring of the edges of K_{n} produces a monochromatic copy of K_{k}.

We know $R(1)$ and $R(2)$ (homework!) and $R(3)$ (harder; bonus homework!)
$R(4)=18$

What if aliens invaded earth?

I can win Game 1, but how? The truth is, we aren't sure!
$R(k)$: the smallest n such that any 2 -coloring of the edges of K_{n} produces a monochromatic copy of K_{k}.

We know $R(1)$ and $R(2)$ (homework!) and $R(3)$ (harder; bonus homework!)
$R(4)=18$
After that, it gets hard. Erdős explained just how hard:

What if aliens invaded earth?

I can win Game 1, but how? The truth is, we aren't sure!
$R(k)$: the smallest n such that any 2 -coloring of the edges of K_{n} produces a monochromatic copy of K_{k}.

We know $R(1)$ and $R(2)$ (homework!) and $R(3)$ (harder; bonus homework!)
$R(4)=18$
After that, it gets hard. Erdős explained just how hard:
$R(5)$ is somewhere between 43 and 49.

What if aliens invaded earth?

I can win Game 1, but how? The truth is, we aren't sure!
$R(k)$: the smallest n such that any 2 -coloring of the edges of K_{n} produces a monochromatic copy of K_{k}.

We know $R(1)$ and $R(2)$ (homework!) and $R(3)$ (harder; bonus homework!)
$R(4)=18$
After that, it gets hard. Erdős explained just how hard:
$R(5)$ is somewhere between 43 and 49.
$R(6)$ is somewhere between 102 and 165

What if aliens invaded earth?

I can win Game 1, but how? The truth is, we aren't sure!
$R(k)$: the smallest n such that any 2 -coloring of the edges of K_{n} produces a monochromatic copy of K_{k}.

We know $R(1)$ and $R(2)$ (homework!) and $R(3)$ (harder; bonus homework!)
$R(4)=18$
After that, it gets hard. Erdős explained just how hard:
$R(5)$ is somewhere between 43 and 49 . Worth spending the world's supercomputer power on, if aliens invade!
$R(6)$ is somewhere between 102 and 165

What if aliens invaded earth?

I can win Game 1, but how? The truth is, we aren't sure!
$R(k)$: the smallest n such that any 2 -coloring of the edges of K_{n} produces a monochromatic copy of K_{k}.

We know $R(1)$ and $R(2)$ (homework!) and $R(3)$ (harder; bonus homework!)
$R(4)=18$
After that, it gets hard. Erdős explained just how hard:
$R(5)$ is somewhere between 43 and 49 . Worth spending the world's supercomputer power on, if aliens invade!
$R(6)$ is somewhere between 102 and 165 We would have better luck trying to destroy the aliens!

Many variations

- What if we want to avoid one graph in red and a different graph in blue?

Many variations

- What if we want to avoid one graph in red and a different graph in blue?
- What if I promise to stay in some other family of graphs (instead of max-degree-4 graphs)?

Many variations

- What if we want to avoid one graph in red and a different graph in blue?
- What if I promise to stay in some other family of graphs (instead of max-degree-4 graphs)?
- What if I am replaced by a random opponent?

Do you want to know more?

Breakout: Graph Ramsey Games, Week 4

