József Balogh Jane Butterfield Ping Hu
 John $\rm Lenz^1$ Dhruv Mubayi¹

University of Illinois at Urbana-Champaign

October 16, 2011

¹University of Illinois at Chicago

Jane Butterfield (UIUC)

Chromatic Thresholds

• An *r*-uniform hypergraph with vertex set V: collection of *r*-sets from [n], called edges.

- An *r*-uniform hypergraph with vertex set V: collection of *r*-sets from [n], called edges.
- Chromatic number of a hypergraph H: the least number of colors needed to color the vertices of H so that no edge is monochromatic.

- An *r*-uniform hypergraph with vertex set V: collection of *r*-sets from [n], called edges.
- Chromatic number of a hypergraph H: the least number of colors needed to color the vertices of H so that no edge is monochromatic.

- An r-uniform hypergraph with vertex set V: collection of r-sets from [n], called edges.
- Chromatic number of a hypergraph H: the least number of colors needed to color the vertices of H so that no edge is monochromatic.

Definition (Chromatic Threshold)

Definition (Chromatic Threshold)

Definition (Chromatic Threshold)

Definition (Chromatic Threshold)

Definition (Chromatic Threshold)

Definition (Chromatic Threshold)

Definition (Chromatic Threshold)

Definition (Chromatic Threshold)

Let \mathcal{F} be a family of *r*-uniform hypergraphs. The chromatic threshold of \mathcal{F} is the infimum of the values $c \geq 0$ such that the subfamily of \mathcal{F} consisting of hypergraphs H with minimum degree at least $c\binom{|V(H)|}{r-1}$ has bounded chromatic number.

• Originally motivated by a question of Erdős and Simonovits in 1973:

Definition (Chromatic Threshold)

Let \mathcal{F} be a family of *r*-uniform hypergraphs. The chromatic threshold of \mathcal{F} is the infimum of the values $c \geq 0$ such that the subfamily of \mathcal{F} consisting of hypergraphs H with minimum degree at least $c\binom{|V(H)|}{r-1}$ has bounded chromatic number.

Originally motivated by a question of Erdős and Simonovits in 1973:
"If G is non-bipartite, what bound on δ(G) forces G to contain a triangle?"

Definition (Chromatic Threshold)

Let \mathcal{F} be a family of *r*-uniform hypergraphs. The chromatic threshold of \mathcal{F} is the infimum of the values $c \geq 0$ such that the subfamily of \mathcal{F} consisting of hypergraphs H with minimum degree at least $c\binom{|V(H)|}{r-1}$ has bounded chromatic number.

• Originally motivated by a question of Erdős and Simonovits in 1973:

"If G is non-bipartite, what bound on $\delta(G)$ forces G to contain a triangle?"

• Andrásfai, Erdős, and Sós: the answer is $\frac{2}{5}|V(G)|$, achieved by the blowup of C_5 .

Definition (Chromatic Threshold)

Let \mathcal{F} be a family of *r*-uniform hypergraphs. The chromatic threshold of \mathcal{F} is the infimum of the values $c \geq 0$ such that the subfamily of \mathcal{F} consisting of hypergraphs H with minimum degree at least $c\binom{|V(H)|}{r-1}$ has bounded chromatic number.

• Originally motivated by a question of Erdős and Simonovits in 1973:

"If G is non-bipartite, what bound on $\delta(G)$ forces G to contain a triangle?"

- Andrásfai, Erdős, and Sós: the answer is $\frac{2}{5}|V(G)|$, achieved by the blowup of C_5 .
- For an r-uniform hypergraph F, let $\mathcal{P}(n, F)$ be the family of r-uniform hypergraphs on n vertices that do not contain F. Let $ex(n, F) = \max\{|E(G)| : G \in \mathcal{P}(n, F)\}.$

• Suppose G is a graph on n vertices. If $\delta(G) > 2ex(n, F)/n$ then $2|E(G)| \ge \delta(G)|V(G)| > 2ex(n, F) \Rightarrow |E(G)| > ex(n, F),$

and so G contains a copy of F.

• Suppose G is a graph on n vertices. If $\delta(G) > 2ex(n, F)/n$ then $2|E(G)| \ge \delta(G)|V(G)| > 2ex(n, F) \Rightarrow |E(G)| > ex(n, F),$

and so G contains a copy of F.

• Therefore if $c = \frac{ex(n,F)}{n^2/2}$ then the Chromatic Threshold of $\mathcal{P}(n,F)$ is at most c.

• Suppose G is a graph on n vertices. If $\delta(G) > 2ex(n, F)/n$ then $2|E(G)| \ge \delta(G)|V(G)| > 2ex(n, F) \Rightarrow |E(G)| > ex(n, F),$

and so G contains a copy of F.

• Therefore if $c = \frac{ex(n,F)}{n^2/2}$ then the Chromatic Threshold of $\mathcal{P}(n,F)$ is at most c.

Theorem (Allen, Böttcher, Griffiths, Kohayakawa, Morris(2011+))

If G is a graph with chromatic number $r \geq 3$, then the chromatic threshold of $\mathcal{P}(n,G)$ is one of

$$\left(1-\frac{1}{r-2}\right), \quad \left(1-\frac{1}{r-1.5}\right), \quad \left(1-\frac{1}{r-1}\right).$$

• Suppose G is a graph on n vertices. If $\delta(G) > 2ex(n, F)/n$ then $2|E(G)| \ge \delta(G)|V(G)| > 2ex(n, F) \Rightarrow |E(G)| > ex(n, F),$

and so G contains a copy of F.

• Therefore if $c = \frac{ex(n,F)}{n^2/2}$ then the Chromatic Threshold of $\mathcal{P}(n,F)$ is at most c.

Theorem (Allen, Böttcher, Griffiths, Kohayakawa, Morris(2011+))

If G is a graph with chromatic number $r \geq 3$, then the chromatic threshold of $\mathcal{P}(n,G)$ is one of

$$\left(1-\frac{1}{r-2}\right), \quad \left(1-\frac{1}{r-1.5}\right), \quad \left(1-\frac{1}{r-1}\right).$$

Similar bound holds for hypergraphs, too...

Suppose F is an r-uniform hypergraph. If ex(n, F) is known, then there is an easy upper bound for the chromatic threshold of $\mathcal{P}(n, F)$.

Suppose F is an r-uniform hypergraph. If ex(n, F) is known, then there is an easy upper bound for the chromatic threshold of $\mathcal{P}(n, F)$. If there is a family \mathcal{H} of hypergraphs from $\mathcal{P}(n, F)$ such that

Suppose F is an r-uniform hypergraph. If ex(n, F) is known, then there is an easy upper bound for the chromatic threshold of $\mathcal{P}(n, F)$. If there is a family \mathcal{H} of hypergraphs from $\mathcal{P}(n, F)$ such that

• $\delta(H) > c\binom{n}{r-1}$ for each $H \in \mathcal{H}$, and

Suppose F is an r-uniform hypergraph. If ex(n, F) is known, then there is an easy upper bound for the chromatic threshold of $\mathcal{P}(n, F)$. If there is a family \mathcal{H} of hypergraphs from $\mathcal{P}(n, F)$ such that

- $\delta(H) > c\binom{n}{r-1}$ for each $H \in \mathcal{H}$, and
- for each $t \in \mathbb{N}$ there exists $H_t \in \mathcal{H}$ such that $\chi(H) \ge t$

Suppose F is an r-uniform hypergraph. If ex(n, F) is known, then there is an easy upper bound for the chromatic threshold of $\mathcal{P}(n, F)$. If there is a family \mathcal{H} of hypergraphs from $\mathcal{P}(n, F)$ such that

- $\delta(H) > c\binom{n}{r-1}$ for each $H \in \mathcal{H}$, and
- for each $t \in \mathbb{N}$ there exists $H_t \in \mathcal{H}$ such that $\chi(H) \ge t$

then the chromatic threshold of $\mathcal{P}(n, F)$ is at least c.

Suppose F is an r-uniform hypergraph. If ex(n, F) is known, then there is an easy upper bound for the chromatic threshold of $\mathcal{P}(n, F)$. If there is a family \mathcal{H} of hypergraphs from $\mathcal{P}(n, F)$ such that

- $\delta(H) > c\binom{n}{r-1}$ for each $H \in \mathcal{H}$, and
- for each $t \in \mathbb{N}$ there exists $H_t \in \mathcal{H}$ such that $\chi(H) \ge t$

then the chromatic threshold of $\mathcal{P}(n, F)$ is at least c.

Suppose F is an r-uniform hypergraph. If ex(n, F) is known, then there is an easy upper bound for the chromatic threshold of $\mathcal{P}(n, F)$. If there is a family \mathcal{H} of hypergraphs from $\mathcal{P}(n, F)$ such that

- $\delta(H) > c\binom{n}{r-1}$ for each $H \in \mathcal{H}$, and
- for each $t \in \mathbb{N}$ there exists $H_t \in \mathcal{H}$ such that $\chi(H) \ge t$

then the chromatic threshold of $\mathcal{P}(n, F)$ is at least c.

• No subgraph isomorphic to F_5 ,

- No subgraph isomorphic to F_5 ,
- minimum degree at least $(1-\epsilon)\frac{6}{49}\binom{|V(H)|}{2}$ for large |V(H)|,

- No subgraph isomorphic to F_5 ,
- minimum degree at least $(1-\epsilon)\frac{6}{49}\binom{|V(H)|}{2}$ for large |V(H)|,
- chromatic number at least t.

Theorem

The chromatic threshold of the hypergraph family $\mathcal{P}(n, F_5)$ is at least 6/49.

Theorem

The chromatic threshold of the hypergraph family $\mathcal{P}(n, F_5)$ is at least 6/49.

Theorem

The chromatic threshold of the hypergraph family $\mathcal{P}(n, F_5)$ is at most $(\sqrt{41}-5)/8 \approx 7/40$.

Theorem

The chromatic threshold of the hypergraph family $\mathcal{P}(n, F_5)$ is at least 6/49.

Theorem

The chromatic threshold of the hypergraph family $\mathcal{P}(n, F_5)$ is at most $(\sqrt{41}-5)/8 \approx 7/40$.

Proof of upper bound uses VC-type dimension...

Theorem

The chromatic threshold of the hypergraph family $\mathcal{P}(n, F_5)$ is at least 6/49.

Theorem

The chromatic threshold of the hypergraph family $\mathcal{P}(n, F_5)$ is at most $(\sqrt{41}-5)/8 \approx 7/40$.

Proof of upper bound uses VC-type dimension... hold that thought.

More constructions

Other constructions use a generalized Kneser graph:

Definition

 $\operatorname{KN}_{s}^{r}(n,k)$ is the *r*-uniform hypergraph with vertex set $\binom{[n]}{k}$ in which *r* vertices F_{1}, \ldots, F_{r} form an edge if and only if no element of [n] is contained in F_{i} for more than *s* distinct *i*. Note that the Kneser hypergraph $\operatorname{KN}^{r}(n,k)$ is $\operatorname{KN}_{1}^{r}(n,k)$.

More constructions

Other constructions use a generalized Kneser graph:

Definition

 $\operatorname{KN}_{s}^{r}(n,k)$ is the *r*-uniform hypergraph with vertex set $\binom{[n]}{k}$ in which *r* vertices F_{1}, \ldots, F_{r} form an edge if and only if no element of [n] is contained in F_{i} for more than *s* distinct *i*. Note that the Kneser hypergraph $\operatorname{KN}^{r}(n,k)$ is $\operatorname{KN}_{1}^{r}(n,k)$.

Theorem

Let c > 0; then for any integers r, t, there exists $K_0 = K_0(c, r, t)$ such that if $k \ge K_0$, s = r - 1, and n = (r/s + c)k, then $\chi(\operatorname{KN}_s^r(n, k)) > t$.

Theorem (Thomassen (2007))

For $k \geq 2$, the graph family $\mathcal{P}(n, C_{2k+1})$ has chromatic threshold 0.

Theorem (Thomassen (2007))

For $k \geq 2$, the graph family $\mathcal{P}(n, C_{2k+1})$ has chromatic threshold 0.

Luczak and Thomassé proved the following more general result, using paired VC-dimension:

Theorem (Thomassen (2007))

For $k \geq 2$, the graph family $\mathcal{P}(n, C_{2k+1})$ has chromatic threshold 0.

Luczak and Thomassé proved the following more general result, using paired VC-dimension:

Theorem (2011+)

If H is a near bipartite graph, the graph family $\mathcal{P}(n, H)$ has chromatic threshold 0.

Theorem (Thomassen (2007))

For $k \geq 2$, the graph family $\mathcal{P}(n, C_{2k+1})$ has chromatic threshold 0.

Luczak and Thomassé proved the following more general result, using paired VC-dimension:

Theorem (2011+)

If H is a near bipartite graph, the graph family $\mathcal{P}(n, H)$ has chromatic threshold 0.

A graph is near bipartite if it is triangle-free and there is a partition of its vertices into two classes, V_1 and V_2 , such that V_1 is an independent set and $H[V_2]$ is a partial matching.

Definition (Near r-partite)

Let H be an r-uniform hypergraph. H is near r-partite if there exists a partition $V_1 \cup \cdots \cup V_r$ of V(H) such that all edges of H either cross the partition or are contained completely in V_1 , and in addition $H[V_1]$ is a partial matching.

Definition (Near r-partite)

Let H be an r-uniform hypergraph. H is near r-partite if there exists a partition $V_1 \cup \cdots \cup V_r$ of V(H) such that all edges of H either cross the partition or are contained completely in V_1 , and in addition $H[V_1]$ is a partial matching.

Theorem (Balogh, Butterfield, Hu, Lenz, Mubayi)

Let H be a near r-partite hypergraph. If H does not contain any hypergraph from $\mathcal{TK}^{r}(3)$, then the chromatic threshold of $\mathcal{P}(n, H)$ is zero.

Definition (Near r-partite)

Let H be an r-uniform hypergraph. H is near r-partite if there exists a partition $V_1 \cup \cdots \cup V_r$ of V(H) such that all edges of H either cross the partition or are contained completely in V_1 , and in addition $H[V_1]$ is a partial matching.

Theorem (Balogh, Butterfield, Hu, Lenz, Mubayi)

Let H be a near r-partite hypergraph. If H does not contain any hypergraph from $\mathcal{TK}^{r}(3)$, then the chromatic threshold of $\mathcal{P}(n, H)$ is zero.

Definition (Near r-partite)

Let H be an r-uniform hypergraph. H is near r-partite if there exists a partition $V_1 \cup \cdots \cup V_r$ of V(H) such that all edges of H either cross the partition or are contained completely in V_1 , and in addition $H[V_1]$ is a partial matching.

Theorem (Balogh, Butterfield, Hu, Lenz, Mubayi)

Let H be a near r-partite hypergraph. If H does not contain any hypergraph from $\mathcal{TK}^{r}(3)$, then the chromatic threshold of $\mathcal{P}(n, H)$ is zero.

Proof again uses VC-type dimension.

Means something like this picture (r = 3):

10 / 13

Means something like this picture (r = 3):

10 / 13

Means something like this picture (r = 3):

Means something like this picture (r = 3):

10 / 13

Let C_{2k+1}^r be the *r*-uniform cycle with 2k + 1 edges formed by arranging rk + (r - 1) vertices in a circle and arranging edges to contain *r* consecutive vertices where the overlap between edges alternates between 1 and r - 1.

Corollary (Balogh, Butterfield, Hu, Lenz, Mubayi)

The chromatic threshold of $\mathcal{P}(n, C_{2k+1}^r)$ is zero.

Corollary (Balogh, Butterfield, Hu, Lenz, Mubayi) The chromatic threshold of $\mathcal{P}(n, C_{2k+1}^r)$ is zero.

Theorem (Balogh, Butterfield, Hu, Lenz, Mubayi) For r = 3 and r = 4, there exists some n_0 such that for $n > n_0$, the unique hypergraph in $\mathcal{P}(n, C_{2k+1}^r)$ with the largest number of edges is $T_r(n)$.

Corollary (Balogh, Butterfield, Hu, Lenz, Mubayi) The chromatic threshold of $\mathcal{P}(n, C_{2k+1}^r)$ is zero.

Theorem (Balogh, Butterfield, Hu, Lenz, Mubayi) For r = 3 and r = 4, there exists some n_0 such that for $n > n_0$, the unique hypergraph in $\mathcal{P}(n, C_{2k+1}^r)$ with the largest number of edges is $T_r(n)$. $T_r(n)$ is the complete r-partite, r-uniform, n-vertex hypergraph with part sizes as equal as possible.

Corollary (Balogh, Butterfield, Hu, Lenz, Mubayi) The chromatic threshold of $\mathcal{P}(n, C_{2k+1}^r)$ is zero.

Theorem (Balogh, Butterfield, Hu, Lenz, Mubayi) For r = 3 and r = 4, there exists some n_0 such that for $n > n_0$, the unique hypergraph in $\mathcal{P}(n, C_{2k+1}^r)$ with the largest number of edges is $T_r(n)$. $T_r(n)$ is the complete r-partite, r-uniform, n-vertex hypergraph with part sizes as equal as possible.

The theorem is extended to a family of critical graphs.

Thank you