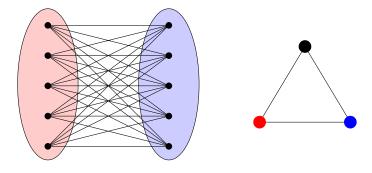
Mantel's Theorem for Random Hypergraphs

Jane Butterfield

University of Minnesota - Twin Cities and József Balogh, University of Illinois at Urbana-Champaign Ping Hu, University of Illinois at Urbana-Champaign John Lenz, University of Illinois at Chicago

October 6th, 2013

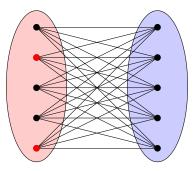
Avoiding triangles



Mantel's Theorem

Theorem (Mantel, 1907)

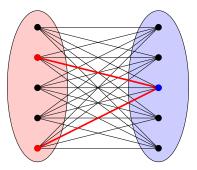
Every K_3 -free graph on n vertices has at most $\lfloor \frac{n^2}{4} \rfloor$ edges.

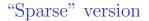


Mantel's Theorem

Theorem (Mantel, 1907)

Every K_3 -free graph on n vertices has at most $\lfloor \frac{n^2}{4} \rfloor$ edges.





• Rephrase Mantel's Theorem: The largest K_3 -free subgraph of K_n has $\lfloor \frac{n^2}{4} \rfloor$ edges.

- Rephrase Mantel's Theorem: The largest K_3 -free subgraph of K_n has $\lfloor \frac{n^2}{4} \rfloor$ edges.
- Question: What about K_3 -free subgraphs of a random graph?

- Rephrase Mantel's Theorem: The largest K_3 -free subgraph of K_n has $\lfloor \frac{n^2}{4} \rfloor$ edges.
- Question: What about K_3 -free subgraphs of a random graph?
- G(n,p) has n vertices and each edge exists with probability p.

- Rephrase Mantel's Theorem: The largest K_3 -free subgraph of K_n has $\lfloor \frac{n^2}{4} \rfloor$ edges.
- Question: What about K_3 -free subgraphs of a random graph?
- G(n,p) has n vertices and each edge exists with probability p.
- Of course, G(n, p) is not really a graph...

- Rephrase Mantel's Theorem: The largest K_3 -free subgraph of K_n has $\lfloor \frac{n^2}{4} \rfloor$ edges.
- Question: What about K_3 -free subgraphs of a random graph?
- G(n,p) has n vertices and each edge exists with probability p.
- Of course, G(n, p) is not really a graph...
- How many edges does the "largest" K_3 -free subgraph "in" G(n, p) have?

- Rephrase Mantel's Theorem: The largest K_3 -free subgraph of K_n has $\lfloor \frac{n^2}{4} \rfloor$ edges.
- Question: What about K_3 -free subgraphs of a random graph?
- G(n,p) has n vertices and each edge exists with probability p.
- Of course, G(n, p) is not really a graph...
- How many edges does the "largest" K_3 -free subgraph "in" G(n,p) have?

We say an event occurs with high probability (w.h.p.) if the probability approaches 1 as n approaches ∞ .

- Rephrase Mantel's Theorem: The largest K_3 -free subgraph of K_n has $\lfloor \frac{n^2}{4} \rfloor$ edges.
- Question: What about K_3 -free subgraphs of a random graph?
- G(n,p) has n vertices and each edge exists with probability p.
- Of course, G(n, p) is not really a graph...
- How many edges does the "largest" K_3 -free subgraph "in" G(n, p) probably have?

We say an event occurs with high probability (w.h.p.) if the probability approaches 1 as n approaches ∞ .

The largest $(\ell - 1)$ -partite subgraph of G(n, p) is obviously K_{ℓ} -free.

The largest $(\ell - 1)$ -partite subgraph of G(n, p) is obviously K_{ℓ} -free. Is the largest K_{ℓ} -free subgraph larger than the largest $(\ell - 1)$ -partite subgraph?

The largest $(\ell - 1)$ -partite subgraph of G(n, p) is obviously K_{ℓ} -free.

Is the largest K_{ℓ} -free subgraph larger than the largest $(\ell - 1)$ -partite subgraph?

Theorem (Brightwell, Panagiotou, Steger (2007))

For any natural number ℓ there is some positive constant c such that if $p \ge n^{-c}$ then with high probability every maximum K_{ℓ} -free subgraph of G(n,p) is $(\ell-1)$ - partite.

The largest $(\ell - 1)$ -partite subgraph of G(n, p) is obviously K_{ℓ} -free.

Is the largest K_{ℓ} -free subgraph larger than the largest $(\ell - 1)$ -partite subgraph?

Theorem (Brightwell, Panagiotou, Steger (2007))

For any natural number ℓ there is some positive constant c such that if $p \geq n^{-c}$ then with high probability every maximum K_{ℓ} -free subgraph of G(n,p) is $(\ell-1)$ - partite.

The largest $(\ell - 1)$ -partite subgraph of G(n, p) is obviously K_{ℓ} -free.

Is the largest K_{ℓ} -free subgraph larger than the largest $(\ell - 1)$ -partite subgraph?

Theorem (Brightwell, Panagiotou, Steger (2007))

For any natural number ℓ there is some positive constant c such that if $p \geq n^{-c}$ then with high probability every maximum K_{ℓ} -free subgraph of G(n,p) is $(\ell-1)$ - partite.

Theorem (DeMarco, Kahn (2013+))

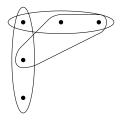
If $p > K\sqrt{\log(n)/n}$ then with high probability every maximum K_3 -free subgraph of G(n,p) is bipartite.

Hypergraphs

An r-uniform hypgraph on vertex set V is a collection of r-subsets of V.

Hypergraphs

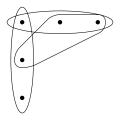
An r-uniform hypgraph on vertex set V is a collection of r-subsets of V.



Example: F_5 is a 3-uniform hypergraph.

Hypergraphs

An r-uniform hypgraph on vertex set V is a collection of r-subsets of V.



Example: F_5 is a 3-uniform hypergraph.

An r-uniform hypergraph is r-partite if we can partition the vertices into r sets such that every edge contains exactly one vertex from each set.

Example: F_5 is not tripartite.

The largest tripartite 3-uniform hypergraph on n vertices is $T_3(n)$.

The largest tripartite 3-uniform hypergraph on n vertices is $T_3(n)$.

Theorem (Frankl-Füredi (1983))

The maximum 3-uniform hypergraph on n vertices containing no copy of F_5 is $T_3(n)$ for n > 3000.

The largest tripartite 3-uniform hypergraph on n vertices is $T_3(n)$.

Theorem (Frankl-Füredi (1983))

The maximum 3-uniform hypergraph on n vertices containing no copy of F_5 is $T_3(n)$ for n > 3000.

This reminds us of K_3 and $K_{n,n}$.

The largest tripartite 3-uniform hypergraph on n vertices is $T_3(n)$.

Theorem (Frankl-Füredi (1983))

The maximum 3-uniform hypergraph on n vertices containing no copy of F_5 is $T_3(n)$ for n > 3000.

This reminds us of K_3 and $K_{n,n}$.

We seek a sparse Mantel-like result for F_5 .

Theorem (Balogh-B-Hu-Lenz (2013+))

There exists a positive constant K such that if $p > K \log(n)/n$ then w.h.p. every maximum F_5 -free subhypergraph of $G^3(n,p)$ is tripartite.

Theorem (Balogh-B-Hu-Lenz (2013+))

There exists a positive constant K such that if $p > K \log(n)/n$ then w.h.p. every maximum F_5 -free subhypergraph of $G^3(n,p)$ is tripartite.

Note: we know the *structure*, not only *size*.

Recent results of Conlon–Gowers (2013+), Schacht (2013+), Balogh–Morris–Samotij (2013+), Saxton–Thomason (2013+) and Samotij (2012) lead to...

Theorem

For every $\delta > 0$ there exist positive constants K and ϵ such that if $p \geq K/n$, then w.h.p. the following holds. Every F_5 -free subgraph of $G^3(n,p)$ with at least $(2/9 - \epsilon) {n \choose 3} p$ edges admits a partition (V_1, V_2, V_3) of [n] such that all but at most $\delta n^3 p$ edges have one vertex in each V_i .

Recent results of Conlon–Gowers (2013+), Schacht (2013+), Balogh–Morris–Samotij (2013+), Saxton–Thomason (2013+) and Samotij (2012) lead to...

Theorem

For every $\delta > 0$ there exist positive constants K and ϵ such that if $p \ge K/n$, then w.h.p. the following holds. Every F_5 -free subgraph of $G^3(n,p)$ with at least $(2/9 - \epsilon) {n \choose 3} p$ edges admits a partition (V_1, V_2, V_3) of [n] such that all but at most $\delta n^3 p$ edges have one vertex in each V_i .

• Consider a maximum F_5 -free subhypergraph of $G^3(n, p)$.

Recent results of Conlon–Gowers (2013+), Schacht (2013+), Balogh–Morris–Samotij (2013+), Saxton–Thomason (2013+) and Samotij (2012) lead to...

Theorem

For every $\delta > 0$ there exist positive constants K and ϵ such that if $p \ge K/n$, then w.h.p. the following holds. Every F_5 -free subgraph of $G^3(n,p)$ with at least $(2/9 - \epsilon) {n \choose 3} p$ edges admits a partition (V_1, V_2, V_3) of [n] such that all but at most $\delta n^3 p$ edges have one vertex in each V_i .

- Consider a maximum F_5 -free subhypergraph of $G^3(n, p)$.
- In an "optimal" partition into three parts, not many cross-edges.

Recent results of Conlon–Gowers (2013+), Schacht (2013+), Balogh–Morris–Samotij (2013+), Saxton–Thomason (2013+) and Samotij (2012) lead to...

Theorem

For every $\delta > 0$ there exist positive constants K and ϵ such that if $p \geq K/n$, then w.h.p. the following holds. Every F_5 -free subgraph of $G^3(n,p)$ with at least $(2/9 - \epsilon) {n \choose 3} p$ edges admits a partition (V_1, V_2, V_3) of [n] such that all but at most $\delta n^3 p$ edges have one vertex in each V_i .

- Consider a maximum F_5 -free subhypergraph of $G^3(n, p)$.
- In an "optimal" partition into three parts, not many cross-edges.
- Want to show that there are *no* cross-edges.

• We will say \mathcal{G} instead of $G^3(n, p)$.

- We will say \mathcal{G} instead of $G^3(n, p)$.
- $t(\mathcal{G})$ is the number of edges in the largest tripartite subgraph of \mathcal{G} .

- We will say \mathcal{G} instead of $G^3(n, p)$.
- $t(\mathcal{G})$ is the number of edges in the largest tripartite subgraph of \mathcal{G} .
- Let Π be a 3-partition of $V(\mathcal{G})$.

- We will say \mathcal{G} instead of $G^3(n, p)$.
- $t(\mathcal{G})$ is the number of edges in the largest tripartite subgraph of \mathcal{G} .
- Let Π be a 3-partition of $V(\mathcal{G})$.
- Π is *balanced* if the parts are nearly-equally sized.

- We will say \mathcal{G} instead of $G^3(n, p)$.
- $t(\mathcal{G})$ is the number of edges in the largest tripartite subgraph of \mathcal{G} .
- Let Π be a 3-partition of $V(\mathcal{G})$.
- Π is *balanced* if the parts are nearly-equally sized.
- Π is maximum if $|\mathcal{G}[\Pi]| = t(\mathcal{G})$.

10 / 17

- We will say \mathcal{G} instead of $G^3(n, p)$.
- $t(\mathcal{G})$ is the number of edges in the largest tripartite subgraph of \mathcal{G} .
- Let Π be a 3-partition of $V(\mathcal{G})$.
- Π is *balanced* if the parts are nearly-equally sized.
- Π is *maximum* if $|\mathcal{G}[\Pi]| = t(\mathcal{G})$.

Given a balanced partition $\Pi = (A_1, A_2, A_3)$, let $Q(\Pi)$ be the set of pairs $u, v \in A_1$ that have low common crossing degree.

10 / 17

• We will say \mathcal{G} instead of $G^3(n, p)$.

- $t(\mathcal{G})$ is the number of edges in the largest tripartite subgraph of \mathcal{G} .
- Let Π be a 3-partition of $V(\mathcal{G})$.
- Π is *balanced* if the parts are nearly-equally sized.
- Π is *maximum* if $|\mathcal{G}[\Pi]| = t(\mathcal{G})$.

Given a balanced partition $\Pi = (A_1, A_2, A_3)$, let $Q(\Pi)$ be the set of pairs $u, v \in A_1$ that have low common crossing degree.

Goal: if \mathcal{F} is a maximum F_5 -free subhypergraph then $\mathcal{F} = \mathcal{F}[\Pi]$

Notation

• We will say \mathcal{G} instead of $G^3(n, p)$.

- $t(\mathcal{G})$ is the number of edges in the largest tripartite subgraph of \mathcal{G} .
- Let Π be a 3-partition of $V(\mathcal{G})$.
- Π is *balanced* if the parts are nearly-equally sized.
- Π is *maximum* if $|\mathcal{G}[\Pi]| = t(\mathcal{G})$.

Given a balanced partition $\Pi = (A_1, A_2, A_3)$, let $Q(\Pi)$ be the set of pairs $u, v \in A_1$ that have low common crossing degree.

Goal: if \mathcal{F} is a maximum F_5 -free subhypergraph then $\mathcal{F} = \mathcal{F}[\Pi]$...sort of (might need to "fix" Π).

Notation

• We will say \mathcal{G} instead of $G^3(n, p)$.

- $t(\mathcal{G})$ is the number of edges in the largest tripartite subgraph of \mathcal{G} .
- Let Π be a 3-partition of $V(\mathcal{G})$.
- Π is *balanced* if the parts are nearly-equally sized.
- Π is *maximum* if $|\mathcal{G}[\Pi]| = t(\mathcal{G})$.

Given a balanced partition $\Pi = (A_1, A_2, A_3)$, let $Q(\Pi)$ be the set of pairs $u, v \in A_1$ that have low common crossing degree.

Goal: if \mathcal{F} is a maximum F_5 -free subhypergraph then $\mathcal{F} = \mathcal{F}[\Pi]$...sort of (might need to "fix" Π).

Note: $|\mathcal{F}| \ge t(\mathcal{G})$.

Lemma

There exist positive constants K and δ such that if $p > K \log(n)/n$ then the following is true. Let \mathcal{F} be an F_5 -free subhypergraph of \mathcal{G} and $\Pi = (A_1, A_2, A_3)$ be a balanced 3-partition maximizing $|\mathcal{F}[\Pi]|$. Let $\mathcal{B}_i = \{e \in \mathcal{F} : |e \cap A_i| \geq 2\}$. If the following conditions hold then w.h.p.

 $|\mathcal{F}[\Pi] + 3|\mathcal{B}_1| < |\mathcal{G}[\Pi]|$

Lemma

There exist positive constants K and δ such that if $p > K \log(n)/n$ then the following is true. Let \mathcal{F} be an F_5 -free subhypergraph of \mathcal{G} and $\Pi = (A_1, A_2, A_3)$ be a balanced 3-partition maximizing $|\mathcal{F}[\Pi]|$. Let $\mathcal{B}_i = \{e \in \mathcal{F} : |e \cap A_i| \geq 2\}$. If the following conditions hold then w.h.p.

 $|\mathcal{F}[\Pi] + 3|\mathcal{B}_1| < |\mathcal{G}[\Pi]|$

(i) $\sum_{i} |\mathcal{B}_{i}| \leq \delta p n^{3}$,

Lemma

There exist positive constants K and δ such that if $p > K \log(n)/n$ then the following is true. Let \mathcal{F} be an F_5 -free subhypergraph of \mathcal{G} and $\Pi = (A_1, A_2, A_3)$ be a balanced 3-partition maximizing $|\mathcal{F}[\Pi]|$. Let $\mathcal{B}_i = \{e \in \mathcal{F} : |e \cap A_i| \geq 2\}$. If the following conditions hold then w.h.p.

 $|\mathcal{F}[\Pi] + 3|\mathcal{B}_1| < |\mathcal{G}[\Pi]|$

(i) $\sum_{i} |\mathcal{B}_{i}| \leq \delta p n^{3}$, (ii) $\mathcal{B}_{1} \neq \emptyset$,

Lemma

There exist positive constants K and δ such that if $p > K \log(n)/n$ then the following is true. Let \mathcal{F} be an F_5 -free subhypergraph of \mathcal{G} and $\Pi = (A_1, A_2, A_3)$ be a balanced 3-partition maximizing $|\mathcal{F}[\Pi]|$. Let $\mathcal{B}_i = \{e \in \mathcal{F} : |e \cap A_i| \geq 2\}$. If the following conditions hold then w.h.p.

 $|\mathcal{F}[\Pi] + 3|\mathcal{B}_1| < |\mathcal{G}[\Pi]|$

(i) ∑_i |B_i| ≤ δpn³,
(ii) B₁ ≠ Ø,
(iii) the shadow graph of B₁ is disjoint from Q(Π).

• We may assume $|\mathcal{B}_1| \ge |\mathcal{B}_2|, |\mathcal{B}_3|$.

- We may assume $|\mathcal{B}_1| \ge |\mathcal{B}_2|, |\mathcal{B}_3|$.
- If $\mathcal{F} \neq \mathcal{F}[\Pi]$ then $\mathcal{B}_1 \neq \emptyset$. (So we have (ii))

- We may assume $|\mathcal{B}_1| \ge |\mathcal{B}_2|, |\mathcal{B}_3|$.
- If $\mathcal{F} \neq \mathcal{F}[\Pi]$ then $\mathcal{B}_1 \neq \emptyset$. (So we have (ii))
- If $Q(\Pi) = \emptyset$ then (iii) trivialy true.

- We may assume $|\mathcal{B}_1| \ge |\mathcal{B}_2|, |\mathcal{B}_3|$.
- If $\mathcal{F} \neq \mathcal{F}[\Pi]$ then $\mathcal{B}_1 \neq \emptyset$. (So we have (ii))
- If $Q(\Pi) = \emptyset$ then (iii) trivialy true.
- Application of Chernoff \Rightarrow w.h.p. $\sum_i |\mathcal{B}_i| \leq \delta pn^3$ (So we have (i))

- We may assume $|\mathcal{B}_1| \ge |\mathcal{B}_2|, |\mathcal{B}_3|$.
- If $\mathcal{F} \neq \mathcal{F}[\Pi]$ then $\mathcal{B}_1 \neq \emptyset$. (So we have (ii))
- If $Q(\Pi) = \emptyset$ then (iii) trivialy true.
- Application of Chernoff \Rightarrow w.h.p. $\sum_i |\mathcal{B}_i| \leq \delta pn^3$ (So we have (i))
- So we may conclude from Key Lemma that:

 $|\mathcal{F}[\Pi]| + 3|\mathcal{B}_1| < |\mathcal{G}[\Pi]|$

- We may assume $|\mathcal{B}_1| \ge |\mathcal{B}_2|, |\mathcal{B}_3|$.
- If $\mathcal{F} \neq \mathcal{F}[\Pi]$ then $\mathcal{B}_1 \neq \emptyset$. (So we have (ii))
- If $Q(\Pi) = \emptyset$ then (iii) trivialy true.
- Application of Chernoff \Rightarrow w.h.p. $\sum_i |\mathcal{B}_i| \leq \delta pn^3$ (So we have (i))
- So we may conclude from Key Lemma that:

 $|\mathcal{F}[\Pi]| + 3|\mathcal{B}_1| < |\mathcal{G}[\Pi]|$

• Therefore $|\mathcal{F}[\Pi]| < t(\mathcal{G})$...contradiction.

- We may assume $|\mathcal{B}_1| \ge |\mathcal{B}_2|, |\mathcal{B}_3|$.
- If $\mathcal{F} \neq \mathcal{F}[\Pi]$ then $\mathcal{B}_1 \neq \emptyset$. (So we have (ii))
- If $Q(\Pi) = \emptyset$ then (iii) trivialy true.
- Application of Chernoff \Rightarrow w.h.p. $\sum_i |\mathcal{B}_i| \leq \delta pn^3$ (So we have (i))
- So we may conclude from Key Lemma that:

 $|\mathcal{F}[\Pi]| + 3|\mathcal{B}_1| < |\mathcal{G}[\Pi]|$

• Therefore $|\mathcal{F}[\Pi]| < t(\mathcal{G})$...contradiction.

A hiccough

Unfortunately, we cannot prove that $Q(\Pi) = \emptyset$ for all balanced Π . We *can* prove that if $Q(\Pi) \neq \emptyset$ then Π is far from maximal:

Lemma

There exist positive constants K and δ such that if $p > K \log(n)/n$, Π is a balanced 3-partition, and $Q(\Pi) \neq \emptyset$, then w.h.p.

 $t(\mathcal{G}) > |\mathcal{G}[\Pi]| + |\mathcal{Q}(\Pi)|\delta n^2 p^2.$

Proof: similar to the proof of Lemma 5.2 in DeMarco-Kahn. We can conclude that $t(\mathcal{G}) > |\mathcal{G}[\Pi]| + |\mathcal{Q}(\Pi)|\delta n^2 p^2$. for every balanced 3-partition Π .

• Let $\tilde{\mathcal{F}}$ be a maximum F_5 -free subhypergraph of \mathcal{G} .

- Let $\tilde{\mathcal{F}}$ be a maximum F_5 -free subhypergraph of \mathcal{G} .
- Let Π be a balanced 3-partition maximizing $\tilde{\mathcal{F}}[\Pi]$.

- Let $\tilde{\mathcal{F}}$ be a maximum F_5 -free subhypergraph of \mathcal{G} .
- Let Π be a balanced 3-partition maximizing $\tilde{\mathcal{F}}[\Pi]$.
- Let $\mathcal{B}(\Pi) = \{ e \in \mathcal{G} : \exists (u, v) \in \mathcal{Q}(\Pi) \text{ s.t. } u, v \in e \}.$

- Let $\tilde{\mathcal{F}}$ be a maximum F_5 -free subhypergraph of \mathcal{G} .
- Let Π be a balanced 3-partition maximizing $\tilde{\mathcal{F}}[\Pi]$.
- Let $\mathcal{B}(\Pi) = \{ e \in \mathcal{G} : \exists (u, v) \in \mathcal{Q}(\Pi) \text{ s.t. } u, v \in e \}.$
- Let $\mathcal{F} = \tilde{\mathcal{F}} \setminus \mathcal{B}(\Pi)$.

- Let $\tilde{\mathcal{F}}$ be a maximum F_5 -free subhypergraph of \mathcal{G} .
- Let Π be a balanced 3-partition maximizing $\tilde{\mathcal{F}}[\Pi]$.
- Let $\mathcal{B}(\Pi) = \{ e \in \mathcal{G} : \exists (u, v) \in \mathcal{Q}(\Pi) \text{ s.t. } u, v \in e \}.$
- Let $\mathcal{F} = \tilde{\mathcal{F}} \setminus \mathcal{B}(\Pi)$.
- ...we can show that \mathcal{F} and Π satisfy the conditions of the key lemmas, so:

- Let $\tilde{\mathcal{F}}$ be a maximum F_5 -free subhypergraph of \mathcal{G} .
- Let Π be a balanced 3-partition maximizing $\tilde{\mathcal{F}}[\Pi]$.
- Let $\mathcal{B}(\Pi) = \{ e \in \mathcal{G} : \exists (u, v) \in \mathcal{Q}(\Pi) \text{ s.t. } u, v \in e \}.$
- Let $\mathcal{F} = \tilde{\mathcal{F}} \setminus \mathcal{B}(\Pi)$.
- ...we can show that \mathcal{F} and Π satisfy the conditions of the key lemmas, so:

- Let $\tilde{\mathcal{F}}$ be a maximum F_5 -free subhypergraph of \mathcal{G} .
- Let Π be a balanced 3-partition maximizing $\tilde{\mathcal{F}}[\Pi]$.
- Let $\mathcal{B}(\Pi) = \{ e \in \mathcal{G} : \exists (u, v) \in \mathcal{Q}(\Pi) \text{ s.t. } u, v \in e \}.$
- Let $\mathcal{F} = \tilde{\mathcal{F}} \setminus \mathcal{B}(\Pi)$.
- ...we can show that \mathcal{F} and Π satisfy the conditions of the key lemmas, so:

$$\begin{split} |\tilde{\mathcal{F}}| &\leq |\tilde{\mathcal{F}}[\Pi]| + 3|\tilde{\mathcal{B}}_{1}| \\ &= |\mathcal{F}[\Pi]| + 3|\mathcal{B}_{1}| + 3|\tilde{\mathcal{F}} \cap B(\Pi)| \\ &\leq |\mathcal{G}[\Pi]| + 3|\mathcal{B}(\Pi)| \\ &\leq |\mathcal{G}[\Pi]| + 3 \cdot 2|Q(\Pi)|np \\ &\leq |\mathcal{G}[\Pi]| + |Q(\Pi)|\delta n^{2}p^{2} \\ &\leq t(\mathcal{G}). \end{split}$$

- Let $\tilde{\mathcal{F}}$ be a maximum F_5 -free subhypergraph of \mathcal{G} .
- Let Π be a balanced 3-partition maximizing $\tilde{\mathcal{F}}[\Pi]$.
- Let $\mathcal{B}(\Pi) = \{ e \in \mathcal{G} : \exists (u, v) \in \mathcal{Q}(\Pi) \text{ s.t. } u, v \in e \}.$
- Let $\mathcal{F} = \tilde{\mathcal{F}} \setminus \mathcal{B}(\Pi)$.
- ...we can show that \mathcal{F} and Π satisfy the conditions of the key lemmas, so:

$$\begin{split} |\tilde{\mathcal{F}}| &\leq |\tilde{\mathcal{F}}[\Pi]| + 3|\tilde{\mathcal{B}}_{1}| \\ &= |\mathcal{F}[\Pi]| + 3|\mathcal{B}_{1}| + 3|\tilde{\mathcal{F}} \cap B(\Pi)| \\ &\leq |\mathcal{G}[\Pi]| + 3|\mathcal{B}(\Pi)| \text{- first key lemma} \\ &\leq |\mathcal{G}[\Pi]| + 3 \cdot 2|Q(\Pi)|np \\ &\leq |\mathcal{G}[\Pi]| + |Q(\Pi)|\delta n^{2}p^{2} \\ &\leq t(\mathcal{G}). \end{split}$$

- Let $\tilde{\mathcal{F}}$ be a maximum F_5 -free subhypergraph of \mathcal{G} .
- Let Π be a balanced 3-partition maximizing $\tilde{\mathcal{F}}[\Pi]$.
- Let $\mathcal{B}(\Pi) = \{ e \in \mathcal{G} : \exists (u, v) \in \mathcal{Q}(\Pi) \text{ s.t. } u, v \in e \}.$
- Let $\mathcal{F} = \tilde{\mathcal{F}} \setminus \mathcal{B}(\Pi)$.
- ...we can show that \mathcal{F} and Π satisfy the conditions of the key lemmas, so:

$$\begin{split} |\tilde{\mathcal{F}}| &\leq |\tilde{\mathcal{F}}[\Pi]| + 3|\tilde{\mathcal{B}}_{1}| \\ &= |\mathcal{F}[\Pi]| + 3|\mathcal{B}_{1}| + 3|\tilde{\mathcal{F}} \cap B(\Pi)| \\ &\leq |\mathcal{G}[\Pi]| + 3|\mathcal{B}(\Pi)| \text{- first key lemma} \\ &\leq |\mathcal{G}[\Pi]| + 3 \cdot 2|Q(\Pi)|np - \text{Chernoff} \\ &\leq |\mathcal{G}[\Pi]| + |Q(\Pi)|\delta n^{2}p^{2} \\ &\leq t(\mathcal{G}). \end{split}$$

- Let $\tilde{\mathcal{F}}$ be a maximum F_5 -free subhypergraph of \mathcal{G} .
- Let Π be a balanced 3-partition maximizing $\tilde{\mathcal{F}}[\Pi]$.
- Let $\mathcal{B}(\Pi) = \{ e \in \mathcal{G} : \exists (u, v) \in \mathcal{Q}(\Pi) \text{ s.t. } u, v \in e \}.$
- Let $\mathcal{F} = \tilde{\mathcal{F}} \setminus \mathcal{B}(\Pi)$.
- ...we can show that \mathcal{F} and Π satisfy the conditions of the key lemmas, so:

$$\begin{split} |\tilde{\mathcal{F}}| &\leq |\tilde{\mathcal{F}}[\Pi]| + 3|\tilde{\mathcal{B}}_1| \\ &= |\mathcal{F}[\Pi]| + 3|\mathcal{B}_1| + 3|\tilde{\mathcal{F}} \cap B(\Pi)| \\ &\leq |\mathcal{G}[\Pi]| + 3|\mathcal{B}(\Pi)| \text{- first key lemma} \\ &\leq |\mathcal{G}[\Pi]| + 3 \cdot 2|Q(\Pi)|np - \text{Chernoff} \\ &\leq |\mathcal{G}[\Pi]| + |Q(\Pi)|\delta n^2 p^2 \\ &\leq t(\mathcal{G}). - \text{second key lemma} \end{split}$$

14 / 17

• But $|\tilde{\mathcal{F}}| \ge t(\mathcal{G})$, so equality holds throughout.

- But $|\tilde{\mathcal{F}}| \ge t(\mathcal{G})$, so equality holds throughout.
- But $\mathcal{B}_1 \neq \emptyset$ contradicts one of the equalities.

- But $|\tilde{\mathcal{F}}| \ge t(\mathcal{G})$, so equality holds throughout.
- But $\mathcal{B}_1 \neq \emptyset$ contradicts one of the equalities.
- Also, $\mathcal{Q}(\Pi) \neq \emptyset$ contradicts one of the equalities.

- But $|\tilde{\mathcal{F}}| \ge t(\mathcal{G})$, so equality holds throughout.
- But $\mathcal{B}_1 \neq \emptyset$ contradicts one of the equalities.
- Also, $\mathcal{Q}(\Pi) \neq \emptyset$ contradicts one of the equalities.
- It follows that $\tilde{\mathcal{B}}_1 = \emptyset$.

- But $|\tilde{\mathcal{F}}| \ge t(\mathcal{G})$, so equality holds throughout.
- But $\mathcal{B}_1 \neq \emptyset$ contradicts one of the equalities.
- Also, $\mathcal{Q}(\Pi) \neq \emptyset$ contradicts one of the equalities.
- It follows that $\tilde{\mathcal{B}}_1 = \emptyset$.
- Since $\tilde{\mathcal{B}}_1 \geq \tilde{\mathcal{B}}_2, \tilde{\mathcal{B}}_3$, it follows that $\tilde{\mathcal{F}}$ is tripartite.

Future work

Conjecture

The right threshold is probably $p = K\sqrt{\log(n)}/n$.

Idea: if $p > 0.01\sqrt{\log(n)}/n$ then w.h.p. we can find a copy of K_4^- whose edges are not contained in any F_5 .

16 / 17

Thank you. butter@umn.edu