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Definitions

Given a graph G , let V (G ) denote its vertex set and E (G ) its
edge set.

All graphs in this talk will be simple and undirected.

For a vertex v ∈ V (G ), let N(v) denote its neighborhood.

Kn is the complete graph on n vertices, Cn the cycle on n
vertices, and Kn,m is the complete bipartite graph having
partite sets size n and m.
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The Game

We consider a two-player game played on a graph.

Player 1 controls the revolutionaries. Player 2 controls the spies.
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The Game

Parameters

G , a graph.

r ∈ N, the number of revolutionaries, and s ∈ N, the number
of spies.

m ∈ N, the “meeting size”

Round i + 1: If at the end of Round i the revolutionaries have
not won,

For each revolutionary, Player 1 may move it to an adjacent
vertex, or he may leave it alone.
For each spy, Player 2 may move it to an adjacent vertex, or
she may leave it alone.
Check: is there some vertex having at least m revolutionaries
and no spies? If so, revolutionaries win.
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Example

Parameters

G = K3,3, r = 4, s = 1, m = 2.

X

Fact

If s < b r
mc ≤ |V (G )| then spies lose in Round 0.
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Another Example

Parameters

G = K3,3, r = 4, s = 3, m = 2.

X X

X

Fact

If s ≥ r −m + 1 then spies will never lose.
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Bias

I usually root for the spies

For a given G , r , s, m we say
that

spies win if there exists a
strategy for Player 2 by
which she can prevent
Player 1 from ever
winning.

spies lose if there exists a
strategy for Player 1 by
which he will win after a
finite number of rounds.
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Previous results

Introduced by Jozef Beck

Theorem (Howard and Smyth (2011+))

When G is a tree with more than s vertices, spies lose if and
only if s ≤ r

m − 1.

When G is the infinite grid and m = 2, spies lose if
s ≤ 3

4 (r − 1), but spies win if s ≥ r − 2.
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Question

How many spies are needed to win? We already know s ≥ b r
mc

spies are necessary, and r −m + 1 spies suffice.

Call a graph G “good for spies” if when s
r ≈

1
m then spies win

the game played on G with parameters r , s, m.

Call a graph G “good for revolutionaries” if spies lose the
game played on G with parameters r , s, m unless s

r ≈ 1.

Question

What graphs are good for spies or good for revolutionaries?
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Question

Trees are good for spies.

Complete graphs are good for spies.

What about complete bipartite graphs?

Parameters

Assume n� s + r , G = Kn,n, m = 2.

Theorem (B-C-P-W-Z (2011+))

If s < 7
10 r − 3

5 and 2|r , then spies lose.

If s ≥ 7
10 r then spies win.
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Sketch of proof

Call the partite sets V1 and V2.

After Player 1 moves in Round j there are ri revolutionaries in
Vi .

After Player 2 moves in Round j there are si spies in Vi .

Some spies may be “lonely”

Suppose at the end of Round j there are `i lonely spies in Vi .

Unless si ≥ b r−s3−i +`3−i

2 c for i ∈ [2], the revolutionaries can
win in Round j + 1.
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Revolutionary strategy:

Revolutionaries all begin in V1. Then there must be at least
r/2 spies in V1, or spies will lose in Round 1.

In Round 1, any revolutionary that shares a vertex with a spy
in V1 moves to V2; each occupies his own vertex.

Now `1 ≥ r/2− s2; say `1 = r/2− s2 (to simplify proof).

To avoid losing in Round 2, spies need

s1 ≥ b
r − s2

2
c and s2 ≥ b

r − s1 + `1

2
c.

Which together imply that 5s ≥ 7
2 r − 3, and so s ≥ 7

10 r − 3/5.
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Complete bipartite graphs, cont.

Theorem (B-C-P-W-Z (2011+))

For s, r ∈ N and G = Kn,n, where n� s + r :

If m = 3 then when s ≥ r
3 + r

6 , spies win.

If m ≥ 4 then when s = 1.708 r
m , spies win.

We conjecture that s ≥ 3
2

r
m spies suffice.

If r ≥ s
(

m
2 + dm/3e

2

)
+ 2m, spies lose.
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Complete bipartite graphs, cont.
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Another Question

Question

What graph properties determine when a graph will be good for
spies or good for revolutionaries?

How about density?

Theorem (B-C-P-W-Z (2011+))

If G has a dominating vertex then when s > r
m − 1, spies win.

Corollary (B-C-P-W-Z (2011+))

Fix n > r . Then for every 0 ≤ m ≤
(n

2

)
, there exists a graph G (i)

having n vertices and i edges such that if s ≥ r
m − 1 then spies win

the game played on G (i).
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What graph properties determine when a graph will be good for
spies or good for revolutionaries?

How about density?

Theorem (B-C-P-W-Z (2011+))

If G has a dominating vertex then when s > r
m − 1, spies win.

Player 2 will keep any “off-duty” spy (one who isn’t currently
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Graph parameters, cont.

A graph is unicyclic if it contains at most one cycle.

Theorem (B-C-P-W-Z (2011+))

If G is a cycle and s ≥ r/m, then spies win.
If G is a cycle of length ` and r/m > s > r/m − 1 ≥ 0, then spies
lose if and only if ` > s + 2.

Theorem (B-C-P-W-Z (2011+))

If G is a unicyclic graph and s ≥ r/m, then spies win.
Suppose G contains exactly one cycle, C`, and |V (G )| − ` = t. If
s + 1 > r/m > s ≥ 1 then spies lose if and only if
` ≥ max{s − t + 3, 4}.

Jane Butterfield Revolutionaries and Spies



Graph parameters, cont.

A graph is unicyclic if it contains at most one cycle.

Theorem (B-C-P-W-Z (2011+))

If G is a cycle and s ≥ r/m, then spies win.
If G is a cycle of length ` and r/m > s > r/m − 1 ≥ 0, then spies
lose if and only if ` > s + 2.

Theorem (B-C-P-W-Z (2011+))

If G is a unicyclic graph and s ≥ r/m, then spies win.
Suppose G contains exactly one cycle, C`, and |V (G )| − ` = t. If
s + 1 > r/m > s ≥ 1 then spies lose if and only if
` ≥ max{s − t + 3, 4}.

Jane Butterfield Revolutionaries and Spies



Future work

What graph properties make a graph good for revolutionaries?

We show that for m = 2 and d ≥ r ≥ 1 the hypercube Qd is
good for revolutionaries.

Graphs are good for spies when there is a “good” place to put
“off-duty” spies (e.g. dominating vertex). Is there a less
restrictive spanning tree condition?

We have started to consider Kn,n,n. We know that as k →∞
the complete k-partite graph with parts of size n (for n > s, r)
becomes good for spies (i.e. s = r

m spies suffice to win.)
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