

The Game of Revolutionaries and Spies

Jane Butterfield Daniel Cranston ${ }^{1}$ Gregory Puleo Douglas West Reza Zamani
University of Illinois at Urbana-Champaign

April 16, 2011

[^0]
Definitions

- Given a graph G, let $V(G)$ denote its vertex set and $E(G)$ its edge set.

Definitions

- Given a graph G, let $V(G)$ denote its vertex set and $E(G)$ its edge set.
- All graphs in this talk will be simple and undirected.

Definitions

- Given a graph G, let $V(G)$ denote its vertex set and $E(G)$ its edge set.
- All graphs in this talk will be simple and undirected.
- For a vertex $v \in V(G)$, let $N(v)$ denote its neighborhood.

Definitions

- Given a graph G, let $V(G)$ denote its vertex set and $E(G)$ its edge set.
- All graphs in this talk will be simple and undirected.
- For a vertex $v \in V(G)$, let $N(v)$ denote its neighborhood.
- K_{n} is the complete graph on n vertices, C_{n} the cycle on n vertices, and $K_{n, m}$ is the complete bipartite graph having partite sets size n and m.

We consider a two-player game played on a graph.

We consider a two-player game played on a graph. Player 1 controls the revolutionaries.

The Game

We consider a two-player game played on a graph. Player 1 controls the revolutionaries. Player 2 controls the spies.

Player 2

Parameters

The Game

Parameters

- G, a graph.

Parameters

- G, a graph.
- $r \in \mathbb{N}$, the number of revolutionaries, and $s \in \mathbb{N}$, the number of spies.

Parameters

- G, a graph.
- $r \in \mathbb{N}$, the number of revolutionaries, and $s \in \mathbb{N}$, the number of spies.
- $m \in \mathbb{N}$, the "meeting size"

Parameters

- G, a graph.
- $r \in \mathbb{N}$, the number of revolutionaries, and $s \in \mathbb{N}$, the number of spies.
- $m \in \mathbb{N}$, the "meeting size"
- Round 0 :

Parameters

- G, a graph.
- $r \in \mathbb{N}$, the number of revolutionaries, and $s \in \mathbb{N}$, the number of spies.
- $m \in \mathbb{N}$, the "meeting size"
- Round 0 :
- Player 1 places r revolutionaries on $V(G)$. He can put more than one revolutionary on a single vertex if he likes.

Parameters

- G, a graph.
- $r \in \mathbb{N}$, the number of revolutionaries, and $s \in \mathbb{N}$, the number of spies.
- $m \in \mathbb{N}$, the "meeting size"
- Round 0 :
- Player 1 places r revolutionaries on $V(G)$. He can put more than one revolutionary on a single vertex if he likes.
- Player 2 then places s spies on $V(G)$. She can put more than one spy on a single vertex if she likes, and she can put a spy on a vertex occupied by revolutionaries.

Parameters

- G, a graph.
- $r \in \mathbb{N}$, the number of revolutionaries, and $s \in \mathbb{N}$, the number of spies.
- $m \in \mathbb{N}$, the "meeting size"
- Round 0 :
- Player 1 places r revolutionaries on $V(G)$. He can put more than one revolutionary on a single vertex if he likes.
- Player 2 then places s spies on $V(G)$. She can put more than one spy on a single vertex if she likes, and she can put a spy on a vertex occupied by revolutionaries.
- Check: is there some vertex having at least m revolutionaries and no spies? If so, revolutionaries win.

Parameters

- G, a graph.
- $r \in \mathbb{N}$, the number of revolutionaries, and $s \in \mathbb{N}$, the number of spies.
- $m \in \mathbb{N}$, the "meeting size"
- Round $i+1$: If at the end of Round i the revolutionaries have not won,

Parameters

- G, a graph.
- $r \in \mathbb{N}$, the number of revolutionaries, and $s \in \mathbb{N}$, the number of spies.
- $m \in \mathbb{N}$, the "meeting size"
- Round $i+1$: If at the end of Round i the revolutionaries have not won,
- For each revolutionary, Player 1 may move it to an adjacent vertex, or he may leave it alone.

Parameters

- G, a graph.
- $r \in \mathbb{N}$, the number of revolutionaries, and $s \in \mathbb{N}$, the number of spies.
- $m \in \mathbb{N}$, the "meeting size"
- Round $i+1$: If at the end of Round i the revolutionaries have not won,
- For each revolutionary, Player 1 may move it to an adjacent vertex, or he may leave it alone.
- For each spy, Player 2 may move it to an adjacent vertex, or she may leave it alone.

Parameters

- G, a graph.
- $r \in \mathbb{N}$, the number of revolutionaries, and $s \in \mathbb{N}$, the number of spies.
- $m \in \mathbb{N}$, the "meeting size"
- Round $i+1$: If at the end of Round i the revolutionaries have not won,
- For each revolutionary, Player 1 may move it to an adjacent vertex, or he may leave it alone.
- For each spy, Player 2 may move it to an adjacent vertex, or she may leave it alone.
- Check: is there some vertex having at least m revolutionaries and no spies? If so, revolutionaries win.

Example

Parameters

$$
G=K_{3,3}, r=4, s=1, m=2 .
$$

Example

Parameters

$$
G=K_{3,3}, r=4, s=1, m=2
$$

Example

Parameters

$$
G=K_{3,3}, r=4, s=1, m=2
$$

Example

Parameters

$$
G=K_{3,3}, r=4, s=1, m=2 .
$$

Example

Parameters

$$
G=K_{3,3}, r=4, s=1, m=2 .
$$

Fact

If $s<\left\lfloor\frac{r}{m}\right\rfloor \leq|V(G)|$ then spies lose in Round 0 .

Another Example

Parameters

$$
G=K_{3,3}, r=4, s=3, m=2 .
$$

Another Example

Parameters

$$
G=K_{3,3}, r=4, s=3, m=2 .
$$

Another Example

Parameters

$$
G=K_{3,3}, r=4, s=3, m=2 .
$$

Another Example

Parameters

$$
G=K_{3,3}, r=4, s=3, m=2 .
$$

Another Example

Parameters

$$
G=K_{3,3}, r=4, s=3, m=2 .
$$

Another Example

Parameters

$$
G=K_{3,3}, r=4, s=3, m=2 .
$$

Another Example

Parameters

$$
G=K_{3,3}, r=4, s=3, m=2 .
$$

Fact

If $s \geq r-m+1$ then spies will never lose.

Bias

Jane Butterfield

Bias

I don't really support the revolutionaries.

Bias

I don't really support the revolutionaries.

Bias

I usually root for the spies

Bias

I usually root for the spies

Bias

I usually root for the spies

For a given G, r, s, m we say that

- spies win if there exists a strategy for Player 2 by which she can prevent Player 1 from ever winning.
- spies lose if there exists a strategy for Player 1 by which he will win after a finite number of rounds.

Previous results

Introduced by Jozef Beck
Theorem (Howard and Smyth (2011+))

Previous results

Introduced by Jozef Beck
Theorem (Howard and Smyth (2011+))

- When G is a tree with more than s vertices, spies lose if and only if $s \leq \frac{r}{m}-1$.

Previous results

Introduced by Jozef Beck

Theorem (Howard and Smyth (2011+))

- When G is a tree with more than s vertices, spies lose if and only if $s \leq \frac{r}{m}-1$.
- When G is the infinite grid and $m=2$, spies lose if $s \leq \frac{3}{4}(r-1)$, but spies win if $s \geq r-2$.

Question

How many spies are needed to win? We already know $s \geq\left\lfloor\frac{r}{m}\right\rfloor$ spies are necessary, and $r-m+1$ spies suffice.

Question

How many spies are needed to win? We already know $s \geq\left\lfloor\frac{r}{m}\right\rfloor$ spies are necessary, and $r-m+1$ spies suffice.

- Call a graph G "good for spies" if when $\frac{s}{r} \approx \frac{1}{m}$ then spies win the game played on G with parameters r, s, m.

Question

How many spies are needed to win? We already know $s \geq\left\lfloor\frac{r}{m}\right\rfloor$ spies are necessary, and $r-m+1$ spies suffice.

- Call a graph G "good for spies" if when $\frac{s}{r} \approx \frac{1}{m}$ then spies win the game played on G with parameters r, s, m.
- Call a graph G "good for revolutionaries" if spies lose the game played on G with parameters r, s, m unless $\frac{s}{r} \approx 1$.

Question

How many spies are needed to win? We already know $s \geq\left\lfloor\frac{r}{m}\right\rfloor$ spies are necessary, and $r-m+1$ spies suffice.

- Call a graph G "good for spies" if when $\frac{s}{r} \approx \frac{1}{m}$ then spies win the game played on G with parameters r, s, m.
- Call a graph G "good for revolutionaries" if spies lose the game played on G with parameters r, s, m unless $\frac{s}{r} \approx 1$.

Question

What graphs are good for spies or good for revolutionaries?

Question

- Trees are good for spies.

Question

- Trees are good for spies.
- Complete graphs are good for spies.

Question

- Trees are good for spies.
- Complete graphs are good for spies.
- What about complete bipartite graphs?

Question

- Trees are good for spies.
- Complete graphs are good for spies.
- What about complete bipartite graphs?

Parameters

Assume $n \gg s+r, G=K_{n, n}, m=2$.

Question

- Trees are good for spies.
- Complete graphs are good for spies.
- What about complete bipartite graphs?

Parameters

Assume $n \gg s+r, G=K_{n, n}, m=2$.

$$
\begin{aligned}
& \text { Theorem }(\mathrm{B}-\mathrm{C}-\mathrm{P}-\mathrm{W}-\mathrm{Z}(2011+)) \\
& \text { If } s<\frac{7}{10} r-\frac{3}{5} \text { and } 2 \mid r \text {, then spies lose. }
\end{aligned}
$$

Question

- Trees are good for spies.
- Complete graphs are good for spies.
- What about complete bipartite graphs?

Parameters

Assume $n \gg s+r, G=K_{n, n}, m=2$.

$$
\begin{aligned}
& \text { Theorem }(\mathrm{B}-\mathrm{C}-\mathrm{P}-\mathrm{W}-\mathrm{Z}(2011+)) \\
& \text { If } s<\frac{7}{10} r-\frac{3}{5} \text { and } 2 \mid r \text {, then spies lose. }
\end{aligned}
$$

Question

- Trees are good for spies.
- Complete graphs are good for spies.
- What about complete bipartite graphs?

Parameters

Assume $n \gg s+r, G=K_{n, n}, m=2$.

Theorem (B-C-P-W-Z (2011+))

If $s<\frac{7}{10} r-\frac{3}{5}$ and $2 \mid r$, then spies lose. If $s \geq \frac{7}{10} r$ then spies win.

Sketch of proof

Call the partite sets V_{1} and V_{2}.

- After Player 1 moves in Round j there are r_{i} revolutionaries in V_{i}.

Sketch of proof

Call the partite sets V_{1} and V_{2}.

- After Player 1 moves in Round j there are r_{i} revolutionaries in V_{i}.
- After Player 2 moves in Round j there are s_{i} spies in V_{i}.

Sketch of proof

Call the partite sets V_{1} and V_{2}.

- After Player 1 moves in Round j there are r_{i} revolutionaries in V_{i}.
- After Player 2 moves in Round j there are s_{i} spies in V_{i}.
- Some spies may be "lonely"

Sketch of proof

Call the partite sets V_{1} and V_{2}.

- After Player 1 moves in Round j there are r_{i} revolutionaries in V_{i}.
- After Player 2 moves in Round j there are s_{i} spies in V_{i}.
- Some spies may be "lonely"

- Suppose at the end of Round j there are ℓ_{i} lonely spies in V_{i}.

Sketch of proof

Call the partite sets V_{1} and V_{2}.

- After Player 1 moves in Round j there are r_{i} revolutionaries in V_{i}.
- After Player 2 moves in Round j there are s_{i} spies in V_{i}.
- Some spies may be "lonely"
- Suppose at the end of Round j there are ℓ_{i} lonely spies in V_{i}.
- Unless $s_{i} \geq\left\lfloor\frac{r-s_{3-i}+\ell_{3-i}}{2}\right\rfloor$ for $i \in[2]$, the revolutionaries can win in Round $j+1$.

Revolutionary strategy:

- Revolutionaries all begin in V_{1}. Then there must be at least $r / 2$ spies in V_{1}, or spies will lose in Round 1.

Revolutionary strategy:

- Revolutionaries all begin in V_{1}. Then there must be at least $r / 2$ spies in V_{1}, or spies will lose in Round 1.
- In Round 1, any revolutionary that shares a vertex with a spy in V_{1} moves to V_{2}; each occupies his own vertex.

Revolutionary strategy:

- Revolutionaries all begin in V_{1}. Then there must be at least $r / 2$ spies in V_{1}, or spies will lose in Round 1.
- In Round 1, any revolutionary that shares a vertex with a spy in V_{1} moves to V_{2}; each occupies his own vertex.
- Now $\ell_{1} \geq r / 2-s_{2}$; say $\ell_{1}=r / 2-s_{2}$ (to simplify proof).

Revolutionary strategy:

- Revolutionaries all begin in V_{1}. Then there must be at least $r / 2$ spies in V_{1}, or spies will lose in Round 1.
- In Round 1, any revolutionary that shares a vertex with a spy in V_{1} moves to V_{2}; each occupies his own vertex.
- Now $\ell_{1} \geq r / 2-s_{2}$; say $\ell_{1}=r / 2-s_{2}$ (to simplify proof).
- To avoid losing in Round 2, spies need

$$
s_{1} \geq\left\lfloor\frac{r-s_{2}}{2}\right\rfloor \text { and } s_{2} \geq\left\lfloor\frac{r-s_{1}+\ell_{1}}{2}\right\rfloor .
$$

Which together imply that $5 s \geq \frac{7}{2} r-3$, and so $s \geq \frac{7}{10} r-3 / 5$.

Complete bipartite graphs, cont.

> Theorem $(\mathrm{B}-\mathrm{C}-\mathrm{P}-\mathrm{W}-\mathrm{Z}(2011+))$
> For $s, r \in \mathbb{N}$ and $G=K_{n, n}$, where $n \gg s+r$:

Complete bipartite graphs, cont.

Theorem (B-C-P-W-Z (2011+))
For $s, r \in \mathbb{N}$ and $G=K_{n, n}$, where $n \gg s+r$:

- If $m=3$ then when $s \geq \frac{r}{3}+\frac{r}{6}$, spies win.

Complete bipartite graphs, cont.

Theorem (B-C-P-W-Z (2011+))

For $s, r \in \mathbb{N}$ and $G=K_{n, n}$, where $n \gg s+r$:

- If $m=3$ then when $s \geq \frac{r}{3}+\frac{r}{6}$, spies win.
- If $m \geq 4$ then when $s=1.708 \frac{r}{m}$, spies win.

Complete bipartite graphs, cont.

Theorem (B-C-P-W-Z (2011+))

For $s, r \in \mathbb{N}$ and $G=K_{n, n}$, where $n \gg s+r$:

- If $m=3$ then when $s \geq \frac{r}{3}+\frac{r}{6}$, spies win.
- If $m \geq 4$ then when $s=1.708 \frac{r}{m}$, spies win.
- We conjecture that $s \geq \frac{3}{2} \frac{r}{m}$ spies suffice.

Complete bipartite graphs, cont.

Theorem (B-C-P-W-Z (2011+))

For $s, r \in \mathbb{N}$ and $G=K_{n, n}$, where $n \gg s+r$:

- If $m=3$ then when $s \geq \frac{r}{3}+\frac{r}{6}$, spies win.
- If $m \geq 4$ then when $s=1.708 \frac{r}{m}$, spies win.
- We conjecture that $s \geq \frac{3}{2} \frac{r}{m}$ spies suffice.
- If $r \geq s\left(\frac{m}{2}+\frac{\lceil m / 3\rceil}{2}\right)+2 m$, spies lose.

Another Question

Question

What graph properties determine when a graph will be good for spies or good for revolutionaries?

How about density?

Another Question

Question

What graph properties determine when a graph will be good for spies or good for revolutionaries?

How about density?

Theorem (B-C-P-W-Z (2011+))

If G has a dominating vertex then when $s>\frac{r}{m}-1$, spies win.

Another Question

Question

What graph properties determine when a graph will be good for spies or good for revolutionaries?

How about density?

Theorem (B-C-P-W-Z (2011+))

If G has a dominating vertex then when $s>\frac{r}{m}-1$, spies win.
Player 2 will keep any "off-duty" spy (one who isn't currently covering a meeting) on the dominating vertex. Can show that she then has enough off-duty spies at any time to cover any future meetings.

Another Question

Question

What graph properties determine when a graph will be good for spies or good for revolutionaries?

How about density?

Theorem (B-C-P-W-Z (2011+))

If G has a dominating vertex then when $s>\frac{r}{m}-1$, spies win.

Corollary (B-C-P-W-Z (2011+))

Fix $n>r$. Then for every $0 \leq m \leq\binom{ n}{2}$, there exists a graph $G(i)$ having n vertices and i edges such that if $s \geq \frac{r}{m}-1$ then spies win the game played on $G(i)$.

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

$G(i)$

Graph parameters, cont.

A graph is unicyclic if it contains at most one cycle.

Theorem (B-C-P-W-Z (2011+))

If G is a cycle and $s \geq r / m$, then spies win.
If G is a cycle of length ℓ and $r / m>s>r / m-1 \geq 0$, then spies lose if and only if $\ell>s+2$.

Graph parameters, cont.

A graph is unicyclic if it contains at most one cycle.

Theorem (B-C-P-W-Z (2011+))

If G is a cycle and $s \geq r / m$, then spies win.
If G is a cycle of length ℓ and $r / m>s>r / m-1 \geq 0$, then spies lose if and only if $\ell>s+2$.

Theorem (B-C-P-W-Z (2011+))

If G is a unicyclic graph and $s \geq r / m$, then spies win.
Suppose G contains exactly one cycle, C_{ℓ}, and $|V(G)|-\ell=t$. If $s+1>r / m>s \geq 1$ then spies lose if and only if
$\ell \geq \max \{s-t+3,4\}$.

Future work

- What graph properties make a graph good for revolutionaries?
- What graph properties make a graph good for revolutionaries? We show that for $m=2$ and $d \geq r \geq 1$ the hypercube Q_{d} is good for revolutionaries.
- What graph properties make a graph good for revolutionaries? We show that for $m=2$ and $d \geq r \geq 1$ the hypercube Q_{d} is good for revolutionaries.
- Graphs are good for spies when there is a "good" place to put "off-duty" spies (e.g. dominating vertex). Is there a less restrictive spanning tree condition?
- What graph properties make a graph good for revolutionaries? We show that for $m=2$ and $d \geq r \geq 1$ the hypercube Q_{d} is good for revolutionaries.
- Graphs are good for spies when there is a "good" place to put "off-duty" spies (e.g. dominating vertex). Is there a less restrictive spanning tree condition?
- We have started to consider $K_{n, n, n}$. We know that as $k \rightarrow \infty$ the complete k-partite graph with parts of size n (for $n>s, r$) becomes good for spies (i.e. $s=\frac{r}{m}$ spies suffice to win.)

[^0]: ${ }^{1}$ Virginia Commonwealth University

