Online Ramsey Games for Triangles

Jane Butterfield
University of Minnesota - Twin Cities
and József Balogh, University of Illinois at Urbana-Champaign

September 21st, 2012

Graph theory terms

Graph theory terms

James Joseph Sylvester

Graph theory terms

James Joseph Sylvester

Graph theory terms

James Joseph Sylvester

- A graph G is a set of vertices $V(G)$ and a collection of edges $E(G)$, where each edge contains two vertices.

Graph theory terms

James Joseph Sylvester

- A graph G is a set of vertices $V(G)$ and a collection of edges $E(G)$, where each edge contains two vertices.
- Let $v_{G}=|V(G)|$ and $e_{G}=|E(G)|$.

Graph theory terms

James Joseph Sylvester

- A graph G is a set of vertices $V(G)$ and a collection of edges $E(G)$, where each edge contains two vertices.
- Let $v_{G}=|V(G)|$ and $e_{G}=|E(G)|$.
- The degree, $d(v)$, of a vertex is the number of edges containing it.

Graph theory terms

James Joseph Sylvester

- A graph G is a set of vertices $V(G)$ and a collection of edges $E(G)$, where each edge contains two vertices.
- Let $v_{G}=|V(G)|$ and $e_{G}=|E(G)|$.
- The degree, $d(v)$, of a vertex is the number of edges containing it.
- The min degree of $G, \delta(G)$, is $\min \{d(v): v \in V(G)\}$

Graph theory terms

James Joseph Sylvester

- A graph G is a set of vertices $V(G)$ and a collection of edges $E(G)$, where each edge contains two vertices.
- Let $v_{G}=|V(G)|$ and $e_{G}=|E(G)|$.
- The degree, $d(v)$, of a vertex is the number of edges containing it.
- The min degree of $G, \delta(G)$, is $\min \{d(v): v \in V(G)\}$
- The max degree of $G, \Delta(G)$, is $\max \{d(v): v \in V(G)\}$.

Some important graphs

Some important graphs

- The complete graph, K_{ℓ}, has ℓ vertices, and every two vertices form an edge.

Some important graphs

K_{6}

C_{6}

- The complete graph, K_{ℓ}, has ℓ vertices, and every two vertices form an edge.
- The cycle, C_{ℓ}, has vertices v_{1}, \ldots, v_{ℓ}, and $v_{i} v_{j}$ is an edge iff $|i-j|=1(\bmod \ell)$.

Ramsey theory

Frank Plumpton Ramsey

Ramsey theory

Frank Plumpton Ramsey
"How big does something have to be for some particular structure to show up inside it?"

Ramsey theory

Frank Plumpton Ramsey
"How big does something have to be for some particular structure to show up inside it?"

- How large can n be before any 2-coloring of $[n]$ contains a monochromatic arithmetic progression of length ℓ ?

Ramsey theory

Frank Plumpton Ramsey
"How big does something have to be for some particular structure to show up inside it?"

- How large can n be before any 2-coloring of $[n]$ contains a monochromatic arithmetic progression of length ℓ ?
- How many vertices can K_{n} have before any 2-coloring of its edges induces a monochromatic copy of K_{ℓ} ?

Three Ramsey games

Three Ramsey games

Three Ramsey games

Three Ramsey games

Three Ramsey games

> Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

Three Ramsey games

> Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

On-line one-player Ramsey game Edges of K_{n} appear one-at-a-time in random order. Painter must color edges as they appear, trying to avoid a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

On-line one-player Ramsey game Edges of K_{n} appear one-at-a-time in random order. Painter must color edges as they appear, trying to avoid a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

On-line one-player Ramsey game Edges of K_{n} appear one-at-a-time in random order. Painter must color edges as they appear, trying to avoid a monochromatic triangle.

Three Ramsey games

> Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

On-line one-player Ramsey game Edges of K_{n} appear one-at-a-time in random order. Painter must color edges as they appear, trying to avoid a monochromatic triangle.

Three Ramsey games

> Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

On-line one-player Ramsey game Edges of K_{n} appear one-at-a-time in random order. Painter must color edges as they appear, trying to avoid a monochromatic triangle.

Three Ramsey games

> Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

On-line one-player Ramsey game Edges of K_{n} appear one-at-a-time in random order. Painter must color edges as they appear, trying to avoid a monochromatic triangle.

Three Ramsey games

> Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

On-line one-player Ramsey game Edges of K_{n} appear one-at-a-time in random order. Painter must color edges as they appear, trying to avoid a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

On-line one-player Ramsey game Edges of K_{n} appear one-at-a-time in random order. Painter must color edges as they appear, trying to avoid a monochromatic triangle.

Three Ramsey games

Off-line Ramsey game One player (Builder) chooses n; the second player (Painter) must color the edges of K_{n} with two colors, trying to avoid creating a monochromatic triangle.

On-line one-player Ramsey game Edges of K_{n} appear one-at-a-time in random order. Painter must color edges as they appear, trying to avoid a monochromatic triangle.

On-line two-player Ramsey game Builder presents edges one-at-a-time, and Painter must color each as it appears. The underlying graph must be in some family \mathcal{F}.

Three Ramsey games

Off-line Ramsey game How large can n be before Painter cannot avoid creating a monochromatic K_{ℓ} ?

On-line one-player Ramsey game

On-line two-player Ramsey game

Three Ramsey games

Off-line Ramsey game How large can n be before Painter cannot avoid creating a monochromatic K_{ℓ} ?

On-line one-player Ramsey game How many edges can Painter color before she creates a monochromatic triangle?

On-line two-player Ramsey game

Three Ramsey games

Off-line Ramsey game How large can n be before Painter cannot avoid creating a monochromatic K_{ℓ} ?

On-line one-player Ramsey game How many edges can Painter color before she creates a monochromatic triangle?

On-line two-player Ramsey game For which families can Painter avoid creating a monochromatic triangle?

Three Ramsey games

Classical Ramsey

Theory:
$2^{\ell / 2}<R_{2}\left(K_{\ell}\right)<2^{2 \ell}$.

Off-line Ramsey game How large can n be before Painter cannot avoid creating a monochromatic K_{ℓ} ?

On-line one-player Ramsey game How many edges can Painter color before she creates a monochromatic triangle?

On-line two-player Ramsey game For which families can Painter avoid creating a monochromatic triangle?

Three Ramsey games

Classical Ramsey
Theory:
$2^{\ell / 2}<R_{2}\left(K_{\ell}\right)<2^{2 \ell}$.

Asked by Marciniszyn, Spöhel and Steger (2009).

Off-line Ramsey game How large can n be before Painter cannot avoid creating a monochromatic K_{ℓ} ?

On-line two-player Ramsey game For which families can Painter avoid creating a monochromatic triangle?

Three Ramsey games

Classical Ramsey

Theory:
$2^{\ell / 2}<R_{2}\left(K_{\ell}\right)<2^{2 \ell}$.

Asked by Marciniszyn, Spöhel and Steger (2009).

Example family: $\mathcal{F}_{\Delta}=\{G$:
$\Delta(G) \leq \Delta\}$.

Off-line Ramsey game How large can n be before Painter cannot avoid creating a monochromatic K_{ℓ} ?

On-line one-player Ramsey game How many edges can Painter color before she creates a monochromatic triangle?

The one-player game

Definition (Threshold)

We will call $N_{0}(F, r, n)$ a threshold for the r-color on-line one-player F-avoidance game if there are positive numbers c and C such that when $N<c N_{0}(F, r, n)$ there exists a strategy such that Painter almost surely wins the game played with N edges by following the strategy, and when $N>C N_{0}(F, r, n)$ Painter almost surely loses the game played with N edges.

The one-player game

Definition (Threshold)

We will call $N_{0}(F, r, n)$ a threshold for the r-color on-line one-player F-avoidance game if there are positive numbers c and C such that when $N<c N_{0}(F, r, n)$ there exists a strategy such that Painter almost surely wins the game played with N edges by following the strategy, and when $N>C N_{0}(F, r, n)$ Painter almost surely loses the game played with N edges.

The one-player game

Definition (Threshold)

We will call $N_{0}(F, r, n)$ a threshold for the r-color on-line one-player F-avoidance game if there are positive numbers c and C such that when $N<c N_{0}(F, r, n)$ there exists a strategy such that Painter almost surely wins the game played with N edges by following the strategy, and when $N>C N_{0}(F, r, n)$ Painter almost surely loses the game played with N edges.

Theorem (Marciniszyn-Spöhel-Steger (2009))

For every graph F and integer $r>0$ the threshold $N_{0}(F, r, n)$ exists.

Simple strategies in the one-player game

- The greedy strategy: Painter orders the colors, and always uses the least-indexed color that will not close a monochromatic copy of F.

Simple strategies in the one-player game

- The greedy strategy: Painter orders the colors, and always uses the least-indexed color that will not close a monochromatic copy of F.
- For $F=K_{3}$ and $r=2$, Marciniszyn-Spöhel-Steger proved this strategy is optimal.

Simple strategies in the one-player game

- The greedy strategy: Painter orders the colors, and always uses the least-indexed color that will not close a monochromatic copy of F.
- For $F=K_{3}$ and $r=2$, Marciniszyn-Spöhel-Steger proved this strategy is optimal.
- For $F=0$ and $r=2$, Marciniszyn-Spöhel-Steger proved this strategy is not optimal.

Simple strategies in the one-player game

- The greedy strategy: Painter orders the colors, and always uses the least-indexed color that will not close a monochromatic copy of F.
- For $F=K_{3}$ and $r=2$, Marciniszyn-Spöhel-Steger proved this strategy is optimal.
- For $F=0$ and $r=2$, Marciniszyn-Spöhel-Steger proved this strategy is not optimal.
- The smart greedy strategy: Painter orders the colors, and for each color chooses some graph F_{i}. Painter always uses the least indexed color that will not close a c_{i}-monochromatic copy of F_{i}.

Simple strategies in the one-player game

- The greedy strategy: Painter orders the colors, and always uses the least-indexed color that will not close a monochromatic copy of F.
- For $F=K_{3}$ and $r=2$, Marciniszyn-Spöhel-Steger proved this strategy is optimal.
- For $F=$ and $r=2$, Marciniszyn-Spöhel-Steger proved this strategy is not optimal.
- The smart greedy strategy: Painter orders the colors, and for each color chooses some graph F_{i}. Painter always uses the least indexed color that will not close a c_{i}-monochromatic copy of F_{i}.
- For $F=$ and $r=2$, let F_{1} be a triangle and let $F_{2}=F$. Gives a better bound than greedy.

Known bounds for $N_{0}(F, r, n)$

If F is a graph, $m_{2}(F)=\max _{H \subseteq F} \frac{e_{H}-1}{v_{H}-2}$.

Known bounds for $N_{0}(F, r, n)$

If F is a graph, $m_{2}(F)=\max _{H \subseteq F} \frac{e_{H}-1}{v_{H}-2}$.

Theorem (Marciniszyn-Spöhel-Steger (2009))

For every graph F and integer $r>0$ the threshold $N_{0}(F, r, n)$ satisfies

$$
n^{2-1 / \bar{m}_{2}^{r}(F)} \leq N_{0}(F, r, n) \leq n^{2-1 / m_{2}(F)}
$$

where

$$
\lim _{r \rightarrow \infty} 2-1 / \bar{m}_{2}^{r}(F)=2-1 / m_{2}(F)
$$

Known bounds for $N_{0}(F, r, n)$

If F is a graph, $m_{2}(F)=\max _{H \subseteq F} \frac{e_{H}-1}{v_{H}-2}$.

Theorem (Marciniszyn-Spöhel-Steger (2009))

For every graph F and integer $r>0$ the threshold $N_{0}(F, r, n)$ satisfies

$$
n^{2-1 / \bar{m}_{2}^{r}(F)} \leq N_{0}(F, r, n) \leq n^{2-1 / m_{2}(F)}
$$

where

$$
\lim _{r \rightarrow \infty} 2-1 / \bar{m}_{2}^{r}(F)=2-1 / m_{2}(F)
$$

Upper bound is from off-line one-player Ramsey game, Rödle-Ruciński (1993).

Known bounds for $N_{0}(F, r, n)$

If F is a graph, $m_{2}(F)=\max _{H \subseteq F} \frac{e_{H}-1}{v_{H}-2}$.

Theorem (Marciniszyn-Spöhel-Steger (2009))

For every graph F and integer $r>0$ the threshold $N_{0}(F, r, n)$ satisfies

$$
n^{2-1 / \bar{m}_{2}^{r}(F)} \leq N_{0}(F, r, n) \leq n^{2-1 / m_{2}(F)}
$$

where

$$
\lim _{r \rightarrow \infty} 2-1 / \bar{m}_{2}^{r}(F)=2-1 / m_{2}(F)
$$

Upper bound is from off-line one-player Ramsey game, Rödle-Ruciński (1993).

The parameter in the lower bound is some sort of density function, defined recursively.

$F=K_{k}$ or C_{k}

Conjecture (Marciniszyn-Spöhel-Steger 2009)

For cliques and cycles, the known lower bound is sharp. In particular, for all $r \geq 1$ and $k \geq 2$,

$$
N_{0}\left(K_{k}, r, n\right)=n^{\left(2-\frac{2}{k+1}\right)\left(1-\binom{k}{2}^{-r}\right)}
$$

and

$$
N_{0}\left(C_{k}, r, n\right)=n^{\left(\frac{k}{k-1}\right)\left(1-k^{-r}\right)} .
$$

$F=K_{k}$ or C_{k}

Conjecture (Marciniszyn-Spöhel-Steger 2009)

For cliques and cycles, the known lower bound is sharp. In particular, for all $r \geq 1$ and $k \geq 2$,

$$
N_{0}\left(K_{k}, r, n\right)=n^{\left(2-\frac{2}{k+1}\right)\left(1-\binom{k}{2}^{-r}\right)}
$$

and

$$
N_{0}\left(C_{k}, r, n\right)=n^{\left(\frac{k}{k-1}\right)\left(1-k^{-r}\right)} .
$$

Marciniszyn-Spöhel-Steger proved true for $r=2$, remains open for $r \geq 3$.

How to avoid probability

Let $\mathcal{H}_{d}=\left\{G: \frac{e_{H}}{v_{H}} \leq d \forall H \subseteq G\right\}$.

How to avoid probability

Let $\mathcal{H}_{d}=\left\{G: \frac{e_{H}}{v_{H}} \leq d \forall H \subseteq G\right\}$. Let $\left(F, \mathcal{H}_{d}\right)$ be the two-player game in which Builder must keep the underlying graph in \mathcal{H}_{d} and Painter wants to avoid F.

How to avoid probability

Let $\mathcal{H}_{d}=\left\{G: \frac{e_{H}}{v_{H}} \leq d \forall H \subseteq G\right\}$. Let $\left(F, \mathcal{H}_{d}\right)$ be the two-player game in which Builder must keep the underlying graph in \mathcal{H}_{d} and Painter wants to avoid F.

Theorem (Belfrage, Mütze, Spöhel (2010+))

Fix any integer $r \geq 2$ and any real number $d>0$. If Builder has a winning strategy in the on-line r-color Ramsey game $\left(F, \mathcal{H}_{d}\right)$, then the threshold for the r-color on-line one-player Ramsey game satisfies

$$
N_{0}(F, r, n) \leq n^{2-1 / d}
$$

How to avoid probability

Theorem (Belfrage, Mütze, Spöhel (2010+))

Fix any integer $r \geq 2$ and any real number $d>0$. If Builder has a winning strategy in the on-line r-color Ramsey game $\left(F, \mathcal{H}_{d}\right)$, then the threshold for the r-color on-line one-player Ramsey game satisfies

$$
N_{0}(F, r, n) \leq n^{2-1 / d}
$$

Proof idea:

How to avoid probability

Theorem (Belfrage, Mütze, Spöhel (2010+))

Fix any integer $r \geq 2$ and any real number $d>0$. If Builder has a winning strategy in the on-line r-color Ramsey game $\left(F, \mathcal{H}_{d}\right)$, then the threshold for the r-color on-line one-player Ramsey game satisfies

$$
N_{0}(F, r, n) \leq n^{2-1 / d}
$$

Proof idea:

- If $e_{G} / v_{G} \leq d$, then almost surely a random graph with $N=\omega\left(n^{2-1 / d}\right)$ edges contains a copy of G.

How to avoid probability

Theorem (Belfrage, Mütze, Spöhel (2010+))

Fix any integer $r \geq 2$ and any real number $d>0$. If Builder has a winning strategy in the on-line r-color Ramsey game $\left(F, \mathcal{H}_{d}\right)$, then the threshold for the r-color on-line one-player Ramsey game satisfies

$$
N_{0}(F, r, n) \leq n^{2-1 / d} .
$$

Proof idea:

- If $e_{G} / v_{G} \leq d$, then almost surely a random graph with $N=\omega\left(n^{2-1 / d}\right)$ edges contains a copy of G.
- In fact, given a Builder strategy in $\left(F, \mathcal{H}_{d}\right)$, the random graph almost surely reproduces his strategy in the first N steps!

How to avoid probability

Theorem (Belfrage, Mütze, Spöhel (2010+))

Fix any integer $r \geq 2$ and any real number $d>0$. If Builder has a winning strategy in the on-line r-color Ramsey game $\left(F, \mathcal{H}_{d}\right)$, then the threshold for the r-color on-line one-player Ramsey game satisfies

$$
N_{0}(F, r, n) \leq n^{2-1 / d}
$$

Proof idea:

- If $e_{G} / v_{G} \leq d$, then almost surely a random graph with $N=\omega\left(n^{2-1 / d}\right)$ edges contains a copy of G.
- In fact, given a Builder strategy in $\left(F, \mathcal{H}_{d}\right)$, the random graph almost surely reproduces his strategy in the first N steps!
- If there is a winning Builder strategy, therefore, Painter will almost surely lose after N steps in the one-player random game.

Improvements for triangles

Range for triangles was

Improvements for triangles

Range for triangles was

$$
\begin{array}{r}
N_{0}\left(K_{3}, 2, n\right)=n^{\frac{4}{3}} \\
n^{\frac{3}{2}\left(1-\frac{1}{3^{r}}\right)} \leq N_{0}\left(K_{3}, r, n\right) \leq n^{\frac{3}{2}} \tag{2}
\end{array}
$$

Improvements for triangles

Range for triangles was

$$
\begin{array}{r}
N_{0}\left(K_{3}, 2, n\right)=n^{\frac{4}{3}} \\
n^{\frac{3}{2}\left(1-\frac{1}{3^{r}}\right)} \leq N_{0}\left(K_{3}, r, n\right) \leq n^{\frac{3}{2}} \tag{2}
\end{array}
$$

Upper bound in (2) is from the off-line game. Lower bound is Marciniszyn-Spöhel-Steger's theorem.

Improvements for triangles

Range for triangles was

$$
\begin{array}{r}
N_{0}\left(K_{3}, 2, n\right)=n^{\frac{4}{3}} \\
n^{\frac{3}{2}\left(1-\frac{1}{3^{r}}\right)} \leq N_{0}\left(K_{3}, r, n\right) \leq n^{\frac{3}{2}} \tag{2}
\end{array}
$$

Upper bound in (2) is from the off-line game. Lower bound is Marciniszyn-Spöhel-Steger's theorem.
For $r=3$:

$$
n^{\frac{3}{2}-\frac{1}{18}} \leq N_{0}\left(K_{3}, 3, n\right) \leq n^{\frac{3}{2}}
$$

Improvements for triangles

Range for triangles was

$$
\begin{array}{r}
N_{0}\left(K_{3}, 2, n\right)=n^{\frac{4}{3}} \\
n^{\frac{3}{2}\left(1-\frac{1}{3^{r}}\right)} \leq N_{0}\left(K_{3}, r, n\right) \leq n^{\frac{3}{2}} \tag{2}
\end{array}
$$

Upper bound in (2) is from the off-line game. Lower bound is Marciniszyn-Spöhel-Steger's theorem.
For $r=3$:

$$
n^{\frac{3}{2}-\frac{1}{18}} \leq N_{0}\left(K_{3}, 3, n\right) \leq n^{\frac{3}{2}}
$$

Appreciable gap.

Improvements for triangles

First separation for $r \geq 3$ from the off-line bound:

Improvements for triangles

First separation for $r \geq 3$ from the off-line bound:
Theorem (Balogh, Butterfield (2010))
For every $r \geq 3$, there exists $c_{r}>0$ such that

$$
N_{0}\left(K_{3}, r, n\right) \leq n^{\frac{3}{2}-c_{r}} .
$$

Improvements for triangles

First separation for $r \geq 3$ from the off-line bound:
Theorem (Balogh, Butterfield (2010))
For every $r \geq 3$, there exists $c_{r}>0$ such that

$$
N_{0}\left(K_{3}, r, n\right) \leq n^{\frac{3}{2}-c_{r}} .
$$

Theorem (Balogh, Butterfield (2010))

$$
n^{\frac{3}{2}-\frac{1}{18}} \leq N_{0}\left(K_{3}, 3, n\right) \leq n^{\frac{3}{2}-\frac{1}{42}} .
$$

Strategy for $r=3$

- If Painter makes a monochromatic triangle, we win.

Strategy for $r=3$

- If Painter makes a monochromatic triangle, we win.
- If Painter makes the following two-colored graph, we win.

Strategy for $r=3$

- If Painter makes a monochromatic triangle, we win.
- If Painter makes the following two-colored graph, we win.

Vertices: 22
Edges: 42 (once final triangle is placed)

Questions

- Is this the least d such that Builder can win $\left(K_{3}, \mathcal{H}_{d}\right)$?

Questions

- Is this the least d such that Builder can win $\left(K_{3}, \mathcal{H}_{d}\right)$?
- For which d does Painter have a winning strategy in $\left(K_{3}, \mathcal{H}_{d}\right)$?

Questions

- Is this the least d such that Builder can win $\left(K_{3}, \mathcal{H}_{d}\right)$?
- For which d does Painter have a winning strategy in $\left(K_{3}, \mathcal{H}_{d}\right)$?
- Does Painter's strategy in $\left(K_{3}, \mathcal{H}_{d}\right)$ translate to a lower bound on $N_{0}(F, r, n) ?$

Questions

- Is this the least d such that Builder can win $\left(K_{3}, \mathcal{H}_{d}\right)$?
- For which d does Painter have a winning strategy in $\left(K_{3}, \mathcal{H}_{d}\right)$?
- Does Painter's strategy in $\left(K_{3}, \mathcal{H}_{d}\right)$ translate to a lower bound on $N_{0}(F, r, n) ?$

UMN undergraduate research question.

Questions

- Is this the least d such that Builder can win $\left(K_{3}, \mathcal{H}_{d}\right)$?
- For which d does Painter have a winning strategy in $\left(K_{3}, \mathcal{H}_{d}\right)$?
- Does Painter's strategy in $\left(K_{3}, \mathcal{H}_{d}\right)$ translate to a lower bound on $N_{0}(F, r, n) ?$

UMN undergraduate research question. An answer could prove Marciniszyn-Spöhel-Steger conjecture...

Questions

- Is this the least d such that Builder can win $\left(K_{3}, \mathcal{H}_{d}\right)$?
- For which d does Painter have a winning strategy in $\left(K_{3}, \mathcal{H}_{d}\right)$?
- Does Painter's strategy in $\left(K_{3}, \mathcal{H}_{d}\right)$ translate to a lower bound on $N_{0}(F, r, n) ?$

UMN undergraduate research question. An answer could prove Marciniszyn-Spöhel-Steger conjecture... ...or cast doubt on the conjecture or the method.

Strategy for $r>3$

- Completely different strategy than for $r=3$.

Strategy for $r>3$

- Completely different strategy than for $r=3$.
- Defined recursively:

Strategy for $r>3$

- Completely different strategy than for $r=3$.
- Defined recursively:
- Let S_{r} be Builder's strategy to force K_{3} in r-color game.

Strategy for $r>3$

- Completely different strategy than for $r=3$.
- Defined recursively:
- Let S_{r} be Builder's strategy to force K_{3} in r-color game.
- Let n_{r} be the number of vertices strategy S_{r} needs.

Strategy for $r>3$

- Completely different strategy than for $r=3$.
- Defined recursively:
- Let S_{r} be Builder's strategy to force K_{3} in r-color game.
- Let n_{r} be the number of vertices strategy S_{r} needs.
- Strategy S_{1} is obvious, $n_{1}=3$.

Strategy for $r>3$

- Completely different strategy than for $r=3$.
- Defined recursively:
- Let S_{r} be Builder's strategy to force K_{3} in r-color game.
- Let n_{r} be the number of vertices strategy S_{r} needs.
- Strategy S_{1} is obvious, $n_{1}=3$.
- Graph Ramsey Theory: for any n_{r}, there exists m_{r} large enough that any r-coloring of the edges of $K_{m_{r}}$ results in a monochromatic copy of $K_{n_{r}}$.
X_{1}
Y_{1}

If there are n_{r-1} vertices in Y_{1}^{\prime}, Builder can use Strategy S_{r-1}; fixing $X_{2}, Y_{2} \subseteq Y_{1}^{\prime}$.
Density: every subgraph has average out-degree strictly less than 2 .

Questions

- This algorithm produces a poor Builder strategy for three colors. What happens if we seed it with the better three-color strategy?

Questions

- This algorithm produces a poor Builder strategy for three colors. What happens if we seed it with the better three-color strategy?
- Is there a better way to produce an $r+1$ strategy from an r strategy?

Questions

- This algorithm produces a poor Builder strategy for three colors. What happens if we seed it with the better three-color strategy?
- Is there a better way to produce an $r+1$ strategy from an r strategy?
- Is there a similar recursive strategy to avoid K_{ℓ} ?

Questions

- This algorithm produces a poor Builder strategy for three colors. What happens if we seed it with the better three-color strategy?
- Is there a better way to produce an $r+1$ strategy from an r strategy?
- Is there a similar recursive strategy to avoid K_{ℓ} ?

UMN undergraduate research question.

In conclusion

Some simple questions:

- What is the least d for which Builder can win the 3-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?

In conclusion

Some simple questions:

- What is the least d for which Builder can win the 3-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?

In conclusion

Some simple questions:

- What is the least d for which Builder can win the 3-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Is the Marciniszyn-Spöhel-Steger conjecture correct?

In conclusion

Some simple questions:

- What is the least d for which Builder can win the 3 -color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Is the Marciniszyn-Spöhel-Steger conjecture correct?
- Is the Belfrage-Mütze-Spöhel method "tight"?

In conclusion

Some deceptively simple questions:

- What is the least d for which Builder can win the 3 -color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Any Painter strategy for $d<42 / 22$?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Is the Marciniszyn-Spöhel-Steger conjecture correct?
- Is the Belfrage-Mütze-Spöhel method "tight"?

In conclusion

Some deceptively simple questions:

- What is the least d for which Builder can win the 3 -color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Any Painter strategy for $d<42 / 22$?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Improve the recursive algorithm.
- Find a better algorithm for $r=4$.
- Is the Marciniszyn-Spöhel-Steger conjecture correct?

In conclusion

Some deceptively simple questions:

- What is the least d for which Builder can win the 3 -color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Any Painter strategy for $d<42 / 22$?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Improve the recursive algorithm.
- Find a better algorithm for $r=4$.
- Is the Marciniszyn-Spöhel-Steger conjecture correct?
- Find a Builder strategy for $\left(K_{3}, \mathcal{H}_{18 / 10}\right)$.

In conclusion

Some deceptively simple questions:

- What is the least d for which Builder can win the 3-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Any Painter strategy for $d<42 / 22$?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Improve the recursive algorithm.
- Find a better algorithm for $r=4$.
- Is the Marciniszyn-Spöhel-Steger conjecture correct?
- Find a Builder strategy for $\left(K_{3}, \mathcal{H}_{18 / 10}\right)$.
- Is the Belfrage-Mütze-Spöhel method "tight"?

In conclusion

Some deceptively simple questions:

- What is the least d for which Builder can win the 3-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Any Painter strategy for $d<42 / 22$?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Improve the recursive algorithm.
- Find a better algorithm for $r=4$.
- Is the Marciniszyn-Spöhel-Steger conjecture correct?
- Find a Builder strategy for $\left(K_{3}, \mathcal{H}_{18 / 10}\right)$.
- Is the Belfrage-Mütze-Spöhel method "tight"?
- If F is a tree, yes.

In conclusion

Some deceptively simple questions:

- What is the least d for which Builder can win the 3-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Any Painter strategy for $d<42 / 22$?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Improve the recursive algorithm.
- Find a better algorithm for $r=4$.
- Is the Marciniszyn-Spöhel-Steger conjecture correct?
- Find a Builder strategy for $\left(K_{3}, \mathcal{H}_{18 / 10}\right)$.
- Is the Belfrage-Mütze-Spöhel method "tight"?
- If F is a tree, yes.
- If F is C_{ℓ} and $r=2$, yes. What about C_{ℓ} and $r>2$?

In conclusion

Some deceptively simple questions:

- What is the least d for which Builder can win the 3-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Any Painter strategy for $d<42 / 22$?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Improve the recursive algorithm.
- Find a better algorithm for $r=4$.
- Is the Marciniszyn-Spöhel-Steger conjecture correct?
- Find a Builder strategy for $\left(K_{3}, \mathcal{H}_{18 / 10}\right)$.
- Is the Belfrage-Mütze-Spöhel method "tight"?
- If F is a tree, yes.
- If F is C_{ℓ} and $r=2$, yes. What about C_{ℓ} and $r>2$?
- We know $N_{0}\left(K_{k}, 2, n\right)$; is there a Builder strategy to exhibit it?

In conclusion

Some deceptively simple questions:

- What is the least d for which Builder can win the 3 -color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Any Painter strategy for $d<42 / 22$?
- What is a "good" d for which Builder can win the r-color $\left(K_{3}, \mathcal{H}_{d}\right)$ game?
- Improve the recursive algorithm.
- Find a better algorithm for $r=4$.
- Is the Marciniszyn-Spöhel-Steger conjecture correct?
- Find a Builder strategy for $\left(K_{3}, \mathcal{H}_{18 / 10}\right)$.
- Is the Belfrage-Mütze-Spöhel method "tight"?
- If F is a tree, yes.
- If F is C_{ℓ} and $r=2$, yes. What about C_{ℓ} and $r>2$?
- We know $N_{0}\left(K_{k}, 2, n\right)$; is there a Builder strategy to exhibit it?
- Prove that Builder cannot win $\left(K_{3}, \mathcal{H}_{18 / 10}\right)$

Thank you!
 butter@umn.edu

