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We generalize the curved N-body problem to spheres and hyperbolic spheres whose
curvature « varies in time. Unlike in the particular case when the curvature is constant,
the equations of motion are non-autonomous. We first briefly consider the analog
of the Kepler problem and then investigate homographic orbits for any number of
bodies, proving the existence of several such classes of solutions on spheres. Allowing
the curvature to vary in time offers some insight into the effect of an expanding
universe in the context of the curved N-body problem, when « satisfies Hubble’s law.
The study of these equations also opens the possibility of finding new connections
between classical mechanics and general relativity. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4983681]

l. INTRODUCTION

In the 1830s, Janos Bolyai and Nikolai Lobachevsky independently thought that the laws of
physics depend on the geometry of the universe, so they sought a natural extension of gravity to
hyperbolic space, Refs. 2 and 17. This idea led to the study of the Kepler problem and the 2-
body problem in the framework of hyperbolic and elliptic geometry. Unlike in Euclidean space,
the equations describing them are not equivalent, since the latter system is not integrable, Ref. 20.
More recently, the problem was generalized to any number N of bodies, leading to works such as
Refs. 3-15 and 18-24. In the light of Hubble’s law,'® a non-flat universe (i.e., a 3-sphere or a hyperbolic
3-sphere) would have uniformly varying curvature « = «(¢) as the universe expands, meaning that at a
given time the curvature is the same at every point. Therefore, by modifying the equations of the curved
N-body problem to allow for uniformly varying curvature, we can construct a gravitational model
that accounts for an expanding universe without requiring general relativity. Of course, we do not
claim that the model we will introduce here could replace general relativity in cosmological studies.
We are mostly interested in the mathematical aspects of a curved N-body problem on expanding or
contracting spheres and hyperbolic spheres, a problem that, to our knowledge, has not been considered
before in the framework of classical mechanics.

We are not only deriving here the equations of motion of this N-body problem but will also
examine how the uniformly varying curvature affects the system’s behaviour and the existence of
certain solutions. In Section II we find the equations of the N-body problem with uniformly varying
curvature on the variable 3-sphere,

Si = Si(r) ={(x,y,z,w)€ R*: x? +y2 +72+wr= K_l(t), k(1) >0},
and the variable hyperbolic 3-sphere,

Hi ::Hi(t) ={(x,y,z,w) eR¥ X2 +y2 +72—w’= Kﬁl(t), k(1) <0},
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where R>! is the Minkowski space, by generalizing the derivation of the curved N-body equations
with cotangent potential, as done in Ref. 3, and perform a change of coordinates to reduce the
problem to the study of the motion projected onto the unit manifolds S* and H?, respectively. We
then seek the first integrals of the equations and find a Lagrangian for the projected coordinates. In
Section III, we derive the equations of the Kepler problem, a two-body system where one body is
fixed, and rule out some of the solutions typically expected in such problems. In Section IV we first
define the concept of a homographic solution, for which the configuration of the particles remains
similar to itself during the motion while the curvature of the space changes in time. We then show
that such orbits exist in Si, but not in H;E, and that the homographic solutions of S,% correspond to
the special central configurations in S*, which was studied in Ref. 13. This observation allows us to
reformulate the question of existence of homographic solutions on a variable 3-sphere as a problem
of existence of special central configurations in the unit sphere S*. Each special central configuration
found in Ref. 13 gives rise to a homographic solution of the N-body problem in spaces with uniformly
varying positive curvature. In Section V, we provide several new special central configurations in S°.
We first show the existence of a double Lagrangian special central configuration for 6 bodies and the
existence of a double tetrahedron special central configuration for 8 bodies. Then we give the criteria
for the general 4- and 5-body special central configurations.

We would like to mention that the idea of introducing and studying the N-body problem
in spaces with uniformly varying curvature came to us from Sergio Benenti’s book in progress,
Ref. 1. In his manuscript, Benenti develops a remarkable axiomatic setting for isotropic cosmologi-
cal models, considering the spaces S, (f) and H,(¢) as defined above. However, he shows no interest
in deriving the equations of motion of an N-body problem, focusing instead on some cosmological
questions which he treats with relativistic techniques.

Il. EQUATIONS OF MOTION

In order to study the N-body problem in spaces with uniformly varying curvature, it is first
necessary to generalize the equations of motion from the constant curvature case by applying the
Euler-Lagrange equations to the Lagrangian used in Ref. 3, where « is a non-zero differentiable
function of time. The goal of this section is to obtain the new system of equations and its basic
integrals of motion.

A. Deriving the equations of motion

Let the curvature «:[0,00) >R be a non-zero differentiable function of time. Take
q=(qq,...,qy), with q; € R*, if «(¢) > 0, but the Minkowski 4-space is R*!, if x(r) < 0. We define
the potential energy to be —U,, where Uy is the force function

mmj|x|'xq; - q;
U= ). - T (M
1<igen [0 —0o(kq; - q;)7]

where o denotes the sign of «, and - is the standard inner product for « >0 and the Lorentz product
q; - q; =xix; + Yy + 2z — Wiw; for k <0. When « is constant, U, offers the natural extension of
Newton’s law to curved spaces, see Ref. 3.

We define the kinetic energy as

T (@) = miq; - q;, @

N =
1=

I
—

1

so the Lagrangian function is L, = T + U,. Consequently we can obtain in the standard manner the
Euler-Lagrange equations with holonomic constraints,

— KK N K20, i=1,...,N, &)
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where k # 0 and f,f =q;-q; - % =0, i=1,...,N are the constraints that keep the particle system on
S?( or Hi respectively. The above system then becomes

miq; =V, Uc +2Meq;, i=1,...,N. “)
Dot-multiplying these equations by q; leads to
midj; - q;=Vq,Us - q; +2Meq; - q;, i=1,...,N. 5)
Since Uy is a homogeneous function of degree 0, it follows by Euler’s formula for homogeneous
functions that Vg, Uy - q; =0. As f; =0, we also have
L Pe )
fé=2q1q1+_2=0, lzl,...,N
K
and
flzzqu.ql+2ql.ql+_2_2_=0’ 1= ,...,N.
K
Substituting these into (5) gives

mik' m,-kz A

—-mq; - Q- — + =2X% ji=1,...,N,
miq; - q; 2K2 K3 K !
SO )
. m:K m;k  m;K
M= — —— 4 ,i=1,...,N. 6
K 7 4 i L 22" ©
If we insert (6) into (4), we obtain that
mig; =Vq,Uc = mik(q; - 4:)q; = mi5 i i 1= L....N, Q)
with the constraints
kq;-q;=1,i=1,...,N, k#0. (®)

|—1/2

The change of variables q; = |« q; projects the system on S* and H. We obtain

4= okq; q
i 2|K|3/2 |K|1/2’

i, = — oy 3K _ Tk, n q;
TP T AR T kPR T [

Define U(@)= mimjod; Gy

1 <icien oo @ a1/
motion take the form

It is easy to see that tiU =|«k|"'v q; Uk- Thus the equations of

mid; = «[*Vq U - omi(@; - 4)q; + = =G, i=1,..., N, ©9)

with constraints .
alaZZO',al~al=O, izl,...,N, K¢0. (10)

In Refs. 5 and 13, the explicit form of VQU is written as

VU= i mimj(q; — o (q; - q)q;) i mim;(q; — csnd;;q;)
A @ g

) (11)

1 3 s
Pt sn°d;;

j=ly#i
where sn(x) = sin(x) or sinh(x), csn(x) =cos(x) or cosh(x), and d;; is the distance between q; and q;
inS? or H3. It is djj :=arcesn(oq; - q;). Following Ref. 5, we define
ctn(x) = csn(x)/sn(x) = cot(x) or coth(x),
csct(x) =1/sn(x) = 1/ sin(x) or 1/ sinh(x).

We denote by F; the term Va‘_ﬁ. Physically, it is the attraction force on q;.
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B. Integrals of the total angular momentum

We can now obtain the integrals of the total angular momentum. Consider the wedge product,
A, of q; and the ith equations of (9). For details on the wedge product in the current context, see
Ref. 5, p. 31. Dividing by |«|, and summing the equations over i, we obtain

miK ~  _
Z = ZIKI”Z(V T) AT, - Z[—(q, 8 A T+ AT

=1

Since wedge-product expressions are skew-symmetric, Z‘l |x|'/2(Vq,U) A q;=0. Combining this

property with the fact that q; A q; =0, we obtain that

N .
_ OMmM;K - —
Z[ A - — G AT,
|k | 'S

This is the negative of the time derivative of the system’s angular momentum about the origin,
N

=0. (12)

L=73 %ﬁi A ﬁl and provides the six integrals
i=1

N N
m; ) m;
Ly = Z —(yizi — ziVi)s Z —(XiZi — ziX;),
i=1 || i=1 |«]
N m; N
sz = Z m(xlyt yixi), = Z (wlzl ZiW; )
i=1
al m; U m;
Ly, = Z |—K|( Vi — yii), Z i« (wix; — x;w;).

C. The g-Lagrangian

If we have a Lagrangian in both the normal and projected coordinates, we may obtain the
projected equations without having to first derive the full equations. The Lagrangian of the system in
q coordinates is

Zm(ql qQ) Z (12 ommi(q; - q;) (13)

2lK] 1<i<j<N (o= o(@;- g

with constraints f; =q; - q; — 0 =0. Applying the Euler-Lagrange equations in terms of q; gives
system (9).

lll. THE KEPLER PROBLEM

The simplest system that can be derived from the N-body problem is the Kepler problem, which
describes the gravitational motion of a point mass m about a fixed-point mass M. Without loss of
generality, we will assume that M is fixed at position N = (0, 0, 0, 1) in terms of q coordinates.

We will use the 3-spherical/hyperbolic coordinates (a, 6, ¢) by taking

q=(x,y,z, w)=(sna sin 8 cos ¢, sna sin  sin ¢, sna cos §, csna),
so Equation (13) becomes
I m(@? + 6%sn?a + ¢zsn2asin29)
- 2| k|

with no constraint. Then the conjugate momenta for the system are

+ k| >mMctna (14)

ma mfsn’a mgsn’asin’6
Pa = m Po = s P =

k]

|| |

and the Hamiltonian has the form
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Il
2m

Then the equations of motion become

H= (pi +pécsctza +picsct201 csc?0) — k| *mMctne.

. O0H _|k|pa
¥=——=——,

OPa m
G= oH |k|pocsct?a

s

dpe m
. OH _ |k|pgescta csc?6

s

0py m

_ O0H _ |k|ctnacsct?a

|1/2

(pé +pi05029) — &|"*mMecscta,

o=
da m

, OH |klescta csc?6 cot Opy,

Po==7g = o
OH

= — 2L ().

Py EP

From (21) we have that A = p,, is a constant, and direct computation leads to
Ly;=pey,
Lyx =pg sin ¢ + p,, cot 6 cos ¢,
Lyy =pg cos ¢ + p, cot 6 sin .

15)

(16)

a7

(13)

19)

(20)

2y

Notice that L = pg + pfocsc26’ is a constant. Using this property, we can eliminate (20) and (21) and

obtain the equations of motion in the form

. |k|pa
a= -

m
k(L = A2 esc?O)esctPa
0=+

b}

m
. |klAcsct?a csc?

)

m

|k|Letnacsct?ar
pa = = |k
m

|1/2mMcsct20/.

If we insert (22) into (25), we get the second order equation

2 2 L.
. k“Lctnacsct a K&
b=—""—>—— Ik|3*Mcsct?a + —.
m K

A. Necessary condition on « for circular solutions

(22)

(23)

(24)

(25)

(26)

The simplest solution of the Kepler problem in the Euclidean and constant curvature cases is
the circular solution, i.e., an orbit for which the moving mass is at a constant distance from the fixed

mass. We find that such solutions do not exist for non-constant curvature.

Proposition 1. Circular orbits occur only in systems with constant curvature.

Proof. Obviously, a circular orbit occurs when a has a constant value throughout the motion.
By (22), in order for this to be the case, we must have p, = 0. But then, by (25),0 = %|K|Lctna/csct2a

— |k|"2mMcsct®a. If we isolate «, we find that

()

Lctna

Since the right-hand side consists only of constants, it follows that the system has circular orbits only

if k¥ does not depend on time.

O
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We can also prove the following related result.

Proposition 2. A system has non-fixed T-periodic solutions in phase space for some T >0 only
if kis T-periodic.

Proof. Let (a(?), ¢(1), 6(), po) be a solution to the curved Kepler problem with curvature «(z),
such that for every ¢ € [0, o), we have

a(t+T)=a), Dot +T)=pu(),
0t +T)=06(r), o(t +T)=¢(t) + 2nn,

for some T e R,n € Z. If A #0, then by (24)

0=t +T) - p(t) = (lk(t+T)| — |K(t)|):4n- csct2oz(t) cscze(t)’

so |k(t + T)| = |k(t)|. Since « is continuous and non-zero, there are no ¢, t» such that «(t1) = —«(t2),
so k(t +T)=«(t).
If A = 0, then by (23)

(k(t + )| = [k(ODVL - esct?a(t)

m

0=60+T)-6(t)==

so by the same argument as above, «(t + T') = k(t). Therefore T-periodic solutions occur only when
k is T-periodic. O

IV. HOMOGRAPHIC ORBITS

In this section, we study a class of rigid motions (rigid motions in terms of q coordinates). We
found that they exist in S*, but not in H?, and that they are related to special central configurations,
a concept introduced in Refs. 5 and 13.

A. Homographic orbits in S®

In S?, a solution of the form q(r) =A~'e¥Aq(0) is called a homographic orbit, where A is a
constant matrix in SO(4), and

0 —a®) 0 0
e 0 0 0
SO=1"0" 0 0 —pw|’
0 0 AW 0

a(t), B(t)eC I®R), a(0)= B(0)=0. Since Equations (9) with « >0 are invariant under the SO(4)-
action, it is sufficient to consider the case A = idso4).

Definition 1 (Ref. 13). Consider the masses my, . ..,my >0 in S°. Then a configuration
q9=(q. 9 ---qy), q4; =y, z,wi), i=1,...,N
is called a special central configuration if it is a critical point of the force function U, i.e.,
VaU@=0,i=1,...,N.

In S?, special central configurations lead to fixed-point solutions. The next result shows that
homographic orbits can be derived from the special central configurations in S?, i.e., finding homo-
graphic solutions on spheres with variable curvature is equivalent to finding fixed-point solutions in
the unit sphere S°.
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Proposition 3. Let q(t) = (q;(t), qx(?) . . . qy (1)) be a homographic orbit in 8,3(. Then q(t) is a
solution to the N-body problem with time varying curvature if and only if q is a special central
configuration and q;(t) = eVq; for i=1,2,...,N, where

0 —cK@®) 0 0
ek 0 0 0

O=1"9" o 0 =+cK(n| €€
0 0 FcK@® O

R, 27

with K(t) = [y k(t)dT.

Proof. Letq;(t) = e5"q;, where q is a special central configuration, and £(¢) is defined as in (27).
Then Equations (9) become

m;K(t)

) &(nq;,

mi(E(t) + EX)q; = —mi(E(T; - 0T, +

by using the fact that £(f) commutes with e¢” and that Vg, U =0. Notice that

Eq; = - (T, @ém =£&(),
k(1)

so we have

miE(Oq; — mictkA(Oq; = —mic* k(7 +y7 + 27+ wHg; + mé)q;
=mi&(1)q; — mic* (0);,
therefore q(7) is a solution of the N-body problem with time varying curvature when « > 0.

Conversely, suppose q(t) =(q;(t),q,(?) ... qy(?)) is a solution of the N-body problem with
uniformly varying positive curvature that is a homographic orbit in Si. Then

(07 [ xicos(@(®) - yi sin(@(®)

o || sinta) + y; cosa)

GO= 70 | | 2 cos(B) - wisin(B()) |
wit)] Lz sin(B(1)) + w; cos(B(1)

where q;(0) = (x;, yi, zi» w))’, and @, B are real differentiable functions such that a(0)= B(0)=0.
Notice that

Xi(1) = —a@)y;(1),
yi(®) = @(®)x;(1),
zi(1) = = BOYw;(1),
wi(1) = B()zi(1).

If we look at the angular momentum integrals in the xy and zw directions, we find that

| &
Ly= @ ; mi(x;()yi(t) — % (t)yi(2))
k(1)

a(t) &
_al) 2,2
= () ;m,(xi +y,~)

N
D mil(xi cos(@() = i sin(@(1)))? + (xi sin(@(1) + y; cos(@(1)))?)
i=1
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and

N
L= T

_B®
)

= ) ;ml(zi +w;).

N
D7 mi((zi cos(B1)) — w; sin(BO))? + (zi sin(B(0) + w; cos(B1))?)
i=1

For L,y and L;,, to be constant, we must have one of the following three conditions satisfied:

(1) xj=y;=0foralli=1,...,N and B(t) = cK(t) for some c € R;
2) zi=w;=0foralli=1,...,N and a(t) = cK(¢) for some c € R;
(3) a(t)=aK(r) for some a € R and B(¢) = bK(t) for some b € R.

The first and second cases are proved the same way, so we will look at the first and third cases only.
In the first case, since q;(¢) is a solution of the N-body problem with uniformly varying positive
curvature, the following equation is satisfied fori=1,...,N:

0 0

oK 0 o 2 2= N 320N [T 2 2 L 0
m;cKk —wit) m;c“k°q;(t) =k (t)tiU mic” k= q;(t) + mick —wit)
zi(?) z(0)

Then Vg U =0, so g; is a special central configuration, and

0

0 = 00g,
z; cos(cK) — w; sin(cK) v

z; sin(cK) + w; cos(cK)

q;(t)=

where £(7) is defined in (27). '
In the third case, if we notice that %f () = £(1), we know that the following equation is satisfied
by q;(0):

(az()cl.2 + yl.2) + b2(zi2 + wiz) - d®)x;
(az()cl.2 + yl.2) + bz(zi2 + wl.z) - d®)y;
(@2 +y2) + bA(22 + w?) - b7z
(@2 +y2) + b2+ w?) - bw;

K>12Vg U = mik(t)

(2 + w?)x;
@+ w?)y;
O +yD)zi

2 2
_(x,' + )7,» )wi

=m>(0)(b* - d?)

Assuming that « is not constant, this equation can only hold if q;(¢) satisfies condition (1) or (2), or
if a = +b and q; is a special configuration. In either case, the hypothesis holds, and

x; cos(aK) — y; sin(aK)

x;sin(aK) + y;cos(akK) | _ sp=
zi cos(ak) — w; sin(xak) | =€ 9
z; sin(xaK) + w; cos(akK)

q;(t)=

This remark completes the proof. O
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B. Homographic orbits in H?

In H3, a solution of the form q(z) = B‘le‘f':f(’)Bq(O), j=1,2,1is called a homographic orbit, where
B is a constant matrix in SO(3, 1), and

00 0 0 0 —a 0 0

0 -n@® n@® at) 0 0 0
w0 o 2O 0 o o —gn |
at 0 0 0O 0 By 0

&)=

S OO

a(?), B(1),n(t) € C(R), a(0)=B(0)=n(0)=0. Since Equations (9) with x <0 are invariant under
the SO(3, 1)-action, it is sufficient to consider the case B = idso3,1).

As all homographic solutions for x >0 correspond to fixed-point solutions, or special central
configurations in S°, and there are no fixed-point solutions in H?,>!'3 we expect that there are no
homographic solutions for x < 0. We will now show that this is indeed the case.

Proposition 4. There are no homographic solutions of the N-body problem with negative
uniformly varying curvature.
Proof. 1f a solution is homographic, then it has the form
q(n=e"g;, j=1,2,i=1,...,N.

We will rule out the two possible cases separately.

Case 1. £ =¢. In this case, solutions will take the form

X;
yi —zin(t) + win(t)

zi +yim(t) — zm* (/2 + win*@®)/2 |

w;i +yin(®) — zn*(0)/2 + win*(1)/2

q;(t)=

X

where 7 is a differentiable function, and q; =

i } is the initial position of the ith particle. If we look
w;

at the angular momentum integrals in the xy and yz directions, we find after some simple calculations
that

. N
UTE mx(w; — z;), (28)
. N 2

Ly, = % Z mi(y + 27 — ziw; + n(0)yi(w; — z;) + #(w, - z2)%). (29)

1l
—_

14

Note that 77(¢) is not constant. Otherwise, we get n7(¢) = 7(0) = 0, and we obtain a fixed-point solution
in H®, which is not possible.>'3 Thus either 7j(r) = ck(r) for some ¢ # 0 or

. (r)zm’( 5 +n<r)Zmly,<wl zl)+Zm(y 2 = zu)=0

and

N
Z mixi(w; —z;) =0
i=1
for all t€[0,c0). In the first case, in order for L,, to be constant, it would be necessary that

ZN m‘(w‘—Z‘—O so w;=z for all i=1,...,N. But if this is the case, then x2+y%+z? — w?
l yl 1 1

N miwi—z)?
i=1 2
?Ll m;yi(w; — z;), and Zg\;l m,~(yl.2 +zl.2 — z;w;) must be equal to zero. This is possible only if y; = 0,

=xi +yl, =—1, which is impossible. In the second case, each of Zfil mixi(w; — z;),
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z=w;fori=1,...,N.But thenx +Y; +z2 - w2 —x = —1, which is impossible. Therefore there are

no homographic orblts for &;.

Case 2. £ =¢&,. In this case, solutions will take the form

xi cos(a(t)) — yi sin(a(1))

x; sin(a()) + y; cos(a(t))
zi cosh(B(1)) + w; sinh(B(r)) |’
z; sinh(B(t)) + w; cosh(B(7))

q;(t)=

where «, § are real-valued differentiable functions such that @(0) = 8(0)=0, and q; = [’Z / ] is the
initial position of the ith particle. Notice that l

Xi(t) = —a@)yi(1),

yi(t) = a(0)xi(1),

(1) = BOwi(2),

wi(t) = B)zi(1).

If we look at the angular momentum integrals in the xy and zw directions, we find that

Zm,(x,(nyt(r) 5 (1))

For= K(1)
(1)
= —= " mi((xi cos(@(1) — yi sin(@ (1)) + (x; sin(a (1) +y; cos(@(1))?)
k(1) —
ORI
= (D) Z mz(x,' +y,'),
| &
Lw="5 Zl mi(zi (1) = 2w (D))
5o N
L0 D mi((zi cosh(B(1)) + w; sinh(B(1)))” = (zi sinh(B(1)) + w; cosh(B(1)))?)
k(1)
_Bo oo
Lo S -
Since zl.2 - wi2 is always negative, L, is constant only if 8(¢) = bK(¢) for some b € R. L,, is constant

if either a(f) = aK(¢t) forsomeaeRorx; =y; =0foralli=1,...,N.Ifx;=y;=0foralli=1,...,N
then the system satisfies the equation

0 0

0 — — .
m;bk 0 + m,-bzkzqi = K3/2ti U+ m;bQKZqi +mbk |
1 I

Véi Zi

Consequently Vg U =0, which is impossible for x < 0,13 If a(r) = aK (1), notice that %é(z) =&@),
so q;(¢) satisfies the following equation:
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(22 - w?) — a>(? +y2) — aP)x;
(B2 — w?) - (2 +y2) - aP)y;
B? +b*(22 - w?) - (X + YD)z
(0% + DX — w?) — (2 + y)w;

K2 (1)Vg, U = mix* (1)

(2 — wix;
(@ - whyi
(o +yD)zi
—(F +yDwi

= ml-(a2 + bz)Kz(t)

Assuming that « is not constant, this equation can only hold if Vg U =0, which is impossible for
k < 0. Therefore there are no homographic orbits for &,. O

V. SPECIAL CENTRAL CONFIGURATIONS

We have shown in Sec. IV that there is a strong link between homographic orbits and special
central configurations in S*. We will now look at several examples of special central configurations
and provide a rough classification of all 4-body special central configurations. We will assume that
q € S? if no further confusion arises.

A configuration of N bodies is singular if there exists some 1 <i <j <N such that q; = +q;. In
that case, the attractive force on q; exerted by g is

m;mj(q; — cos q;)

Sil‘ISdij

Recall that a non-singular configuration ¢ of N bodies is a special central configuration if it is a
critical point of U, i.e.,

F;=V,U(@=0, i=1,...,N.

In this section, we will make use of several results about special central configurations that have
been proved in Ref. 13 as follows:

(1) No special central configuration in S? has all masses lying in any closed hemisphere, unless
all masses lie on a great 2-sphere.

(2) No special central configuration on S? has all masses lying on any closed hemisphere, unless
all masses lie on a great circle.

(3) If qis a special central configuration in S3, and g € SO(4), then the configuration gq, resulting
from the action of g on q, is also a special central configuration.

A. Double Lagrangian special central configurations on S,z{yz

Let
2 . 4, 2,2, 2_ _
Sxyz.—{(x,y,z,w)e]R | x“+y“+z°=1,w=0}.

One of the simplest central configurations is the Lagrange solution, consisting of 3 bodies of equal
masses evenly spaced around a circle.>>'> We now look at the special central configurations consisting
of two parallel Lagrangian central configurations, which we will call double Lagrangian central
configurations.

Proposition 5. In the 6-body problem on the sphere, there are infinitely many double Lagrangian
special central configurations, i.e., configurations of the form
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2
0 \Erl _\/§rl
q = c A= 2 |,q3= 2,
1 C1 C1
0 | 0 | 0
. r n
) 2 2
0 Vi, Vi
qq ¢ > Qs o »de o |
0 | 0 | 0

ny4 =ms =me =

m,
where ¢; €(0,1), cae(=1,0), ri=+/1 =%, = A1 - c2, and m € (0, c0).

Proof. To obtain a special central configuration in the 6-body problem on the sphere, we must
have

6
m;m;(q; — (q; - 9;)9;)
Vo, U= Z — l 2 ;/2
(- (q; q)?)
fori=1,2,3,4,5,6. By symmetry arguments, it is sufficient for the equations to hold for V4 U and
Vg, U.
Since d12 = d13 and d15 = d]f),

Jj=lj#i

+q; —2cosd - d +q —2cosd
FIZQQ ‘13. : 124 +m‘14 .025 144 +m‘15 %. : 15(11.
sin“dq» sin“d4 sin’dys

Thus the y and w components of Vg, U are zero. Similarly, the y and w components of Vg, U are zero.
Also, we have

94949
(1-(q; - g2
s0 Vg, U is orthogonal to q;. Therefore the z components of V¢, U and Vg, U are zero if and only if
the x components of them are zero. So it is sufficient to have the following two equations satisfied:

N
q; Vo U= Z mimj
j=1j#i

s

0= 3rici m(cy — (cica + rir2)er) - m(2c; — (2c1¢2 — rir2)cy) 30)
(1- (c% _ §)2)3/2 (1 = (cic2 + rar1)?)*/? (1= (crep — %2232 7
_ca—=(cea+rnn)e | 2 = Qcicy = rr)e 3mrjes 31)
T 2)3/2 _ _ I1121243/2 2 :
(I = (cre2+r2r1)%) (I - (cre2 = 552)%) (1 - (2 - 2P
By isolating m in (31), we get
I"2
m= _(1 - (C% - 72)2)3/2 ( c1 —(cicp +rim)es 2c¢1 — Qciey — rlrz)cz) (32)
3r5¢a (I =(cre2+ )32 (1 = (cre2 = 2232 )

If (c1, c2, m) satisfy the requirements for a special configuration, then by symmetry sodo (—c;, —cq, %),
so we can find all special central configurations with ¢; > —c, and then obtain the equivalent special
central configurations with ¢; < —c;. Let

B={(a,b)€(0,1)x (=1,0):a > —b}.

Consider the function
f:B—-R,
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3rfcl m(cy — (c1c2 + 1112)C1)

f(cl’ CZ) =

(1-(c2 - g)z)s/z (1= (crca +rar)?)32

m(2¢2 — (2¢c1¢2 — rir2)cy)
(1= (c1c2 = 252)2)312

[l

where m is as in (32). Since B is path-connected, there exists a path
p:[0,1]1-B
such that p(0) = (ﬁ, —ﬁ) and p(1) = (%, —%). The function f is continuous on its domain, so f o p

is continuous on [0, 1]. Since f(p(0)) < 0 and f(p(1)) > 0, we have by the intermediate value theorem
that there exists a € [0, 1] such that f(p(a)) = 0. This is true for any such path p. Define

A={(c1,c2) €B:f(c1,c2) =0}
Then the set B \ A must have (%, —%) in a different path component than (%, —lio). No finite set
can path-disconnect B, so f(cy, c2) = 0 has infinitely many solutions. But (cy, ¢;) is a special central

configuration if (cy, c2) € A and m(cy, cz) > 0. If (c1, ¢2) € B, then m(cy, ¢2) > 0 if and only if

c1 —(cica+rir)cy  2c1 = (2cic — rir)e
(I =(crea+rr)?32 (1= (crep = #72)1)32

>0.

Note that we have |cjcy + 11| < 1 since ¢jcp + 111 =cos(di4), and |2¢cicy —rira| <2 since cicp — %

=cos(d5). Therefore, we have

ci—(cica+rir)cy 2c1 — (2c1c2 — rir2)cr
(1= (cic2+r2r)?)32 (1= (crez = %52)?)372

S c1+c + 2c1 +2¢; >0
(I =(crea+r1r2)?)3 2 (1= (c1e2 = 52)2)32

since ¢; > —c; for (c1, ¢2) € B. Thenm is always positive in B, so every element (¢, ¢3) € A corresponds
to the special central configuration

2
cl

o
N
o
IS
o
(=)}
o
©
=

-0.2

0.4 |

-0.6 |-

-0.8 -

...
at

FIG. 1. The set of solutions to f(cy, ¢2) = 0.
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B l—c] l—c%
1- c? ) )
31-c2 31-¢2
q, = 0 Q= V3,/1-¢2 Q3= _\F a1,
Cl 2 2
C1 C1
0
0 0
2] 2
2- _ l—c2 _ 1—02
I-c; ) 2
— _ | V3y1-¢2 _ V34 /1-c2
q4 - 0 ’ qS - 2 ) q6 = | — 2 )
(o) 2 2
2 (%)
0
0 0
my=my=m3=1,
myq =ms =me =m(cy,C2),
where m(cy, ¢y) is as defined in (32). This remark completes the proof. O

To get a visual understanding of the roots of f, we insert (32) into (30) and implicitly plot the
solutions of the resulting equation (see Figure 1). We can then see the set of solutions to f(cy, ¢2)
= 0, where the curves are solutions, and the shaded region is formed by the (cy, ¢;) values for which
m(cy, c2) < 0. Since no solution occurs in the shaded region, all these solutions represent special central
configurations. As we showed above, the right branch of the solution set is a path-disconnecting subset
of B, the solutions are symmetric about c; = —c;, and m is positive on B.

B. Double tetrahedron special central configurations in S3

We now extend the previous case from two triangles on S?M to two tetrahedra in S*. We will call
such a solution of the 8-body problem of the sphere a double tetrahedron special central configuration.

Proposition 6. In the 8-body problem in S, there exist infinitely many double tetrahedron special
central configurations, i.e., configurations of the form

o [ ] [ _I
"] -3 3 3
0 2V2r, _Non _Nory
= = 3 = 3 = 3
q; ol q> 0 >3 \F6r1 >y 3 %rl >
Lcy | 3 3
C1 1 Cl
= 3 -3
rn
0 2V2r, — \/grz _\2n
qs o |96 0 » 47 Vo, |’ qs Ve |
cs 3 3
- c c ()

where ¢ €(0,1),c € (—1,0),me (0, 00),r; =4/1 —c%, and ry = 4/1 —c%.

Proof. In order to have a special central configuration in the 8-body problem on the sphere, we
must have

U= Z mzm](qj ) qj)qi)

(- (q q; >2>3/2 =0 G

J=1j#i
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fori=1,2,3,4,5,6,7, 8. Let

1 V2 N6
-1 -2 ¥ 1 0 0 O
22 1 Vg 0o -1 ¥
¢e=| 3 ; 6 €SO(4), h= \@2 f €SO4).
0 ¥ 30 05 -2 0
0 0 0 1 0 0 0 1

The action of (g, i) on q is the permutation group

(41,92, 93)(q5, 96> 47)> (A2, 43, 44)(Qs> 97 G3))

so by the symmetries of (g, /) it is sufficient for (33) to hold for i = 1, 5. For these two vertices, (33)
becomes

r2
v U_Q2+Q3+Q4—3(C%—?I)Q1 m qs — (ci1c2 + 1)
qVU= 2 — 223/2
2 T (I =(c1c2 +1112)?)
(I =(c; =522
Qe +q7 +qg — 3(c1c2 — F2)q
(1= (cr1ca = 52))32 '
Qo +q3 +qy —3(cic2 — H2)q;s q; — (c1c2 +r112)Q;s
Vo, U=m T112N213/2 m 243/2
‘ (1= (c1c2 = 2 (1= (crca +rim)?)3/

2
L6+ a7 + g — 3(c3 — %2)%
+m = )
(1-(c3 -3

Since
e -
0 0
Qtq3tqy= 0 and q¢+q7+qg= BE
3¢y 3co

we can see that the y and z coordinates of Vq, U, V¢, U are identically 0. Also, by the identity q; - Vq,U
=0, we see that the w components of Vg U and V¢, U are zero if and only if their x components are
zero. Therefore, it is sufficient to have the following two equations satisfied:

_ e m(cy = (c1ca + rirer)  m(3ca = Beiea = rirper)
0= 2 2)3/2 r1ry2y3/2 (34
(1 - (2= Ly)pn (I =(crca+r2r)?) (I =(cre2==5%)%)
_cr—(ciea+ i)y 3cp = (Beiea —rin)e 4mr3c, (35)
(= (cica+rnr)?)¥? (1= (c1cr — 232 NN
3 (1= (5=
By isolating m in (35), we obtain
r2
m= _(1 - (C% - ?2)2)3/2 ( c1 —(ciep +rin)ey 3c¢1 — (Beier — rz)Cz) 36)
4rjer (1= (crea+r2r)?)¥2 (1= (c1c2 = )32 )

If the elements (cy, ¢, m) satisfy the requirements for a special configuration, then by the SO(4)
100 0
0100
00-10
000 -1
configurations with c¢; > —c, and then obtain the equivalent special central configurations with ¢

< —cy. Consider the set

rotation [ ], so do the elements (—c», —cq, %). Therefore, we can find all special central

B={(a,b)e(0,1)x (-1,0):a >-b}.

Define
g:B—-R,
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4rfcl m(cy — (c1c2 + 1112)C1)

glcr, )= >
2_ T (1 = (c1c2 + rar1)?)3?
(I =(c;—5)»2

m(3cy — (3cica — rir)ey)
(1 = (crcp = 552)?)3/2
where m is as in (36). Since B is path-connected, there exists a path
p:[0,1]1-B
such that p(0) = (%, —%) and p(1) = (%, —%). The function g is continuous on its domain, so g o p
is a continuous function on [0, 1], and since g(p(0)) < 0 and g(p(1)) > 0, we have by the intermediate

value theorem that there exists an a € [0, 1] such that g(p(a)) = 0. This is true for any such path p.
Define

s

C={(c1,c2) €B:g(c1,c2)=0}.
Then the set B \ C must have (19—0, —%) in a different path component than (11—0, —%). No finite set
can path-disconnect B, so g(c1, ¢3) = 0 has infinitely many solutions. But (cy, ¢») is a special central
configuration if (¢1, ¢) € C and m(cy, c2) > 0. If (c1, ¢2) € B, then m(cy, ¢z) > 0 if and only if
c1 —(ciep+rir)ez . 3c1 = Berer — nin)e;
(I =(crea+rar)?)3? (1= (crca = 52)?)3?

Note that we have |cicp + rirm| < 1, since cicp + r1rp =cos(dys), and |3cicp — rira| <3, since

> 0.

rnry
c1cy — T =COS(d16).

Therefore, we have
c1 —(ciea+rir)er  3cr — (Berea — rin)e
(I=(crea+rr)?)32 (1= (c1c0 = 52)2)32
cr+c 3c; + 3¢
> — a2 b : 71322'3/220
(I =(crea+r1r2)?) (I =(cr1e2 = =5*)7)
because ¢ > —c, for (c1,cz) € B. Then m is always positive in B, so every element (cy,cp) € C
corresponds to the special central configuration of the form

. [ 2 ] [ 2 ]
\/@ ,ll—cl ‘[l—cl
2 _ ! T3 T3
1- e 3 - 5 - -
2,/1-c 2,/1-c
212 h_ 2 _ 1 _ 1
qlz 8 ’q2= # 7‘]3: 3 7q4: 3 5
0 Ve l—c% Ve l—c%
C1 —
c 3 3
C1 ] L C1
2 ] [ 2 ]
2 I-c5 l=c5
’ N9 B 73
1- c5 3 ; -
0 2v2,/1-¢2 _\ﬁ 174 _‘ﬁ 14
qs = 0 , Qe = Tz ,q7 = 3 ,qg = 3 5
V6.,/1-c2 V6, /1-c2
2 2
Cc2 —
o 3 3
() ] )
my=mpy=m3=my=1,
ms =mg =my =mg =m(cy, c2),
where m(cy, ¢y) is as defined in (36). This remark completes the proof. O

To get a visual understanding of the solutions to g, we insert (36) into (34) and implicitly plot
the solutions to the resulting equation (see Figure 2). We can then see the set of solutions to g(cy, ¢2)
= 0. As expected, the solutions are symmetric about c; = —c, and the right branch of the solution is
a path-disconnecting set of B.
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C2

C1

=)
N
[=]
IS
o
o
=]
©
-

0.2 -

0.4 |

-0.6 -

-0.8 -

FIG. 2. The set of solutions to g(cy, c2) =0.

C. Special central configurations for four bodies in S3

We first show that every special central configuration of the 4-body problem in S* occurs on
a great 2-sphere and then prove that there are no quadrilateral special central configurations on S'.
Finally, we derive a necessary and sufficient condition for the existence of tetrahedral special central
configurations.

Proposition 7. Every 4-body special central configuration in'S® occurs on a great 2-sphere.

Proof. Let q=(q,...,qy) be a special central configuration in S®. Then F; =0, i=1,...,4.
Recall Equation (11). We obtain

Z“: mym;(q; — cosdqul) i mim;q; Z mymj cos dy;

0=F; = = - . q;.

= sin’ > sm3d11 = s1n3d|j ]

This implies that the four vectors qy, . . ., q4 are linearly dependent. Thus the dimension of the space
spanned by q1, q2, q3, and qq is at most 3, and they must lie on a great 2-sphere. O

Proposition 8. There are no 4-body special central configurations on a great circle.

Proof. We first derive a necessary condition on the mutual distances and then show that no
non-singular configurations satisfy the condition.

We may assume that the positions of masses are given by the polar coordinates 0= ¢| < ¢;
< @3 < @4 <27 (see Figure 3). Recall that q is a non-singular configuration on S? if q; # £q; for all
i #j.Thus, ¢; # m fori=2, 3, 4. Since they could not be on one half-circle, 13 there are two possibilities:
two bodies are on the upper half-circle ¢ € (0, r) and one on the lower half-circle ¢ € (7, 27); one
body is on the upper half-circle ¢ € (0, ) and two on the lower half-circle ¢ € (, 27). By a reflection
about the x-axis, the two cases become one. So we assume that two bodies are on the upper half-circle
¢ € (0, ) and one on the lower half-circle ¢ € (7, 27),1.€., 92 < ¢3 < 7. Then there are two possibilities
for @4: @4 € (m,m+ ¢3) and @4 € (1 + @2, T+ 3). The cases p € (1, 1+ @) and p € (T + @2, T+ Y3)
differ only by a rotation —¢4 and the relabeling

Q1 44, QQ q, Q3 4>, q4—q3,
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g2
—q4

—qz
q4

—q2

FIG. 3. A configuration for four masses on a great circle.

—q3

a1

so it is sufficient to consider the case ¢4 € (7, 1 + ¢7). Note that the force function (1) on S? is
U= ) mjmjcotd;. In this case, we can write it as

1<i<j<N

U1, ..., pa) =mimy cot(pz — @1) + mymsz cot(ps — ¢1) — mimy cot(gq — ¢1)
+mom3 cot(p3 — ¢2) + mamy cot(pg — p2) + mzmy cot(pg — ¢3).

As dia =21 — (¢4 — ¢1), the sign of the term involving mmy is negative. Since a special central

configuration is a critical point of U, by taking the derivative with respect to ¢, we have

nmiymy

miniy " niims

sin?(¢y — 1) sin®(@3 — 1) sin?(¢4 — @1)

Similarly, we obtain

my

— +
r2
m3
— +
3
my
—+
ris
ny
— +
24

m3

r3
my

a4
ny

3
m3

r34

my

ri4
mi

ri2
my

r34
my

ri4

>

k)

)

)

(37)
(38)
(39)

(40)

where r;; = sin®dj; = sin*(g; — ¢;). Multiplying (37) by ;- and subtracting (39) multiplied by ;- lead

to

ms3

mi

( : : )
my - +
12734 314

From (40) we can conclude that
my

ms3

my

+

13134 Tr13r4

- ’
124713 r137r34 r13r4

and we thus obtain the necessary condition
1

1

r2r34  1r3ri4

r13r24

(41)

We now show that Equation (41) can never be satisfied. Note that r; is also equal to

sinzd(iqi, +q;). Let us look now at the upper semicircle determined by q, and —q,. Between the two
boundary points, there lie q3, —q, and q4 consecutively. Thus

0<d(qy,q3) <d(qy,—q;) <d(q,,q4) <,

and we get

riz = sin’d(q,, —q,) > min{sin’d(q,, q3), sin’d(q,, q,)} = min{ry3, ro4}.
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Similarly, by focusing on other semicircles determined by q; and —q;, we obtain other similar
inequalities,

1 1 1
rip > min{r3, ria}, ie., — <max {—, —} s (42)

2 T3 T4

. . 1 1 1
r12 > min{ry3, ra4}, Le, —<max{—,—/, (43)

2 723 124

. . 1 1
r34 > min{rys, 13}, Le, — <max{—,—, (44)

T34 T3 123

. . 1 1 1
r34 > min{ri4, r4}, i.e., — <max{—,— . 45)

T34 T4 124
With (41) these four inequalities can be put in a useful form. We begin with the first inequality.
There are two possibilities, namely, - e 2 m and * < ”IL? It r}—4 > m , by 1nequahty (42) we have

L <L In this case, we clalm that P f n0t by 1nequahty (44), we have - < . Then the

2
two 1nequaht1es l < m and - < lead to r12r34 mm which contradlcts w1th Equatlon 41).
Therefore, in the case L > i , We also have ri >L je. . L> L L Similarly, the other case
13 3’ r14 3 23
%_ leads to — 2l>i.
4T N TR . . . . . o
Using a similar argument on all the four inequalities, we obtain the following 8 inequalities:
1 1 1 1 1 1
—>—>— or —_> > (46)
T4 13 123 "3 ria 4
1 1 1 1 1 1
—>—>— or —_> > 47)
T4 123 113 23 r4 T4
1 1 1 1 1 1
—>—>— or —_> > (48)
3 13 4 3 r3 ri4
1 1 1 1 1 1
—>—>— or —_>— > (49)
T4 T4 123 T4 T4 13

Denote the left one of the i-th inequality by (i+) and the right one by (i—). Then we have 16
possibilities ((46)x, (47)x*, (48)*, (49)*) where * is + or —. However, none of them is consistent. If we
take (46)+ and (47)+, then we get E rz% and % < —, which is a contradiction. If we take (46)+
and (47)-, then we get L1l Ly 1o L Wthh is a contradiction. If we take (46)— and (47)—,

rlA s 3 24 r14
then we get v E and m < E which is a contradiction. If we take (46)— and (47)+, then we get
1 1 R

= >—=>— 2 — > — which is a contradiction.
ri3 ri4 4 3 r13

Thus there is no non-singular configuration of four particles on S' such that Equation (41) is
satisfied. This implies that there is no special central configuration of four particles on S'. O

To prove our next proposition, we will rely on the following linear algebra result.

Lemma 1. Let {vy,V1,...,V,} be a collection of vectors in R" with rank n. Then
DOVO —Divi+---+ (_l)nDnVn :O’
where Dy, =det(Vo, ..., Vi1, Vitls« - -» V).

Proof. Without loss of generality, we may assume that Dy # 0. Then we can use Cramer’s rule
to solve the linear system

(VIy. s VX ==V, X = (X1, X2, ..., Xp) L.
Fork=1,...,n, we get
Xk:det(vl,...,vk_l,—vo,vk+1,...,v,,)
det(vy,..., V)
:(_1)kdet(vo,vl,...,vk_l,vk+1,..., )_( l)ka.
Dy Dy
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Then ¥, (=DEDyvi =0, so the proof is complete. O

Proposition 9. Let q be a tetrahedron configuration of four masses mg, my, mo, ms, on Siyz of
the form

1 X1 X2 X3
G=|0[.q;= |y |- =]y 4=]|y3|.
0 0 22 23

Then q is a special central configuration if and only if the following three conditions are satisfied:

(D) qo, q1, q2, q3 are not all on the same hemisphere;

(2) sindy; sinds3 =sindg sindj3 = sin dys sindy;
— D(]sin3d01 _ Dlsin3dm Dzsin3d02
(3) mO - m3 D3Sin3d13 ’ ml - m3 Dgsin3d03 ’ D3sin3d03
det(qo, 4, q3), D2 = det(qp., q;, q3), and D3 = det(qo, q;, q,)-

and my = —mj3 , where Dy =det(q;,q,,q3), D1 =

Proof. Suppose q is a tetrahedron special central configuration. Then the four masses are not all
on one hemisphere by the discussion at the beginning of this section, and F; =V, U =0fori =0, 1,
2, 3. Consider the z components of Fy and Fy,

M2 m3zz ma2o mL_o_

s

sin3d02 sin3d03 sin3d12 sin3d13

Since by assumption they are not on a great circle, y;, z2, and z3 are non-zero. Thus we obtain
sin3d03 sin’d 2= sin3d02 sin’d 13- By symmetry and relabeling of the masses, we also get the relation
sin3d01sin3d23 = sin3d03sin3d12. Therefore
sin d03 sin d12 =sin d02 sin d13 =sin d()1 sin d23.
For the masses, we look at
q; —cosdyiq q, — cosdpqy q3 — cos dp3q
3 +my 3 +m3 3
sin”dp; sin”dg» sin”do;3

Fo=m

mazp m3z3

and we have the z component
p Sinzd()g sin3d03

=0, which implies

" - sin’dgpz3 . sin3d02y1Z3 m Dysin’dy,
2= —M3— =-—m3— =-m3———.
sin’dg3zn sm3do3y1zz Dssin’do;

(50)

myi + nmy» + m3y3
sin3d()1 sin3d()2 sin3d<)3

The y component is =0, which, after inserting (50), gives

(y223 — 22y3)sin’do; _ Dysin’dy;
ms3 - 3 =m3 3 .
Y1228 dos Dssin’do;

61V

my =

For my, we look at the inner product of (y;, —x1, 0) with

qo — cosdpiq, q, — cosd|2q; q; — cosdi3q
+m +m =

. 2 ; 3 - 0
s1n3d01 s1n3d12 s1n3d13

F] =my

to get

0= Modi mo(x2y1 — x1y2)  m3(y1x3 — X1y3)
sin3d01 sin3d12 sin3d13

moy1 masin’doy  z3(xay1 — X1y2) N m3(x3y1 — X1y3)

sin3d01 sin3d03sin3d12 22 sin’d 13
moy1  m3(X2y123 — X1¥223 — Y1X322 + X1Y322)
sin3d01 12sin3d13

So we have

-3 .3
sin’do; y1(x223 — x322) — x1(y223 — ¥322) m Dysin”dp;
37 =-m3—.
sin’d)3 Yiz2 Dssin’d3

my=m (52)
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Conversely, suppose that q is a configuration satisfying the above three conditions. We prove
that q is a special central configuration, i.e., F; =0 and m; >0 fori =0, 1, 2, 3.

First, Fg = 0 since Vo, U - q( =0, i.e., the x-component of Fy is zero, and the y and z components
are zero by (50) and (51).

Fori=1,2,3,F;=0if and only if F; - v;; =0,j = 1,2, 3, where v;; = q;, and {v;1, V2, v;3} is an
orthonormal basis of R3. First, F; - v;1 =Vq U - q;=0. Fori =1, j =2, 3, we have

qo — cosdpi1q; q, — cosdi2q; q3 — cosdiaq
3 + my 3 + ms3 3 © Vi
sin”dp sin“dp» sin“d3
moq mq m3q
_ 0, 2, 3 vy
. 3 . 3 .3 J
sindy;  sin’djp;  sin“d3

F] . Vlj = (mo

Doq Dysin’dppq, m3qs
=\m ) —m3 ) . 3 + -3 AY
Dssin’dy3 Dssin”dyssindy,  sin“dp3
T (Doqy + Daqy — D3q3) - v ™ Diq 0
=———= W 2qy — D3q3) - Vi; =—————Di1q; - v1; =0,
D3Sin3d13 0 2 } ! D3Sin3d13 ! !
the second last equality following from the previous lemma.
Through similar computations, we can see that for j = 2, 3,
m3 m3D»
F> - vyj=—————(Doqy — D1q; — D3q3) - V2j = ———q - V2; =0,
! D3sin3d23 0 : } ! D3sin3d23 2 !
-3
ms3sin’doy
! D3Sin3d13sin3d03 0 ! 2 !
mgsin3d01 Qv 0
=—— 2 7 qy-v3=0.
sin3d13sin3d03 } /

Therefore F; =0 for i =0, 1, 2, 3. To show that the masses are positive, we first show that D; # 0, for
i=0, 1,2, 3. If not, then three of the masses lie on a great circle of S,ZQ,Z, so the four masses all lie on
one hemisphere.

Without loss of generality, assume D3 > 0. Consider the two-dimensional subspace V1, deter-

mined by q, qz. Since the configuration is not on one hemisphere, V12 must separate qo and (3.
Then

D3 =det(qy, q;,q,) = det(q;, q;, qo) > 0 implies Dy = det(q;, ¢y, q3) <0.

Similarly, the subspace V, separates q; and q3, so
det(q, q,,q,) = —det(qy, q;,q,) = —D3 <0 implies D; =det(q, q, q3) > 0,
and the subspace V; separates q» and 3, so
det(qq, q;q,) = D3 > 0 implies D, =det(qg, q;,q3) <O0.

Then mg >0, m; >0, my > 0 if and only if m3 > 0, so q is a special central configuration. O

D. Special central configurations for five bodies in S*
In this section, we generalize the method from the previous proof from tetrahedra on S, to

XYz
pentatopes in S® to prove the following result.

Proposition 10. Let q be a pentatope configuration for five masses, mo, my, ma, ms, ma, in S°

of the form

1 X X2 X3 X4
0 Yy 2 Y3 V4
Qo= 0 »q1 = 6 Q= 2 >3 = 2 »qq = 2
0 0 0 w3 W4

Then q is a special central configuration if and only if the following conditions are satisfied:
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(1) qo, q1, 92, 93, q4 are not all in one hemisphere;

) sindo; _ sindip _ sindy3 .
sin dog sin dpy sindzy °
(3) sin dp) — sindjp — sindp3 ,
sin dog sindj4 sindsy ’

(4) sindgy _ sindy3 _ sindp3 .,

sin dog sindj4 sindpy °
Dysin’d, Dsin’d, Dasin’d, Dssin’d,
5 mo =m. 0 01 —— 1 01 — 2 02 and ms=—m 3 03 Where
( ) 0 D4sin3d14 ’ 1 4 D4sin3d04 ’ 2 4 D4sin3d04 ’ 3 4 D4sin3d04 ’

Dy =det(q;,q,,q3,q4), D1 =det(qy, q,, 93, q4), D> = det(qq, q;, g3, 4),
D3 =det(qy,q;,qy,q4), and D4 =det(qy,q;,4q,,q3)-

Proof. Suppose ( is a pentatope special central configuration. Then the five masses are not all

in one hemisphere by the discussion at the beginning of this section, and we have F; =0 fori =0, 1,
2, 3, 4. Consider the w components of Fo, F;, and F»,

ms3ws mawy4 _ ms3ws nmawy4 _ m3ws nmawy

-3 —, =0.—5 —, =0.—5 — . =0.
sindp;  sin’dos sin’dy3  sin’dj4 sin’dy3;  sin’day

Recall that we are assuming the configuration is a pentatope, i.e., q does not lie on a great 2-sphere,
which implies that yy, z2, w3, ws are non-zero. Thus we obtain

sin d03 sin d] 3 sin d23

sindps  sindys  sindos’
By symmetry and relabeling of the masses, we also obtain the relations

sin d()] sin d12 sin d13

sin d()4 h sin d24 B sin d34

and
sindy, sindyy sindas

sin d()4 - sin d14 - sin d34 ’
If we look at

q; —cosdpiqy m q, — cosdnzqy m q3 — cos dpaqy m q4 — cos dpaqy

Fo=m 2 3 4
sin3d01 sin3d02 sin3d03 Sin3d04
which is 0, we see that the w component —2%2- & — () gjyveg
sin”do3 sin”doy
-3 -3 .3
W4 SIM d()3 Y122 W4 S d()3 D3S1I1 d03
m3=—my————— =~y — =M (53)
w3S1mn d04 YiZ2w3sin d04 D4S1I1 d04
After insertin into th mponent —22 7323 i — h
ter inserting (53) into the z component sinide T smde T sintdes 0, we have
. 3 -3
Y1(z3w4 — z4w3)sin’dy Dssin’dy,
myp =my ) =my -3 . (54)
y1Zow3sin®dog Dysin’dos
After insertin nd (54) into th mponent —4XL 4 MYz a3 a4 in
ter inserting (53) and (54) into the y compone tsin3d0| sinide T snde t sintde; 0, we obta
-3 -3
B Y2(z3wg — z4w3) — 22(y — 3wg — yaws3) sin’do; Dysin’dp;
my =—my — = M- (55)
yia2ws sin’doy Dysin’dys

We obtain my by taking the inner product of (y;, —x, O, 0)" with

qo — cosdpiq s q, — cosdiaq
sin3d01 sin3d12
q3 —cosdjaq o q4 — cosdiaq, _
sin3d13 Sil‘l3d14

Fi=mg

+ms3 0
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to get
0= m2y1 +m2x2y1 —X1)2 +m3x3y1 —X1)3 4x4y1 — X1)4

sin”dp; sin3d12 sin3d13 sin3d14

_ Moy - (vt — x12)(z3ws — zaw3)sin’doy
sin3d01 z2w3sin3dlzsin3do4
g (3y1 — X1y3)z2wasin’dos g (xay1 — x1y4)z2w3

Zpwssin® d13sm doa zgwgsin3d14

_ o (12 = Xoy1)(@3Ws = 24w3) + (V134 = Xay1)(W3 = Wa)zo

sin3d01 sin3d14

Then we have

(X1y2 = X2y1)(@3Wa — zaw3) + (x1y3 — X391)(W3 — wa)z2 sin*do;
Y1Z22w3 s1n3d14

nmoy = my

Dosin3d01

=my - .
D4sm3d14

(56)

Conversely, suppose that q is a configuration which satisfies the above 5 conditions. We now

prove that q is a special central configuration, i.e., F; =0, m; >0 fori=0, 1, 2, 3, 4.

First, Fo=0since V4, U - q; =0, i.¢., the x-component of Fy is zero, and the y, z,and w components

are zero by (53)—(55).

Fori=1,2,3,4,F;=0ifand only if F; - v;; =0, =1, 2, 3, 4, where v;; = q;, and {v;1, vi2, V;3,
v;4} form an orthonormal basis of R?. First, Fi-vii=VqU-q;=0.Fori=1,j=2,3,4, we have

qp — cosdpi1q; q, —cosd|aq;
F] . Vlj =\my 3 + my 3
sin”dy; sin“dpp
q; — cosdi3q qq — cosdisq
+ m3 3 3 1+m44 3 ! *Vij
sin“d3 sin“dy4

mopq my m3q my

_ 0o, ™% 3, M4y -y

.. 3 .3 .. 3 .3 J
sin“dy;  sin’dyp  sin’dyz sin“dj4

.3
Doq, Dysin”dpq,
T L = S
Dysin’dy4 Dysin’dyysin”dp

.3

Ds3sin”dpzqs maqy

— M4 - 3 N t—= ARV
Dysin’dyasindyz  sin“dig

my
——(Doq +Da2qy — D3q3 + Daqy) - vy
Dasin’diy 0 2 —Dsq; 4) " Vi
m4D1
=———q, v =0.
D4Sil’l3dl4ql !

Through similar computations, we see that for j =2, 3, 4,

Fy vy = D4sm3d24 (Doqo — D1qy — D3q3 + D4qy) - vo; = #‘?d;(lz "V =
F3-v3= 3 (Doqp — D1q; + D2qy + Daqy) - v3; = m.4—l§3(I3 V3=
* Dysin’day Dysin’dy3
and
.3
Fy vy = %(DO% —D1q, + D2qy — D3q3) - V4
—m4sin3d01

=== 3 V4= 0.
sm3d14$1n3d04
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Therefore F; = 0 for i =0, 1, 2, 3, 4. To show that the masses are positive, we first show that D; #0
fori =0, 1, 2, 3, 4. If not, then four of the masses lie on a great sphere, so the five masses all lie in
one hemisphere.

Without loss of generality, assume D4 > 0. Consider the 3-dimensional subspace V'j>3. Since the
configuration is not in one hemisphere, V|23 must separate qo and q4. Then

det(q;, 42,93, o) = — det(do, 41, 42, 93) = D4 <0
implies that
Dy =det(q;, 9. q3.q4) > 0.
Similarly, the subspace V(3 separates q; and qq, SO

det(qy, 45, q3,q;) =det(qy,q;,9;,93) =D4 >0

implies that
Dy =det(qp, 95, q3,94) <O.
The subspace V3 separates q; and q4, so

det(qy, q;, q3, qp) = — det(qp, q;, 95, q3) = —D4 <0

implies that
Dy =det(qy,q;,93,94) >0,
and the subspace V1, separates q3 and qq, SO

det(qp,q;,95,93)=D4 >0

implies that
D3 = det(qO’ ql s qZ’ q4) < O

Then mqg > 0, m; >0,my > 0,m3 >0 if and only if m4 > 0, so q is a special central configuration. This
remark completes the proof. O
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