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We generalize the curved N-body problem to spheres and hyperbolic spheres whose
curvature κ varies in time. Unlike in the particular case when the curvature is constant,
the equations of motion are non-autonomous. We first briefly consider the analog
of the Kepler problem and then investigate homographic orbits for any number of
bodies, proving the existence of several such classes of solutions on spheres. Allowing
the curvature to vary in time offers some insight into the effect of an expanding
universe in the context of the curved N-body problem, when κ satisfies Hubble’s law.
The study of these equations also opens the possibility of finding new connections
between classical mechanics and general relativity. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4983681]

I. INTRODUCTION

In the 1830s, János Bolyai and Nikolai Lobachevsky independently thought that the laws of
physics depend on the geometry of the universe, so they sought a natural extension of gravity to
hyperbolic space, Refs. 2 and 17. This idea led to the study of the Kepler problem and the 2-
body problem in the framework of hyperbolic and elliptic geometry. Unlike in Euclidean space,
the equations describing them are not equivalent, since the latter system is not integrable, Ref. 20.
More recently, the problem was generalized to any number N of bodies, leading to works such as
Refs. 3–15 and 18–24. In the light of Hubble’s law,16 a non-flat universe (i.e., a 3-sphere or a hyperbolic
3-sphere) would have uniformly varying curvature κ = κ(t) as the universe expands, meaning that at a
given time the curvature is the same at every point. Therefore, by modifying the equations of the curved
N-body problem to allow for uniformly varying curvature, we can construct a gravitational model
that accounts for an expanding universe without requiring general relativity. Of course, we do not
claim that the model we will introduce here could replace general relativity in cosmological studies.
We are mostly interested in the mathematical aspects of a curved N-body problem on expanding or
contracting spheres and hyperbolic spheres, a problem that, to our knowledge, has not been considered
before in the framework of classical mechanics.

We are not only deriving here the equations of motion of this N-body problem but will also
examine how the uniformly varying curvature affects the system’s behaviour and the existence of
certain solutions. In Section II we find the equations of the N-body problem with uniformly varying
curvature on the variable 3-sphere,

S3
κ :=S3

κ(t)= {(x, y, z, w) ∈R4 : x2 + y2 + z2 + w2 = κ−1(t), κ(t)> 0},

and the variable hyperbolic 3-sphere,

H3
κ :=H3

κ(t)= {(x, y, z, w) ∈R3,1 : x2 + y2 + z2 − w2 = κ−1(t), κ(t)< 0},
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where R3,1 is the Minkowski space, by generalizing the derivation of the curved N-body equations
with cotangent potential, as done in Ref. 3, and perform a change of coordinates to reduce the
problem to the study of the motion projected onto the unit manifolds S3 and H3, respectively. We
then seek the first integrals of the equations and find a Lagrangian for the projected coordinates. In
Section III, we derive the equations of the Kepler problem, a two-body system where one body is
fixed, and rule out some of the solutions typically expected in such problems. In Section IV we first
define the concept of a homographic solution, for which the configuration of the particles remains
similar to itself during the motion while the curvature of the space changes in time. We then show
that such orbits exist in S3

κ , but not in H3
κ , and that the homographic solutions of S3

κ correspond to
the special central configurations in S3, which was studied in Ref. 13. This observation allows us to
reformulate the question of existence of homographic solutions on a variable 3-sphere as a problem
of existence of special central configurations in the unit sphere S3. Each special central configuration
found in Ref. 13 gives rise to a homographic solution of the N-body problem in spaces with uniformly
varying positive curvature. In Section V, we provide several new special central configurations in S3.
We first show the existence of a double Lagrangian special central configuration for 6 bodies and the
existence of a double tetrahedron special central configuration for 8 bodies. Then we give the criteria
for the general 4- and 5-body special central configurations.

We would like to mention that the idea of introducing and studying the N-body problem
in spaces with uniformly varying curvature came to us from Sergio Benenti’s book in progress,
Ref. 1. In his manuscript, Benenti develops a remarkable axiomatic setting for isotropic cosmologi-
cal models, considering the spaces Sκ(t) and Hκ(t) as defined above. However, he shows no interest
in deriving the equations of motion of an N-body problem, focusing instead on some cosmological
questions which he treats with relativistic techniques.

II. EQUATIONS OF MOTION

In order to study the N-body problem in spaces with uniformly varying curvature, it is first
necessary to generalize the equations of motion from the constant curvature case by applying the
Euler-Lagrange equations to the Lagrangian used in Ref. 3, where κ is a non-zero differentiable
function of time. The goal of this section is to obtain the new system of equations and its basic
integrals of motion.

A. Deriving the equations of motion

Let the curvature κ : [0,∞)→R be a non-zero differentiable function of time. Take
q= (q1, . . . , qN ), with qi ∈R4, if κ(t)> 0, but the Minkowski 4-space is R3,1, if κ(t)< 0. We define
the potential energy to be −Uκ , where Uk is the force function

Uκ(q)=
∑

1≤i<j≤N

mimj |κ |
1/2κqi · qj

[σ − σ(κqi · qj)
2]1/2

, (1)

where σ denotes the sign of κ, and · is the standard inner product for κ > 0 and the Lorentz product
qi · qj = xixj + yiyj + zizj − wiwj for κ < 0. When κ is constant, Uκ offers the natural extension of
Newton’s law to curved spaces, see Ref. 3.

We define the kinetic energy as

Tκ(q̇)=
1
2

N∑
i=1

miq̇i · q̇i, (2)

so the Lagrangian function is Lκ =Tκ + Uκ . Consequently we can obtain in the standard manner the
Euler-Lagrange equations with holonomic constraints,

d
dt
∂Lκ
∂q̇i
−
∂Lκ
∂qi
− λi

κ

∂f i
κ

∂qi
= 0, i= 1, . . . , N , (3)
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where κ , 0 and f i
κ =qi · qi −

1
κ = 0, i= 1, . . . , N are the constraints that keep the particle system on

S3
κ or H3

κ , respectively. The above system then becomes

miq̈i =∇qi
Uκ + 2λi

κqi, i= 1, . . . , N . (4)

Dot-multiplying these equations by qi leads to

miq̈i · qi =∇qi
Uκ · qi + 2λi

κqi · qi, i= 1, . . . , N . (5)

Since Uκ is a homogeneous function of degree 0, it follows by Euler’s formula for homogeneous
functions that ∇qi

Uκ · qi = 0. As f i
κ = 0, we also have

ḟ i
κ = 2q̇i · qi +

κ̇

κ2
= 0, i= 1, . . . , N

and

f̈ i
κ = 2q̈i · qi + 2q̇i · q̇i +

κ̈

κ2
− 2

κ̇2

κ3
= 0, i= 1, . . . , N .

Substituting these into (5) gives

−miq̇i · q̇i −
mi κ̈

2κ2
+

mi κ̇
2

κ3
= 2
λi
κ

κ
, i= 1, . . . , N ,

so

λ
i
κ =−

miκ

2
q̇i · q̇i −

mi κ̈

4κ
+

mi κ̇
2

2κ2
, i= 1, . . . , N . (6)

If we insert (6) into (4), we obtain that

miq̈i =∇qi
Uκ − miκ(q̇i · q̇i)qi − mi

κ̈

2κ
qi + mi

κ̇2

κ2
qi, i= 1, . . . , N , (7)

with the constraints
κqi · qi = 1, i= 1, . . . , N , κ , 0. (8)

The change of variables qi = |κ |
−1/2qi projects the system on S3 and H3. We obtain

q̇i =−
σκ̇qi

2|κ |3/2
+

q̇i

|κ |1/2
,

q̈i =−
σκ̈qi

2|κ |3/2
+

3κ̇2qi

4|κ |5/2
−
σκ̇q̇i

|κ |3/2
+

q̈i

|κ |1/2
.

Define U(q)=
∑

1≤i<j≤N

mimjσqi ·qj

[σ−σ(qi ·qj)
2]1/2

. It is easy to see that ∇qi
U = |κ |−1

∇ qi
Uκ . Thus the equations of

motion take the form

miq̈i = |κ |
3/2
∇qi

U − σmi(q̇i · q̇i)qi +
mi κ̇

κ
q̇i, i= 1, . . . , N , (9)

with constraints
qi · qi =σ, qi · q̇i = 0, i= 1, . . . , N , κ , 0. (10)

In Refs. 5 and 13, the explicit form of ∇qi
U is written as

∇qi
U =

N∑
j=1,j,i

mimj(qj − σ(qi · qj)qi)

(σ − σ(qi · qj)2)3/2
=

N∑
j=1,j,i

mimj(qj − csndijqi)

sn3dij
, (11)

where sn(x)= sin(x) or sinh(x), csn(x)= cos(x) or cosh(x), and dij is the distance between qi and qj

in S3 or H3. It is dij := arccsn(σqi · qj). Following Ref. 5, we define

ctn(x)= csn(x)/sn(x)= cot(x) or coth(x),

csct(x)= 1/sn(x)= 1/ sin(x) or 1/ sinh(x).

We denote by Fi the term ∇qi
U. Physically, it is the attraction force on qi.
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B. Integrals of the total angular momentum

We can now obtain the integrals of the total angular momentum. Consider the wedge product,
∧, of qi and the ith equations of (9). For details on the wedge product in the current context, see
Ref. 5, p. 31. Dividing by |κ |, and summing the equations over i, we obtain

N∑
i=1

mi

|κ |
q̈i ∧ qi =

N∑
i=1

|κ |1/2(∇qi
U) ∧ qi −

N∑
i=1

[ mi

κ
(q̇i · q̇i)qi ∧ qi +

mi κ̇

σκ2
q̇i ∧ qi

]
.

Since wedge-product expressions are skew-symmetric,
N∑

i=1
|κ |1/2(∇qi

U) ∧ qi = 0. Combining this

property with the fact that qi ∧ qi = 0, we obtain that

N∑
i=1

[
mi

|κ |
q̈i ∧ qi −

σmi κ̇

κ2
q̇i ∧ qi

]
= 0. (12)

This is the negative of the time derivative of the system’s angular momentum about the origin,

L=
N∑

i=1

mi
|κ |qi ∧ q̇i, and provides the six integrals

Lwx =

N∑
i=1

mi

|κ |
(yi żi − ziẏi), Lwy =

N∑
i=1

mi

|κ |
(xi żi − ziẋi),

Lwz =

N∑
i=1

mi

|κ |
(xiẏi − yiẋi), Lxy =

N∑
i=1

mi

|κ |
(wi żi − ziẇi),

Lxz =

N∑
i=1

mi

|κ |
(wiẏi − yiẇi), Lyz =

N∑
i=1

mi

|κ |
(wiẋi − xiẇi).

C. The q-Lagrangian

If we have a Lagrangian in both the normal and projected coordinates, we may obtain the
projected equations without having to first derive the full equations. The Lagrangian of the system in
q coordinates is

L =
N∑

i=1

mi(q̇i · q̇i)
2|κ |

+
∑

1≤i<j≤N

|κ |1/2
σmjmi(qj · qi)

(σ − σ(qj · qi)2)1/2
, (13)

with constraints fi =qi · qi − σ = 0. Applying the Euler-Lagrange equations in terms of qi gives
system (9).

III. THE KEPLER PROBLEM

The simplest system that can be derived from the N-body problem is the Kepler problem, which
describes the gravitational motion of a point mass m about a fixed-point mass M. Without loss of
generality, we will assume that M is fixed at position N = (0, 0, 0, 1) in terms of q coordinates.

We will use the 3-spherical/hyperbolic coordinates (α, θ, ϕ) by taking

q= (x, y, z, w)= (snα sin θ cos ϕ, snα sin θ sin ϕ, snα cos θ, csnα),

so Equation (13) becomes

L =
m(α̇2 + θ̇2sn2α + ϕ̇2sn2αsin2θ)

2|κ |
+ |κ |1/2mMctnα (14)

with no constraint. Then the conjugate momenta for the system are

pα =
mα̇
|κ |

, pθ =
mθ̇sn2α

|κ |
, pϕ =

mϕ̇sn2αsin2θ

|κ |
,

and the Hamiltonian has the form



052703-5 Boulter, Diacu, and Zhu J. Math. Phys. 58, 052703 (2017)

H =
|κ |

2m
(p2
α + p2

θcsct2α + p2
ϕcsct2α csc2θ) − |κ |1/2mMctnα. (15)

Then the equations of motion become

α̇ =
∂H
∂pα
=
|κ |pα

m
, (16)

θ̇ =
∂H
∂pθ
=
|κ |pθcsct2α

m
, (17)

ϕ̇=
∂H
∂pϕ
=
|κ |pϕcsct2α csc2θ

m
, (18)

ṗα =−
∂H
∂α
=
|κ |ctnαcsct2α

m
(p2
θ + p2

ϕcsc2θ) − |κ |1/2mMcsct2α, (19)

ṗθ =−
∂H
∂θ
=
|κ |csct2α csc2θ cot θp2

ϕ

m
, (20)

ṗϕ =−
∂H
∂ϕ
= 0. (21)

From (21) we have that A= pϕ is a constant, and direct computation leads to

Lwz = pϕ ,

Lwx = pθ sin ϕ + pϕ cot θ cos ϕ,

Lwy = pθ cos ϕ + pϕ cot θ sin ϕ.

Notice that L = p2
θ + p2

ϕcsc2θ is a constant. Using this property, we can eliminate (20) and (21) and
obtain the equations of motion in the form

α̇ =
|κ |pα

m
, (22)

θ̇ =±
|κ |

√
(L − A2 csc2

θ)csct2α

m
, (23)

ϕ̇=
|κ |Acsct2α csc2θ

m
, (24)

ṗα =
|κ |Lctnαcsct2α

m
− |κ |1/2mMcsct2α. (25)

If we insert (22) into (25), we get the second order equation

α̈ =
κ2Lctnαcsct2α

m2
− |κ |3/2Mcsct2α +

κ̇α̇

κ
. (26)

A. Necessary condition on κ for circular solutions

The simplest solution of the Kepler problem in the Euclidean and constant curvature cases is
the circular solution, i.e., an orbit for which the moving mass is at a constant distance from the fixed
mass. We find that such solutions do not exist for non-constant curvature.

Proposition 1. Circular orbits occur only in systems with constant curvature.

Proof. Obviously, a circular orbit occurs when α has a constant value throughout the motion.
By (22), in order for this to be the case, we must have pα = 0. But then, by (25), 0= 1

m |κ |Lctnαcsct2α
− |κ |1/2mMcsct2α. If we isolate κ, we find that

|κ | =

(
m2M
Lctnα

)2

.

Since the right-hand side consists only of constants, it follows that the system has circular orbits only
if κ does not depend on time. �
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We can also prove the following related result.

Proposition 2. A system has non-fixed T-periodic solutions in phase space for some T > 0 only
if κ is T-periodic.

Proof. Let (α(t), ϕ(t), θ(t), pα) be a solution to the curved Kepler problem with curvature κ(t),
such that for every t ∈ [0,∞), we have

α(t + T )= α(t), pα(t + T )= pα(t),

θ(t + T )= θ(t), ϕ(t + T )= ϕ(t) + 2nπ,

for some T ∈R, n ∈Z. If A, 0, then by (24)

0= ϕ̇(t + T ) − ϕ̇(t)=
(|κ(t + T )| − |κ(t)|)A · csct2α(t) csc2θ(t)

m
,

so |κ(t + T )| = |κ(t)|. Since κ is continuous and non-zero, there are no t1, t2 such that κ(t1)=−κ(t2),
so κ(t + T )= κ(t).

If A = 0, then by (23)

0= θ̇(t + T ) − θ̇(t)=±
(|κ(t + T )| − |κ(t)|)

√
L · csct2α(t)

m
,

so by the same argument as above, κ(t + T )= κ(t). Therefore T -periodic solutions occur only when
κ is T -periodic. �

IV. HOMOGRAPHIC ORBITS

In this section, we study a class of rigid motions (rigid motions in terms of q coordinates). We
found that they exist in S3, but not in H3, and that they are related to special central configurations,
a concept introduced in Refs. 5 and 13.

A. Homographic orbits in S3

In S3, a solution of the form q(t)=A−1eξ(t)Aq(0) is called a homographic orbit, where A is a
constant matrix in SO(4), and

ξ(t)=



0 −α(t) 0 0
α(t) 0 0 0

0 0 0 −β(t)
0 0 β(t) 0



,

α(t), β(t) ∈C1(R), α(0)= β(0)= 0. Since Equations (9) with κ > 0 are invariant under the SO(4)-
action, it is sufficient to consider the case A = idSO(4).

Definition 1 (Ref. 13). Consider the masses m1, . . . , mN > 0 in S3. Then a configuration

q= (q1, q2 . . . qN ), qi = (xi, yi, zi, wi), i= 1, . . . , N

is called a special central configuration if it is a critical point of the force function U, i.e.,

∇qi
U(q)= 0, i= 1, . . . , N .

In S3, special central configurations lead to fixed-point solutions. The next result shows that
homographic orbits can be derived from the special central configurations in S3, i.e., finding homo-
graphic solutions on spheres with variable curvature is equivalent to finding fixed-point solutions in
the unit sphere S3.
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Proposition 3. Let q(t)= (q1(t), q2(t) . . . qN (t)) be a homographic orbit in S3
κ . Then q(t) is a

solution to the N-body problem with time varying curvature if and only if q is a special central
configuration and qi(t)= eξ(t)qi for i= 1, 2, . . . , N, where

ξ(t)=



0 −cK(t) 0 0
cK(t) 0 0 0

0 0 0 ±cK(t)
0 0 ∓cK(t) 0



, c ∈R, (27)

with K(t)= ∫
t

0 κ(τ)dτ.

Proof. Let qi(t)= eξ(t)qi, where q is a special central configuration, and ξ(t) is defined as in (27).
Then Equations (9) become

mi(ξ̈(t) + ξ̇2(t))qi =−mi(ξ̇(t)qi · ξ̇(t)qi)qi +
mi κ̇(t)
κ(t)

ξ̇(t)qi,

by using the fact that ξ̇(t) commutes with eξ(t) and that ∇qi
U = 0. Notice that

ξ̇2(t)qi =−c2κ2(t)qi,
κ̇(t)
κ(t)

ξ̇(t)= ξ̈(t),

so we have

mi ξ̈(t)qi − mic
2κ2(t)qi =−mic

2κ2(x2
i + y2

i + z2
i + w2

i )qi + mi ξ̈(t)qi

=mi ξ̈(t)qi − mic
2κ2(t)qi,

therefore q(t) is a solution of the N-body problem with time varying curvature when κ > 0.
Conversely, suppose q(t)= (q1(t), q2(t) . . . qN (t)) is a solution of the N-body problem with

uniformly varying positive curvature that is a homographic orbit in S3
κ . Then

qi(t)=



xi(t)
yi(t)
zi(t)
wi(t)



=



xi cos(α(t)) − yi sin(α(t))
xi sin(α(t)) + yi cos(α(t))
zi cos(β(t)) − wi sin(β(t))
zi sin(β(t)) + wi cos(β(t))



,

where qi(0)= (xi, yi, zi, wi)T , and α, β are real differentiable functions such that α(0)= β(0)= 0.
Notice that

ẋi(t)=−α̇(t)yi(t),

ẏi(t)= α̇(t)xi(t),

żi(t)=− β̇(t)wi(t),

ẇi(t)= β̇(t)zi(t).

If we look at the angular momentum integrals in the xy and zw directions, we find that

Lxy =
1
κ(t)

N∑
i=1

mi(xi(t)ẏi(t) − ẋi(t)yi(t))

=
α̇(t)
κ(t)

N∑
i=1

mi
(
(xi cos(α(t)) − yi sin(α(t)))2 + (xi sin(α(t)) + yi cos(α(t)))2)

=
α̇(t)
κ(t)

N∑
i=1

mi(x
2
i + y2

i )
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and

Lzw =
1
κ(t)

N∑
i=1

mi(xi(t)ẏi(t) − ẋi(t)yi(t))

=
β̇(t)
κ(t)

N∑
i=1

mi
(
(zi cos(β(t)) − wi sin(β(t)))2 + (zi sin(β(t)) + wi cos(β(t)))2)

=
β̇(t)
κ(t)

N∑
i=1

mi(z
2
i + w2

i ).

For Lxy and Lzw to be constant, we must have one of the following three conditions satisfied:

(1) xi = yi = 0 for all i= 1, . . . , N and β(t)= cK(t) for some c ∈R;
(2) zi = wi = 0 for all i= 1, . . . , N and α(t)= cK(t) for some c ∈R;
(3) α(t)= aK(t) for some a ∈R and β(t)= bK(t) for some b ∈R.

The first and second cases are proved the same way, so we will look at the first and third cases only.
In the first case, since qi(t) is a solution of the N-body problem with uniformly varying positive
curvature, the following equation is satisfied for i= 1, . . . , N :

micκ̇



0
0

−wi(t)
zi(t)



− mic
2κ2qi(t)= κ

3/2(t)∇qi
U − mic

2κ2qi(t) + micκ̇



0
0

−wi(t)
zi(t)



.

Then ∇qi
U = 0, so qi is a special central configuration, and

qi(t)=



0
0

zi cos(cK) − wi sin(cK)
zi sin(cK) + wi cos(cK)



= eξ(t)qi,

where ξ(t) is defined in (27).
In the third case, if we notice that κ̇(t)

κ(t) ξ̇(t)= ξ̈(t), we know that the following equation is satisfied
by qi(t):

κ3/2∇qi
U =miκ

2(t)



(a2(x2
i + y2

i ) + b2(z2
i + w2

i ) − a2)xi

(a2(x2
i + y2

i ) + b2(z2
i + w2

i ) − a2)yi

(a2(x2
i + y2

i ) + b2(z2
i + w2

i ) − b2)zi

(a2(x2
i + y2

i ) + b2(z2
i + w2

i ) − b2)wi



=miκ
2(t)(b2 − a2)



(z2
i + w2

i )xi

(z2
i + w2

i )yi

−(x2
i + y2

i )zi

−(x2
i + y2

i )wi



.

Assuming that κ is not constant, this equation can only hold if qi(t) satisfies condition (1) or (2), or
if a=±b and qi is a special configuration. In either case, the hypothesis holds, and

qi(t)=



xi cos(aK) − yi sin(aK)
xi sin(aK) + yi cos(aK)

zi cos(aK) − wi sin(±aK)
zi sin(±aK) + wi cos(aK)



= eξ(t)qi.

This remark completes the proof. �



052703-9 Boulter, Diacu, and Zhu J. Math. Phys. 58, 052703 (2017)

B. Homographic orbits in H3

In H3, a solution of the form q(t)=B−1eξj(t)Bq(0), j = 1, 2, is called a homographic orbit, where
B is a constant matrix in SO(3, 1), and

ξ1(t)=



0 0 0 0
0 0 −η(t) η(t)
0 η(t) 0 0
0 η(t) 0 0



, ξ2(t)=



0 −α(t) 0 0
α(t) 0 0 0

0 0 0 −β(t)
0 0 β(t) 0



,

α(t), β(t), η(t) ∈C1(R), α(0)= β(0)= η(0)= 0. Since Equations (9) with κ < 0 are invariant under
the SO(3, 1)-action, it is sufficient to consider the case B = idSO(3,1).

As all homographic solutions for κ > 0 correspond to fixed-point solutions, or special central
configurations in S3, and there are no fixed-point solutions in H3,5,13 we expect that there are no
homographic solutions for κ < 0. We will now show that this is indeed the case.

Proposition 4. There are no homographic solutions of the N-body problem with negative
uniformly varying curvature.

Proof. If a solution is homographic, then it has the form

qi(t)= eξj(t)qi, j = 1, 2, i= 1, . . . , N .

We will rule out the two possible cases separately.

Case 1. ξ = ξ1. In this case, solutions will take the form

qi(t)=



xi

yi − ziη(t) + wiη(t)
zi + yiη(t) − ziη

2(t)/2 + wiη
2(t)/2

wi + yiη(t) − ziη
2(t)/2 + wiη

2(t)/2



,

where η is a differentiable function, and qi =



xi

yi

zi

wi


is the initial position of the ith particle. If we look

at the angular momentum integrals in the xy and yz directions, we find after some simple calculations
that

Lxy =
η̇(t)
κ(t)

N∑
i=1

mixi(wi − zi), (28)

Lyz =
η̇(t)
κ(t)

N∑
i=1

mi(y
2
i + z2

i − ziwi + η(t)yi(wi − zi) +
η2(t)

2
(wi − zi)

2). (29)

Note that η(t) is not constant. Otherwise, we get η(t)= η(0)= 0, and we obtain a fixed-point solution
in H3, which is not possible.5,13 Thus either η̇(t)= cκ(t) for some c, 0 or

η2(t)
N∑

i=1

mi(wi − zi)2

2
+ η(t)

N∑
i=1

miyi(wi − zi) +
N∑

i=1

mi(y
2
i + z2

i − ziwi)= 0

and
N∑

i=1

mixi(wi − zi)= 0

for all t ∈ [0,∞). In the first case, in order for Lyz to be constant, it would be necessary that∑N
i=1

mi(wi−zi)2

2 = 0, so wi = zi for all i= 1, . . . , N . But if this is the case, then x2
i + y2

i + z2
i − w

2
i

= x2
i + y2

i =−1, which is impossible. In the second case, each of
∑N

i=1 mixi(wi − zi),
∑N

i=1
mi(wi−zi)2

2 ,∑N
i=1 miyi(wi − zi), and

∑N
i=1 mi(y2

i + z2
i − ziwi) must be equal to zero. This is possible only if yi = 0,
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zi = wi for i= 1, . . . , N . But then x2
i + y2

i + z2
i −w

2
i = x2

i =−1, which is impossible. Therefore there are
no homographic orbits for ξ1.

Case 2. ξ = ξ2. In this case, solutions will take the form

qi(t)=



xi cos(α(t)) − yi sin(α(t))
xi sin(α(t)) + yi cos(α(t))

zi cosh(β(t)) + wi sinh(β(t))
zi sinh(β(t)) + wi cosh(β(t))



,

where α, β are real-valued differentiable functions such that α(0)= β(0)= 0, and qi =



xi

yi

zi

wi


is the

initial position of the ith particle. Notice that

ẋi(t)=−α̇(t)yi(t),

ẏi(t)= α̇(t)xi(t),

żi(t)= β̇(t)wi(t),

ẇi(t)= β̇(t)zi(t).

If we look at the angular momentum integrals in the xy and zw directions, we find that

Lxy =
1
κ(t)

N∑
i=1

mi(xi(t)ẏi(t) − ẋi(t)yi(t))

=
α̇(t)
κ(t)

N∑
i=1

mi
(
(xi cos(α(t)) − yi sin(α(t)))2 + (xi sin(α(t)) + yi cos(α(t)))2)

=
α̇(t)
κ(t)

N∑
i=1

mi(x
2
i + y2

i ),

Lzw =
1
κ(t)

N∑
i=1

mi(zi(t)ẇi(t) − żi(t)wi(t))

=
β̇(t)
κ(t)

N∑
i=1

mi((zi cosh(β(t)) + wi sinh(β(t)))2 − (zi sinh(β(t)) + wi cosh(β(t)))2)

=
β̇(t)
κ(t)

N∑
i=1

mi(z
2
i − w

2
i ).

Since z2
i − w

2
i is always negative, Lzw is constant only if β(t)= bK(t) for some b ∈R. Lxy is constant

if either α(t)= aK(t) for some a ∈R or xi = yi = 0 for all i= 1, . . . , N . If xi = yi = 0 for all i= 1, . . . , N ,
then the system satisfies the equation

mibκ̇



0
0
wi

zi



+ mib
2κ2qi = κ

3/2∇qi
U + mib

2κ2qi + mibκ̇



0
0
wi

zi



.

Consequently ∇qi
U = 0, which is impossible for κ < 0,.5,13 If α(t)= aK(t), notice that κ̇(t)

κ(t) ξ̇(t)= ξ̈(t),
so qi(t) satisfies the following equation:
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κ3/2(t)∇qi
U =miκ

2(t)



(b2(z2
i − w

2
i ) − a2(x2

i + y2
i ) − a2)xi

(b2(z2
i − w

2
i ) − a2(x2

i + y2
i ) − a2)yi

(b2 + b2(z2
i − w

2
i ) − a2(x2

i + y2
i ))zi

(b2 + b2(z2
i − w

2
i ) − a2(x2

i + y2
i ))wi



=mi(a
2 + b2)κ2(t)



(z2
i − w

2
i )xi

(z2
i − w

2
i )yi

−(x2
i + y2

i )zi

−(x2
i + y2

i )wi



.

Assuming that κ is not constant, this equation can only hold if ∇qi
U = 0, which is impossible for

κ < 0. Therefore there are no homographic orbits for ξ2. �

V. SPECIAL CENTRAL CONFIGURATIONS

We have shown in Sec. IV that there is a strong link between homographic orbits and special
central configurations in S3. We will now look at several examples of special central configurations
and provide a rough classification of all 4-body special central configurations. We will assume that
q ∈ S3 if no further confusion arises.

A configuration of N bodies is singular if there exists some 1 ≤ i < j ≤N such that qi =±qj. In
that case, the attractive force on qi exerted by qj is

mimj(qj − cos qi)

sin3dij
=∞.

Recall that a non-singular configuration q of N bodies is a special central configuration if it is a
critical point of U, i.e.,

Fi =∇qi
U(q)= 0, i= 1, . . . , N .

In this section, we will make use of several results about special central configurations that have
been proved in Ref. 13 as follows:

(1) No special central configuration in S3 has all masses lying in any closed hemisphere, unless
all masses lie on a great 2-sphere.

(2) No special central configuration on S2 has all masses lying on any closed hemisphere, unless
all masses lie on a great circle.

(3) If q is a special central configuration in S3, and g ∈ SO(4), then the configuration gq, resulting
from the action of g on q, is also a special central configuration.

A. Double Lagrangian special central configurations on S2
xyz

Let

S2
xyz := {(x, y, z, w) ∈R4 | x2 + y2 + z2 = 1, w = 0}.

One of the simplest central configurations is the Lagrange solution, consisting of 3 bodies of equal
masses evenly spaced around a circle.5,13 We now look at the special central configurations consisting
of two parallel Lagrangian central configurations, which we will call double Lagrangian central
configurations.

Proposition 5. In the 6-body problem on the sphere, there are infinitely many double Lagrangian
special central configurations, i.e., configurations of the form
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q1 =



r1

0
c1

0



, q2 =



−
r1
2√

3r1
2
c1

0



, q3 =



−
r1
2

−

√
3r1
2

c1

0



,

q4 =



r2

0
c2

0



, q5 =



−
r2
2√

3r2
2
c2

0



, q6 =



−
r2
2

−

√
3r2
2

c2

0



,

m1 =m2 =m3 = 1,

m4 =m5 =m6 =m,

where c1 ∈ (0, 1), c2 ∈ (−1, 0), r1 =

√
1 − c2

1, r2 =

√
1 − c2

2, and m ∈ (0,∞).

Proof. To obtain a special central configuration in the 6-body problem on the sphere, we must
have

∇qi
U =

6∑
j=1,j,i

mimj(qj − (qi · qj)qi)

(1 − (qi · qj)2)3/2
= 0

for i = 1, 2, 3, 4, 5, 6. By symmetry arguments, it is sufficient for the equations to hold for ∇q1
U and

∇q4
U.
Since d12 = d13 and d15 = d16,

F1 =
q2 + q3 − 2 cos d12q1

sin3d12
+ m

q4 − cos d14q1

sin3d14
+ m

q5 + q6 − 2 cos d15q1

sin3d15
.

Thus the y and w components of ∇q1
U are zero. Similarly, the y and w components of ∇q4

U are zero.
Also, we have

qi · ∇qi
U =

N∑
j=1,j,i

mimj
qj · qi − qj · qi

(1 − (qi · qj)2)3/2
= 0,

so ∇qi
U is orthogonal to qi. Therefore the z components of ∇q1

U and ∇q4
U are zero if and only if

the x components of them are zero. So it is sufficient to have the following two equations satisfied:

0=
3r2

1c1

(1 − (c2
1 −

r2
1
2 )2)3/2

+
m(c2 − (c1c2 + r1r2)c1)

(1 − (c1c2 + r2r1)2)3/2
+

m(2c2 − (2c1c2 − r1r2)c1)

(1 − (c1c2 −
r1r2

2 )2)3/2
, (30)

0=
c1 − (c1c2 + r1r2)c2

(1 − (c1c2 + r2r1)2)3/2
+

2c1 − (2c1c2 − r1r2)c2

(1 − (c1c2 −
r1r2

2 )2)3/2
+

3mr2
2c2

(1 − (c2
2 −

r2
2
2 )2)3/2

. (31)

By isolating m in (31), we get

m=−
(1 − (c2

2 −
r2

2
2 )2)3/2

3r2
2c2

( c1 − (c1c2 + r1r2)c2

(1 − (c1c2 + r2r1)2)3/2
+

2c1 − (2c1c2 − r1r2)c2

(1 − (c1c2 −
r1r2

2 )2)3/2

)
. (32)

If (c1, c2, m) satisfy the requirements for a special configuration, then by symmetry so do (−c2,−c1, 1
m ),

so we can find all special central configurations with c1 ≥ −c2 and then obtain the equivalent special
central configurations with c1 <−c2. Let

B= {(a, b) ∈ (0, 1) × (−1, 0) : a ≥ −b}.

Consider the function

f : B→R,
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f (c1, c2)=
3r2

1c1

(1 − (c2
1 −

r2
1
2 )2)3/2

+
m(c2 − (c1c2 + r1r2)c1)

(1 − (c1c2 + r2r1)2)3/2

+
m(2c2 − (2c1c2 − r1r2)c1)

(1 − (c1c2 −
r1r2

2 )2)3/2
,

where m is as in (32). Since B is path-connected, there exists a path

p : [0, 1]→B

such that p(0)= ( 1
10 ,− 1

10 ) and p(1)= ( 9
10 ,− 1

2 ). The function f is continuous on its domain, so f ◦ p
is continuous on [0, 1]. Since f (p(0))< 0 and f (p(1))> 0, we have by the intermediate value theorem
that there exists a ∈ [0, 1] such that f (p(a)) = 0. This is true for any such path p. Define

A= {(c1, c2) ∈ B : f (c1, c2)= 0}.

Then the set B \ A must have ( 9
10 ,− 1

2 ) in a different path component than ( 1
10 ,− 1

10 ). No finite set
can path-disconnect B, so f (c1, c2) = 0 has infinitely many solutions. But (c1, c2) is a special central
configuration if (c1, c2) ∈ A and m(c1, c2)> 0. If (c1, c2) ∈ B, then m(c1, c2)> 0 if and only if

c1 − (c1c2 + r1r2)c2

(1 − (c1c2 + r2r1)2)3/2
+

2c1 − (2c1c2 − r1r2)c2

(1 − (c1c2 −
r1r2

2 )2)3/2
> 0.

Note that we have |c1c2 + r1r2 | < 1 since c1c2 + r1r2 = cos(d14), and |2c1c2− r1r2 | < 2 since c1c2−
r1r2

2
= cos(d15). Therefore, we have

c1 − (c1c2 + r1r2)c2

(1 − (c1c2 + r2r1)2)3/2
+

2c1 − (2c1c2 − r1r2)c2

(1 − (c1c2 −
r1r2

2 )2)3/2

>
c1 + c2

(1 − (c1c2 + r1r2)2)3/2
+

2c1 + 2c2

(1 − (c1c2 −
r1r2

2 )2)3/2
≥ 0

since c1 ≥ −c2 for (c1, c2) ∈ B. Then m is always positive in B, so every element (c1, c2) ∈ A corresponds
to the special central configuration

FIG. 1. The set of solutions to f (c1, c2) = 0.
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q1 =



√
1 − c2

1

0
c1

0



, q2 =



−

√
1−c2

1

2
√

3
√

1−c2
1

2
c1

0



, q3 =



−

√
1−c2

1

2

−

√
3
√

1−c2
1

2
c1

0



,

q4 =



√
1 − c2

2

0
c2

0



, q5 =



−

√
1−c2

2

2
√

3
√

1−c2
2

2
c2

0



, q6 =



−

√
1−c2

2

2

−

√
3
√

1−c2
2

2
c2

0



,

m1 =m2 =m3 = 1,

m4 =m5 =m6 =m(c1, c2),

where m(c1, c2) is as defined in (32). This remark completes the proof. �

To get a visual understanding of the roots of f, we insert (32) into (30) and implicitly plot the
solutions of the resulting equation (see Figure 1). We can then see the set of solutions to f (c1, c2)
= 0, where the curves are solutions, and the shaded region is formed by the (c1, c2) values for which
m(c1, c2) ≤ 0. Since no solution occurs in the shaded region, all these solutions represent special central
configurations. As we showed above, the right branch of the solution set is a path-disconnecting subset
of B, the solutions are symmetric about c1 = �c2, and m is positive on B.

B. Double tetrahedron special central configurations in S3

We now extend the previous case from two triangles on S2
xyz to two tetrahedra in S3. We will call

such a solution of the 8-body problem of the sphere a double tetrahedron special central configuration.

Proposition 6. In the 8-body problem in S3, there exist infinitely many double tetrahedron special
central configurations, i.e., configurations of the form

q1 =



r1

0
0
c1



, q2 =



−
r1
3

2
√

2r1
3

0

c1



, q3 =



−
r1
3

−

√
2r1
3

√
6r1
3

c1



, q4 =



−
r1
3

−

√
2r1
3

−

√
6r1
3

c1



,

q5 =



r2

0
0
c2



, q6 =



−
r2
3

2
√

2r2
3

0
c2



, q7 =



−
r2
3

−

√
2r2
3

√
6r2
3

c2



, q8 =



−
r2
3

−

√
2r2
3

−

√
6r2
3

c2



,

m1 =m2 =m3 =m4 = 1,

m5 =m6 =m7 =m8 =m,

where c1 ∈ (0, 1), c2 ∈ (−1, 0), m ∈ (0,∞), r1 =

√
1 − c2

1, and r2 =

√
1 − c2

2.

Proof. In order to have a special central configuration in the 8-body problem on the sphere, we
must have

∇qi
U =

8∑
j=1,j,i

mimj(qj − (qi · qj)qi)

(1 − (qi · qj)2)3/2
= 0 (33)
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for i = 1, 2, 3, 4, 5, 6, 7, 8. Let

g=



− 1
3 −

√
2

3

√
6

3 0
2
√

2
3 − 1

6

√
3

6 0

0
√

3
2

1
2 0

0 0 0 1



∈ SO(4), h=



1 0 0 0

0 − 1
2 −

√
3

2 0

0
√

3
2 − 1

2 0

0 0 0 1



∈ SO(4).

The action of 〈g, h〉 on q is the permutation group

〈(q1, q2, q3)(q5, q6, q7), (q2, q3, q4)(q6, q7, q8)〉,

so by the symmetries of 〈g, h〉 it is sufficient for (33) to hold for i = 1, 5. For these two vertices, (33)
becomes

∇q1
U =

q2 + q3 + q4 − 3(c2
1 −

r2
1
3 )q1

(1 − (c2
1 −

r2
1
3 )2)3/2

+ m
q5 − (c1c2 + r1r2)q1

(1 − (c1c2 + r1r2)2)3/2

+ m
q6 + q7 + q8 − 3(c1c2 −

r1r2
3 )q1

(1 − (c1c2 −
r1r2

3 )2)3/2
,

∇q5
U =m

q2 + q3 + q4 − 3(c1c2 −
r1r2

3 )q5

(1 − (c1c2 −
r1r2

3 )2)3/2
+ m

q1 − (c1c2 + r1r2)q5

(1 − (c1c2 + r1r2)2)3/2

+ m2 q6 + q7 + q8 − 3(c2
2 −

r2
2
3 )q5

(1 − (c2
2 −

r2
2
3 )2)3/2

.

Since

q2 + q3 + q4 =



−r1

0
0

3c1



and q6 + q7 + q8 =



−r2

0
0

3c2



,

we can see that the y and z coordinates of∇q1
U,∇q5

U are identically 0. Also, by the identity qi ·∇qi
U

= 0, we see that the w components of ∇q1
U and ∇q5

U are zero if and only if their x components are
zero. Therefore, it is sufficient to have the following two equations satisfied:

0=
4r2

1c1

(1 − (c2
1 −

r2
1
3 )2)3/2

+
m(c2 − (c1c2 + r1r2)c1)

(1 − (c1c2 + r2r1)2)3/2
+

m(3c2 − (3c1c2 − r1r2)c1)

(1 − (c1c2 −
r1r2

3 )2)3/2
, (34)

0=
c1 − (c1c2 + r1r2)c2

(1 − (c1c2 + r2r1)2)3/2
+

3c1 − (3c1c2 − r1r2)c2

(1 − (c1c2 −
r1r2

3 )2)3/2
+

4mr2
2c2

(1 − (c2
2 −

r2
2
4 )2)3/2

. (35)

By isolating m in (35), we obtain

m=−
(1 − (c2

2 −
r2

2
3 )2)3/2

4r2
2c2

( c1 − (c1c2 + r1r2)c2

(1 − (c1c2 + r2r1)2)3/2
+

3c1 − (3c1c2 − r1r2)c2

(1 − (c1c2 −
r1r2

3 )2)3/2

)
. (36)

If the elements (c1, c2, m) satisfy the requirements for a special configuration, then by the SO(4)

rotation



1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


, so do the elements (−c2,−c1, 1

m ). Therefore, we can find all special central

configurations with c1 ≥ −c2 and then obtain the equivalent special central configurations with c1

<−c2. Consider the set
B= {(a, b) ∈ (0, 1) × (−1, 0) : a ≥ −b}.

Define
g : B→R,
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g(c1, c2)=
4r2

1c1

(1 − (c2
1 −

r2
1
3 )2)3/2

+
m(c2 − (c1c2 + r1r2)c1)

(1 − (c1c2 + r2r1)2)3/2

+
m(3c2 − (3c1c2 − r1r2)c1)

(1 − (c1c2 −
r1r2

3 )2)3/2
,

where m is as in (36). Since B is path-connected, there exists a path

p : [0, 1]→B

such that p(0)= ( 1
10 ,− 1

10 ) and p(1)= ( 9
10 ,− 1

2 ). The function g is continuous on its domain, so g ◦ p
is a continuous function on [0, 1], and since g(p(0))< 0 and g(p(1))> 0, we have by the intermediate
value theorem that there exists an a ∈ [0, 1] such that g(p(a)) = 0. This is true for any such path p.
Define

C = {(c1, c2) ∈ B : g(c1, c2)= 0}.

Then the set B \ C must have ( 9
10 ,− 1

2 ) in a different path component than ( 1
10 ,− 1

10 ). No finite set
can path-disconnect B, so g(c1, c2) = 0 has infinitely many solutions. But (c1, c2) is a special central
configuration if (c1, c2) ∈C and m(c1, c2)> 0. If (c1, c2) ∈ B, then m(c1, c2)> 0 if and only if

c1 − (c1c2 + r1r2)c2

(1 − (c1c2 + r2r1)2)3/2
+

3c1 − (3c1c2 − r1r2)c2

(1 − (c1c2 −
r1r2

3 )2)3/2
> 0.

Note that we have |c1c2 + r1r2 | < 1, since c1c2 + r1r2 = cos(d15), and |3c1c2 − r1r2 | < 3, since

c1c2 −
r1r2

3
= cos(d16).

Therefore, we have
c1 − (c1c2 + r1r2)c2

(1 − (c1c2 + r2r1)2)3/2
+

3c1 − (3c1c2 − r1r2)c2

(1 − (c1c2 −
r1r2

3 )2)3/2

>
c1 + c2

(1 − (c1c2 + r1r2)2)3/2
+

3c1 + 3c2

(1 − (c1c2 −
r1r2

3 )2)3/2
≥ 0

because c1 ≥ −c2 for (c1, c2) ∈ B. Then m is always positive in B, so every element (c1, c2) ∈C
corresponds to the special central configuration of the form

q1 =



√
1 − c2

1

0
0
c1



, q2 =



−

√
1−c2

1

3

2
√

2
√

1−c2
1

3
0
c1



, q3 =



−

√
1−c2

1

3

−

√
2
√

1−c2
1

3
√

6
√

1−c2
1

3
c1



, q4 =



−

√
1−c2

1

3

−

√
2
√

1−c2
1

3

−

√
6
√

1−c2
1

3
c1



,

q5 =



√
1 − c2

2

0
0
c2



, q6 =



−

√
1−c2

2

3

2
√

2
√

1−c2
2

3
0
c2



, q7 =



−

√
1−c2

2

3

−

√
2
√

1−c2
2

3
√

6
√

1−c2
2

3
c2



, q8 =



−

√
1−c2

2

3

−

√
2
√

1−c2
2

3

−

√
6
√

1−c2
2

3
c2



,

m1 =m2 =m3 =m4 = 1,

m5 =m6 =m7 =m8 =m(c1, c2),

where m(c1, c2) is as defined in (36). This remark completes the proof. �

To get a visual understanding of the solutions to g, we insert (36) into (34) and implicitly plot
the solutions to the resulting equation (see Figure 2). We can then see the set of solutions to g(c1, c2)
= 0. As expected, the solutions are symmetric about c1 = �c2 and the right branch of the solution is
a path-disconnecting set of B.
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FIG. 2. The set of solutions to g(c1, c2) = 0.

C. Special central configurations for four bodies in S3

We first show that every special central configuration of the 4-body problem in S3 occurs on
a great 2-sphere and then prove that there are no quadrilateral special central configurations on S1.
Finally, we derive a necessary and sufficient condition for the existence of tetrahedral special central
configurations.

Proposition 7. Every 4-body special central configuration in S3 occurs on a great 2-sphere.

Proof. Let q= (q1, . . . , q4) be a special central configuration in S3. Then Fi = 0, i= 1, . . . , 4.
Recall Equation (11). We obtain

0=F1 =

4∑
j=2

m1mj(qj − cos d1jq1)

sin3d1j
=

4∑
j=2

m1mjqj

sin3d1j
−

4∑
j=2

m1mj cos d1j

sin3d1j
q1.

This implies that the four vectors q1, . . . , q4 are linearly dependent. Thus the dimension of the space
spanned by q1, q2, q3, and q4 is at most 3, and they must lie on a great 2-sphere. �

Proposition 8. There are no 4-body special central configurations on a great circle.

Proof. We first derive a necessary condition on the mutual distances and then show that no
non-singular configurations satisfy the condition.

We may assume that the positions of masses are given by the polar coordinates 0= ϕ1 < ϕ2

< ϕ3 < ϕ4 < 2π (see Figure 3). Recall that q is a non-singular configuration on S3 if qi ,±qj for all
i, j. Thus, ϕi , π for i = 2, 3, 4. Since they could not be on one half-circle,13 there are two possibilities:
two bodies are on the upper half-circle ϕ ∈ (0, π) and one on the lower half-circle ϕ ∈ (π, 2π); one
body is on the upper half-circle ϕ ∈ (0, π) and two on the lower half-circle ϕ ∈ (π, 2π). By a reflection
about the x-axis, the two cases become one. So we assume that two bodies are on the upper half-circle
ϕ ∈ (0, π) and one on the lower half-circle ϕ ∈ (π, 2π), i.e., ϕ2 < ϕ3 < π. Then there are two possibilities
for ϕ4: ϕ4 ∈ (π, π + ϕ2) and ϕ4 ∈ (π + ϕ2, π + ϕ3). The cases ϕ ∈ (π, π + ϕ2) and ϕ ∈ (π + ϕ2, π + ϕ3)
differ only by a rotation −ϕ4 and the relabeling

q′1 =q4, q′2 =q1, q′3 =q2, q′4 =q3,
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FIG. 3. A configuration for four masses on a great circle.

so it is sufficient to consider the case ϕ4 ∈ (π, π + ϕ2). Note that the force function (1) on S3 is
U =

∑
1≤i<j≤N

mimj cot dij. In this case, we can write it as

U(ϕ1, . . . , ϕ4)=m1m2 cot(ϕ2 − ϕ1) + m1m3 cot(ϕ3 − ϕ1) − m1m4 cot(ϕ4 − ϕ1)

+ m2m3 cot(ϕ3 − ϕ2) + m2m4 cot(ϕ4 − ϕ2) + m3m4 cot(ϕ4 − ϕ3).

As d14 = 2π − (ϕ4 − ϕ1), the sign of the term involving m1m4 is negative. Since a special central
configuration is a critical point of U, by taking the derivative with respect to ϕ1, we have

m1m2

sin2(ϕ2 − ϕ1)
+

m1m3

sin2(ϕ3 − ϕ1)
−

m1m4

sin2(ϕ4 − ϕ1)
= 0.

Similarly, we obtain
m2

r12
+

m3

r13
=

m4

r14
, (37)

m3

r23
+

m4

r24
=

m1

r12
, (38)

m1

r13
+

m2

r23
=

m4

r34
, (39)

m2

r24
+

m3

r34
=

m1

r14
, (40)

where rij = sin2dij = sin2(ϕi − ϕj). Multiplying (37) by 1
r34

and subtracting (39) multiplied by 1
r14

lead
to

m2

(
1

r12r34
−

1
r23r14

)
+

m3

r13r34
=

m1

r13r14
.

From (40) we can conclude that
m2

r24r13
+

m3

r13r34
=

m1

r13r14
,

and we thus obtain the necessary condition

1
r12r34

=
1

r23r14
+

1
r13r24

. (41)

We now show that Equation (41) can never be satisfied. Note that rij is also equal to
sin2d(±qi,±qj). Let us look now at the upper semicircle determined by q2 and �q2. Between the two
boundary points, there lie q3, �q1, and q4 consecutively. Thus

0 < d(q2, q3)< d(q2,−q1)< d(q2, q4)< π,

and we get

r12 = sin2d(q2,−q1)>min{sin2d(q2, q3), sin2d(q2, q4)} =min{r23, r24}.
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Similarly, by focusing on other semicircles determined by qi and �qi, we obtain other similar
inequalities,

r12 >min{r13, r14}, i.e.,
1

r12
<max

{
1

r13
,

1
r14

}
, (42)

r12 >min{r23, r24}, i.e.,
1

r12
<max

{
1

r23
,

1
r24

}
, (43)

r34 >min{r13, r23}, i.e.,
1

r34
<max

{
1

r13
,

1
r23

}
, (44)

r34 >min{r14, r24}, i.e.,
1

r34
<max

{
1

r14
,

1
r24

}
. (45)

With (41) these four inequalities can be put in a useful form. We begin with the first inequality.
There are two possibilities, namely, 1

r14
≥ 1

r13
and 1

r14
≤ 1

r13
. If 1

r14
≥ 1

r13
, by inequality (42), we have

1
r12
< 1

r14
. In this case, we claim that 1

r13
> 1

r23
. If not, by inequality (44), we have 1

r34
< 1

r23
. Then the

two inequalities 1
r12
< 1

r14
and 1

r34
< 1

r23
lead to 1

r12r34
< 1

r23r14
, which contradicts with Equation (41).

Therefore, in the case 1
r14
≥ 1

r13
, we also have 1

r13
> 1

r23
, i.e., 1

r14
≥ 1

r13
> 1

r23
. Similarly, the other case

1
r14
≤ 1

r13
leads to 1

r13
≥ 1

r14
> 1

r24
.

Using a similar argument on all the four inequalities, we obtain the following 8 inequalities:

1
r14
≥

1
r13

>
1

r23
or

1
r13
≥

1
r14

>
1

r24
, (46)

1
r24
≥

1
r23

>
1

r13
or

1
r23
≥

1
r24

>
1

r14
, (47)

1
r13
≥

1
r23

>
1

r24
or

1
r23
≥

1
r13

>
1

r14
, (48)

1
r14
≥

1
r24

>
1

r23
or

1
r24
≥

1
r14

>
1

r13
. (49)

Denote the left one of the i-th inequality by (i+) and the right one by (i�). Then we have 16
possibilities ((46)∗, (47)∗, (48)∗, (49)∗), where ∗ is + or �. However, none of them is consistent. If we
take (46)+ and (47)+, then we get 1

r13
> 1

r23
and 1

r13
< 1

r23
, which is a contradiction. If we take (46)+

and (47)�, then we get 1
r14
≥ 1

r13
> 1

r23
≥ 1

r24
> 1

r14
, which is a contradiction. If we take (46)� and (47)�,

then we get 1
r14
> 1

r24
and 1

r14
< 1

r24
, which is a contradiction. If we take (46)� and (47)+, then we get

1
r13
≥ 1

r14
> 1

r24
≥ 1

r23
> 1

r13
, which is a contradiction.

Thus there is no non-singular configuration of four particles on S1 such that Equation (41) is
satisfied. This implies that there is no special central configuration of four particles on S1. �

To prove our next proposition, we will rely on the following linear algebra result.

Lemma 1. Let {v0, v1, . . . , vn} be a collection of vectors in Rn with rank n. Then

D0v0 − D1v1 + · · · + (−1)nDnvn = 0,

where Dk = det(v0, . . . , vk−1, vk+1, . . . , vn).

Proof. Without loss of generality, we may assume that D0 , 0. Then we can use Cramer’s rule
to solve the linear system

(v1, . . . , vn)x=−v0, x= (x1, x2, . . . , xn)T .

For k = 1, . . . , n, we get

xk =
det(v1, . . . , vk−1,−v0, vk+1, . . . , vn)

det(v1, . . . , vn)

= (−1)k det(v0, v1, . . . , vk−1, vk+1, . . . , vn)
D0

= (−1)k Dk

D0
.
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Then
∑n

k=0 (−1)kDkvk = 0, so the proof is complete. �

Proposition 9. Let q be a tetrahedron configuration of four masses m0, m1, m2, m3, on S2
xyz of

the form

q0 =



1
0
0


, q1 =



x1

y1

0


, q2 =



x2

y2

z2


, q3 =



x3

y3

z3


.

Then q is a special central configuration if and only if the following three conditions are satisfied:

(1) q0, q1, q2, q3 are not all on the same hemisphere;
(2) sin d01 sin d23 = sin d02 sin d13 = sin d03 sin d12;

(3) m0 =−m3
D0sin3d01

D3sin3d13
, m1 =m3

D1sin3d01

D3sin3d03
, and m2 =−m3

D2sin3d02

D3sin3d03
, where D0 = det(q1, q2, q3), D1 =

det(q0, q2, q3), D2 = det(q0, q1, q3), and D3 = det(q0, q1, q2).

Proof. Suppose q is a tetrahedron special central configuration. Then the four masses are not all
on one hemisphere by the discussion at the beginning of this section, and Fi =∇qi

U = 0 for i = 0, 1,
2, 3. Consider the z components of F0 and F1,

m2z2

sin3d02
+

m3z3

sin3d03
= 0,

m2z2

sin3d12
+

m3z3

sin3d13
= 0.

Since by assumption they are not on a great circle, y1, z2, and z3 are non-zero. Thus we obtain
sin3d03sin3d12 = sin3d02sin3d13. By symmetry and relabeling of the masses, we also get the relation
sin3d01sin3d23 = sin3d03sin3d12. Therefore

sin d03 sin d12 = sin d02 sin d13 = sin d01 sin d23.

For the masses, we look at

F0 =m1
q1 − cos d01q0

sin3d01
+ m2

q2 − cos d02q0

sin3d02
+ m3

q3 − cos d03q0

sin3d03
,

and we have the z component m2z2

sin3d02
+ m3z3

sin3d03
= 0, which implies

m2 =−m3
sin3d02z3

sin3d03z2
=−m3

sin3d02y1z3

sin3d03y1z2
=−m3

D2sin3d02

D3sin3d03
. (50)

The y component is m1y1

sin3d01
+ m2y2

sin3d02
+ m3y3

sin3d03
= 0, which, after inserting (50), gives

m1 =m3
(y2z3 − z2y3)sin3d01

y1z2sin3d03
=m3

D1sin3d01

D3sin3d03
. (51)

For m0, we look at the inner product of (y1, �x1, 0)T with

F1 =m0
q0 − cos d01q1

sin3d01
+ m2

q2 − cos d12q1

sin3d12
+ m3

q3 − cos d13q1

sin3d13
= 0

to get

0=
m0y1

sin3d01
+

m2(x2y1 − x1y2)

sin3d12
+

m3(y1x3 − x1y3)

sin3d13

=
m0y1

sin3d01
−

m3sin3d02

sin3d03sin3d12

z3(x2y1 − x1y2)
z2

+
m3(x3y1 − x1y3)

sin3d13

=
m0y1

sin3d01
−

m3(x2y1z3 − x1y2z3 − y1x3z2 + x1y3z2)

z2sin3d13
.

So we have

m0 =m3
sin3d01

sin3d13

y1(x2z3 − x3z2) − x1(y2z3 − y3z2)
y1z2

=−m3
D0sin3d01

D3sin3d13
. (52)
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Conversely, suppose that q is a configuration satisfying the above three conditions. We prove
that q is a special central configuration, i.e., F i = 0 and mi > 0 for i = 0, 1, 2, 3.

First, F0 = 0 since ∇q0
U ·q0 = 0, i.e., the x-component of F0 is zero, and the y and z components

are zero by (50) and (51).
For i = 1, 2, 3, Fi = 0 if and only if Fi · vij = 0, j = 1, 2, 3, where vi1 = qi, and {vi1, vi2, vi3} is an

orthonormal basis of R3. First, Fi · vi1 =∇qi
U · qi = 0. For i = 1, j = 2, 3, we have

F1 · v1j =

(
m0

q0 − cos d01q1

sin3d01
+ m2

q2 − cos d12q1

sin3d12
+ m3

q3 − cos d13q1

sin3d13

)
· v1j

=

( m0q0

sin3d01
+

m2q2

sin3d12
+

m3q3

sin3d13

)
· v1j

=

(
−m3

D0q0

D3sin3d13
− m3

D2sin3d02q2

D3sin3d03sin3d12
+

m3q3

sin3d13

)
· v1j

=−
m3

D3sin3d13
(D0q0 + D2q2 − D3q3) · v1j =−

m3

D3sin3d13
D1q1 · v1j = 0,

the second last equality following from the previous lemma.
Through similar computations, we can see that for j = 2, 3,

F2 · v2j =−
m3

D3sin3d23
(D0q0 − D1q1 − D3q3) · v2j =

m3D2

D3sin3d23
q2 · v2j = 0,

F3 · v3j =−
m3sin3d01

D3sin3d13sin3d03
(D0q0 − D1q1 + D2q2) · v3j

=−
m3sin3d01

sin3d13sin3d03
q3 · v3j = 0.

Therefore Fi = 0 for i = 0, 1, 2, 3. To show that the masses are positive, we first show that Di , 0, for
i = 0, 1, 2, 3. If not, then three of the masses lie on a great circle of S2

xyz, so the four masses all lie on
one hemisphere.

Without loss of generality, assume D3 > 0. Consider the two-dimensional subspace V12 deter-
mined by q1, q2. Since the configuration is not on one hemisphere, V12 must separate q0 and q3.
Then

D3 = det(q0, q1, q2)= det(q1, q2, q0)> 0 implies D0 = det(q1, q2, q3)< 0.

Similarly, the subspace V02 separates q1 and q3, so

det(q0, q2, q1)=− det(q0, q1, q2)=−D3 < 0 implies D1 = det(q0, q2, q3)> 0,

and the subspace V01 separates q2 and q3, so

det(q0, q1q2)=D3 > 0 implies D2 = det(q0, q1, q3)< 0.

Then m0 > 0, m1 > 0, m2 > 0 if and only if m3 > 0, so q is a special central configuration. �

D. Special central configurations for five bodies in S3

In this section, we generalize the method from the previous proof from tetrahedra on S2
xyz to

pentatopes in S3 to prove the following result.

Proposition 10. Let q be a pentatope configuration for five masses, m0, m1, m2, m3, m4, in S3

of the form

q0 =



1
0
0
0



, q1 =



x1

yy

0
0



, q2 =



x2

y2

z2

0



, q3 =



x3

y3

z3

w3



, q4 =



x4

y4

z4

w4



.

Then q is a special central configuration if and only if the following conditions are satisfied:
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(1) q0, q1, q2, q3, q4 are not all in one hemisphere;
(2) sin d01

sin d04
=

sin d12
sin d24

=
sin d13
sin d34

;

(3) sin d02
sin d04

=
sin d12
sin d14

=
sin d23
sin d34

;

(4) sin d03
sin d04

=
sin d13
sin d14

=
sin d23
sin d24

;

(5) m0 =m4
D0sin3d01

D4sin3d14
, m1 =−m4

D1sin3d01

D4sin3d04
, m2 =m4

D2sin3d02

D4sin3d04
, and m3 =−m4

D3sin3d03

D4sin3d04
, where

D0 = det(q1, q2, q3, q4), D1 = det(q0, q2, q3, q4), D2 = det(q0, q1, q3, q4),

D3 = det(q0, q1, q2, q4), and D4 = det(q0, q1, q2, q3).

Proof. Suppose q is a pentatope special central configuration. Then the five masses are not all
in one hemisphere by the discussion at the beginning of this section, and we have Fi = 0 for i = 0, 1,
2, 3, 4. Consider the w components of F0, F1, and F2,

m3w3

sin3d03
+

m4w4

sin3d04
= 0,

m3w3

sin3d13
+

m4w4

sin3d14
= 0,

m3w3

sin3d23
+

m4w4

sin3d34
= 0.

Recall that we are assuming the configuration is a pentatope, i.e., q does not lie on a great 2-sphere,
which implies that y1, z2, w3, w4 are non-zero. Thus we obtain

sin d03

sin d04
=

sin d13

sin d14
=

sin d23

sin d24
.

By symmetry and relabeling of the masses, we also obtain the relations

sin d01

sin d04
=

sin d12

sin d24
=

sin d13

sin d34

and
sin d02

sin d04
=

sin d12

sin d14
=

sin d23

sin d34
.

If we look at

F0 =m1
q1 − cos d01q0

sin3d01
+ m2

q2 − cos d02q0

sin3d02
+ m3

q3 − cos d03q0

sin3d03
+ m4

q4 − cos d04q0

sin3d04
,

which is 0, we see that the w component m3w3

sin3d03
+ m4w4

sin3d04
= 0 gives

m3 =−m4
w4sin3d03

w3sin3d04
=−m4

y1z2w4sin3d03

y1z2w3sin3d04
=−m4

D3sin3d03

D4sin3d04
. (53)

After inserting (53) into the z component m2z2

sin3d02
+ m3z3

sin3d03
+ m4z4

sin3d04
= 0, we have

m2 =m4
y1(z3w4 − z4w3)sin3d02

y1z2w3sin3d04
=m4

D2sin3d02

D4sin3d04
. (54)

After inserting (53) and (54) into the y component m1y1

sin3d01
+ m2y2

sin3d02
+ m3y3

sin3d03
+ m4y4

sin3d04
= 0, we obtain

m1 =−m4
y2(z3w4 − z4w3) − z2(y − 3w4 − y4w3)

y1z2w3

sin3d01

sin3d04
=−m4

D1sin3d01

D4sin3d04
. (55)

We obtain m0 by taking the inner product of (y1, �x1, 0, 0)T with

F1 =m0
q0 − cos d01q1

sin3d01
+ m2

q2 − cos d12q1

sin3d12

+ m3
q3 − cos d13q1

sin3d13
+ m4

q4 − cos d14q1

sin3d14
= 0
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to get

0=
m0y1

sin3d01
+ m2

x2y1 − x1y2

sin3d12
+ m3

x3y1 − x1y3

sin3d13
+ m4

x4y1 − x1y4

sin3d14

=
m0y1

sin3d01
+ m4

(x2y1 − x1y2)(z3w4 − z4w3)sin3d02

z2w3sin3d12sin3d04

−m4
(x3y1 − x1y3)z2w4sin3d03

z2w3sin3d13sin3d04
+ m4

(x4y1 − x1y4)z2w3

z2w3sin3d14

=
m0y1

sin3d01
− m4

(x1y2 − x2y1)(z3w4 − z4w3) + (x1y4 − x4y1)(w3 − w4)z2

sin3d14
.

Then we have

m0 =m4
(x1y2 − x2y1)(z3w4 − z4w3) + (x1y3 − x3y1)(w3 − w4)z2

y1z2w3

sin3d01

sin3d14
(56)

=m4
D0sin3d01

D4sin3d14
.

Conversely, suppose that q is a configuration which satisfies the above 5 conditions. We now
prove that q is a special central configuration, i.e., Fi = 0, mi > 0 for i = 0, 1, 2, 3, 4.

First, F0 = 0 since∇q0
U · q0 = 0, i.e., the x-component of F0 is zero, and the y, z, and w components

are zero by (53)–(55).
For i = 1, 2, 3, 4, Fi = 0 if and only if Fi · vij = 0, j = 1, 2, 3, 4, where vi1 = qi, and {vi1, vi2, vi3,

vi4} form an orthonormal basis of R3. First, Fi · vi1 =∇qi
U · qi = 0. For i = 1, j = 2, 3, 4, we have

F1 · v1j =

(
m0

q0 − cos d01q1

sin3d01
+ m2

q2 − cos d12q1

sin3d12

+ m3
q3 − cos d13q1

sin3d13
+ m4

q4 − cos d14q1

sin3d14

)
· v1j

=

( m0q0

sin3d01
+

m2q2

sin3d12
+

m3q3

sin3d13
+

m4q4

sin3d14

)
· v1j

=

(
m4

D0q0

D4sin3d14
+ m4

D2sin3d02q2

D4sin3d04sin3d12

− m4
D3sin3d03q3

D4sin3d04sin3d13
+

m4q4

sin3d14

+
-
· v1j

=
m4

D4sin3d14
(D0q0 + D2q2 − D3q3 + D4q4) · v1j

=
m4D1

D4sin3d14
q1 · v1j = 0.

Through similar computations, we see that for j = 2, 3, 4,

F2 · v2j =
m4

D4sin3d24
(D0q0 − D1q1 − D3q3 + D4q4) · v2j =

−m4D2

D4sin3d24
q2 · v2j = 0,

F3 · v3j =
m4

D4sin3d34
(D0q0 − D1q1 + D2q2 + D4q4) · v3j =

m4D3

D4sin3d23
q3 · v3j = 0,

and

F4 · v4j =
m4sin3d01

D4sin3d14sin3d04
(D0q0 − D1q1 + D2q2 − D3q3) · v4j

=
−m4sin3d01

sin3d14sin3d04
q3 · v4j = 0.
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Therefore Fi = 0 for i = 0, 1, 2, 3, 4. To show that the masses are positive, we first show that Di , 0
for i = 0, 1, 2, 3, 4. If not, then four of the masses lie on a great sphere, so the five masses all lie in
one hemisphere.

Without loss of generality, assume D4 > 0. Consider the 3-dimensional subspace V123. Since the
configuration is not in one hemisphere, V123 must separate q0 and q4. Then

det(q1, q2, q3, q0)=− det(q0, q1, q2, q3)=−D4 < 0

implies that
D0 = det(q1, q2, q3, q4)> 0.

Similarly, the subspace V023 separates q1 and q4, so

det(q0, q2, q3, q1)= det(q0, q1, q2, q3)=D4 > 0

implies that
D1 = det(q0, q2, q3, q4)< 0.

The subspace V013 separates q2 and q4, so

det(q0, q1, q3, q2)=− det(q0, q1, q2, q3)=−D4 < 0

implies that
D2 = det(q0, q1, q3, q4)> 0,

and the subspace V012 separates q3 and q4, so

det(q0, q1, q2, q3)=D4 > 0

implies that
D3 = det(q0, q1, q2, q4)< 0.

Then m0 > 0, m1 > 0, m2 > 0, m3 > 0 if and only if m4 > 0, so q is a special central configuration. This
remark completes the proof. �
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