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Abstract: We obtain a natural extension of the Vlasov–Poisson system for stellar
dynamics to spaces of constant Gaussian curvature κ �= 0: the unit sphere S

2, for
κ > 0, and the unit hyperbolic sphere H

2, for κ < 0. These equations can be easily
generalized to higher dimensions. When the particles move on a geodesic, the system
reduces to a 1-dimensional problem that is more singular than the classical analogue of
the Vlasov–Poisson system. In the analysis of this reduced model, we study the well-
posedness of the problem and derive Penrose-type conditions for linear stability around
homogeneous solutions in the sense of Landau damping.

1. Introduction

The Vlasov–Poisson system models the density change of galaxies in a cluster of galax-
ies, stars in a galaxy, or particles in plasma. The galaxies, stars, or particles are assumed
to be identical to each other, while collisions, relativistic effects, and magnetic fields are
neglected. If ignoring these effects is physically unreasonable in certain problems, some
related models can be used, such as the Vlasov-Maxwell [1], Einstein–Vlasov [32], or
Vlasov–Manev systems [5]. We focus here on the case of stellar dynamics, assuming
that collisions do not occur and relativistic effects can be neglected. Under these assump-
tions, the evolution of stars or galaxies is usually modelled in the framework of kinetic
theory by the Vlasov–Poisson system in Euclidean space, given by the equations

∂

∂t
f (t, x, v) + v

∂

∂x
f (t, x, v) + F(t, x)

∂

∂v
f (t, x, v) = 0,

F(t, x) = −
∫
R3

x − y
| x − y |3 ρ(t, y)dy, ρ(t, x) :=

∫
R3

f (t, x, v)dv,

where U represents the potential. For an initial value problem, a value f (0, x, v) is
given to determine the distribution function f (t, x, v) of the celestial objects at position
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x ∈ R
3 with velocity v ∈ R

3 at time t ∈ R. Due to the dependence of the potential on
the density ρ, the system reduces to a non-linear partial differential equation, which is
difficult to understand. Even the global existence of solutions remained an open problem
for decades. Thefirst to attack itwasKurth,who showed the local existence of solutions in
1952 [23]. In 1977, Batt proved global existence for spherically symmetric solutions [4]
and, in 1985, Bardos and Degond completed the global existence of solutions under the
assumption of small initial data [3]. Finally, the existence of global solutionswith general
initial data was achieved by Pfaffelmoser in 1990 [30] and, independently, by Lions and
Perthame in 1991 [25]. Recently,Mouhot andVillani showed that these equations exhibit
Landau damping, a remarkable result that inspired a direction of research we took here,
[28].

In this paper we broaden the scope of the Vlasov–Poisson system to spaces of non-
zero constant Gaussian curvature within the framework of classical mechanics, without
involving special or general relativity. On small scales, the curvature of the physical
space is negligible, butwe cannot exclude the possibility that the universe is hyperbolic or
elliptic on the large scale. By extending the study of theVlasov–Poisson system to spaces
of non-zero constant curvature we could, on one hand, obtain a better understanding of
the flat case by viewing the Vlasov–Poisson system as the limit of its counterpart in
curved space when the curvature tends to zero. On the other hand, these equations might
help us decide in the future whether the universe is curved or not. Indeed, if a certain
solution of the density function occurs only in, say, flat space but not in hyperbolic and
elliptic space, and such behaviour is supported by astronomical evidence, then we could
claim that space is Euclidean. Even if only for these two reasons alone, the extension
of the Vlasov–Poisson system to spaces of constant curvature deserves a detailed study.
However, at this stage we are interested only in the mathematical aspect of the problem.
This paper is a very first step, and we do not aim at any cosmological applications
here, the more so that we deal only with the 2-dimensional case, which has no physical
meaning. But a study of the 3-dimensional case of the Vlasov–Poisson system, whose
derivation is straightforward from the equations we provide in Sect. 3, might offer
valuable applications in the future.

The derivation of the classical system for stellar dynamics uses the Newtonian equa-
tions of the gravitational N -body problem. To generalize the Vlasov–Poisson system
to elliptic and hyperbolic space, we employ a meaningful extension of the Newtonian
N -body problem to spaces of constant Gaussian curvature. Although the idea of such
an extension belonged to Bolyai and Lobachevsky in the 2-body case [6,26], a suitable
generalization of the classical Newtonian system was only recently obtained, [11,12].
Suitability is meant here in a mathematical sense, since there are no physical ways of
testing the new system. More precisely, the potential of the “curved problem” in its
most simple setting (the case of one body moving around a fixed attractive centre—the
so-called Kepler problem), not only recovers the Newtonian case as the curvature tends
to zero, but also inherits two properties of the classical potential: (i) it is a harmonic
function, i.e. satisfies Laplace’s equation; (ii) all of its bounded orbits are closed. More-
over, the properties that have been so far discovered for the extension of the N -body
problem to spaces of constant curvature fit nicely with what is known in the classical
case [9,10,13–15].

Our derivation of theVlasov–Poisson system is based on these equations of the curved
N -body problem and on Liouville’s theorem. We could also regard these equations in a
mean field approximation to obtain, at least formally, the Vlasov equation in spaces of
constant curvature. Both these approaches use coordinate systems (extrinsic or intrinsic).
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An approach in the spirit of geometric mechanics to define the Vlasov equation, without
the use of coordinates, is due to Marsden and Weinstein [27]. This method regards the
Vlasov equation as a conservation of a distribution function along phase-space trajecto-
ries of a given Hamiltonian. When the potential in the Hamiltonian is given by Poisson’s
equation, we naturally obtain a Vlasov–Poisson system on symplectic manifolds and, in
particular, on spaces of constant curvature. The analysis of such systems on manifolds
appears to be difficult since the transport part does not seem to be well understood.
For this reason, at the current stage of our research, we focus on the special case when
the particles move along a geodesic of the manifold. As geodesics are invariants of the
equations of motion, such configurations are also invariant. By imposing this restriction,
we derive a new (1-dimensional) reduced model given by system (4.2) in Proposition
4.1, which provides our first notable result.

This model is different from the classical 1-dimensional Vlasov–Poisson system [2]
and the Vlasov–Hamilton Mean Field equations [16] because the interaction potential
is slightly more singular. However, the mathematical challenges are simpler than those
of the Vlasov equation given by the Dirac potential (also called gyrokinetic), derived in
[19,22,31], which is important in the analysis of plasma fusion. Given the singularity
in the potential, we first focus (as in [21]) on the existence of strong solutions, which
we construct in the class of Gevrey functions. This is our second notable result, and we
state it in Theorem 5.1.

Following Glassey and Schaeffer [18], Villani [33], as well as Villani and Mouhot
[28], we then derive Penrose-type conditions for our 1-dimensional Vlasov–Poisson
system such that the homogeneous states are linearly stable, i.e., require convergence
for density and force. The convergence (or decay) rate is exponential when the model is
reduced from the sphere. We want to emphasize that this decay becomes only algebraic
for the reduced hyperbolic system. This phenomenon occurs because of the low frequen-
cies when we work on the whole real line. In this context, our final notable result, which
states that the linearized Vlasov–Poisson system along a geodesic has stable solutions,
in the sense that they exhibit the Landau damping phenomenon, is stated in Theorems
6.1 and 6.2, the former dealing with the sphere and the latter treating the hyperbolic
case.

The decay result on the hyperbolic sphere is remarkable because it hints at an interest-
ing connection between the curvature of the underlying geometry and the fundamental
decay properties of spatial density. In particular, the algebraic decay rate in the nega-
tively curved case seems to be a new and unexpected feature, in contrast with the existing
intuition in the Euclidean and positively curved case.

While very desirable from the point of view of Landau damping, our first local
existence result (Theorem 5.1) is far to be sharp in terms of regularity. For this reason,
we refine it in Appendix A to obtain a local existence result in weighted Sobolev spaces.
For awider class of applications, this seems to be a physicallymoremeaningful regularity
class, given the transport structure of the Vlasov equation.

Our paper is organized as follows. In Sect. 2, we lay the background for further
developments. After introducing some notation, we provide a solution representation
to Poisson’s equation based on the solution of the Laplace–Beltrami equation obtained
in [7], for the sphere, and [8], for the hyperbolic sphere. In Sect. 3, we derive the
Vlasov–Poisson system on 2-dimensional curved spaces (the unit 2-sphere and the unit
hyperbolic 2-sphere), using the extension of the Newtonian equations mentioned above,
and write this system in Hamiltonian form. The generalization of these equations to
higher dimensions is straightforward. Then we obtain an expression of the gravitational
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field generated by the bodies (assumed to be point particles), which we apply to a 1-
body example to illustrate the use of symmetry and the agreement between our original
assumptions and our derived equations. For simplicity, in Sect. 4 we choose initial data
such that the particles move on a geodesic of the sphere or hyperbolic sphere. Since
the geodesics are invariant sets for the equations of motion, this approach allows us to
use the symmetry of the configuration to simplify the system. We continue under this
assumption for the remainder of the paper. In Sect. 5 we prove the existence of solutions
to our Vlasov–Poisson system, and in Sect. 6 we state and prove our stability results
mentioned above. Finally, Appendix A is devoted to a refinement of our existence result
to a finite regularity functional space.

2. Background

Since we are interested only in qualitative properties of solutions, we will choose from
the start the physical units such that the gravitational constant is 1. In the discrete case,
when dealingwith a finite number of pointmasses, the qualitative study of themotion can
be reduced to the unit sphere, for positive curvature, and the unit hyperbolic sphere, for
negative curvature [11,12]. Since this framework can be used without loss of generality
in our qualitative studies as well, we will also employ it here.

Let M
2 represent the unit 2-sphere,

S
2 = {(x1, x2, x3)|x21 + x22 + x23 = 1},

for positive curvature, and the unit hyperbolic 2-sphere (i.e. the upper sheet of the unit
hyperboloid of two sheets),

H
2 = {(x1, x2, x3)|x21 + x22 − x23 = −1, x3 > 0},

for negative curvature, where S
2 is embedded in the 3-dimensional Euclidean space R

3

andH
2 is embedded in the 3-dimensionalMinkowski spaceR

2,1, inwhich all coordinates
are spatial. The origin of the coordinate system lies at the centre of the sphere and the
hyperbolic sphere. If κ denotes the Gaussian curvature, the signum function is defined
as

σ =
{
+1, for κ ≥ 0
−1, for κ < 0.

Following [11] and [12], we introduce unified trigonometric functions,

sn x :=
{
sin x, for κ > 0
sinh x, for κ < 0,

csn x :=
{
cos x, for κ > 0
cosh x, for κ < 0,

tn x := sn x

csn x
, ctn x := csn x

sn x
,

(2.1)

in order to treat both S
2 and H

2 simultaneously. In this framework, we can write the
geodesic distance between the points a = (a1, a2, a3) and b = (b1, b2, b3) of M

2 as

d(a, b) = csn −1(σa · b), (2.2)
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where the operation · stands for the scalar product
a · b = a1b1 + a2b2 + σa3b3,

which is inherited from the space in which the manifold is embedded, i.e. R3 for S
2, but

R
2,1 for H

2. We define the norm of the vector a as

||a|| = |a21 + a22 + σa23 |1/2.
The gradient of a scalar function f = f(x), with x ∈ M

2, is given by

∇xf = (
∂x1 f

)
e1 +

(
∂x2 f

)
e2 +

(
σ∂x3 f

)
e3, (2.3)

where e1, e2, e3 denote the elements of the canonical base in Cartesian coordinates.
The divergence of a vector function F = F1(x) e1 + F2(x) e2 + F3(x) e3, where x :=
x1e1 + x2e2 + x3e3 ∈ M

2, has the form

divx F = ∂x1F1 + ∂x2F2 + ∂x3F3. (2.4)

The Laplace–Beltrami operator on M
2, applied to a scalar function f as defined above,

can then be written as
�xf = ∂x1x1 f + ∂x2x2 f + σ∂x3x3 f. (2.5)

Notice that the operators ∇x, divx, and �x act on functions defined on the manifold M
2

after these functions are extended to the 3-dimensional ambient space by replacing the
variable x with x/||x||. Once the computations are performed, the resulting functions can
be restricted to the manifold again by imposing the condition ||x|| = 1, which defines
M

2.
Recall that the tangent space at x ∈ M

2 is given by

TxM
2 = {v | x · v = 0}

and the tangent bundle TM
2 is the union of all tangent spaces, i.e.

TM
2 =

⋃
x∈M2

TxM
2 =

{
(x, v) | x ∈ M

2, x · v = 0
}

.

To parametrizeM
2, let IM2 be the interval [0, π ] ifM

2 = S
2, but [0,∞) ifM

2 = H
2.

Then the position of a particle at x ∈ M
2 can be represented as

x = x1e1 + x2e2 + x3e3 = (sn α cos θ)e1 + (sn α sin θ)e2 + (csn α)e3, (2.6)

where θ ∈ [0, 2π) and α ∈ IM2 . We define er , eα , and eθ to be the orthogonal vectors
that satisfy the equation

⎡
⎣er

eα

eθ

⎤
⎦ =

⎡
⎣ sn α cos θ sn α sin θ csn α

csn α cos θ csn α sin θ −σ sn α

− sin θ cos θ 0

⎤
⎦
⎡
⎣e1

e2
e3

⎤
⎦ . (2.7)

When the parameters α and θ depend on time, the velocity of a particle at x is

v = ωα eα + (ωθ sn α) eθ ,
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where ωα := α̇ and ωθ := θ̇ , and the upper dot denotes the derivative relative to time.
The acceleration is then given by

a = −σ (ω2
α + ω2

θ sn
2α)er + (ω̇α − ω2

θ sn α csn α)eα + (ω̇θ sn α + 2ωα ωθ csn α)eθ .

The natural Riemannian or pseudo-Riemannian metric on M
2 has the form

[gi j ]i, j=1,2 =
[
1 0
0 sn 2α

]
,

with inverse

[gi j ]i, j=1,2 =
[
1 0

0
1

sn 2α

]
.

Then, in the local coordinates q := αeα + θeθ , the gradient of f̃ = f̃(α, θ) := f(x(q)) at
q ∈ M

2 is given by

∇q f̃ = (∂α f̃)eα +

(
1

sn α
∂θ f̃

)
eθ , (2.8)

the Laplace–Beltrami operator takes the form

�q f̃ = divq(∇q f̃) = ctn α∂α f̃ + ∂αα f̃ +
1

sn α
∂θθ f̃,

where the divergence of a vector function

F̃ = F̃(α, θ) := F(x(α, θ)) = F̃α(α, θ)eα + F̃θ (α, θ)eθ

at q ∈ M
2 is expressed as

divq F̃ = F̃α ctn α + ∂α F̃α +
1

sn α
∂θ F̃θ .

The volume form on M
2 is

� = sn α dαdθ. (2.9)

3. Equations of Motion, Gravitational Potential and the Curved Vlasov–Poisson
System

In this section we first derive the equations of motion for a particle moving on the man-
ifold M

2, then introduce the gravitational potential and the gravitational force function,
and finally obtain the Vlasov–Poisson system on S

2 and H
2. Although, to fix the ideas,

we work here only in the 2-dimensional case, our equations can be extended to any finite
dimension.

3.1. Equations of motion. Recall that for (x, v) ∈ TM
2, f = f (t, x, v) denotes the

phase space density, ρ = ρ(t, x) the spatial density, and U = U (t, x) the gravitational
potential function.
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Proposition 3.1. In extrinsic coordinates having the origin at the centre of M
2, the

equations of motion for a particle with position x ∈ M
2 and velocity v = v1e1 + v2e2 +

v3e3 ∈ TM
2, under the effect of a potential function U : R × M

2 → R, are
{

ẋ = v,

v̇ = ∇xU (t, x) − σ(v · v)x.
(3.1)

Proof. The proof of this result can be found in Section 3.4 of [11] for a finite number
of masses for the Newtonian potential function. We will adapt it here to the form of
the potential function U given in (3.10) in the case of one body. We need to use first
a variational result from constrained Lagrangian mechanics (see, e.g., [17]), since the
motion of the particle is restricted to M

2. Under such circumstances, let L represent the
Lagrangian and g(x) = 0 be the equation expressing the constraint, i.e.

L(t, x, v) = T (x, v) − V (t, x) = 1

2
σ(v · v)(x · x) +U (t, x), (3.2)

and
g(x) = x21 + x22 + σ x23 − σ = 0. (3.3)

The factor σ(x · x) = 1 is introduced to allow a Hamiltonian representation for the
equations of motion (see Section 3.6 of [11]). Then, the equations of motion are given
by the Euler-Lagrange system with constraints,

d

dt
(∂vL(t, x, v)) − ∂xL(t, x, v) − λ∂xg(x) = 0, (3.4)

where λ is the Lagrange multiplier. After substitution, Eq. (3.2) simplifies to

σ v̇(x · x) − σ(v · v)x − ∇xU (t, x) − 2λx = 0, (3.5)

where λ is unknown and we have used the fact that x · v = 0 for x ∈ M
2. To determine

λ, we take first the scalar product of x with the left hand side in (3.5) and obtain

σ(x · v̇)(x · x) − (v · v)(x · x) − x · ∇xU (t, x) − 2λ(x · x) = 0. (3.6)

Since the particle is constrained to M
2, we can differentiate Eq. (3.3) twice with respect

to time to get

v · v + x · v̇ = 0.

Using this equation together with Euler’s formula (3.16), we can simplify (3.6) to

−(v · v)(x · x) − (v · v)(x · x) − 2λ(x · x) = 0,

from which we get λ = −(v · v). Substituting this value of λ and x · x = σ into (3.5)
leads us to the equation

v̇ = ∇xU (x) − σ(v · v)x,

a remark that completes the proof. �	
The following proposition gives the equations of motion in local coordinates.
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Proposition 3.2. In local coordinates, the equations ofmotion for aparticlewith position
q = αeα + θeθ ∈ M

2 and velocity p = ωαeα + sn α ωθ eθ ∈ TM
2, under the effect of a

potential function Ũ : R × M
2 → R are given by the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α̇ = ωα,

θ̇ = ωθ ,

ω̇α = ∂αŨ (t, α, θ) + ω2
θ sn α csn α,

ω̇θ = 1

sn 2α
∂θ Ũ (t, α, θ) − 2ωαωθ ctn α.

(3.7)

Proof. The Lagrangian for our system is given by the difference between kinetic and
potential energies, i.e.

L̃(t, α, θ, α̇, θ̇ ) = 1

2
(α̇2 + θ̇2sn 2α) + Ũ (t, α, θ). (3.8)

Substituting this into the Euler–Lagrange equations,

d

dt
(∂α̇ L̃) − ∂α L̃ = 0 and

d

dt
(∂θ̇ L̃) − ∂θ L̃ = 0, (3.9)

yields the desired equations. �	
The following obvious result expresses the equations of motion in the context of the

Hamiltonian formalism.

Remark 3.1. In extrinsic coordinates (x, v) ∈ TM
2, the equations ofmotion for a particle

of mass 1 moving on M
2 can be written in Hamiltonian form as

{
ẋ = ∂vH
v̇ = −∂xH,

where H(t, x, v) = 1

2
σ(v · v)(x · x) −U (t, x) is the Hamiltonian function.

3.2. Gravitational potential and gravitational field. To define the Vlasov–Poisson sys-
tem on M

2, we need to obtain a suitable solution representation to Poisson’s equation
on S

2 and H
2. This representation is provided below in terms of the potential function

U .

Proposition 3.3. The gravitational potential function U at a point x ∈ M
2 due to a

spatial mass distribution ρ = ρ(t, x) is given by

U (t, x) = 1

4π

∫∫
M2

ρ(t, y) log

(
1 + σx · y
σ − x · y

)
dy. (3.10)

Proof. The proof is trivial given that the fundamental solution of the Laplace–Beltrami
operator on the manifold M

2 is given by (see for example [7,8])

G(x) = 1

2π
log ctn

[
d(x, y)

2

]
, (3.11)
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where d is defined as in (2.2). In particular, it satisfies

−�xG(x) = δ(α − α′) ⊗ δ(θ − θ ′)
sn α′ , (3.12)

where δ is the usual Dirac delta distribution and ⊗ denotes the tensor product. Thus

U (x) =
∫∫

M2
G(x)ρ(y)dy. (3.13)

Now, since d(x, y) = csn −1(σx · y), and thanks to the trigonometric identity

ctn
d

2
= σ

1 + csn d

1 − csn d
,

the potential simplifies to

U (x) = 1

4π

∫∫
M2

log

[
1 + σx · y
σ − x · y

]
ρ(y)dy, (3.14)

as desired. �	
Observe that if we extend the potential U as

Ů (x) = U

(
x

‖x‖
)

= 1

2π

∫∫
M2

ρ(y) log

( ‖x‖ + σx · y
σ‖x‖ − x · y

)
dy, (3.15)

then Ů becomes homogeneous of degree 0, and Euler’s formula yields the identity

x · ∇xŮ (t, x) = 0. (3.16)

The physical interpretation of (3.16) is that, in an extrinsic coordinate system having
the origin at the centre of M

2, the gravitational force acting on each particle is always
orthogonal to its position vector x. Thereforewe can conclude that if particles are initially
located on M

2 with velocities tangent to the manifold, then they will remain on M
2 for

all time. The proof of this fact, obtained in Section 3.7 of [11] for the discrete Newtonian
case, can be easily extended to our problem.

Proposition 3.4. The gravitational field present at position x ∈ M
2 is given by

F(t, x) := ∇xU (t, x) = 1

2πσ

∫∫
M2

y − σ(x · y)x
1 − (x · y)2

ρ(y)dy. (3.17)

Proof. We begin with (3.10) and extend the expression by homogeneity so that it
becomes

U (t, x) = 1

4π

∫∫
M2

ρ(t, y) log

( ‖x‖ + σx · y
σ‖x‖ − x · y

)
dy. (3.18)

From here, we use the gradient as in (2.3) to find

∇xU (t, x) = 1

2πσ

∫∫
M2

‖x‖y − σ‖x‖−1(x · y)x
‖x‖2 − (x · y)2

ρ(y)dy. (3.19)

Invoking ‖x‖ = 1 yields the required result. �	
If we consider a specific mass distribution, it is also possible to use Gauss’s law to

calculate the gravitational field without first knowing the gravitational force function.
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Fig. 1. Illustration of a point mass located at the north pole of S2

In fact this method proves to be useful in the case of symmetric mass distributions, as
shown in the following example.

Example 3.1. Let a mass distribution on S
2 be given by

ρ(α, θ) := ρ(t, α, θ) = δ(α) ⊗ δ(θ)

sin α
,

i.e. a point mass located at the north pole of the sphere, as shown in Fig. 1. Gauss’s law
in two dimensions says that the gravitational flux at any point q ∈ S

2 is proportional to
the mass enclosed by a Gaussian curve passing through the point, i.e.∫

C
F · n = m, (3.20)

where F denotes the gravitational field, n ∈ TqS
2 is the normal vector to the curve C ,

and m is the enclosed mass.
If we choose a Gaussian curve C as pictured in Fig. 2, the spherical symmetry of the

mass results in significant simplification of (3.20). Since the field generated by the mass
intersects the Gaussian curve perpendicularly within S

2, and the magnitude of the field
is the same at each point on the curve, our equation reduces to

2π sin α|F| = 1.

Solving for F yields

F = − 1

2π sin α
eα. (3.21)

Alternatively, we can calculate the same field by taking the gradient of the gravitational
force function for the point mass. To do so, we first find the force function using (3.10)
with (2.9),
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Fig. 2. A Gaussian curve, C , chosen for Example 3.1

Ũ (t, α, θ) = 1

4π

∫ 2π

0

∫ π

0

δ(α′) ⊗ δ(θ ′)
sin α′ log

[
1 + x(α, θ) · y(α′, θ ′)
1 − x(α, θ) · y(α′, θ ′)

]
sin α′dα′dθ ′

= 1

4π
log

[
1 + x(α, θ) · y(0, 0)

1 − x(α, θ) · y(0, 0)

]
= 1

4π
log

(
1 + cosα

1 − cosα

)

= 1

2π
log
[
cot
(α

2

)]
,

then use (2.8) to take the gradient and obtain

∇qŨ (t, α, θ) = 1

2π
∂α

(
log cot

α

2

)
eα = − 1

2π sin α
eα,

which agrees with (3.21).

3.3. The Vlasov–Poisson system on spaces of constant curvature. According to kinetic
theory and Liouville’s theorem (see, e.g., [24]), the equation that governs the motion of
a continuous particle distribution with no collisions is given in local coordinates by

d

dt
f̃ (t, α, θ, ωα, ωθ ) = 0,

where f̃ = f̃ (t, α, θ, ωα, ωθ ) := f (t, x(α, θ), v(ωα, ωθ )) and f is the phase-space
distribution function in extrinsic coordinates. Using the chain rule, this equation becomes

∂t f̃ + α̇ ∂α f̃ + θ̇ ∂θ f̃ + ω̇α ∂ωα f̃ + ω̇θ ∂ωθ f̃ = 0.

Employing the equations of motion (3.7), we can write the above equation as

0 = ∂t f̃ + ωα∂α f̃ + ωθ∂θ f̃ + (∂αŨ + ω2
θ sn αcsn α)∂ωα f̃

+

(
1

sn 2α
∂θ Ũ − 2ωαωθctn α

)
∂ωθ f̃ , (3.22)
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which we call the Vlasov equation onM
2 or the curved Vlasov equation. Using the same

approach in extrinsic coordinates yields the equation

∂t f (t, x, v) + v · ∇x f (t, x, v) + [∇xU (t, x) − σ(v · v)x] · ∇v f (t, x, v) = 0, (3.23)

where ∇v f = ∂v1 f e1 + ∂v2 f e2 +σ∂v3 f e3, and we require that x · x = σ and x · v = 0,
such that the particles remain on M

2 during the motion. When we couple the Vlasov
equation to our solution representation of Poisson’s equation and add a compatibility
condition between our spatial density and phase-space density, the result is a closed
system, which we call the gravitational Vlasov–Poisson system in spaces of constant
curvature, or for short the curved gravitational Vlasov–Poisson system,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t f + v · ∇x f + (∇xU − σ(v · v)x) · ∇v f = 0,

U (t, x) = 1

4π

∫∫
M2

ρ(t, y) log

(
1 + σx · y
σ − x · y

)
dy,

ρ(t, x) =
∫
Tx(M2)

f (t, x, v)dv.

(3.24)

In local coordinates, system (3.24) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t f̃ + ωα∂α f̃ + ωθ∂θ f̃ + (∂αŨ + ω2
θ sn αcsn α)∂ωα f̃

+

(
1

sn 2α
∂θ Ũ − 2ωαωθctn α

)
∂ωθ f̃ = 0

Ũ (t, α, θ)= 1

4π

∫∫
M2

ρ̃(t, α′, θ ′) log
[
1+σx(α, θ) · y(α′, θ ′)
σ −x(α, θ) · y(α′, θ ′)

]
sn α′dα′dθ

ρ̃(t, α, θ) =
∫
Tx(M2)

f̃ (t, α, θ)sn αdωαdωθ .

(3.25)

Remark 3.1. In [27] an approach in the spirit of geometric mechanics was used to define
the Vlasov equation. In this sense, we can first define the Hamiltonian as

H : T ∗
M

2 → R, H(q, p) = 1

2
|p|2 +U (q).

Then, the conservation of a distribution function f (t, q, p) along the phase-space tra-
jectories of H , i.e. the law d

dt f = 0, can be written, using the canonical Poisson bracket
{·, ·}, as

∂t f = { f, H},
whichgives theVlasov–Poisson system ifwe require that the potentialU solvesPoisson’s
equation,

−�M2U (q) = ρ(q) :=
∫
TpM2

f (t, q, p) dp.

Although this form of the Vlasov–Poisson system in curved spaces is elegant and
quite natural, its analysis seems to be difficult. For this reason, wewill focus in the sequel
on a special configuration of the mass distribution.

4. Initial Data Along a Geodesic

In the rest of this paper we focus on the 1-dimensional case, and assume an initial distrib-
ution on M

2 in which the particles lie initially on a geodesic, which is a great circle in S
2
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and a hyperbolic great circle in H
2. In our model of hyperbolic geometry, a hyperbolic

great circle is a hyperbola obtained by intersecting the upper sheet of the hyperboloid of
two sheets with a plane through the origin of the extrinsic coordinate system. Therefore,
we study a configuration of particles that obeys the following conditions:

1. the particles move on the geodesic G, where

G :=
{{

(x1, x2, x3)| x21 + x22 = 1, x3 = 0
}
, for M

2 = S
2{

(x1, x2, x3)| x22 − x23 = −1, x1 = 0
}
, for M

2 = H
2,

2. the velocity of each particle is always in the eθ -direction for M
2 = S

2 and in the
eα-direction for M

2 = H
2,

where the geodesic G has been chosen for convenience and without loss of generality.
Notice that, since the gravitational force on each particle is directed along the geodesic,
if the particles are initially aligned on G with initial velocities along that geodesic, then
they remain on G for all time.

For convenience, we consider

I =
{ [0, 2π), if M

2 = S
2

(−∞,+∞), if M
2 = H

2,

and for any functions φ(x, ω), ψ(x, ω) with x ∈ I, ω ∈ R, we define

< φ,ψ > =
∫
R

∫
I
φψ dαdω.

Let us further derive the equations when the motion of the particles is restricted to
the geodesic G.

4.1. Motion on a great circle of S
2. Let us notice that in the spherical case we have

G = {x(α, θ) : α = π/2}.
This allows us to take the phase distribution after restriction in the form

f̃ (t, α, θ, ωα, ωθ ) = δ(α − π/2)

sin2(α)
⊗ δ(ωα)g(t, θ, ωθ ), (4.1)

where g is a distribution onG. If we let ρg(t, θ) = ∫
R
g(t, θ, ωθ )dωθ , then the following

proposition, which is our first notable result, provides the equations of motion restricted
to G.

Proposition 4.1. If the phase distribution is taken as in (4.1), then g and ρg satisfy

⎧⎪⎪⎨
⎪⎪⎩

∂t g + ωθ∂θg + F(t, θ)∂ωθ g = 0,

F(t, θ) = W ∗θ ∂θρg,

ρg(t, θ) =
∫
R

g(t, θ, ωθ )dωθ

(4.2)

in the distributional sense, where W (θ) = 1
2π log | cot( θ

2 )|, θ ∈ [0, 2π), and ∗θ denotes
convolution in the θ variable.
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Proof. Let φ ∈ C∞
0 ([0, 2π)×R) be a test function. Then there exists� ∈ C∞

0 ([0, π ]×
[0, 2π) × R × R) such that �|α= π

2 ,ωα=0 = φ. Noticing that, after restriction, ωα ≡ 0

and ∂αŨ |α= π
2

= 0, substituting f̃ into (3.25) and testing with �, we have for the first
term

∫
R

∫
R

∫ 2π

0

∫ π

0
∂t f̃ �dαdθdωαdωθ =

∫
R

∫ 2π

0
∂t gφdθdωθ .

The computations of the other terms are similar and in the end we obtain

〈∂t g + ωθ∂θg + ∂θUg∂ωθ g, φ〉 = 0, (4.3)

where Ug = Ũ |α= π
2
.

We need to obtain now the explicit form of Ug . Since for x(α, θ), y(α′, θ ′) ∈ S
2,

x · y = sin α sin α′ cos(θ − θ ′) + cosα cosα′,

we have that

Ũ (t, α, θ)

= 1

4π

∫ 2π

0

∫ π

0
ρg(t, θ

′)δ(α′ − π/2) log
1 + sin α sin α′ cos(θ − θ ′) + cosα cosα′

1 − sin α sin α′ cos(θ − θ ′) + cosα cosα′ dα′dθ ′

= 1

4π

∫ 2π

0
ρg(t, θ

′) log 1 + sin α cos(θ − θ ′)
1 − sin α cos(θ − θ ′)

dθ ′.

Therefore,

Ug = Ũ (t, π/2, θ)

= 1

4π

∫ 2π

0
ρg(t, θ

′) log 1 + cos(θ − θ ′)
1 − cos(θ − θ ′)

dθ ′.

= 1

2π

∫ 2π

0
ρg(t, θ

′) log
∣∣∣∣cot (θ − θ ′)

2

∣∣∣∣ dθ ′.

If we define the kernel

W (θ) = 1

2π
log

∣∣∣∣cot θ

2

∣∣∣∣ ,

we can write that

∂θUg = W ∗θ ∂θρg.

Setting F(t, θ) = ∂θUg completes the proof. �	

4.2. Restriction to a hyperbolic great circle of H
2. Let us note that, in the hyperbolic

case,
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G = {x(α, θ) : θ = π/2, α ∈ (−∞,+∞)}.
We can therefore take the phase distribution after restriction in the form

f̃ (t, α, θ, ωα, ωθ ) = δ(θ − π/2)

sin2(α)
⊗ δ(ωθ )g(t, α, ωα), (4.4)

where g is a distribution on G. If we let ρg(t, α) = ∫
R
g(t, α, ωα)dωα , then the propo-

sition below provides the equations restricted to G.

Proposition 4.2. If the phase distribution is taken as in (4.4), then g and ρg satisfy⎧⎪⎪⎨
⎪⎪⎩

∂t g + ωα∂αg + F(t, α)∂ωαg = 0,

F(t, α) = W ∗α ∂αρg,

ρg(t, α) =
∫
R

g(t, α, ωα)dωα

in the distributional sense, where W (α) = 1
2π log | coth(α

2 )|, α ∈ R, and ∗α denotes
convolution in the α variable.

Proof. As in the spherical case, let φ ∈ C∞
0 (R × R) be a test function. There exists

� ∈ C∞
0 (R×[0, 2π)×R×R) such that�|θ= π

2 ,ωθ=0 = φ. Noticing that after restriction,

ωθ ≡ 0 and ∂θ Ũ |θ= π
2

= 0, substituting f̃ into (3.25) and testing with �, we have

〈∂t g + ωα∂αg + ∂αUg∂ωαg, φ〉 = 0, (4.5)

where Ug = Ũ |θ= π
2
.

Since for x(α, θ), y(α′, θ ′) ∈ H
2,

x · y = sinh α sinh α′ cos(θ − θ ′) − cosα cosα′,
we can write that

Ũ (t, α, θ)

= 1

4π

∫
R

∫ 2π

0
ρg(t, α

′)δ(θ ′ − π/2)

× log

(
1 − sinh α sinh α′ cos(θ − θ ′) + cosh α cosh α′

−1 − sinh α sinh α′ cos(θ − θ ′) + cosh α cosh α′

)
dθ ′dα′

= 1

4π

∫
R

ρg(t, α
′) log

(
1 − sinh α sinh α′ cos(θ − π/2) + cosh α cosh α′

−1 − sinh α sinh α′ cos(θ − π/2) + cosh α cosh α′

)
dα′.

Therefore,

Ug(t, α) = Ũ (t, α,
π

2
)

= 1

4π

∫
R

ρg(t, α
′) log

(
1 − sinh α sinh α′ + cosh α cosh α′

−1 − sinh α sinh α′ + cosh α cosh α′

)
dα′

= 1

4π

∫
R

ρg(t, α
′) log

(
1 + cosh(α − α′)

−1 + cosh(α − α′)

)
dα′

= 1

4π

∫
R

ρg(t, α
′) log

(
coth2

(
α − α′

2

))
dα′

= 1

2π

∫
R

ρg(t, α
′) log

∣∣∣∣coth
(

α − α′

2

)∣∣∣∣ dα′.
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Setting the kernel

W (α) = 1

2π
log
∣∣∣coth α

2

∣∣∣ ,
and the force

F(t, α) = ∂αUg,

completes the proof. �	
We can combine the results of Proposition 4.1 and Proposition 4.2 by replacing both

(θ, ωθ ) in Proposition 4.1 and (α, ωα) in Proposition 4.2 by (x, v) ∈ I × R. Doing so
produces the following proposition.

Proposition 4.3. Let f be a phase space distribution along any geodesic G of M2. Then
the system restricted to G becomes

⎧⎪⎪⎨
⎪⎪⎩

∂t f + v∂x f + F(t, x)∂v f = 0,

F(t, x) = W ∗ ∂xρ,

ρ(t, x) =
∫
R

f (t, x, v)dv,

(4.6)

where (x, v)with (x, v) ∈ I×R,W (x) = 1
2π log |ctn ( x2 )|,and∗denotes the convolution

in x.

Several quantities are conserved along the solutions of the above equations, and the
next result summarizes them.

Proposition 4.4. Let f (t, x, v) be a solution of (4.6) such that f has compact support
in v, has compact support in x for M

2 = H
2, and is 2π -periodic in x for M

2 = S
2.

Then system (4.6) can be alternatively written as

∂t f + v∂x f + ∂xU∂v f = 0, (4.7)

where U (t, x) = 1

2π

∫
I
ρ(t, y) log

∣∣∣∣ctn
(
x − y

2

)∣∣∣∣ dy and ρ(t, x) =
∫
R

f (t, x, v)dv,

and the following quantities are conserved:

(i) the total number of particles,

N :=
∫
R

∫
I
f (t, x, v) dxdv,

(ii) the total mechanical energy,

E := 1

2

∫
R

∫
I
f (t, x, v)v2 dxdv −

∫
I
U (t, x)ρ(t, x) dx,

(iii) the entropy,

S := −
∫
R

∫
I
f (t, x, v) log [ f (t, x, v)] dxdv,
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(iv) the Casimirs,

C :=
∫
R

∫
I
A( f (t, x, v)) dxdv,

where A is an arbitrary smooth function.

Proof. To show that the total number N of particles is conserved, we integrate (4.7) over
the phase space as follows,

0 =
∫
R

∫
I
[∂t f + v∂x f + ∂xU∂v f ]dx dv

=
∫
R

∫
I
∂t f dx dv +

∫
R

∫
I
v∂x f dx dv +

∫
R

∫
I
∂xU∂v f dx dv

= d

dt

∫
R

∫
I
f dx dv +

∫
R

∫
I
v∂x f dx dv +

∫
I

∫
R

∂xU∂v f dvdx

= d

dt

∫
R

∫
I
f dx dv −

∫
R

∫
I
f ∂xvdx dv −

∫
I

∫
R

f ∂vx (∂xU )dvdx

= d

dt

∫
R

∫
I
f dx dv,

where we used that f has compact support in v, that f (0) = f (2π) in the positive
curvature case, and that f has compact support in x in the negative curvature case.

For the conservation of total mechanical energy,

E = 1

2

∫
R

∫
I
f v2dxdv −

∫
I
Uρdx,

we multiply (4.7) by 1
2v

2 and integrate over phase space.
Since f satisfies relation (4.7), by the chain rule so does the Casimir A( f ). Therefore,

we can integrate

∂t A( f ) + v∂x A( f ) + ∂xU∂vA( f ) = 0

over the phase space to yield our conservation law. Entropy is a Casimir, so its conser-
vation follows directly from the conservation of Casimirs. �	

We are now also in a position to prove the following result.

Proposition 4.5. Any distribution of the form f (t, x, v) = f 0(v) is a spatially homo-
geneous equilibrium solution of Eq. (4.6).

Proof. By definition, any stationary solution must satisfy (4.7) with ∂t f = 0, i.e.

v∂x f + F ∂v f = 0. (4.8)

Consider a spatially homogeneous distribution function f = f 0(v). For this form of f ,
we get
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∂x f
0 = 0, (4.9)

so the first term in (4.8) is 0. We can use the expression of ρ in (4.6) to calculate

ρ(t, x) =
∫

f 0 dv = ρ0 (constant). (4.10)

Consequently, we obtain that the force due to the homogeneous distribution is

F = W ∗ ∂xρ
0 = 0, (4.11)

since ρ0 is a constant. Therefore the second term in (4.8) vanishes and we conclude that
f (t, x, v) = f 0(v) is a spatially homogeneous equilibrium (stationary) solution to Eq.
(4.7). �	

5. Local Well-posedness

The purpose of this section is to construct a solution to (4.6) in the class of analytic
functions in order to apply to it the Penrose condition for linear stability. In a forthcoming
paper, we will study the existence of weak solutions and strong solutions local in time
in the class of Sobolev spaces. This is in contrast with the Vlasov equation given by the
Dirac potential studied in [21], where the singularity is stronger. Since we are working
with system (4.6), we rewrite it here in a slightly different but equivalent form,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t f + v∂x f + (W ∗ ∂xρ)∂v f = 0

ρ =
∫
R

f dv.

W (x) = 1

2π
log
∣∣∣ctn

( x
2

)∣∣∣ .
(5.1)

We will construct our solution in the class of Gevrey functions Gs . For s ≥ 1, set

Gs(x) :=
{
f (x)|∀k = (k1, k2) ∈ N

2, ∃Mk > 0 s.t. |Dkg| ≤ Mk(k1!k2!)s
}

.

Note that G1 is the set of analytic functions and G1 ⊂ Gs . Let P be the cone of
polynomial functions with positive coefficients. Fixing s ≥ 1, we define the operator
Da,s on P as

Da,s(λn) = λn−a
(

n!
(n − a)!

)s

,

where a, n ∈ N.

Remark 5.1. When s = 1 the operator Da,s reduces to the classic a-derivatives operator
w.r.t λ, which will help us define a suitable function space to find the solution.

For any function f (t, x, v) and positive real numbers (λ0, K ), define

fk,l = ∂kx ∂
l
v f, | f (t)|λ :=

∑
k+l≥0

λk+l

(k!l!)s | fk,l |L∞
x,v

, | f (t)|λ,a := Da,s | f (t)|λ,
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λ(t) = λ0 − (1 + K )t, H f (t) :=
∑
a≥0

| f |λ(t),a(t)

(a!)2s ,

H̃ f (t) :=
∑
a≥0

a2s(a + 1)s−1 | f |λ(t),a(t)

(a!)2s .

Note that all the above norms still make sense when the functions depend only on the
variable x or v by setting k = 0 or l = 0, respectively.

Let us denote Cw = ‖W‖L1 and assume that the initial condition fi (x, v) of (5.1)
satisfies

h0 := H fi (0) < ∞. (5.2)

For all M > h0 > 0, we set M̃ = 1
18sCw

ln M
h0
, and for all T > 0, we define the space

HT,M = { f (t, x, v) : sup
t∈[0,T ]

H f (t) ≤ M,

∫ T

0
H̃ f (t)dt ≤ M̃},

which we endow with the norm

‖ f ‖T = sup
t∈[0,T ]

H f (t) +
∫ T

0
H̃ f (t)dt.

We are now in a position to state our second notable result.

Theorem 5.1. Let s ≥ 1 and let fi ∈ Gs be the initial condition of (5.1) satisfying
h0 < ∞. Then there exist a time T > 0 and a constant M > h0 such that (5.1) has a
solution f ∈ HT,M ⊂ Gs.

The proof of this theorem is tedious and goes through several steps. First, we need
the following propositions and lemmas.

5.1. Preliminary estimates. In this subsection we will set the background for the proof
of Theorem 5.1. Our first result generalizes the Leibniz rule and provides some useful
inequalities for the operator Da,s .

Proposition 5.1. The operator Da,s is linear and for any a, b ∈ N, p(λ), q(λ) ∈ P,

Da,s(Db,s p(λ)) = Da+b,s p(λ), (5.3)

(1 + a)1−s Da,s(p(λ)q(λ)) ≤
a∑

k=0

(Ck
a )

s Dk,s p(λ)Da−k
λ q(λ)≤Da,s(p(λ)q(λ)). (5.4)

Proof. The proof of (5.3) is straightforward. For (5.4), it is sufficient to prove that the
inequalities hold for p(λ) = λm, q(λ) = λn . For this, notice that

a∑
k=0

(Ck
a )

s Dk,s p(λ)Da−k,sq(λ) =
a∑

k=0

(a!Ck
mC

a−k
n )sλm+n−a

≤
(

a∑
k=0

a!Ck
mC

a−k
n

)s

λm+n−a =
(

(m + n)!
(m + n − a)!

)s

λm+n−a = Da,s(p(λ)q(λ)).
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Meanwhile, since
(

1

a + 1

a∑
k=0

a!Ck
mC

a−k
n

)s

≤ 1

a + 1

a∑
k=0

(a!Ck
mC

a−k
n )s,

we have

a∑
k=0

(Ck
a )

s Dk,s p(λ)Da−k,sq(λ) =
a∑

k=0

(a!Ck
mC

a−k
n )sλm+n−a

≥ (a + 1)1−s

(
a∑

k=0

a!Ck
mC

a−k
n

)s

λm+n−a = (a + 1)1−s Da,s(p(λ)q(λ)).

This remark completes the proof. �	
It is important to note that estimates on the distribution function f (t, α, ω) in H f or

H̃ f norms automatically yield the same estimates for the corresponding density function
ρ. Indeed, since α(v) ≥ 0 and

∫
R

α(v)dv ≤ 1, we have

|∂kxρ|L∞
x

= |
∫
R

α∂kx f dv|L∞
x

≤ |
∫
R

α(v)dv||∂kx f |L∞
x,v

= |∂kx f |L∞
x,v

.

The following result enables us to estimate the distribution function when multiplied by
the weight function γ .

Proposition 5.2. Assume γ (v) satisfies

Cγ :=
∑
k≥0

∑
0≤l≤k

Cl
kλ

l
0 sup
0≤n≤k

(|γn|L∞
v

)
< ∞, (5.5)

then for any f (t, x, v) we have that

Hγ f ≤ Cγ H f and H̃γ f ≤ Cγ H̃ f .

Proof. First, using the definition of the norms and the Leibniz rule, we have

Hγ f =
∑
a≥0

∑
k+l≥a

1

(a!)2s
λk+l−a

(k!l!)s
(

(k + l)!
(k + l − a)!

)s

|(γ f )k,l |L∞
x,v

=
∑
a≥0

∑
k+l≥a

1

(a!)2s
λk+l−a

(k!l!)s
(

(k + l)!
(k + l − a)!

)s

|
l∑

b=0

Cl−b
l fk,l−bγb|L∞

x,v

≤
∑
a≥0

∑
k+l≥a

1

(a!)2s
λk+l−a

(k!l!)s
(

(k + l)!
(k + l − a)!

)s ∑
0≤b≤l

Cb
l | fk,b|L∞

x,v

sup
0≤n≤l

(|γn|L∞
v

)

=
∑

0≤b≤l

∑
a≥0

∑
k+l≥a

1

(a!)2s
λk+b−a

(k!b!)s
(

(k + b)!
(k + b − a)!

)s

| fk,b|L∞
x,v
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Cb
l

(
b!
l!

(k + l)!
(k + b)!

(k + b − a)!
(k + l − a)!

)s

λl−b sup
0≤n≤l

(|γn|L∞
v

)

≤
∑
0≤b≤l

∑
a≥0

∑
k+l≥a

1

(a!)2s
λk+b−a

(k!b!)s
(

(k + b)!
(k + b − a)!

)s

| fk,b|L∞
x,v

Cb
l λl−b sup

0≤n≤l

(|γn|L∞
v

)

Second, since b ≤ l, for each fixed l we have

∑
a≥0

∑
k+l≥a

1

(a!)2s
λk+b−a

(k!b!)s
(

(k + b)!
(k + b − a)!

)s

| fk,b|L∞
x,v

≤
∑
a≥0

∑
k+b≥a

1

(a!)2s
λk+b−a

(k!b!)s
(

(k + b)!
(k + b − a)!

)s

| fk,b|L∞
x,v

≤ H f .

Therefore

Hγ f ≤
∑
l≥0

∑
0≤b≤l

H f · Cb
l λb sup

0≤n≤l

(|γn|L∞
v

) ≤ Cγ H f .

The proof for H̃γ f is similar. �	
The next result is the first step in the key estimate which shows that the contraction

map is well-defined.

Lemma 5.1. Given ρ(t, x) and γ (v) satisfying (5.5), let g be the solution to

∂t g + v∂x g + (W ∗ ∂xρ)(∂vg + γ g) = 0, (5.6)

with g(0, x, v) = fi (x, v). Then we have that

∂t |g|λ,a ≤ as |g|λ,a + λ|g|λ,a+1 + CwDa,s(|ρ|λ,1|g|λ,1 + |ρ|λ,1|γ g|λ).
Proof. Differentiate (5.6) k times w.r.t. x and l times w.r.t v and notice that

∂t (gk,l) + v∂x (gk,l) + (W ∗ ∂xρ)∂v(gk,l)

= −lgk+1,l−1 +
k−1∑
m=0

Cm
k (W ∗ ∂k−m+1

x ρ)(gm,l+1) +
k∑

m=0

Cm
k (W ∗ ∂k−m+1

x ρ)(γ g)m,l .

Multiplying by Da,s( λk+l

(k!l!)s ) = λk+l−a

(k!l!)s
(

(k+l)!
(k+l−a)!

)s
, summing over k + l ≥ a, and using

the method of characteristics, we obtain the inequality

d

dt
|g|λ,a ≤

∑
k≥a−l

λk+l−a

(k!(l − 1)!)s
(

(k + l)!
(k + l − a)!

)s

|gk+1,l−1|L∞
x,v

(5.7)

+Cw

∑
k≥a−l

∑
m≤k−1

Da,s(λk+l)
1

(l!m!(k − m)!)s |gm,l+1|L∞
x,v

|∂k−m+1
x ρ|L∞

x
(5.8)

+Cw

∑
k≥a−l

∑
m≤k

Da,s(λk+l)
1

(l!m!(k − m)!)s |(γ g)m,l |L∞
x,v

|∂k−m+1
x ρ|L∞

x
. (5.9)
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The first term on the right hand side can be controlled by changing k + 1 to k and l − 1
to l, as follows,

(5.7) =
∑

k≥a−l

ks
λk+l−a((k + l)!)s
(k!l!(k + l − a)!)s |gk,l |L∞

x,v

=
∑

k≥a−l

2s((1/2)a + (1/2)(k − a))s
λk+l−a((k + l)!)s
(k!l!(k + l − a)!)s |gk,l |L∞

x,v

≤ 2s−1as
∑

k≥a−l

λk+l−a((k + l)!)s
(k!l!(k + l − a)!)s |gk,l |L∞

x,v

+2s−1
∑

k≥a−l+1

λk+l−a((k + l)!)s
(k!l!(k + l − a − 1)!)s |gk,l |L∞

x

≤ as |g|λ,a + λ|g|λ,a+1.

The second term is (5.8) = CwDa,sY , where

Y =
∑

k≥a−l

∑
m≤k−1

λk+l
1

(l!m!(k − m)!)s |gm,l+1|L∞
x,v

|∂k−m+1
x ρ|L∞

x
.

Because Y is a polynomial in λ with positive coefficients, we can get an estimate on
Da

λY just by estimating Y itself,

Y =
∑

k≥a−l

∑
m≤k−1

λk+l
1

(l!m!(k − m)!)s |gm,l+1|L∞
x,v

|∂k−m+1
x ρ|L∞

x

=
∑

m+l≥a−k

∑
k≥2

λk+l+m−2

((l − 1)!m!(k − 1)!)s |gm,l |L∞
x,v

|∂kxρ|L∞
x

≤
∑

m+l≥a−k

∑
k≥2

λl+m−1(l + m)s

(l!m!)s |gm,l |L∞
x,v

λk−1

((k − 1)!)s |∂kxρ|L∞
x

≤
∑

m+l≥1

λl+m−1(l + m)s

(l!m!)s |gm,l |L∞
x,v

∑
k≥1

λk−1

((k − 1)!)s |∂kxρ|L∞
x

= |ρ|λ,1|g|λ,1.

Hence

(5.8) = CwDa,sY ≤ CwDa,s(|ρ|λ,1|g|λ,1).

Similarly,

(5.9) ≤ CwDa,s Ỹ ,

where

Ỹ =
∑

k≥a−l

∑
m≤k

λk+l
1

(l!m!(k − m)!)s |(λg)m,l |L∞
x,v

|∂k−m+1
x σ |L∞

x

=
∑

k≥a−l

∑
m≤k

λm+l

(m!l!)s |(λg)m,l |L∞
x,v

λk−m

((k − m)!)s |∂
k−m+1
x ρ|L∞

x
≤ |ρ|λ,1|γ g|λ.
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Consequently we have

(5.9) ≤ CwDa,s(|ρ|λ,1|γ g|λ).
The proof follows by combining estimates (5.7), (5.8), and (5.9). �	
Lemma 5.2. Assume M > 0, γ (v) satisfying (5.5) and M̃ = 1

18sCw+2Cγ
ln M

h0
are given.

Let λ(t) = λ0 − (1 + K )t , 0 ≤ t ≤ T . Then there exists K such that for any ρ with

sup
0≤t≤T

Hρ(t) ≤ M and
∫ T

t
H̃ρ(t)dt ≤ M̃,

the solution to (5.6) is such that g ∈ HT,M and

∂t Hg ≤ (λ0 − K + (4 · 9s + Cγ )CwHρ)H̃g + (18s + 2Cγ )CwHg H̃ρ.

Proof. By Lemma 5.1,

∂t |g|λ(t),a ≤ as |g|gλ(t),a + λ(t)|g|λ(t),a+1 + CwDa,s(|ρ|λ(t),1|g|λ(t),1 + |ρ|λ(t),1|γ g|λ(t))

−(1 + K )|g|λ(t),a+1

= as |g|gλ(t),a + (λ0 − 1 − K )|g|λ(t),a+1

+CwDa,s(|ρ|λ(t),1|g|λ(t),1 + |ρ|λ,1|γ g|λ).
Multiplying the above inequality by 1

(a!)2s and summing w.r.t a yields

∂t Hg ≤
∑
a≥1

as

(a!)2s |g|λ(t),a + (λ0 − 1 − K )
∑
a≥1

|g|λ(t),a+1

(a!)2s (5.10)

+Cw

∑
a≥0

∑
0≤k≤a

(a + 1)s−1(Ck
a )

s

(a!)2s |g|λ(t),k+1|ρ|λ(t),a−k+1 (5.11)

+Cw

∑
a≥0

∑
0≤k≤a

(a + 1)s−1(Ck
a )

s

(a!)2s |γ g|λ(t),k |ρ|λ(t),a−k+1. (5.12)

It is easy to see that

(5.10) ≤ H̃g + (λ0 − 1 − K )H̃g ≤ (λ0 − K )H̃g.

Then changing the index k + 1 to k, we obtain

(5.11) = Cw

∑
a≥0

∑
1≤k≤a+1

(a + 1)s−1(Ck−1
a )s

(a!)2s |g|λ(t),k |ρ|λ(t),a−k+2

= Cw

∑
a≥0

∑
1≤k≤a−2

(a + 1)s−1(Ck−1
a )s

(a!)2s |g|λ(t),k |ρ|λ(t),a−k+2

+Cw|ρ|λ(t),1

∑
a≥0

(a + 1)s−1|g|λ(t),a+1

(a!)2s +Cw|ρ|λ(t),2

∑
a≥0

(a + 1)s−1a2s

(a!)2s |g|λ(t),a

+Cw|ρ|λ(t),3

∑
a≥1

(a + 1)s−1(a(a − 1)/2)s

(a!)2s |g|λ,a−1.



F. Diacu, S. Ibrahim, C. Lind, S. Shen

Finally, changing the index a − k + 2 to a, we obtain

(5.11) = Cw

∑
a≥4

∑
k≥1

(a + k − 1)s−1

((a + k − 2)!)s
1

((k − 1)!(a − 1)!)s |g|λ,k |ρ|λ,a (5.13)

+Cwρλ,1

∑
a≥0

(a + 1)s−1

(a!)2s |g|λ,a+1 + Cw|ρ|λ,2

∑
a≥0

(a + 2)s−1as

(a!)2s |g|λ,a

+Cw|ρ|λ,3

∑
a≥2

as−1(a − 1)2s

((a − 1)!)2s |g|λ,a−1
a(a + 1)s

2s(a + 1)(a − 1)sa2s
(5.14)

and

(5.13) = Cw

∑
k≥1

∑
a≥4

|g|λ,k

(k!)2s a
2s |ρ|λ,a

(a!)2s
(
kk!(a − 1)!
(a + k − 2)!

)s

(a + k − 1)s−1

≤ Cw

∑
k≥1

∑
a≥4

|g|λ,k

(k!)2s (a + 1)s−1a2s
|ρ|λ,a

(a!)2s
(
kk!(a − 1)!
(a + k − 2)!

)s

(k + 1)s−1

≤ Cw

∑
k≥1

∑
a≥4

|g|λ,k

(k!)2s (a + 1)s−1a2s
|ρ|λ,a

(a!)2s
(
k(k + 1)!(a − 1)!

(a + k − 2)!
)s

.

For k ≥ 3, a ≥ 4, we have that

k(k + 1)!(a − 1)!
(a + k − 2)! = (a − 1)!

(a − 1)! · 1 · 2 · 3 · 4 · · · (k + 1)k

a · (a + 1) · · · (a + k − 2)
≤ 6.

Similarly, for k = 2, a ≥ 4, we obtain that k(k+1)!(a−1)!
(a+k−2)! ≤ 18, while for k = 1, a ≥ 4,

we are led to the inequality k(k+1)!(a−1)!
(a+k−2)! ≤ 2. Then

(5.13) ≤ 18sCwHg H̃ρ.

Observing that for all s ≥ 1 and a ≥ 2 we have

a(a + 1)s

2s(a + 1)(a − 1)sa2s
≤ (a + 1)s+1

2s(a + 1)(a − 1)sa2s
≤ 1

2s

(
a + 1

a2

)s

≤ 1, (5.15)

we can conclude that

(5.11) ≤ 18sCwHg H̃ρ + 4Cw9
s Hρ H̃g.

Notice further that

(5.12) = Cw

∑
a≥0

∑
1≤k≤a−1

(a + 1)s−1(Ck
a )

s

(a!)2s |γ g|λ(t),k |ρ|λ(t),a−k+1

+Cw|γ g|λ
∑
a≥0

(a + 1)s−1

(a!)2s |ρ|λ,a+1 + Cw|ρ|λ,1

∑
a≥0

(a + 1)s−1

(a!)2s |γ g|λ,a

≤ Cw

∑
a≥0

∑
1≤k≤a−1

(a + 1)s−1(Ck
a )

s

(a!)2s |γ g|λ(t),k |ρ|λ(t),a−k+1

+Cw(Hλg H̃ρ + H̃λgHρ).
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Changing a − k + 1 to k, we are led to

(5.12) ≤ Cw

∑
a≥2

∑
k≥1

(a + k)s−1

((a + k − 1)!k!(a − 1)!)s |γ g|λ,k |ρ|λ,a

+Cw(Hλg H̃ρ + H̃λgHρ). (5.16)

Meanwhile,

(5.16) = Cw

∑
a≥2

∑
k≥1

|ρ|λ,a

((a − 1)!)2s
|γ g|λ,k

(k!)2s (a + k)s−1
(

k!(a − 1)!
(a + k − 1)!

)s

≤ Cw

∑
a≥2

∑
k≥1

(a + 1)s−1 |ρ|λ,a

((a − 1)!)2s
|γ g|λ,k

(k!)2s ks−1
(

k!(a − 1)!
(a + k − 1)!

)s

≤ Cw

∑
a≥2

∑
k≥1

(a + 1)s−1 |ρ|λ,a

((a − 1)!)2s
|γ g|λ,k

(k!)2s
(
kk!(a − 1)!
(a + k − 1)!

)s

.

For a ≥ 2 and k ≥ 1, we have

kk!(a − 1)!
(a + k − 1)! = (a − 1)!

(a − 1)! · 1 · 2 · · · k · k
a · (a + 1) · · · (a + k − 1)

≤ 1,

thus

(5.16) ≤ Cw

∑
a≥2

∑
k≥1

(a + 1)s−1 |ρ|λ,a

((a − 1)!)2s
|γ g|λ,k

(k!)2s

≤ CwHλg H̃ρ.

We therefore obtain the estimate

(5.12) ≤ 2CwHλg H̃ρ + Cw H̃λgHρ ≤ 2CwCγ Hg H̃ρ + CwCγ H̃gHρ.

Estimates (5.10) and (5.11) together with (5.12) imply that

∂t Hg ≤ (λ0 − K + (4 · 9s + Cγ )CwHρ)H̃g + (18s + 2Cγ )CwHg H̃ρ.

For K ≥ λ0 + (4 · 9s + Cγ )CwM , we have the estimate

Hg(t) ≤ Hg(0)e
(18s+2Cγ )Cw M̃ = M.

We can thus conclude that

(K − λ0 − (4 · 9s + Cγ )M)H̃g ≤ (18s + 2Cγ )CwMH̃ρ − ∂t Hg.

Integrating from 0 to T yields

(K − λ0 − (4 · 9s + Cγ )CwM)

∫ T

0
H̃gdt ≤ (18s + 2Cγ )CwMM̃ − Hg(T ) + Hg(0)

≤ (18s + 2Cγ )CwMM̃ + 2M.
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Thus for

K ≥ (18s + 2Cγ )CwMM̃ + 2M.

M̃
+ λ0 + (4 · 9s + Cγ )CwM,

we obtain that
∫ T

0
H̃gdt ≤ M̃ .

We have thus shown that g ∈ HT,M and that the desired T, K satisfy

K ≥ (18s + 2Cγ )CwMM̃ + 2M.

M̃
+ λ0 + (4 · 9s + Cγ )CwM, 0 ≤ T ≤ λ0

1 + K
.

This remark completes the proof. �	

5.2. Proof of Theorem 5.1. Recall that α(v) ≥ 0 is chosen such that
∫
R

αdv ≤ 1 and
that γ (v) = α′(v)/α(v) satisfies

Cγ =
∑
k≥0

∑
0≤l≤k

Cl
kλ

l
0

∑
0≤n≤k

(|γn|L∞
v

)
< ∞.

Remark 5.2. Notice that functions α like above do exist. Indeed, take for instance α(v) =
Ce−v2 , where 0 ≤ C ≤ 1/

√
π .

Given a distribution function f (t, x, v), set ρ(t, x) = ∫
R

α f dv and define a map � by
�( f )(t, x, v) := g(t, x, v), where g is the solution to

∂t g + v∂x g + (W ∗ ∂xρ)(∂vg + γ g) = 0

with g(0, x, v) = fi (x, v). We will first show that there exist M, T such that � maps
HT,M into itself and then prove that � is a contraction onHT,M to finish the proof.

First, observe that, thanks to Lemma 5.1 and Lemma 5.2, the map � is well defined.
Next, let f (t, x, v), f̃ (t, x, v) ∈ HT,M with f (0, x, v) = f̃ (0, x, v) = fi (x, v), ρ =∫
R

f dv, ρ̃ = ∫
R

f̃ dv and g = �( f ), g̃ = �( f̃ ). It is easy to see g − g̃ satisfies

∂t (g − g̃) + v∂x (g − g̃) + (W ∗ ∂xρ)(∂v(g − g̃) + γ (g − g̃)

+(W ∗ ∂x (ρ − ρ̃))(∂v g̃ + γ g̃) = 0.

By Lemma 5.1,

d

dt
|g − g̃|λ,a ≤ as |g − g̃|λ,a + (λ0 − 1 − K )|g − g̃|λ,a+1

+CwDa,s(|ρ|λ,1|g − g̃|λ,1 + |ρ|γ,1|γ (g − g̃)|γ )

+CwDa,s(|ρ − ρ̃|λ,1|g̃|λ,1 + |ρ − ρ̃|λ,1|γ g̃|γ ).

Estimates of (5.10), (5.11), and (5.12) of Lemma 5.2 imply that

∂t Hg−g̃ ≤ (λ0 − K )H̃g−g̃ + (18s + 2Cγ )CwHg−g̃ H̃ρ + (4 · 9s + Cγ )Hρ H̃g−g̃

+(18s + 2Cγ )CwHg̃ H̃ρ−ρ̃ + (4 · 9s + Cγ )Hρ−ρ̃ H̃g̃
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= (18s + 2Cγ )CwHg−g̃ H̃ρ + (λ0 − K + (4 · 9s + Cγ )Hρ)H̃g−g̃

+(18s + 2Cγ )CwHg̃ H̃ρ−ρ̃ + (4 · 9s + Cγ )Hρ−ρ̃ H̃g̃

≤ (18s + 2Cγ )CwHg−g̃ H̃ f + (λ0 − K + (4 · 9s + Cγ )H f )H̃g−g̃

+(18s + 2Cγ )CwHg̃ H̃ f− f̃ + (4 · 9s + Cγ )H f− f̃ H̃g̃.

If K̄ = K − λ0 − (4 · 9s + Cγ )M , we can write that

e− ∫ t0 Cw(18s+2Cγ )H̃ f (s)ds K̄ H̃g−g̃ +
d

dt

(
e− ∫ t0 Cw(18s+2Cγ )H̃ f (s)ds Hg−g̃

)

≤ CwM(18s + 2Cγ )H̃ f − f̃ + (4 · 9s + Cγ )H f − f̃ H̃g̃.

Integrating over time, for 0 ≤ t ≤ T , yields

h0
M

(
K̄
∫ t

0
H̃g−g̃(s)ds + Hg−g̃(t)

)

≤ CwM(18s + 2Cγ )

∫ t

0
H̃ f − f̃ (s)ds + (4 · 9s + Cγ )M̃ sup

0≤s≤t
H f− f̃ (s).

Consequently

h0
M

min (1, K̄ )‖g − g̃‖t ≤ max (CwM(18s + 2Cγ ), (4 · 9s + Cγ )M̃)‖ f − f̃ ‖t .
Thus, taking t = T, we obtain

‖g − g̃‖T ≤ M

h0

max((CwM(18s + 2Cγ ), (4 · 9s + Cγ )M̃))

min((1, K − λ0 − (4 · 9s + Cγ )M))
‖ f − f̃ ‖T .

Finally, in order to make � a contraction, K , M, T should satisfy the conditions in
Lemma 5.2,

K ≥ (18s + 2Cγ )CwMM̃ + 2M

M̃
+λ0+(4 · 9s + Cγ )M, 0 ≤ T ≤ λ0

1 + K
, (5.17)

M

h0

max((CwM(18s + 2Cγ ), (4 · 9s + Cγ )M̃))

min((1, K − λ0 − (4 · 9s + Cγ )M))
< 1, M > h0. (5.18)

These remarks complete the proof. �	

6. Linear Stability

In this section we will derive some Penrose-type conditions for linear stability around
homogeneous solutions in the sense of Landau damping. Let us start by recalling from
Proposition 4.3 that the Vlasov–Poisson system restricted to a geodesic of M

2 is given
by the equations ⎧⎪⎪⎨

⎪⎪⎩

∂t f + v∂x f + F(t, x)∂v f = 0,

F(t, x) = W ∗ ∂xρ,

ρ(t, x) =
∫
R

f (t, x, v)dv,

(6.1)
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with (x, v) ∈ IM2 × R and potential W (x) = 1
2π log |ctn ( x2 )|, where ∗ denotes the

convolution in x .
We want to find conditions for linear stability around the homogeneous solution

f 0(v). Denoting by h(t, x, v) the fluctuation of f about f 0, we can assume in the
linearization process that the nonlinear term F ∂h

∂v
is negligible. In doing so, thefluctuation

h becomes the solution to the system
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂h

∂t
+ v

∂h

∂x
+ F(t, x)

∂ f 0

∂v
= 0

F = W ∗ ∂

∂x
ρ

ρ(t, x) =
∫
R

h(t, θ, v)dv.

(6.2)

In the periodic case, the linear stability around the homogeneous solution f 0(v) means
that both the density and the force corresponding to the solutions of (6.2) converge expo-
nentially fast to the space-mean of the density or to zero, respectively. More precisely,
we have the following result in the case of S

2.

Theorem 6.1. Assume that, in S
2,

– the stationary solution f 0 = f 0(v) of system (6.2) and the initial perturbation
h0 = h0(x, v) are analytic functions;

– ( f 0)′(v) = O(1/|v|) for large enough values of |v|;
– the Penrose stability condition takes place, i.e.

if ω ∈ R is such that ( f 0)′(ω) = 0, then p.v.

∫ ∞

−∞
( f 0)′(v)

v − ω
dv > −1. (6.3)

Then there exist positive constants δ and C , depending on the initial data, such that for
t ≥ 1 we have
∣∣∣∣
∣∣∣∣ρ(t, x) −

∫
R

∫ 2π

0
h0(x, v)dxdv

∣∣∣∣
∣∣∣∣
Cr (0,2π)

≤ Ce−δt and ‖F(t, x)‖Cr (0,2π) ≤ Ce−δt ,

where ‖u‖Cr (0,2π) := max0≤n≤r,0<x<2π |∂nx u(x)| and r ∈ N
+.

To state a similar linear stability result in the case of a hyperbolic circle in H
2, we

need to redefine the norm of analytic functions in terms of the Fourier transform, see for
example [28]. For any function f , define this norm by

‖ f ‖Fλ :=
∫
R

eλ|ξ || f̂ (ξ)|dξ,

where f̂ stands for the Fourier transform of f . With this preparation, we can now state
our linear stability result in H

2.

Theorem 6.2. Assume that, in H
2,

– the stationary solution f 0 = f 0(v) of system (6.2) and the initial perturbation
h0 = h0(x, v) are analytic functions;

– ( f 0)′(v) = O(1/|v|) for large enough values of |v|;
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– the Penrose stability condition takes place, i.e.

for every ω ∈ R, ( f 0)′(ω) = 0 implies that

(
p.v.

∫ ∞

−∞
( f 0)′(v)

v − ω
dv

)
> − 4

π
.

(6.4)

Then there exist constants λ′,C > 0, which depend on the initial data, such that for t
large we have

‖ρ(t, ·)‖Fλ′ ≤ 2C

λ′t
and ‖F(t, ·)‖Fλ′ ≤ C

λ′t
.

The proofs of Theorem 6.1 and Theorem 6.2 rely on the following lemma about the
decay of solutions of Volterra-type equations (see [33] for its proof).

Lemma 6.1. Assume that φ solves the equation

φ(t) = a(t) +
∫ t

0
K (t − τ)φ(τ)dτ,

and there are constants c, α,C0, λ, λ0,� > 0, such that the function a and the kernel
K satisfy the conditions

(i) |K (t)| ≤ C0e−λ0t ;
(ii) |K L(ξ) − 1| ≥ c for 0 ≤ Reξ ≤ �;
(iii) |a(t)| ≤ αe−λt ,

where K L(ξ) is the complex Laplace transform defined by

K L(ξ) =
∫ ∞

0
eξ̄ t K (t)dt for ξ ∈ C.

Then for any positive λ′ ≤ min(λ, λ0,�), we have the inequality

|φ(t)| ≤ Ce−λ′t ,

with

C = α +
C0α

2
√

(λ0 − λ′)(λ − λ′)
.

6.1. Proof of Theorem 6.1. First, observe that the conservation of mass for the solution
h of (6.2) is equivalent to the conservation of the zero mode of the density function ρ,

ρ̂(t, 0) = h̃0(0, 0).

In the following, we estimate each mode ρ̂(t, k) first, and then use it to show the con-
vergence of ρ(t, x) and F(t, x) with the exponential rate. The Penrose type stability
condition comes naturally to satisfy the second hypothesis of Lemma 6.1.

In order to deal with higher modes, we first solve system (6.2) using the method of
characteristics and a Duhamel-type formula. Setting S(t, x, v) := F(t, x)∂v f 0(v), we
have

h(t, x, v) = h0(x − vt, v) −
∫ t

0
S(τ, x − v(t − τ), v)dτ. (6.5)
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Taking the Fourier transform h̄ of h both in x and v gives

h̄(t, k, η) = h̄0(k, η + kt) −
∫ t

0
S̄(τ, k, η + k(t − τ))dτ. (6.6)

With the help of the identity

log(cos x) =
+∞∑
n=1

(−1)n+1
cos(2nx)

n
− log 2,

we calculate that

Ŵ (k) =
{ 1

|k| , k odd
0, k even.

(6.7)

Now, since S has the structure of separated variables, we have

S̄(τ, k, η) = F̂(τ, k)∂̂v f 0(η) = iηF̂(τ, k) f̂ 0(η) =
{
0, k even
−η k

|k| ρ̂(τ, k) f̂ 0(η), k odd.

Substituting this expression into (6.6), we obtain

h̄(t, k, η)=

⎧⎪⎨
⎪⎩
h̄0(k, η + kt), k even

h̄0(k, η + kt)+
∫ t

0

k

|k| (η+k(t − τ))ρ̂(τ, k) f̂ 0(η+k(t − τ))dτ, k odd.

(6.8)
Finally, the choice η = 0 gives

ρ̂(t, k) = h̄0(k, kt) +
∫ t

0
K (t − τ)ρ̂(τ, k)dτ, (6.9)

where

K (t, k) =
{
0, k even
|k|t f̂ 0(kt), k odd.

Clearly, for any given k �= 0, (6.9) is a Volterra type equation. Since f 0 and h0 are
analytic, for large t we have

|K (t, k)| = O(e−λ0|k|t ) and |h̄0(k, kt)| = O(e−λ1|k|t ).

Assuming that the last hypothesis is also satisfied, Lemma 6.1 implies that

|ρ̂(t, k)| = O(e−λ′|k|t ),

with λ′ < min{λ0, λ1}. Now take r ∈ N
+ and t ≥ 1. Then there exists a positive constant

C , which depends only on the initial data, such that
∣∣∣∣∂rx
(

ρ(t, k) −
∫
R

∫ 2π

0
h0(x, v)dxdv

)∣∣∣∣ ≤
∑
k �=0

|k|r |ρ̂(t, k)| ≤ C
∑
k �=0

|k|r e−λ′|k|t .

Choosing a constant 0 < δ < λ′ such that for all k �= 0 and r ∈ N
+ we have

e−(λ′−δ)|k|t ≤ |k|−r−2,
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we can obtain the estimate∣∣∣∣∂rx
(

ρ(t, k) −
∫
R

∫ 2π

0
h0(x, v)dxdv

)∣∣∣∣ ≤ C
∑
k �=0

|k|−2e−δ|k|t ≤ CC∗

2
e−δt ,

where C∗ = ∑∞
k=1 k

−2. Similarly for the force, we have

∂rx F(t, θ) =
∑
k odd

(ik)r i ρ̂eikθ ,

and therefore, for t ≥ 1, we have

‖F(t, θ)‖Cr (T) ≤ CC∗

2
e−δt ,

as desired. Finally, it only remains to check the second condition of Lemma 6.1. It
basically means that when Reξ is located in a positive neighbourhood of 0, the Laplace
transform of the kernel K L(ξ, k) should stay away from 1.

When k is even, K L(ξ, k) ≡ 0, so it’s always away from 1. When k is odd, we
evaluated the Laplace transform of K in time at ξ = (λ − iω)k and obtained

K L(ξ, k) =
∫ ∞

0
|k|t f̂ 0(kt)e(λ+iω)tkdt

=
∫ ∞

0
e(λ+iω)kt |k|t

∫
R

e−iωkt f 0(v)dv

=
∫
R

−i
|k|
k

( f 0)′(v)

∫ ∞

0
e(λ+i(ω−v))kt dtdv

= − 1

|k|
∫
R

( f 0)′(v)

iλ + (v − ω)
dv. (6.10)

Moreover, if the stationary solution f 0 has the property that ( f 0)′(v) decays at least
like O(1/|v|), then (6.10) implies that

|K L(ξ, k)| ≤ C

∣∣∣∣1k
∫
R

dv

v(iλ − ω + v)

∣∣∣∣ . (6.11)

Let L(ε) be upper half circle centered at 0 with radius ε. Some simple computations
show that

1

k

∫
R

1

v

1

iλ − ω + v
dv = 1

k
lim
ε→0

∫ −ε

−∞
+
∫ +∞

ε

+
∫
L(ε)

1

v

1

iλ − ω + v
dv

= π i

k(iλ − ω)
+
1

k
lim
ε→0

∫ 0

π

1

εeiφ
1

iλ − ω + εeiφ
d(εeiφ)

= (with v = εeiφ)
2π i

k(iλ − ω)
,

which means that (6.10) decays at least like O(1/|ω|) as v → ∞, uniformly for λ ∈
[0, λ0], so it is enough to consider only the case when |v| is bounded. Hence, assume
that |ω| ≤ �. If (6.10) does not go to 1 when λ → 0+, by continuity there exists � > 0
such that (6.10) is away from 1 in the domain {|ω| ≤ �, 0 ≤ λ ≤ �}. Thus, we could
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only focus on the limit λ → 0+. In order to compute this limit, we introduce the Plemelj
formula (see [28]),

lim
y→0+

∫ ∞

−∞
f (x)

x − x0 + iy
dx = p.v.

∫ ∞

−∞
f (x)

x − x0
dx − iπ f (x0). (6.12)

Applying (6.12) to (6.10), we have that

lim
λ→0+

K L((λ − iω)k, k) = − 1

|k|
(
p.v.

∫ ∞

−∞
( f 0)′(v)

v − ω
dv − iπ( f 0)′(ω)

)
. (6.13)

We further need to find conditions such that (6.13) does not approach 1. First, if the
imaginary part of (6.13) stays away from 0, then everything is fine. However, the imag-
inary part goes to 0 only if k → ∞, in which case the real part also goes to 0, or
if ( f 0)′(v) → 0. So we only need to consider the case when ( f 0)′(ω) approaches 0.
Hence, we need to require that

for every ω ∈ R, ( f 0)′(ω) = 0 implies that − 1

|k|
(
p.v.

∫ ∞

−∞
( f 0)′(v)

v − ω
dv

)
�= 1,

(6.14)
a hypothesis that leads to the Penrose stability condition (6.3). �	

6.2. Proof of Theorem 6.2.

Proof. Arguing as in the proof of the previous theorem, we just observe that (see [29])

Ŵ (ξ) = 1

2ξ
tanh(

ξπ

2
) (6.15)

and that

ρ̂(t, ξ) = h̄0(ξ, ξ t) +
∫ t

0
K (k − τ)ρ̂(τ, ξ)dτ, (6.16)

where K (t, ξ) = ξ t
2 tanh( ξπ

2 ) f̂ 0(ξ t). Moreover, the force is

F̂(t, ξ) = iξ Ŵ (ξ)ρ̂(ξ) = i

2
tanh(

ξπ

2
)ρ̂(ξ).

Computing the Laplace transform K L(ζ, ξ) at ζ = (λ − iω)ξ , we get

K L(ζ, ξ) =
∫ ∞

0
e(λ+iω)ξ t ξ t

2
tanh(

ξπ

2
)

∫
R

e−iξ tv f 0(v)dvdt

=
∫ ∞

0
e(λ+iω)ξ t ξ t

2
tanh(

ξπ

2
)
1

iξ t

∫
R

( f 0)′(v)e−iξvt dvdt

=
∫
R

− i

2
tanh(

ξπ

2
)( f 0)′(v)

∫ ∞

0
e(λ+i(ω−v))ξ t dtdv

= − 1

2ξ
tanh(

ξπ

2
)

∫
R

( f 0)′(v)

iλ + (v − ω)
dv. (6.17)
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Going though the same argument as we did in the previous section, we only need to
consider the case when ( f 0)′(ω) approaches 0. Hence, we have to assume that

for every ω∈R, ( f 0)′(ω)=0 implies that − 1

2ξ
tanh(

ξπ

2
)

(
p.v.

∫ ∞

−∞
( f 0)′(v)

v − ω
dv

)
�= 1,

(6.18)
which is equivalent to

for every ω ∈ R, ( f 0)′(ω) = 0 implies that

(
p.v.

∫ ∞

−∞
( f 0)′(v)

v − ω
dv

)
�= − 2ξ

tanh( ξπ
2 )

.

(6.19)
Since − 2ξ

tanh( ξπ
2 )

≤ − 4
π
, we obtain the Penrose stability condition (6.4). Then the appli-

cation of Lemma 6.1 provides us the exponential decay of the density

|ρ̂(t, ξ)| ≤ Ce−λ′|ξ |t ,

for some constants C and λ′. From this, we can conclude that

‖ρ(t, ·)‖Fλ′ =
∫
R

eλ′|ξ ||ρ̂(t, ξ)|dξ ≤ C
∫
R

e−λ′t |ξ |dξ = 2C

λ′(t)

and

‖F(t, ·)‖Fλ′ =
∫
R

1

2
eλ′|ξ | tanh( |ξ |π

2
)|ρ̂(t, ξ)|dξ ≤ C

2

∫
R

eλ′|ξ |e−λ′|ξ |t dξ = C

λ′t
,

a remark that completes the proof. �	
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Appendix A: Finite Regularity Wellposedness

In this section we will prove the local wellposedness of our reduced system in weighted
Sobolev spaces. Recall that we consider the system

∂t f + v∂x f + F∂v f = 0

F = W ∗ ∂xρ (A.1)

ρ =
∫
R

f dv,

where the potential W is given by W = 1
2π log |ctn ( x2 )| and the initial condition is

f (t = 0) = f 0. We will focus on finding the local solution in the following weighted
Sobolev spaces.

http://www.geogebra.org
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Definition 1. For any two non-negative integers s and r , we say that f (x, v) ∈ Hs
r if

the following norm is finite

‖ f ‖2Hs
r

:=
∑

|α|+|β|≤s

∫
X

∫
R

(1 + v2)r |∂α
x ∂β

v f |2dvdx < ∞,

where X is either the one dimensional sphere X = S
1 or X = R.

Clearly, from the definition one can see that for s1 ≤ s2,

‖ f ‖Hs1
r

≤ ‖ f ‖Hs2
r

.

We can now state and prove the main result of this appendix.

Theorem A.1. Fix r > 0 and m > 1, and let f 0 ∈ H2m
2r+1. Denote by Q = ‖ f 0‖H2m

2r+1

and R = ‖ f 0‖H2m
2r
. Then there exist universal positive constants C and C ′, a time

T > 0, and a function g(s), such that (A.1) has a solution f ∈ C([0, T ],H2m
2r ) ∩

L∞([0, T ],H2m
2r+1) with initial data f 0. Moreover, we have

sup
[0,T ]

‖ f ‖H2m
2r

≤ g(R), and sup
[0,T ]

‖ f ‖H2m
2r+1

≤ g(Q),

with

T ≤ min

⎧⎨
⎩

ln( g
2(R)

C ′R2 ))

C ′(1 + Cg(R))
,

ln( g
2(Q)

C ′Q2 ))

C ′(1 + Cg(Q))

⎫⎬
⎭ , g2(s) > Cs2.

The proof goes in a few steps. But before getting into details, let us recall some useful
product laws related to these weighted Sobolev spaces, whose proofs can be found, for
example, in [20].

Lemma A.1. Consider a smooth nonnegative function χ(v) satisfying, for any α ∈ N,
|∂α

v χ | ≤ Cαχ . For any s0 > 1 and s ≥ 0, there exists a constant C > 0, such that for
F ∈ Hs0

x ∩ Hs
x and χ f ∈ Hs

x,v we have

‖χF f ‖Hs
x,v

≤ C‖F‖Hs0
x

‖χ f ‖Hs
x,v

+ C‖F‖Hs
x
‖χ f ‖Hs

x,v
.

In the case s = 0 and χ = (1 + v2)2r , the above inequality trivially becomes

‖F f ‖H0
2r

≤ C‖F‖Hs0
x

‖ f ‖H0
2r
+ C‖F‖L2

x
‖ f ‖H0

2r
, (A.2)

where Hs is the standard (unweighted) Sobolev space. Now, thanks to (6.7) and (6.15),
we know that in the case X = S

1,

Ŵ (k) =
{ 1

|k| , k odd
0, k even,

(A.3)

whereas when X = R, we have

Ŵ (ξ) = 1

2ξ
tanh(

ξπ

2
). (A.4)

Thus, using (A.3), (A.4), and choosing r > 1/2, we can easily obtain a constant C > 0,
such that

‖F‖Hs ≤ ‖ρ‖Hs ≤ C‖ f ‖Hs
2r

. (A.5)
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Lemma A.2 (Energy estimate). For m > 1 and r > 0, there exists a constant C ′ > 0,
such that if f solves (A.1) on [0, T ], then we have

( sup
[0,T ]

‖ f (t)‖H2m
2r

)2 ≤ C ′‖ f 0‖2H2m
2r

exp(C ′T + C ′T ‖ρ‖L2
T H

2m).

For the sake of completeness, we just sketch the proof of this lemma and refer to [20]
for full details.

Proof. Form > 1 and r > 0, applying (1+v2)r∂α
x ∂

β
v to the reduced system (A.1), taking

the L2 norm, and summing over |α| + |β| ≤ 2m, we get the classic energy estimate

d

dt
‖ f (t)‖2H2m

2r
≤ C ′(‖ f (t)‖2H2m

2r
+ ‖F(t)‖H2m‖ f (t)‖2H2m

2r
).

Using (A.5) and integrating from 0 to t , we obtain that

‖ f (t)‖2H2m
2r

≤ C ′‖ f 0‖2H2m
2r

+
∫ t

0
C ′(1 + ‖ρ(s)‖H2m )‖ f (s)‖2H2m

2r
ds.

Applying Gronwall’s inequality, we end up with

sup
[0,T ]

‖ f (t)‖2H2m
2r

≤ C ′‖ f 0‖2H2m
2r

exp(C ′T + C ′‖ρ‖L1
T H

2m)

≤ C ′‖ f 0‖2H2m
2r

exp(C ′T + C ′T ‖ρ‖L2
T H

2m ),

as desired. �	
To prove Theorem A.1, we use a classic compactness argument for the existence of

the solution.

Proof. Let f1 solve the free transport equation

∂t f1 + v∂x f1 = 0,

and, for n ≥ 2, fn solve the linearized equation

∂t fn + v∂x fn + Fn−1∂v fn = 0,

where Fn−1 = W ∗ ∂xρn−1, and the initial condition is f1(t = 0) = fn(t = 0) = f 0.
It is sufficient to prove that all ‖ fn(t)‖H2m

2r
and ‖∂t fn(t)‖H0

2r
are uniformly bounded.

First we derive a uniform bound for ‖ fn‖H2m
2r
. Assume that sup[0,T ]‖ fn‖H2m

2r
≤ g(R),

where g is a function to be determined. The energy estimate gives

( sup
[0,T ]

‖ fn(t)‖H2m
2r

)2 ≤ C‖ f 0‖2H2m
2r

exp(CT + CT 1/2‖ρn−1‖L2
T H

2m).

By Lemma A.5, we have

( sup
[0,T ]

‖ fn(t)‖H2m
2r

)2 ≤ C ′‖ f 0‖2H2m
2r

exp(C ′T + CC ′T sup
[0,T ]

‖ fn−1‖H2m
2r

)

≤ C ′R2 exp(TC ′(1 + Cg(R))).
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In order to have sup[0,T ]‖ fn(t)‖H2m
2r

≤ g(R), inequality

C ′R2 exp(C ′T (1 + Cg(R))) ≤ g2(R)

should hold, that is

T ≤ ln( g
2(R)

C ′R2 ))

C ′(1 + Cg(R))
and g2(s) > C ′s2, (A.6)

which can be satisfied if, for example, we choose g2(s) = C ′s2 + 1. Next, we find a
uniform bound for ‖∂t f ‖H0

2r
. By (A.2), and choosing s0 such that 1 < s0 ≤ 2m, we

have

‖∂t f ‖H0
2r

≤ ‖v∂x f ‖H0
2r
+ ‖F∂v f ‖H0

2r

≤C
∫
X

∫
R

(1 + v2)2rv2|∂x f |2dvdx+C‖F‖Hs0 ‖∂v f ‖H0
2r
+C‖F‖L2‖∂v f ‖H0

2r

≤ C
∫
X

∫
R

(1 + v2)2r+1|∂x f |2dvdx + 2C2‖ f ‖H2m
2r

‖ f ‖H1
2r

≤ C‖ f ‖H1
2r+1

+ 2C2‖ f ‖2H2m
2r

.

Since ‖ fn−1‖2H2m
2r

≤ g(R) and ‖ fn‖2H2m
2r

≤ g(R), we only need a bound for ‖ f ‖H1
2r+1

.

Repeating the same argument for 2r + 1 instead of 2r , as done previously, we have
‖ fn‖H1

2r+1
≤ g(Q), with T satisfying

T ≤
ln( g

2(Q)

C ′Q2 ))

C ′(1 + Cg(Q))
. (A.7)

A classic compactness argument allows us to take the limit, so (A.6) together with (A.7)
imply the condition we require for T ,

T ≤ min

⎧⎨
⎩

ln( g
2(R)

C ′R2 ))

C ′(1 + Cg(R))
,

ln( g
2(Q)

C ′Q2 ))

C ′(1 + Cg(Q))

⎫⎬
⎭ .

This remark completes the proof. �	
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