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RECTANGULAR ORBITS OF THE CURVED 4-BODY PROBLEM

FLORIN DIACU AND BRENDAN THORN

(Communicated by Walter Craig)

Abstract. We consider the 4-body problem in spaces of constant curvature
and study the existence of spherical and hyperbolic rectangular solutions, i.e.
equiangular quadrilateral motions on spheres and hyperbolic spheres. We
focus on relative equilibria (orbits that maintain constant mutual distances)
and rotopulsators (configurations that rotate and change size, but preserve
equiangularity). We prove that when such orbits exist, they are necessarily
spherical or hyperbolic squares, i.e. equiangular equilateral quadrilaterals.

1. Introduction

We consider the curved 4-body problem, given by the differential equations that
describe the motion of 4-point masses in spaces of constant Gaussian curvature: 2-
and 3-spheres for positive curvature and hyperbolic 2- and 3-spheres for negative
curvature. Using suitable transformations, the study of the problem can be reduced
to S

2, S3,H2, and H
3, respectively [3]. These equations provide a natural extension

of the classical Newtonian equations from Euclidean space. The curved 2-body
problem has a long history, starting with Bolyai, Lobachevsky, Dirichlet, Lipschitz,
Killing, Liebmann, and others, [3], [4]. The general case of N bodies, N ≥ 3, has
been recently developed in a suitable framework, [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12].

The goal of this paper is to study the existence of classes of solutions of the
curved 4-body problem that (with one exception) maintain spherical or hyperbolic
rectangular configurations (i.e. form equiangular quadrilaterals) all along the mo-
tion. Our results prove that when such orbits exist, they are necessarily spherical
or hyperbolic squares, i.e. equiangular equilateral quadrilaterals.

We will be interested in both relative equilibria, i.e. orbits for which the mutual
distances remain constant during the motion, and rotopulsators, i.e. systems that
rotate and change size, but maintain a spherical or hyperbolic equiangular shape.
We take exception from restricting ourselves to rectangles when studying relative
equilibria along great circles of S2. Since antipodal configurations are singular for
the equations of motion, we consider trapezoidal configurations in that case.

In Section 2, we introduce the equations of motion. In Section 3, we show that
spherical trapezoidal (non-rectangular) relative equilibria do not exist when the
bodies move along a great circle of S2. The nonexistence of spherical and hyper-
bolic rectangular non-square relative equilibria in S

2 and H
2 is proved in Section 4.
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1584 FLORIN DIACU AND BRENDAN THORN

In Sections 5 and 6 we show that when spherical and hyperbolic rectangular ro-
topulsators and relative equilibria exist in S

3 and H
3, they are necessarily spherical

or hyperbolic squares, a case in which the masses must be equal.

2. Equations of motion

Consider 4 point particles (bodies) of masses m1,m2,m3,m4 > 0 moving in S
2 or

S
3 (thought as embedded in the ambient Euclidean space R3 or R4, respectively) or

in H
2 or H3 (embedded in the ambient Minkowski space R2,1 or R3,1, respectively),

where

S
3 = {(w, x, y, z) | w2 + x2 + y2 + z2 = 1}, S

2 = {S3 with w = 0},
H

3 = {(w, x, y, z) | w2 + x2 + y2 − z2 = −1, z > 0}, H
2 = {H3 with w = 0}.

Then the configuration of the system is described by the vector

q = (q1,q2,q3,q4),

where qi = (wi, xi, yi, zi) in 3D and qi = (xi, yi, zi) in 2D, i = 1, 2, 3, 4, denote
the position vectors of the bodies. The equations of motion (see [4] or [9] for their
derivation using constrained Lagrangian dynamics) are given by the system

(1) q̈i =
N∑

j=1,j �=i

mj [qj − σ(qi · qj)qi]

[σ − σ(qi · qj)2]3/2
− σ(q̇i · q̇i)qi, i = 1, 2, 3, 4,

with initial-condition constraints

(2) (qi · qi)(0) = σ, (qi · q̇i)(0) = 0, i = 1, 2, 3, 4,

where · is the standard inner product of signature (+,+,+,+) in S
3 ⊂ R

4 and
(+,+,+) in S

2 ⊂ R
3, but the Lorentz inner product of signature (+,+,+,−) in

H
3 ⊂ R

3,1 and (+,+,−) in H
2 ⊂ R

2,1, and σ = ±1, depending on whether the
curvature is positive or negative. Relative to the inner product, the gravitational
force acting on each body has a tangential component (the above sum) and a radial
component (the term involving the velocities).

From Noether’s theorem, system (1) has the energy integral

T (q, q̇)− U(q) = h,

where

U(q) =
∑

1≤i<j≤4

σmimjqi · qj

[σ − σ(qi · qj)2]1/2

is the force function (−U representing the potential),

T (q, q̇) =
1

2

4∑
i=1

mi(q̇i · q̇i)(σqi · qi)

is the kinetic energy, with h representing an integration constant, and the integrals
of the total angular momentum,

4∑
i=1

miqi ∧ q̇i = c.

Here ∧ is the wedge product and c = (cwx, cwy, cwz, cxy, cxz, cyz) denotes an inte-
gration vector in 3D, whereas c = (cxy, cxz, cyz) is the integration vector in 2D,
each component measuring the rotation of the system about the origin of the frame
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RECTANGULAR ORBITS OF THE CURVED 4-BODY PROBLEM 1585

relative to the plane corresponding to the bottom indices (in 2D it is customary to
express the rotation relative to an axis orthogonal to this plane).

3. Trapezoidal fixed points in S
2

In this section we study the motion of the 4 bodies along great circles of S2.
Notice, however, that the equations of motion lose meaning if at least a pair of
bodies are antipodal; therefore rectangular orbits along great circles of S2 cannot
exist. We will therefore check whether trapezoidal orbits occur. Of course, thought
on S

2, this figure would be degenerate; therefore we prefer to regard it as a Euclidean
trapezoid in the plane of the equator, z = 0. Due to symmetries, it is natural to
restrict to the case when the masses on each of the parallel sides of the trapezoid
are equal. We can now prove the following result, which refers to fixed points, i.e.
static configurations.

Theorem 1. In the curved 4-body problem in S
2, there are no fixed points inscribed

in any great circle, such that the bodies form a trapezoid with equal masses on each
of the parallel sides, i.e. m1 = m2 := m > 0 and m3 = m4 := M > 0.

Proof. Without loss of generality, consider an arbitrary non-rectangular trapezoid
inscribed in the equator, z = 0. Let the y-axis bisect the parallel chords connecting
the bodies, and assume the shorter parallel chord to be on the positive y side.
All angles are measured from the positive x-axis. By thus fixing the coordinate
system, each body mi, i = 1, 2, 3, 4, is located in quadrant i at initial position
qi(0) = (xi(0), yi(0)). Then

(3) x1(0) = −x2(0), x3(0) = −x4(0), y1(0) = y2(0), y3(0) = y4(0).

To form a fixed point of system (1), the bodies mi, i = 1, 2, 3, 4, must satisfy the
initial conditions

q̈i(0) = q̇i(0) = 0, i = 1, 2, 3, 4.

Using equation (1) and eliminating the duplications given by linearly dependent
equations, we are led to the linear homogeneous system

(4) Ax = 0,

where A =

[
q12 q13 + q14

q31 + q32 q34

]
, x = (m,M)T , and, for i, j = 1, 2, 3, 4, i �= j,

(5) qij =
xj − aijxi

(1− a2ij)
3/2

, aij = xixj + yiyj .

To prove the result, we will show that detA < 0, where

(6) detA = q12q34−(q13+q14)(q31+q32) = q12q34−q13q31−q13q32−q14q32−q14q31.

For this, we first express detA in terms of (5), and then convert the expression to
polar coordinates that avoid any rectangular configuration; i.e. take

x1 = cosα, y1 = sinα, x3 = cosβ, y3 = sinβ,
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1586 FLORIN DIACU AND BRENDAN THORN

with α ∈ (0, π/2) and β ∈ (π, 3π/2), but such that β − α �= π. Some long but
straightforward computations show that

detA =
cosα cosβ

16| cosα|3| cosβ|3| sinα|| sinβ|+

4 sin2 α sin2 β cosα cosβ[sin4(α+ β)− sin4(α− β)]

sin4(α− β) sin4(α+ β)
.

(7)

It is easy to see that on the above domains of α and β, detA is always negative,
so the only solution of system (4) is the trivial one, m = M = 0. �

Since relative equilibria can be generated only from fixed-point configurations by
giving the particle system a rotation (see [4] for a proof), an obvious consequence
of this result is the following statement.

Corollary 1. In the curved 4-body problem in S
2, there are no trapezoidal relative

equilibria generated from fixed points if the masses on each of the parallel sides are
equal.

4. Rectangular relative equilibria in S
2
and H

2

Since rectangular relative equilibria might exist in S
2 if they stay away from

great circles, we will further check this possibility. In H
2 we have no restrictions

such as the one for great circles in S
2, so we treat the positive and the negative

curvature simultaneously.

Theorem 2. In the curved 4-body problem in S
2 and H

2, the only spherical and
hyperbolic rectangular relative equilibria of equal masses, m1,m2,m3,m4 =: m > 0,
occur when the rectangular is a square.

Proof. We will show that the only possible spherical and hyperbolic rectangular
relative equilibria of equal masses in S

2 and H
2 are the squares, solutions whose

existence was already proved in [2].
Notice first that we can write the angles between the particles and the x-axis

viewed from the centre of the (Euclidean) rectangle in the plane z = c, c ∈ (−1, 0)∪
(0, 1) as

α1 = α, α2 = π − α, α3 = π + α, α4 = −α, α ∈ (0, π/2),

for the respective mi, i = 1, 2, 3, 4. We are seeking solutions of system (1) of the
form

q = (q1,q2,q3,q4),qi = (xi, yi, zi),

xi = r cos(ωt+ αi), yi = r sin(ωt+ αi), zi = z = (1− r2)1/2, i = 1, 2, 3, 4,
(8)

where ω is the angular velocity of the point masses and r is the radius of the circles
formed by the intersection of S2 or H2 with the plane that contains the rectangle,
which must be different from z = 0. Substituting a candidate solution of the form
(8) into system (1), we are led to the equations

ω2 = m
[−1− (σq1 · q2)]

(σr2 − 1)[σ − σ(σq1 · q2)2]3/2

+m
[−1− (σq1 · q3)]

(σr2 − 1)[σ − σ(σq1 · q3)2]3/2
+m

[1− (σq1 · q4)]

(σr2 − 1)[σ − σ(σq1 · q4)2]3/2
,

(9)
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ω2 = m
[1− (σq1 · q2)]

(σr2 − 1)[σ − σ(σq1 · q2)2]3/2

+m
[−1− (σq1 · q3)]

(σr2 − 1)[σ − σ(σq1 · q3)2]3/2
+m

[−1− (σq1 · q4)]

(σr2 − 1)[σ − σ(σq1 · q4)2]3/2
,

(10)

which must be simultaneously satisfied. By subtracting (9) from (10), we obtain

[σ − σ(σ(1− 2r2 cos2 α))2]3/2 = [σ − σ(σ(1− 2r2 sin2 α))2]3/2,

which is equivalent to cos2 α = sin2 α, therefore satisfied only for α = π/4. �

5. Rectangular orbits in S
3

In this section we consider the two possible types of spherical rectangular equal-
mass orbits in S

3: the positive elliptic, which has one elliptic rotation, and the
positive elliptic-elliptic, which has two elliptic rotations [5]. In the former case we
prove that rotopulsators of this kind exist only when the rectangle is a square. In
the latter case we show that these orbits must be square relative equilibria.

Theorem 3 (Positive elliptic rectangular rotopulsators). In the curved 4-
body problem in S

3, the only spherical rectangular positive elliptic equal-mass ro-
topulsators are the spherical square rotopulsators. The orbit rotates relative to the
plane wx, but has no rotation with respect to the planes wy,wz, xy, xz, and yz.

Proof. Consider equal masses, m1 = m2 = m3 = m4 := m > 0, and a candidate
solution (see Definition 1 in [5]) of the form

(11)

q = (q1,q2,q3,q4), qi = (wi, xi, yi, zi), i = 1, 2, 3, 4,

w1 = r cosα, x1 = r sinα, y1 = y, z1 = z,

w2 = r cos(α+ θ), x2 = r sin(α+ θ), y2 = y, z2 = z,

w3 = r cos(α+ π), x3 = r sin(α+ π), y3 = y, z3 = z,

w4 = r cos(α+ θ + π), x4 = r sin(α+ θ + π), y4 = y, z4 = z,

with r, α, y, z functions of t, with r2+y2+z2 = 1, and where θ �= 0 is a constant that
gives the angle between m1 and m2 viewed from the centre of the corresponding
Euclidean triangle. A solution of this form would obviously maintain a rectangular
configuration for all time since, if εij = qi · qj , i, j ∈ {1, 2, 3, 4}, i �= j, then

ε12 = ε34 = (1− y2 − z2) cos θ + y2 + z2 = (1− δz2) cos θ + δz2,

ε13 = ε24 = −(1− y2 − z2) + y2 + z2 = −1 + 2δz2,

ε14 = ε23 = −(1− y2 − z2) cos θ + y2 + z2 = (−1 + δz2) cos θ + δz2.

Moreover,

α̇ =
c

4m(1− y2 − z2)
=

c

4m(1− δz2)
,

where δ = γ2 + 1 and γ = y/z. Using Criterion 1 in [5], it follows that r, y, and z
must satisfy the system

(12)

⎧⎪⎨
⎪⎩
rα̈+ 2ṙα̇ = 0

ÿ = F (y, z, ẏ, ż)y

z̈ = F (y, z, ẏ, ż)z,
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1588 FLORIN DIACU AND BRENDAN THORN

where

F (y, z, ẏ, ż) = m

[
1− [(1− δz2) cos θ + δz2]

(1− [(1− δz2) cos θ + δz2]2)3/2
+

1− (−1 + 2δz2)

(1− [−1 + 2δz2]2)3/2

+
1− [(−1 + δz2) cos θ + δz2]

(1− [(−1 + δz2) cos θ + δz2]2)3/2

]
− ẏ2 + ż2 − (yż − ẏz)2

1− δz2
− c2

16m2(1− δz2)
,

and that the identity

(13)
mr sin θ

(ε212 − 1)3/2
=

mr sin θ

(ε214 − 1)3/2

must take place. But (13) is valid only for θ = π/2, so if solutions of the form (11)
exist, they must be spherical squares.

The first equation in (12) is identically satisfied, and from the second and third
we can conclude that yz̈ = ÿz, which implies yż− ẏz = k (constant). However, from
the angular momentum integrals we have that 4m(yż− ẏz) = cyz, so it follows that
k = cyz/4m. But a straightforward computation shows that cyz = 0, which implies

that yż − ẏz = 0 and, therefore, d
dt

y
z = 0 for z �= 0, so γ = y(t)/z(t) is a constant.

Next, we note that

sinα+ sin(α+ θ) + sin(α+ π) + sin(α+ θ + π)

= cosα+ cos(α+ θ) + cos(α+ π) + cos(α+ θ + π) = 0,
(14)

from which we can conclude that cwy = cwz = cxy = cxz = 0. This means that
the rectangle has no rotation relative to any plane apart from the wx-plane. The
energy relation takes the form

h =
2m[ẏ2 + ż2 − (yż − ẏz)2]

1− δz2
+

c2

8m(1− δz2)

− 2m2

[
q12

(1− q212)
1/2

+
q13

(1− q213)
1/2

+
q14

(1− q214)
1/2

]
,

(15)

and we can now write F as

F (z) = m

[
1− 2[(1− δz2) cos θ + δz2] + [(1− δz2) cos θ + δz2]3

(1− [(1− δz2) cos θ + δz2]2)3/2

+
1− 2(−1 + 2δz2) + (−1 + 2δz2)3

(1− (−1 + 2δz2)2)3/2

+
1− 2[(−1 + δz2) cos θ + δz2] + [(−1 + δz2) cos θ + δz2]3

(1− [(−1 + δz2) cos θ + δz2]2)3/2

]
− h

2m
.

So, since y(t) and z(t) are proportional to each other, we can reduce system (12)
to

(16)

{
ż = ν

ν̇ = F (z)z.

Thus, by applying the standard existence and uniqueness theorems, we see there
exists a large class of analytic positive elliptic square rotopulsators in S

3 for all
admissible values of the involved parameters. �

Theorem 4 (Positive elliptic-elliptic rectangular orbits). In the curved 4-
body problem in S

3, there are no equal-mass positive elliptic-elliptic rectangular
rotopulsators or relative equilibria.
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Proof. Consider equal masses, m1 = m2 = m3 = m4 := m > 0, and a candidate
solution (see Definition 2 in [5]) of the form
(17)

q = (q1,q2,q3,q4), qi = (wi, xi, yi, zi), i = 1, 2, 3, 4,

w1 = r cosα, x1 = r sinα, y1 = ρ cosβ, z1 = ρ sinβ,

w2 = r cosα, x2 = r sinα, y2 = −ρ cosβ, z2 = −ρ sinβ,

w3 = r cos(α+ a), x3 = r sin(α+ a), y3 = ρ cos(β + b), z3 = ρ sin(β + b),

w4 = r cos(α+ a), x4 = r sin(α+ a), y4 = −ρ cos(β + b), z4 = −ρ sin(β + b),

where r, ρ, α, β are functions of t, with r2+ρ2 = 1, and a, b �= 0 are constants. This
candidate solution would maintain a rectangular configuration all along the motion
since the quantities εij = qi · qj , i, j ∈ {1, 2, 3, 4}, i �= j, are

ε12 = ε34 = 2r2 − 1, ε14 = ε23 = r2 cos a− ρ2 cos b,

ε13 = ε24 = r2 cos a+ ρ2 cos b,

as long as the diagonals, corresponding to ε13 and ε24, are longer than the sides,
which depend on ε12, ε34, ε14, and ε23. Further computations show that

α̇ =
c1

4mr2
, β̇ =

c2
4mρ2

,

where c1 = cwx �= 0 and c2 = cyz �= 0. Using Criterion 2 in [5], we can conclude
that the equations of motion contain, among others, the equations

(18)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rα̈+ 2ṙα̇ = mr sin a
[1−(r2 cos a+(1−r2) cos b)2]3/2

+ mr sin a
[1−(r2 cos a−(1−r2) cos b)2]3/2

rα̈+ 2ṙα̇ = − mr sin a
[1−(r2 cos a+(1−r2) cos b)2]3/2

− mr sin a
[1−(r2 cos a−(1−r2) cos b)2]3/2

ρβ̈ + 2ρ̇β̇ = mρ sin b
[1−((1−ρ2) cos a+ρ2 cos b)2]3/2

− mρ sin b
[1−((1−ρ2) cos a−ρ2 cos b)2]3/2

ρβ̈ + 2ρ̇β̇ = − mρ sin b
[1−((1−ρ2) cos a+ρ2 cos b)2]3/2

+ mρ sin b
[1−((1−ρ2) cos a−ρ2 cos b)2]3/2

.

The above expressions of α̇ and β̇ show that the left hand sides in all equations
must be zero, so the system is satisfied only for a = 0, π and b = ±π/2. In all cases
it follows that ε14 = ε23 = ε24 = ε13, which implies that the diagonals are equal to
two of the sides. But this is not a proper spherical rectangle, so solutions of this
type don’t exist. �

6. Rectangular rotopulsators in H
3

In this final section we show that the only hyperbolic rectangular rotopulsators of
equal masses in H

3 are the negative elliptic square rotopulsators (see Definition 3 in
[5]). For this we also prove that negative hyperbolic and negative elliptic-hyperbolic
rectangular rotopulsators (see Definitions 4 and 5 in [5]) do not exist.

Theorem 5 (Negative elliptic rectangular rotopulsators). In the curved 4-
body problem in H

3, the only negative elliptic rectangular rotopulsators are the neg-
ative elliptic square rotopulsators. Moreover, these orbits rotate relative to the wx
plane, but have no rotation with respect to the planes wy,wz, xy, xz, and yz.
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1590 FLORIN DIACU AND BRENDAN THORN

Proof. Consider a candidate solution (see Definition 3 in [5]) of the form

(19)

q = (q1,q2,q3,q4), qi = (wi, xi, yi, zi), i = 1, 2, 3, 4,

w1 = r cosα, x1 = r sinα, y1 = y, z1 = z,

w2 = r cos(α+ θ), x2 = r sin(α+ θ), y2 = y, z2 = z,

w3 = r cos(α+ π), x3 = r sin(α+ π), y3 = y, z3 = z,

w4 = r cos(α+ θ + π), x4 = r sin(α+ θ + π), y4 = y, z4 = z,

where r, α, y, z are functions of t, with r2+y2−z2 = −1, and θ �= 0 is a constant that
measures the angle between m1 and m2 viewed from the centre of the Euclidean
rectangle. This candidate solution maintains a rectangular configuration for all
time since, if μij = qi · qj , i, j ∈ {1, 2, 3, 4}, i �= j, then

μ12 = μ34 = r2 cos θ − r2 − 1 = (z2 − y2 − 1) cos θ + y2 − z2,

μ13 = μ24 = −2r2 − 1 = 2z2 − 2y2 − 3,

μ14 = μ23 = −r2 cos θ − r2 − 1 = −(z2 − y2 − 1) cos θ + y2 − z2.

Moreover,

α̇ =
b

4mr2
.

Criterion 3 in [5] leads us to the system

(20)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ÿ = G(y, z, ẏ, ż)y,

z̈ = G(y, z, ẏ, ż)z,

rα̈+ 2ṙα̇ = mr sin θ
[(r2 cos θ−r2−1)2−1]3/2

− mr sin θ
[(−r2 cos θ−r2−1)2−1]3/2

,

rα̈+ 2ṙα̇ = − mr sin θ
[(r2 cos θ−r2−1)2−1]3/2

+ mr sin θ
[(−r2 cos θ−r2−1)2−1]3/2

,

where

G(y, z, ẏ, ż) = m

[
1 + μ12

(μ2
12 − 1)3/2

+
1 + μ13

(μ2
13 − 1)3/2

+
1 + μ14

(μ2
14 − 1)3/2

]

+
ż2 − ẏ2 + (yż − ẏz)2

z2 − y2 − 1
+

b2

16m2(z2 − y2 − 1)
.

(21)

The above expression of α̇ shows that the left hand sides of the last two equations
in system (20) are zero, so those equations are identically satisfied only if θ = ±π/2,
which implies that the candidate solution must be a spherical square.

From (20), we know that yz̈ = ÿz, which implies yż−ẏz = k (constant). However,
from the integrals of angular momentum we have that 4m(yż − ẏz) = cyz, so it
follows that k = cyz/4m. A simple computation shows that cyz = 0, therefore

yż − ẏz = 0, so d
dt

y
z = 0 for z �= 0. (Moreover, cwx �= 0 and cwy = cwz = cxy =

cxz = 0.) Consequently z(t) = γy(t), where γ is constant, so we can reduce (20) to
the system

(22)

{
ż = ν,

ν̇ = G(y, z, ẏ, ż)z.

Standard results of the theory of differential equations show the existence of so-
lutions for admissible initial value problems for the above system, so the negative
elliptic spherical square candidates are the only kinds of spherical rectangular so-
lutions. �
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Theorem 6 (Negative hyperbolic rectangular rotopulsators). In the curved
4-body problem in H

3, there are no negative hyperbolic rectangular rotopulsators.

Proof. Consider a solution candidate (see Definition 4 in [5]) of the form

(23)

q = (q1,q2,q3,q4), qi = (wi, xi, yi, zi), i = 1, 2, 3, 4,

w1 = w, x1 = x, y1 = η sinh β, z1 = η coshβ,

w2 = −w, x2 = −x, y2 = η sinh β, z2 = η coshβ,

w3 = w, x3 = x, y3 = η sinh(β + φ), z3 = η cosh(β + φ),

w4 = −w, x4 = −x, y4 = η sinh(β + φ), z4 = η cosh(β + φ),

where w, x, η, β are functions of t, φ �= 0 is a constant that measures the angle
between m1 and m2, and w2 + x2 − η2 = −1. This candidate solution maintains a
rectangular orbit since, if νij = qi · qj , then

ν12 = ν34 = 1− 2η2 = −2w2 − 2x2 − 1,

ν13 = ν24 = η2 − 1− η2 coshφ = w2 + x2 − (w2 + x2 + 1) coshφ,

ν14 = ν23 = −η2 + 1− η2 coshφ− w2 − x2 − (w2 + x2 + 1) coshφ.

Notice also that

β̇ =
a

4mη2
=

a

4m(w2 + x2 + 1)
.

Criterion 4 in [5] shows that the equations of motion take the form

(24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẅ1 = K(w, x, ẇ, ẋ)w1

ẅ2 = K(w, x, ẇ, ẋ)w2

ẍ1 = K(w, x, ẇ, ẋ)x1

ẍ2 = K(w, x, ẇ, ẋ)x2

ηβ̈ + 2η̇β̇ = mη sinhφ
[(η2−1−η2 cosφ)2−1]3/2

+ mη sinhφ
[(η2−1+η2 cosφ)2−1]3/2

ηβ̈ + 2η̇β̇ = − mη sinhφ
[(η2−1−η2 cosφ)2−1]3/2

− mη sinhφ
[(η2−1+η2 cosφ)2−1]3/2

,

where

K(w, x, ẇ, ẋ) = m

[
1 + ν12

(ν212 − 1)3/2
+

1 + ν13
(ν213 − 1)3/2

+
1 + ν14

(ν214 − 1)3/2

]

+
ẇ2 + ẋ2 + (wẋ− ẇx)2

w2 + x2 + 1
+

a2

16m2(w2 + x2 + 1)
.

Notice that for the above expression of β̇, the left hand sides of the last two equations
in (24) are zero, so the right hand sides must be zero too. But that happens only
for φ = 0, which does not correspond to a proper hyperbolic rectangle. This remark
completes the proof. �

Theorem 7 (Negative elliptic-hyperbolic rectangular rotopulsators). In
the curved 4-body problem in H

3 there are no negative elliptic-hyperbolic rectangular
rotopulsators.
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Proof. Consider a solution candidate (see Definition 5 in [5]) of the form

(25)

q = (q1,q2,q3,q4), qi = (wi, xi, yi, zi), i = 1, 2, 3, 4,

w1 = r cosα, x1 = r sinα, y1 = η sinh β, z1 = η coshβ,

w2 = −r cosα, x2 = −r sinα, y2 = η sinh β, z2 = η coshβ,

w3 = r cosα, x3 = r sinα, y3 = η sinh(β + φ), z3 = η cosh(β + φ),

w4 = −r cosα, x4 = −r sinα, y4 = η sinh(β + φ), z4 = η cosh(β + φ),

with r, η, α, β functions of t, r2 − η2 = −1, zi ≥ 1, i = 1, 2, 3, 4, and φ �= 0. This
candidate solution maintains a rectangular configuration since, if δij = qi ·qj , then

δ12 = δ34 = −2r2 − 1, δ13 = δ24 = r2 − η2 coshφ,

δ14 = δ23 = −r2 − η2 coshφ.

Also notice that

α̇ =
d1

4mr2
, β̇ =

d2
4mη2

.

The equations of motion reduce to the system

(26)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = μ

μ̇ = r
{
(1 + r2)

[ d2
1

16m2r4 − d2
2

16m2(1+r2)2

]
+ ṙ2

1+r2 + m[−2(1+r2)]
(δ212−1)3/2

+ m[(1+r2)(1−coshφ)]
(δ213−1)3/2

+ m[−(1+r2)(1+coshφ)]
(δ214−1)3/2

}
rα̈+ 2ṙα̇ = 0

ηβ̈ + 2η̇β̇ = mη sinhφ
[(r2−η2 cosφ)2−1]3/2

+ mη sinhφ
[(r2+η2 cosφ)2−1]3/2

.

To prove the nonexistence of the rectangular orbits it is enough to focus on the last
equation above. The expression of β̇ shows that the left hand side of this equation
is zero. But the right hand side is zero only for φ = 0, which does not correspond
to a proper hyperbolic rectangle. This remark completes the proof. �

Acknowledgements

The authors acknowledge the partial support of a Discovery Grant (first author)
and an USRA Fellowship (second author), both awarded by NSERC of Canada.

References

[1] Florin Diacu, On the singularities of the curved n-body problem, Trans. Amer. Math. Soc. 363

(2011), no. 4, 2249–2264, DOI 10.1090/S0002-9947-2010-05251-1. MR2746682 (2012c:70013)
[2] Florin Diacu, Polygonal homographic orbits of the curved n-body problem, Trans. Amer. Math.

Soc. 364 (2012), no. 5, 2783–2802, DOI 10.1090/S0002-9947-2011-05558-3. MR2888228
[3] Florin Diacu, Relative equilibria in the 3-dimensional curved n-body problem, Memoirs

Amer. Math. Soc. 228 (2014), no. 1071, vi+80 pp. MR3185362
[4] Florin Diacu, Relative equilibria of the curved N-body problem, Atlantis Studies in Dynamical

Systems, vol. 1, Atlantis Press, Paris, 2012. MR2976223
[5] Florin Diacu and Shima Kordlou, Rotopulsators of the curved N-body problem, J. Differential

Equations 255 (2013), no. 9, 2709–2750, DOI 10.1016/j.jde.2013.07.009. MR3090075
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