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Universitat Autònoma de Barcelona
Bellaterra, Barcelona, Spain
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Abstract. We consider the motion of point masses given by a natural extension
of Newtonian gravitation to spaces of constant positive curvature, in which the
gravitational attraction between the bodies acts along geodesics. We aim to explore
the spectral stability of tetrahedral orbits of the corresponding 4-body problem in
the 2-dimensional case, a situation that can be reduced to studying the motion of
the bodies on the unit sphere. We first perform some extensive and highly precise
numerical experiments to find the likely regions of stability and instability, relative
to the values of the masses and to the latitude of the position of the three equal
masses. Then we support the numerical evidence with rigorous analytic proofs in
the vicinity of some limit cases in which certain masses are either very large or
negligible, or the latitude is close to zero.
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1. Introduction

The goal of this paper is to study the spectral stability of tetrahedral orbits in the
2-dimensional positively curved 4-body problem, i.e. when four point particles of posi-
tive masses move on the unit sphere S2 according to a gravitational law that naturally
extends the Newtonian attraction to spaces of constant curvature. This is a partic-
ular case of the curved n-body problem, n ≥ 2, which has been recently derived in a
suitable setting, both for constant positive curvature (2- and 3-dimensional spheres)
and for constant negative curvature (2- and 3-dimensional hyperbolic spheres), [16],
[17], [9], [10]. In intrinsic terms, we should properly refer to the orbits studied here as
triangles with a mass at the centre. But they can be seen as tetrahedra if we regard
S2 as immersed in R3. So, for simplicity, we will call these motions tetrahedral orbits.

The 2-body dates back to the 1830s, when János Bolyai and Nikolai Lobachevsky
introduced it in the hyperbolic space H3, [4], [34]. The equations of motion follow
from the potential given by the cotangent of the spherical distance, for positive cur-
vature, and the hyperbolic cotangent of the hyperbolic distance, when the curvature
is negative. For zero curvature, the classical Newtonian equations of the n-body
problem are recovered. The analytic expression of the potential is due to Ernest
Schering, [37], [38], for negative curvature, and to Wilhelm Killing, [23], [24], [25],
for positive curvature. The problem also became established due to the results of
Heinrich Liebmann, [29], [30], [31]. The attempts to extend the problem to spaces of
variable curvature started with Tullio Levi-Civita, [27], [28], Albert Einstein, Leopold
Infeld, Banesh Hoffman, [19], and Vladimir Fock, [20], and led to the equations of
the post-Newtonian approximation, which are useful in many applications, including
the global positioning system. But unlike in the case of constant curvature, these
equations are too large and complicated to allow an analytic approach.

It is important to ask why the above extension of the Newtonian potential to
spaces of constant curvature is natural, since there is no unique way of generalizing
the classical equations of motion to curved space and recover them when the space
flattens out. The main reason is that the cotangent potential is, so far, the only
one known to satisfy the same basic properties as the Newtonian potential in its
simplest possible setting, that of one body moving around a fixed centre, the so-called
Kepler problem, [26]. Two basic properties stick out in this case: the potential of
the classical Kepler problem is a harmonic function in R3, i.e. it satisfies Laplace’s
equation, and it generates a central field in which all bounded orbits are closed,
a result proved by Joseph Louis Bertrand in 1873, [3]. The cotangent potential
satisfies Bertrand’s property in curved spaces too and, in the 3-dimensional case, is
a solution of the Laplace-Beltrami equation, [10], [26], the natural generalization of
Laplace’s equation to Riemannian and pseudo-Riemannian manifolds, which include
the spheres we consider here.
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In the Euclidean case, the Kepler problem and the 2-body problem are equivalent.
The reason for this overlap is the existence of the linear momentum and centre of
mass integrals. It can be shown with their help that the equations of motion are
identical, whether the origin of the coordinate system is fixed at the centre of mass
or fixed at one of the two bodies. For nonzero curvature, however, things change. The
equations of motion of the curved n-body problem lack the linear momentum and
centre of mass integrals, which prove to characterize only the Euclidean case, [10],
[11], [16]. Consequently the curved Kepler problem and the curved 2-body problem
are not equivalent anymore. It turns out that, as in the Euclidean case, the curved
Kepler problem is Liouville integrable, but, unlike in the Euclidean case, the curved
2-body problem is not, [41], [42], [43]. As expected, the curved n-body problem is
not integrable for n ≥ 3, a property also known to be true in the Euclidean case.

A detailed bibliography and a history of these developments appear in [10]. Notice
also that the study we perform here in S2 is not restrictive since the qualitative
behaviour of the orbits is independent of the value of the positive curvature, [10],
[16].

The current paper is a natural continuation of some ideas developed in [35], which
studied the stability of Lagrangian orbits (rotating equilateral triangles) of the curved
3-body problem on the unit sphere, S2, both when the mutual distances remain con-
stant and when they vary in time. The former orbits, called relative equilibria, are a
particular case of the latter, and they are part of the backbone towards understanding
the equations of motion in the dynamics of particle systems, [10], [14]. Unlike in the
classical Newtonian 3-body problem, where the motion of Lagrangian orbits takes
place in the Euclidean plane, the Lagrangian orbits of S2 exist only when the three
masses are equal, [16], [10]. But equal-mass classical Lagrangian orbits are known to
be unstable, so it was quite a surprise to discover that, in S2, the Lagrangian relative
equilibria exhibit two zones of linear stability. This does not seem to be the case
for constant negative curvature, i.e. in the hyperbolic plane H2, as some preliminary
numerical experiments show. Consequently, the shape of the physical space has a
strong influence over particle dynamics, therefore studies in this direction promise
to lead to new connections between the classical and the curved n-body problem.

The result obtained in [35] thus opened the door to investigations into the stability
of other orbits characteristic to S2, and tetrahedral solutions came as a first natural
choice, since the experience accumulated in the previous study could be used in this
direction, as we will actually do here.

The paper is organized as follows. In Section 2, we define the tetrahedral solutions
in S2, namely orbits of the 4-body problem with one body of mass, m1, fixed at the
north pole and the other three bodies of equal mass, m, located at the vertices of a
rotating equilateral triangle orthogonal to the z-axis (when S2 is seen as immersed
in R3 with the usual coordinates x, y, z). If the triangle is above the equator, z > 0,
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the tetrahedral relative equilibria exist for any given masses. If the triangle is below
the equator, the relative equilibria exist only for certain values of the masses. To
approach the spectral stability of the relative equilibria, we compute in Section 3
the Jacobian matrix of the vector field at the relative equilibria, which become fixed
points in the rotating frame.

The study of the stability starts in Section 4, where we analyze three limit prob-
lems, first taking the mass at the north pole m1 = 0, i.e. Γ := m1/m = 0. In this
case, the tetrahedral relative equilibria are spectrally stable for z < 0 and unstable
for z > 0. In other words, the tetrahedral relative equilibria for which the three
equal masses rotate above the equator of the sphere are unstable, whereas when
these bodies rotate below the equator the relative equilibria are spectrally stable. In
the second limit problem the mass m1 is very large when compared to the other three
masses. Taking ε := 1/Γ = m/m1, in the limit case ε → 0, the problem reduces to
three copies of 2-body problems, formed by the mass at the north pole and a body
of zero mass. The changes in this degenerate situation for small ε > 0 are studied in
Section 6, where we also consider the third limit problem, for which we take z = 0
and let the parameters Γ or ε and z move away from zero. To reach this point,
we previously perform in Section 5 a deep and highly precise numerical analysis to
determine the regions of stability according to the values of z and of the masses.
Our main results occur in Section 6, where using the Newton polygon (including the
degenerate cases) and the Implicit Function Theorem we study all bifurcations that
appear when the limit problems are perturbed and draw rigorously proved conclu-
sions about the spectral stability of tetrahedral relative equilibria. We end this paper
with a full bifurcation diagram and an outline of future research perspectives.

We would like to emphasize at the end of this introductory section that, apart
from the known applications of this problem, which were duly described in [10], the
methodology we use here can be employed to unveil stability properties near limit
problems, even in the presence of strong degeneracies, a notable technique that could
be applied to a large class of problems.

2. Tetrahedral orbits in S2

Consider four bodies of masses m1,m2,m3,m4 > 0 moving on the unit sphere S2,
which has constant curvature 1. Then the natural extension of Newton’s equations
of motion from R2 to S2 is given by

(1) q̈i =
4∑

j=1,j 6=i

mj[qj − (qi · qj)qi]
[1− (qi · qj)2]3/2

− (q̇i · q̇i)qi, qi · qi = 1, i = 1, 2, 3, 4,

where the vector qi = (xi, yi, zi) gives the position of the body of mass mi, i =
1, 2, 3, 4, and the dot, · , denotes the standard scalar product of R3, [17], [36]. These
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equations are known to be Hamiltonian, [10]. We use here the standard arc-distance
of S2. So if the points of coordinates qi and qj belong to S2, the distance between
them is given by cos−1(qi · qj).

By a tetrahedral solution we mean an orbit in which one body, say m1, is fixed
at the north pole (0, 0, 1), while the other bodies, m2 = m3 = m4 =: m, lie at the
vertices of an equilateral triangle that rotates uniformly in a plane parallel with the
equator z = 0. In other words, we are interested in solutions of the form

x1 = 0, y1 = 0, z1 = 1,

x2 = r cosωt, y2 = r sinωt, z2 = ±(1− r2)1/2,

x3 = r cos(ωt+ 2π/3), y3 = r sin(ωt+ 2π/3), z3 = ±(1− r2)1/2,

x4 = r cos(ωt+ 4π/3), y4 = r sin(ωt+ 4π/3), z4 = ±(1− r2)1/2,

where r and ω are constant, r denotes the radius of the circle in which the triangle
rotates, and ω represents the angular velocity of the rotation (see Figure 1). A
straightforward computation shows that

ω2 =
24m

r3(12− 9r2)3/2
± m1

r3(1− r2)1/2
=: g(r),

where we take the plus or the minus sign depending on whether z := z2 = z3 = z4 is
positive or negative, respectively.

Figure 1. A tetrahedral solution of the curved 4–body problem. For
visualization purposes alone, we draw the dotted curves corresponding
to the equator and to the non-geodesic circle (a parallel of the sphere)
containing the three equal masses. The solid lines that connect the 4
masses on S2 are arcs of the geodesics along which the gravitational
force acts.
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Definition 1. A relative equilibrium is a particular solution of the curved n–body
problem in which the mutual distances between particles, measured in the metric of
the manifold, are constant in time. So the entire particle system rotates like a rigid
body.

Remark 1. It is easy to verify that the periodic tetrahedral orbits in S2 are relative
equilibria.

The goal of this paper is to provide a complete study of the spectral stability of
these periodic orbits. For this purpose, we will use rotating coordinates, in which
the above relative equilibria become fixed points for the equations of motion. Recall
that a fixed point is linearly stable if all orbits of the tangent flow are bounded
for all time, and it is spectrally stable if no eigenvalue is positive or has positive
real part. Linear stability implies spectral stability, but not the other way around.
Nevertheless, spectral stability fails to imply linear stability only for matrices with
multiple eigenvalues whose associated Jordan block is not diagonal (see, e.g., [22]).

To achieve our goal, we further consider the coordinate and time-rescaling trans-
formations

qi = (xi, yi, zi)→ Qi = (Xi, Yi), t = r3/2τ,

xi = rXi, yi = rYi, zi = ±[1− r2(X2
i + Y 2

i )]1/2, i = 1, 2, 3, 4.

A simple computation shows that if we choose ωt = Ωτ, the angular velocity relative
to the new time variable τ takes the form

Ω = ±
[

24m

(12− 9r2)3/2
± m1

(1− r2)1/2

]1/2

.

With the above transformations, and using the fact that

X ′i = r1/2ẋi, Y
′
i = r1/2ẏi, X

′′
i = r2ẍi, Y

′′
i = r2ÿi, i = 1, 2, 3, 4,

the equations of motion become

Q′′i = r3

4∑
j=1,j 6=i

mj(Qj − fijQi)

(1− f 2
ij)

3/2
− r3(q̇i · q̇i)Qi, i = 1, 2, 3, 4,

where ′= d
dτ

and fij =(qi · qj)=r2(XiXj + YiYj)+zizj.
We further introduce the rotating coordinates ξi, ηi, i = 1, 2, 3, 4, with(

Xi

Yi

)
= R(Ωτ)

(
ξi
ηi

)
, i = 1, 2, 3, 4, where R(Ωτ) =

(
cos Ωτ − sin Ωτ
sin Ωτ cos Ωτ

)
.

Then ξiξj + ηiηj = XiXj + YiYj, i, j ∈ {1, 2, 3, 4}, expressions that take the value 1
when i = j. Moreover,(

ξ′′i
η′′i

)
= Ω2

(
ξi
ηi

)
+ 2Ω

(
η′i
−ξ′i

)
+R−1(Ωτ)

(
X ′′i
Y ′′i

)
, i = 1, 2, 3, 4.
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A straightforward computation shows that the new equations of motion have the
form(

ξ′′i
η′′i

)
= 2Ω

(
η′i
−ξ′i

)
+Ω2

(
ξi
ηi

)
−r2hi

(
ξi
ηi

)
+

4∑
j=1
j 6=i

mjg
− 3

2
i,j

[(
ξj
ηj

)
−fi,j

(
ξi
ηi

)]
,(2)

where

(3) Ω2 =
24m

(12− 9r2)3/2
± m1

(1− r2)1/2
,

pi,j = ξiξj + ηiηj, ρ2
i = ξ2

i + η2
i zi,j = (1− r2ρ2

i )(1− r2ρ2
j),

gi,j = ρ2
i + ρ2

j − 2si,jpi,j
√
zi,j − r2(p2

i,j + ρ2
i ρ

2
j),

hi = Ω2ρ2
i + 2Ω(ξiη

′
i − ηiξ′i) + ((ξ′i)

2 + (η′i)
2) +

r2

1− r2ρ2
i

(ξiξ
′
i + ηiη

′
i)

2,

fi,j = r2(ξiξj + ηiηj) + zizj = r2(ξiξj + ηiηj) + si,j
√
zi,j,

si,j = sign(zizj) =

{
sign(z) := s, i = 1 or j = 1,

1, i, j 6= 1,

which implies that z = s
√

1− r2.
Before we begin to study the stability of the tetrahedral relative equilibria, we

must see for what values of the masses they exist. For this purpose, we will prove
the following result.

Proposition 1. Consider a tetrahedral orbit of the curved 4-body problem in S2 with
the mass m1 > 0 fixed at the north pole (0, 0, 1) and the masses m2 = m3 = m4 =:
m > 0 fixed at the vertices of an equilateral triangle that rotates uniformly on S2 in a
plane parallel with the equator z = 0. Then, if the triangle is above the equator, i.e.
0 < z < 1, tetrahedral relative equilibria exist for any given masses. If the triangle
is below the equator, i.e. −1 < z < 0, then

(i) if 0 < m1 <
16m
9
√

3
, for any positive value of Ω2 up to a maximum it can attain,

tetrahedral relative equilibria exist. In this case, if 0 < m1 ≤ m√
3
, for any positive

value of Ω2, such that 0 < Ω2

m
< 1√

3
− m1

m
, there is a unique z with −1 < z < 0

corresponding to a relative equilibrium. Otherwise, there are two distinct values of
z ∈ (−1, 0), each corresponding to a different relative equilibrium;

(ii) if m1 >
16m
9
√

3
, then there are no tetrahedral relative equilibria.

Proof. From equation (3), a tetrahedral relative equilibrium must satisfy the condi-
tion

Ω2 = m

(
Γ

z
+

8√
3(1 + 3z2)3/2

)
, where z = ±

√
1− r2, Γ =

m1

m
.
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Figure 2. Plot of F (u,Γ), u ∈ [0, 1], for six values of Γ. From top to
bottom, we took Γ = 0.3, 1/

√
3, 0.7, 16/(9

√
3), 1.2 and 1.5, respec-

tively.

For 0 < z < 1, since the right hand side is positive, the statement in the proposition
is obvious. For −1 < z < 0, we introduce u = −z. Then the equation above can be
written as

Ω2 = mF (u; Γ),(4)

where

F (u; Γ) = −Γ

u
+

8√
3(1 + 3u2)3/2

.

The behaviour of F (u; Γ) for different values of Γ is summarized in the Figure 2. The
critical points of F (u; Γ) satisfy Γ = g(u) where

g(u) =
72u3

√
3(1 + 3u2)5/2

.

The function g(u) has a maximum at u = 1/
√

2 equal to 144/(25
√

15). For any
0 < Γ < 144/(25

√
15) there exist values 0 < u1 < 1/

√
2 < u2 such that dF

du
= 0. It is

clear that F has a maximum at u1 and a minimum at u2. Moreover,

F (u1,Γ) =
Γ(1− 6u2

1)

9u3
1

and
dF

du
(1/
√

6; Γ) = 6

(
Γ− 16

9
√

3

)
.

If Γ > 16
9
√

3
, then u1 > 1/

√
6. Therefore F (u1,Γ) < 0 and F (u,Γ) < 0 for any

u ∈ (0, 1). Hence equation (4) has no real solutions and there are no tetrahedral
relative equilibria. If Γ < 16

9
√

3
, then F (u1,Γ) > 0 and for any value of Ω2 smaller

than the maximum of mF (u1; Γ), so equation (4) has real solutions. In this case,
if 0 < Γ < 1√

3
and Ω2/m < F (1; Γ) = 1/

√
3 − Γ, there is a unique real solution
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u ∈ (0, 1), otherwise there are exactly two real solutions 0 < uR1 < uR2 < 1 that
correspond to relative equilibria.

So, if 1/
√

3<Γ<16/(9
√

3), we can say that for any positive value of Ω2 such that

0 <
Ω2

m
<

Ω2
a

m
, Ω2

a := max{F (r,Γ)|r ∈ (0, 1)},

there are two values of r, 0 < rE1 < rE2 < 1 with Ω2 = mF (r,Γ). If Γ > 16/(9
√

3),
there are no tetrahedral relative equilibria. This remark completes the proof. �

3. The characteristic polynomial

The goal of this section is to obtain the characteristic polynomial, which will allow
us to compute the spectrum of the Jacobian matrix corresponding to a tetrahedral
relative equilibrium. The computations we perform and the conclusions we draw here
will prepare the terrain for understanding the stability of the orbit relative to Γ and z.

In equations (2), which describe the motion in rotating coordinates, the tetrahedral
relative equilibrium becomes the fixed point(
ξ1

η1

)
=

(
0
0

)
,

(
ξ2

η2

)
=

(
1
0

)
,

(
ξ3

η3

)
=

(
−1/2√

3/2

)
,

(
ξ4

η4

)
=

(
−1/2

−
√

3/2

)
,

ξ′i = η′i = 0, i = 1, 2, 3, 4.

It is now convenient to introduce the linear operators Sd and So acting on 2 × 2
matrices. Sd changes the signs of the elements on the diagonal, whereas So changes
the signs of the other elements.

Let f be the vector field associated to system (2), seen as a first order system
of differential equations, when we introduce the first derivatives as new variables.
For convenience, we call it the vector field corresponding to system (2). Long, but
straightforward, computations show that the Jacobian matrix corresponding to the
vector field f at the fixed point is given by the 16× 16 matrix

Df =

(
0 I8

A B

)
,

where, as usual, In denotes the identity matrix in dimension n and

B̃ = diag(B1, B2, B3, B4), B = ΩB̃, A = F + C, F = Ω2 diag(F1, F2, F3, F4),

B1 =

(
0 2
−2 0

)
, B2 =2

(
0 z2

−1 0

)
, B3 =

1

2

(√
3(z2−1) 3+z2

−1−3z2
√

3(1−z2)

)
, B4 =Sd(B3),

F1 =I2, F2 =

(
−1+4z2 0

0 0

)
, F3 =

1

4

(
−1+4z2

√
3(1−4z2)√

3(1−4z2) −3+12z2

)
, F4 =So(F3),
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C =


mC11 mC12 mC13 mC14

m1C21 XC22 XC23 XC24

m1C31 XC32 XC33 XC34

m1C41 XC42 XC43 XC44

 , X = mG−5/2,

(5) G =
3

4
(1 + 3z2),

C12 =

(
−2 0
0 1

)
, C13 =

1

4

(
1 3

√
3

3
√

3 −5

)
, C14 =So(C13),

C21 =

(
−2z2 0

0 1

)
, C31=

1

4

(
3− 2z2

√
3(1+2z2)√

3(1+2z2) 1− 6z2

)
, C41 =So(C31),

C23 =
3

8

(
−1 + 9z2 − 18z4

√
3(1− z2 + 6z4)

3
√

3(−1 + 3z2) 5− 3z2

)
, C24 =So(C23),

C32=
3

8

(
−9z4−6z2+5

√
3(3z4+4z2−1)

3
√

3(3z4−2z2+1) −9z4 + 12z2 − 1

)
,

C34=
1

4

(
3+9z2 3

√
3(3z4 − 5z2 + 2)

0 3− 27z4

)
, C42 =So(C32), C43 =So(C34),

C11 =
3z

2
I2, C22 =

3

4

(
1− 15z2 0

0 −2 + 12z2

)
,

C33 =
3

16

(
−5 + 21z2 −3

√
3(1− 9z2)

−3
√

3(1− 9z2) 1− 33z2

)
, C44 = So(C33).

So, we can write

(6) Ω2 =
m1

z
+ 3mG−3/2.

The eigenvalues of Df are the zeroes of the polynomial

det(−ζ2I8 + ζB + A) = 0.

Let us define µ such that ζ = Ωµ. It is worth pointing out that this is equivalent to
introducing a scaling of time such that the periodic orbits have period 2π. Then the
characteristic equation becomes

(7) p(µ) = det(−Ω2µ2I8 + µΩB + A) = 0.

Let us introduce

(8) S := −Ω2µ2I8 + µΩB + F + C = P (µ) + C,
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where

(9) P (µ) := −Ω2µ2I8 + µΩB + F.

Then
P (µ) = Ω2diag(P1(µ), P2(µ), P3(µ), P4(µ)),

where

P1(µ) =

(
1− µ2 2µ
−2µ 1− µ2

)
, P2(µ)=

(
−1− µ2 + 4z2 2µz2

−2µ −µ2

)
,

P3(µ) =

(
−µ2 −

√
3

2
µ(1− z2)− 1

4
+ z2 µ

2
(3 + z2) +

√
3(1

4
− z2)

−µ
2
(1 + 3z2) +

√
3(1

4
− z2) −µ2 +

√
3

2
µ(1− z2)− 3

4
+ 3z2

)
,

and P4(µ) follows from P3(µ) by changing the sign in
√

3. Then p(µ) = det(S).
Before computing p(µ), it is convenient to perform some reduction and introduce

additional notations. The first integral associated to the energy gives rise to two
zero eigenvalues, corresponding to the factor µ2 in the polynomial p(µ). The SO(3)
invariance gives rise to the eigenvalues ±i corresponding to the factor µ2 + 1 (see for
instance Chapter 2, section 18 in [45] for similar arguments). So we can ignore these
terms in our analysis. Furthermore, either from a simple direct symbolic computa-
tion, or remembering that the starting system is Hamiltonian, it is easy to conclude
that the characteristic polynomial p(µ) in (7) contains only even powers of µ. Hence,
introducing the notation

(10) M =: µ2,

we obtain a simpler expression. We can further reduce the problem by considering a
unique mass parameter. In general, we can discuss the stability in terms of the mass
ratio Γ = m1/m, thus skipping the dependence on m. However, to study some limit
cases, it will be also useful to consider ε = m/m1 instead of Γ. From now on, using
the notation introduced in (10), we will simply denote the previous p(µ) by p̂(M),
after changing the variable and skipping the factors M and M + 1.

The characteristic polynomial p̂(M) has degree 6 in M , and its coefficients are
polynomials of degree 8 in Γ that depend on z. The dependence on z is not of
polynomial type due to the factors G−5/2 and Ω2 (see equations (5) and (6)). An
important difference relative to the curved 3-body problem is that these factors
cannot be easily “cancelled” when multiplying by a power of Ω2, unless we take
m1 = 0. Introducing

(11) D = D(z) = G−5/2 = α(1 + 3z2)−5/2, with α =
32

9
√

3
,

the expression of p̂(M) becomes a huge polynomial, which can be fortunately sim-
plified in part.



12 Florin Diacu, Regina Mart́ınez, Ernesto Pérez-Chavela, and Carles Simó

Indeed, the factor F = 4zΩ2 appears in p̂(M) with multiplicity 3. Skipping it and
further renaming the quotient as p̂(M), we obtain a polynomial of degree 6 in M ,
whose coefficients have degrees 21 in z and 5 in D(z) and Γ. It is clear that the
dependence on D can be decreased to degree 1, but then the degree in z increases.
No other obvious factors appear. Whenever necessary, we will make the dependence
on the other variables explicit by writing p̂(M,Γ, z,D(z)).

As it is usually done in the 3-body problem, we can look for values of z and Γ
related to bifurcations of the zeroes of p̂(M) that lead to changes in the spectrum:
either M = 0 is a root or p̂(M) has a negative root with multiplicity at least equal to
two. In the former case, after dividing by the factor z2, the polynomial p̂(0,Γ, z,D(z))
has degrees 19, 5, and 3 relative to the variables z,D(z), and Γ, respectively. In the
latter case, after dividing by the factor F 27z25D(z)2, the resultant of p̂(M) and
d
dM
p̂(M) produces a polynomial, denoted by res(Γ, z,D(z)), that has degrees 104,

25, and 13 in z,D(z), and Γ, respectively.
For convenience, we recall here the definition of the resultant of two polynomials.

Definition 2. Let P and Q be two polynomials that have the roots a1, a2, . . . , aν and
b1, b2, . . . , bη, respectively. The resultant of P and Q, denoted by Res(P,Q), is given
by Res(P,Q) :=

∏ν
i=1

∏η
j=1(ai − bj).

Remark 2. P and Q have a common root if and only if Res(P,Q) = 0.

Remark 3. If the polynomials P and Q, depending on M , also depend on additional
parameters, then we change Res to res to recall that the resultant still depends on
them, as done three lines before Definition 2. More precisely, in our present case, as
the polynomials p̂(M) and dp̂/dM(M) still depend on the parameter Γ and on the
variable z, directly and through the function D(x), after elimination of the variable
M , we shall write

(12) res(Γ, z,D(z)) = Res(p̂(M), dp̂/dM(M)).

We shall proceed in a similar way with other resultants introduced in section 6.

It may happen that p̂(M), p̂(0,Γ, z,D(z)), or res(Γ, z,D(z)) have some other non-
trivial factor. But the dependence in D makes it hard to recognize.

Hence, to study the stability problem, we will combine a numerical scan of the
changes in the zeroes Mi, i = 1, . . . , 6, of the polynomial equation p̂(M) = 0, for
some grids in Γ and z, with the theoretical analysis done in the vicinity of some limit
problems, which we will next introduce.
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4. Three limit problems

Before proceeding with our numerical computations, it is worth studying the be-
haviour of the system in some simple limit cases, which we will later use to achieve
our main goal of understanding the spectral stability of tetrahedral orbits.

4.1. The restricted problem. If we take m1 = 0, which is equivalent to Γ = 0,
the matrix S given by equation (8) has the block structure

S =

(
Ω2P1(µ) +mC11 C̃

0 Z(µ)

)
,

where

Ω2P1(µ) +mC11 =

(
Ω2(1− µ2) + 3m

2
z 2µΩ2

−2µΩ2 Ω2(1− µ2) + 3m
2
z

)
and Z(µ) is a 6×6 matrix such that all the terms have either a factor Ω2 = 3mG−3/2

or a factor X = mG−5/2 (see equations (5) and (6)). Then

det(S) = det(Ω2P1(µ) +mC11) det(Z(µ)).

From the matrix Z(µ) we recover the eigenvalues, and so the spectral stability, of
the Lagrangian orbits of the curved 3-body problem studied in [35]. These results,
to be used in the next section, can be summarized as follows.

The determinant of Z(µ) is a polynomial in M . After eliminating the factors M ,
M + 1, and the exact solution we denote by M∗ = −2z2(5− 3z2)/(1 + 3z2) because
of its special character, we obtain the polynomial Q(M) of degree 3 in M (see [35]),
with polynomial coefficients in r2 = 1 − z2. In [35] it was proved that there exist
three values of r, 0 < r1 < r2 < r3 < 1, where Hamiltonian-Hopf bifurcations occur,
such that, for r ∈ (r1, r2) ∪ (r3, 1), the zeroes of Q are negative, and consequently
those Lagrangian orbits of the curved 3-body problem are linearly (and not only
spectrally) stable. For r ∈ (0, r1) ∪ (r2, r3), Q has a pair of complex zeroes, so the
corresponding Lagrangian orbits are unstable. (For more details about Hamiltonian-
Hopf bifurcations see, e.g., [44].)

In the restricted case, the stability of the zero-mass body located at (0, 0, 1) can
be obtained by studying the matrix Ω2P1(µ) + mC11. A simple computation shows
that

1

Ω4
det(Ω2P1(µ) +mC11) = µ4 − cµ2 +

( c
2

+ 2
)2

, c = zG3/2 − 2.

Then

M = µ2 =
1

2
(c±

√
−8(c+ 2)) =

1

2
(c±

√
−8zG3/2).(13)

If z > 0, µ2 becomes a complex number with real part different from zero. But if
z < 0, we obtain a couple of negative values for M , with an only exception that
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appears for c = −4, i.e. z2(1+3z2)3 = 256/27 (z ≈ −0.73176195875). For this z, one
of the values of M is zero and the other value is negative. Of course, when z moves
away from this exceptional value, the zero value of M becomes negative again. So,
we can draw the following conclusion.

Proposition 2. Considering the dynamics of the infinitesimal mass in the above
restricted problem, the tetrahedral relative equilibrium is spectrally stable for negative
values of z, but unstable for positive z.

4.2. The 1 + 3 limit case: m = 0. As opposed to the previous restricted case,
we now study the problem in which the body lying at (0, 0, 1) is massive, whereas
the other three bodies have zero mass. It is easy to see that the determinant of the
matrix S given by (8) has the form

det(S) = (Ω2)8 det(P1(µ)) det(P2(µ)) det(P3(µ)) det(P4(µ)) = (Ω2)8µ6(1 + µ2)5.

Skipping the trivial factors coming from the integrals associated to the energy and
the SO(3) invariance, the characteristic equation p̂(M) = 0 reduces in the limit to

T (M) = M2(M + 1)4 = 0,

which yields the roots µ = 0, µ = +i, and µ = −i, all of them of multiplicity 4. In
other words, all the characteristic multipliers of the orbit (i.e. the eigenvalues of the
monodromy matrix of the relative equilibrium solution, seen as a periodic orbit) are
equal to 1 (see the comment we made before formula (7)).

This outcome is not unexpected. Indeed, if we use ε = m/m1 as mass parameter,
all the three equal masses are zero in the limit ε = 0 and their mutual influences
vanish. Hence, the problem reduces to three copies of the 2-body problem, formed
by the mass at the north pole and a body of zero mass. The changes in this highly
degenerate situation for small ε > 0 will be studied in Section 6.

4.3. The solutions with z = 0. As we are also interested in the behaviour of
orbits for small z > 0, it is necessary to consider the solutions with z = 0. Skipping
the trivial factors, we obtain again the limit equation T (M) = 0 for all Γ. Again,
this fact is not surprising because, for any positive Γ, we have that Ω → ∞ when
z → 0 (see equation (6)) and, therefore, the relative equilibrium requires larger and
larger angular velocity. This means that the centrifugal force and the reaction of the
constraints that keep the bodies on S2 are so large that the attraction of the mass
lying at the north pole can be neglected.

Regarding the cases in Subsections 4.2 and 4.3, we will further consider the be-
haviour of the branches emerging from the solutions of T (M) = 0 when the parame-
ters ε and z move away from zero. This analysis is cumbersome due to the presence
of two parameters and of some long expressions. Furthermore, when ε tends to zero,
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we want to study arbitrary values of z ∈ (0, 1) and, when z → 0, to consider arbitrary
values of Γ in (0,∞). The bifurcations that occur in these cases will be studied in
Section 6.

5. Numerical experiments

The results of this section have been obtained using the polynomial p(µ) com-
puted symbolically with PARI/GP, [2]. According to the notation and reductions
introduced above, we will also refer to this polynomial as p̂(M,Γ, z,D(z)).

At http://www.maia.ub.es/~carles/tetrains2/ one can find computer pro-
grams written in PARI/GP to obtain p̂ and the resultant (see definition 2), as well
as instructions for numerical experiments.

For given values of Γ and z, we first computed the zeroes M1, . . . ,M6 of the
polynomial p̂(M,Γ, z,D(z)). We used for the results plotted here a variable number
of decimal digits, going up to 100 or more, and performed many additional checks.

We recall that, concerning the stability of a fixed point in a Hamiltonian system,
with eigenvalues of the differential of the vector field given by µ, one can distinguish
different parts of the spectrum:

– complex saddle (CS), when the values of µ are of the form ±a± ib,
– real hyperbolic (H), when the values of µ are of the form ±a,
– elliptic (E), when the values of µ are of the form ±ib.

In the present case, the values of µ are related to the zeroes M of the polynomial
p̂(M,Γ, z,D(z)) by M = µ2. Hence, the corresponding values of M are complex in
case CS, positive in case H, and negative in case E.

Changes in the stability properties occur when the zeroes pass from one type to
another. The exceptional cases in which some zeroes of p̂(M,Γ, z,D(z)) are equal
to zero or negative and coincident deserve attention to decide about the spectral
stability of the solution, but they generically occur only in a zero-measure subset of
(Γ, z).

We will further use the coding EiHjCSk, where the exponents show the number of
zeroes, M , of each type. Of course, the exponents satisfy the identity i+ j+ 2k = 6.
In Figure 3 we display some numerical results. In the electronic version of this paper,
the colour coding is

E6→red, E4CS1→green, E2CS2→blue, E5H1→magenta, E3H1CS1→pale blue.

Hence, the observed transitions correspond to two types of bifurcations:

– Hamiltonian-Hopf (for red→ green, green→ blue, and magenta→ pale blue)
and

– elliptic-hyperbolic (for red → magenta and green → pale blue).
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Figure 3. Regions of stability for the relative equilibrium orbits given
as a function of Γ and z (see the color code in the text). Top left: a
general plot for Γ ∈ (0, 2]. Top right: magnification for Γ ∈ (0, 10], z ∈
(0, 0.12]. Bottom left: a magnification of a narrow range Γ ∈ (0, 0.1]
for z < 0. Bottom right: an additional magnification around the little
red triangle-shaped domain which can be seen near Γ = 0, z = −0.8.

The white zones are related to forbidden (Γ, z) domains, corresponding to Ω2 < 0. In
the printed version of this paper, the colours translate into grey tones as follows:
red → black; blue → dark grey; pale blue → grey; magenta → light grey; green →
very light grey.

We first describe the case z > 0. The plot shows that for small Γ the orbit is
unstable, except that near z = 0 there is a line, emerging from Γ = 0, z = 0, where a
super-critical Hamiltonian-Hopf bifurcation occurs and the system becomes totally
elliptic. Again, for small Γ, we find different zones for which one or two CS show up.
As Γ→ 0, the values of z at which the transitions occur tend to

z1 ≈ 0.8299852976470169, z2 ≈ 0.7318602978602651, z3 ≈ 0.3702483631504248,
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which correspond to the values r1, r2, and r3 (see Section 4.1) found in [35] for the
Lagrangian orbits of the curved 3-body problem in S2.

When Γ increases, as seen in the top left plot, a narrow red stable domain seems
to persist near z = 0. The top right plot suggests that this is true up to Γ = 10.
For some larger values of Γ, up to 103, the numerical experiments provide strong
evidence that this is still true. We can further ask about the limit behaviour when
Γ → ∞. The numerical evidence suggests, on one hand, that the limit value of z
up to which the solution is totally elliptic is close to 0.03642; on the other hand,
the boundary of one of the blue domains goes to z = 1 and the domain disappears.
The intermediate blue domain seems to shrink. Figure 4 provides more information:
the blue domain shrinks to a point and increases again to merge with another blue
domain born near Γ = 2.91, z = 0.822. It is remarkable that to the left of that point
a tiny totally elliptic zone appears (one has to magnify the plot to see it). The blue
domain for large Γ seems to tend to a limit width confined by values approaching
0.5 and ≈ 0.94215.
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Figure 4. Part of the domain z > 0 for large values of Γ. The colour
codes are described in the text.

These numerical experiments raise the following theoretical questions for z > 0:

(a) What happens when Γ→∞ (i.e. when ε→ 0)? Do the red, green, and blue
zones in Figure 4 on the right tend to a limit?

(b) What happens for z very close to zero? In that case the value of Ω tends to
∞ when z → 0 and the limit is singular. A priori, some changes cannot be
excluded in a tiny strip.

(c) Which is the local behavior for Γ, z when both are positive and close to 0?

We will return to these questions in Section 6.
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We further consider the case z < 0. From equation (4), we have that the value of
Γ is bounded by the condition Ω2 = 0. In other terms, the boundary is parametrized
by z ∈ (−1, 0) as

(14) Γ(z) = Γ∗(z) = −8z/[
√

3(1+3z2)3/2],

which we can also write as Γ∗(z) = −9z(1 + 3z2)D/4. The most interesting domains
appear for small values of Γ. There are two ranges of z, namely (−z1,−z2) and
(−z3, 0), in which the necessary conditions for linear stability are satisfied, in agree-
ment with Proposition 2 and the corresponding results obtained in [35] for Lagrangian
solutions. These ranges extend to small values of Γ; but there are two exceptions
(both shown at the bottom of Figure 3), namely when the axis Γ = 0 is tangent to the
red domains. These tangent points are located near z = −0.73892, z = −0.28396,
and correspond to Hamiltonian-Hopf bifurcations. A red → magenta transition is
seen ending on a tangency to the vertical axis at (0, 0). The transition from the ma-
genta to the pale blue domain seems also to be very close to the boundary Γ = Γ∗(z)
of existence of admissible values of z.

These numerical results lead to the following problems in the case z < 0:

(d) Prove that the transitions from stability to instability that occur in the re-
stricted problem persist for Γ > 0.

(e) Prove that there are exactly two additional values of z for which a curve of
Hamiltonian-Hopf bifurcations is tangent to Γ = 0.

(f) Analyze the vicinity of (Γ, z) = (0, 0) for z < 0.

Like the questions (a), (b), and (c), we will address these problems in the next
section.

6. The perturbation of the limit cases and the main result

In this section we prove several results concerning perturbations of limit cases,
which are summarized in the following theorem.

Theorem 1. We consider the tetrahedral solutions of the positively curved 4-body
problem on S2 with a fixed body of mass m1 located at the north pole and the other
three bodies of equal mass m located at the vertices of an equilateral triangle orthog-
onal to the z-axis. Let be Γ = m1

m
> 0. Then the following statements hold.

(1) For Γ → ∞ there are three functions, z4(1/Γ), z5(1/Γ), and z6(1/Γ), tend-
ing to some values (to be introduced in subsection 6.1) z4,0, z5,0, and z6,0,
respectively, at which Hamiltonian-Hopf bifurcations occur. The respective
tetrahedral relative equilibria are

– spectrally stable of type E6 for z ∈ (0, z4(1/Γ)),
– unstable of type E4CS1 for z ∈ (z4(1/Γ), z5(1/Γ)) ∪ (z6(1/Γ), 1), and of

type E2CS2 for z ∈ (z5(1/Γ), z6(1/Γ)).
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(2) For any fixed value of the mass ratio Γ in (0,∞), there is a range of values of
z of the form (0, ẑ(Γ)), ẑ(Γ) > 0, such that in that range the orbit is spectrally
stable. The value of ẑ(Γ) tends to z4,0 for Γ→∞ and ẑ(Γ)→ 0 for Γ→ 0.

(3) For any z > 0 fixed when Γ approaches 0 the orbit is unstable.
(4) For any z < 0 fixed and close to zero, let Γ∗(z) be the value corresponding to

Ω2 = 0 and γ = Γ∗ − Γ. Then, when γ → 0+, the corresponding tetrahedral
relative equilibria are unstable.

(5) Around the point Γ = 0, z = 0 there are six sectors, σ1, σ2, σ3, σ4, σ5, σ6, or-
dered counterclockwise, in which the type of the orbits are: E6, E5H1, E3H1CS1,
no solutions, E6, and E4CS1, respectively. The dominant terms in the bound-
aries of the sectors are of the form Γ = 0, Γ = −c1z

3, z = −
√

3Γ/8 − c2Γ2,
z = −

√
3Γ/8 − c3Γ3, z = 0, z = c4Γ2/3, and Γ = 0, the first four with z < 0

and last two with z > 0. All the coefficients ci are positive.
(6) For small Γ and z < 0, there exist five curves, ψ1, ψ2, ψ3, ψ4, and ψ5, at

which stability changes of Hamiltonian-Hopf type occur. The first three are
transversal to the line Γ = 0, whereas the other two are tangent. These curves
reach Γ = 0 for the following values of z:

z∗1 = −z1 ≈ −0.829985, z∗2 = −z2 ≈ −0.731860, z∗3 = −z3 ≈ −0.370248,

z4 ≈ −0.738918, z5 ≈ −0.283959.

For small Γ, in particular, the tetrahedral relative equilibria are spectrally
stable for z between: ψ1 and the lower branch of ψ4; the upper branch of ψ4

and ψ2; ψ3 and the lower branch of ψ5; the upper branch of ψ5 and the curve
bounding σ1 in item (5), above.

The proof of the theorem is spread over several propositions given in various subsec-
tions. Items (1), (2), (4), and (6) follow from propositions 3, 4, 5, and 7, respectively.
Item (3) follows from the first paragraph in subsection 6.4. Finally, item (5) follows
from proposition 6 and the locations of the boundaries of the admissible domain.

We note that the only use of some numerical information appears in the computa-
tion of the zeroes of a few polynomials of the form H(z,D(z)), a procedure that can
be reduced to computing the zeroes of irreducible polynomials in z or by checking
that some polynomials have a given sign at a given value of the variable. When we
check that some polynomial is zero at a zero of some function, we either use the
resultant (see definition 2) or compute the zero with increasing number of digits.
If d decimal digits are used and the zero is simple (respectively double), we check
that the obtained value is zero up to approximately d (respectively d/2) digits. We
increase d up to a value that exceeds 1000.

We begin with a lemma about the double zeroes of a function f(x, a, b), which
depends nontrivially on two parameters a and b, i.e. neither fx nor fa nor fb are



20 Florin Diacu, Regina Mart́ınez, Ernesto Pérez-Chavela, and Carles Simó

identically zero. In the applications to the present problem, x corresponds to the
variable M , whereas a and b to z and Γ, respectively. We would like to see, for
instance, if, for fixed Γ, two real negative zeroes of p̂ that collide at a given value
of z move away from the real axis, as well as what happens when Γ changes. The
information we obtain is only based on the properties of f . We could exploit the fact
that we are dealing with eigenvalues of an infinitesimal symplectic matrix (or a matrix
conjugated to it), but some singular limit behaviour, such as when (Γ, z) → (0, 0),
makes difficult to analyze perturbations of the limit case. Since we are interested in
the vicinity of a point (x∗, a∗, b∗), we shift the origin of the coordinate system to that
point. We can now prove the following result.

Lemma 1. Let f(x, a, b) be a real analytic function depending on the parameters a, b.
Assume that for a = b = 0 the function has a zero of exact multiplicity 2, located at
x = 0, i.e. f(0, 0, 0) = fx(0, 0, 0) = 0 and, for concreteness, fxx(0, 0, 0) > 0. We want
to study the behaviour of f in a neighbourhood of (0, 0, 0). For fixed b = 0, we have:

(i) If fa(0, 0, 0) > 0 when a increases, crossing the value a = 0, the roots move
away from the real axis. The case fa(0, 0, 0) < 0 is similar when a decreases.

(ii) If fa(0, 0, 0) = 0, consider faa(0, 0, 0) and fxa(0, 0, 0). If the discriminant
f 2
xa − fxxfaa at (0, 0, 0) is positive, the roots remain real and are distinct for
a 6= 0 with |a| small.

Let now b vary. Then the following statements hold.

(a) Under the assumptions of (i), there exists a line a = h(b) along which f
has double zeroes in the x variable, and when a increases, crossing the value
a = h(b), the roots move outside the real axis.

(b) Under the assumptions of (ii), if fb(0, 0, 0) > 0, there exists a curve b = k(a),
with positive quadratic tangency to b = 0 at a = 0, such that the zeroes of f
pass from real to complex when crossing the line b = k(a).

(c) Under the assumptions of (ii), and if fb(0, 0, 0) = 0, there are two curves,
say h1(b), h2(b) (eventually complex or coincident), tending to (a, b) = (0, 0)
when b → 0. If they are real and distinct, say h1(b) < h2(b), then the zeroes
of f are real if a < h1(b) or a > h2(b) and complex if a ∈ (h1(b), h2(b)).

Proof. The cases (i) and (ii) are elementary, since the Newton polygon in x, a involves
the vertices (2, 0)−(0, 1) and (2, 0)−(0, 2), respectively. Readers not familiar with the
Newton polygon and the Newton–Puiseux algorithm can consult, for an elementary
presentation, pages 98–105 of the classical book [47] or Chapter 1 in [5], entirely
devoted to this algorithm, or [1], for a deeper approach. For the use in the study of
bifurcations in dynamical systems problems see, e.g., [46] and [21].

To prove (a), we can assume that fxx(0, 0, 0) = 1, fa(0, 0, 0) = 1, scale the variables,
and write f(x, a, b) = x2 + a +O(x3, ax, a2) + bg(x, a, b). To find a double zero, we
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can use the Implicit Function Theorem to express x as a function x = x̂(a, b) from
the equation fx(x, a, b) = 0. Inserting this x into the equation f(x, a, b) = 0, we
obtain a relation between a and b. The Implicit Function Theorem allows us then to
express a as a function of b.

To prove (b), we scale the variables and apply a linear change in the (x, a) variables,
after which we can write that f(x, a, b) = x2 − a2 + O(|(x, a)|3) + b(1 + ĝ(x, a, b)).
From the equation fx = 0, we obtain x = x̂(a, b) as in (a), and if we insert x in f ,
we can write b as a function of a that starts with a positive quadratic term in a.
Undoing the linear change and scalings simply deforms the picture linearly.

To prove (c), we proceed as before, obtain x = x̂(a, b) and insert it in f . But now
the linear term in b is absent, while there is a nonzero quadratic term in a. The
existence of the two branches follows by using a Newton polygon in a, b. �

Remark 4. In the exceptional case of item (c) in which h1(b) = h2(b), the function

f can be written, after an eventual shift of x, as f(x, a, b) = (x2 − ĥ(a, b)2)f̂(x, a, b)

with f̂(0, 0, 0) 6= 0, and ĥ(a, b) = 0 if the parameters a and b satisfy a = h1(b). Then,

for values a, b with ĥ(a, b) = 0, x has a double zero and the relations f(0, a, b) =
0, fx(0, a, b) = 0, fa(0, a, b) = 0, and fb(0, a, b) = 0 hold.

In particular, the resultant (see definition 2) of f = 0, fx = 0 with respect to x,

gives ĥ = 0 with multiplicity 2. However, the resultant of fx = 0, fb = 0 gives ĥ = 0
with multiplicity 1. Note that in the case (a), the resultant of fx = 0, fb = 0 is far

from zero along ĥ = 0. In the case (c) with h1(b), h2(b) real and distinct, the resultant
of fx = 0, fb = 0 gives a single line with b as a function of a with multiplicity 1.

6.1. Analysis of the case Γ → ∞. This case makes sense only for z > 0. Let us
consider p̂(M) in terms of ε = 1/Γ. The term in ε0 is M2(M + 1)4, whereas the
terms in εj, j > 0, are polynomials of degree 6 in M that, in turn, have polynomials
in z,D(z) as coefficients.

To discuss how the double zero M = 0 bifurcates as a function of ε, we compute the
polynomial associated to the Newton polygon in the ε,M variables. After simplifying
by a numerical factor, we obtain

16M2+εM((1728z5−720z3+72z)D−192z4+48z2)+ε2[(46656z10−38880z8+11988z6

−1620z4+81z2)D2+(−10368z9+6912z7−1512z5+108z3)D+576z8−288z6+36z4]=0,

a quadratic equation in M with discriminant zero. Hence the dominant term of M
is double and of the form

M0(ε) =
3ε

4
z(4z2 − 1)h(z,D(z)), h(z,D) = (3− 18z2)D + 2z,

where the notation M0 has been used because it evolves from zero.
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It is easy to check that the factor h in M0(ε) is positive in the interval z ∈ (0, 1).
Indeed, h is positive at z = 0 and at z = 1 and dh/dz has only two zeroes in the
interval (0, 1) at which h is positive. Therefore the only value of z at which M0(ε)
changes sign in the interval (0, 1) is at z = z5,0 = 1/2. Hence, M0(ε) becomes positive
for z > 1/2, giving rise to instability, in agreement with the lower bound of the blue
domain for large Γ obtained in Section 5. However, the analysis up to now shows that
the two branches emerging from M = 0 are real and coincide. It could happen that
higher order terms take them away from the real axis even for values of z ∈ (0, 1/2).

As usual, we introduce another variable N by the transformation M = M0(ε)+εN .
Substitution into the characteristic equation and division by ε2 give the dominant
terms in the polynomial associated to the new Newton polygon. Up to a numerical
factor, they are of the form

N2 + ε33z5(z2− 1/4)g(z,D), g(z,D) = h(z,D)k(z,D)2, k(z,D) = D(9z3− 6z)− 1.

We note that g(z,D) is positive. Therefore

M(ε) = M0(ε)± ε3/2
√

33z5(1/4− z2)g(z,D).

This shows that the roots M evolving from zero are real, negative, and distinct for
z < 1/2, but are complex with positive real part for z > 1/2. When the variable z
crosses the value z = 1/2, a Hamiltonian-Hopf bifurcation occurs.

Let us analyze the solutions evolving from the quadruple solution M = −1. We
introduce a new variable, which we denote again by N , such that now M = −1+εN .
The lower order term in ε is a term in ε4 whose coefficient Q(N, z) is a polynomial
of degree 4 in N with polynomials in z,D(z) as coefficients.

First we would like to determine the behaviour of the function for z small. The
dominant terms are

(15) 8N4 − 18zαN3 + 108z3αN2 + 1701z6α2N − 78732z9α3,

where, we recall, α = D(0). A Newton polygon method tells us that the dominant
terms in the solutions of (15) are

N1 = 9zα/4, N2 = 6z2, N3 = −36z3α, N4 = 81z3α/4.

In particular, all the solutions of (15) are simple and negative, ensuring local spectral
stability near z = 0.

To study the behaviour of the function for larger values of z, we compute the
resultant of Q(N, z) and d

dN
Q(N, z) (see definition 2). After skipping some powers

of z and D, we have a polynomial of degree 40 in z and degree 10 in D. It is easy to
check that this polynomial has only two simple zeroes for z ∈ (0, 1), located at

z4,0 ≈ 0.036420258329089021, z6,0 ≈ 0.942152758989663983.
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At z4,0 a couple of roots meet and become complex, whereas at z6,0 these roots return
to the real domain.

Hence, we can now summarize the bifurcations for ε small as follows.

Proposition 3. For ε = 1/Γ tending to zero, there exist three functions, z4(ε), z5(ε),
and z6(ε), tending to z4,0, z5,0, and z6,0, respectively, at which Hamiltonian-Hopf bi-
furcations occur. They are sub-critical at z5(ε) and super-critical at z4(ε) and z6(ε).
Therefore the character of the fixed points is of type E6 for z ∈ (0, z4(ε)), of type
E4CS1 for z ∈ (z4(ε), z5(ε)) ∪ (z6(ε), 1), and of type E2CS2 for z ∈ (z5(ε), z6(ε)).

Proof. The above analysis and items (i) and (a) of Lemma 1 complete the proof. �

6.2. The case of small positive z. To study this case it is convenient to replace
D(z) by α(1 + 3z2)−5/2, as done before (see (11)), and to expand the binomial up to
the required order. First we study the solutions emerging from M = 0.

We proceed as in the previous subsection, by regarding M as a function of z for z
around 0 (see equation (13)). First we find two branches that coincide at order 1 in
z: M = −9αεz/4, where we use again ε to denote Γ−1. Then we seek the terms in
z2 that are also coincident. At the third step there appear two branches in z5/2 with
opposite signs. Summarizing, the solutions evolving from M = 0 are

M(z) = −9αεz/4 + (81α2ε2 − 24ε)z2/16± 9(αε3)1/2z5/2/2.

That is, the two values M1,M2 emerging from M = 0 are real negative and they
only differ in the O(z5/2) terms. For further reference we denote them by M1 (with
+) and M2 (with −).

For the solutions that evolve from M = −1, we write M(z) = −1 + N and
compute the polynomial associated to the Newton polygon in the z,N variables (see
equation (13)). After simplifying constants, the dominant terms in the polynomial
that determines the Newton polygon are

4N4 − 9αzN3ε+ 54αz3N2ε2 + 3584z6Nε3 − 165888αz9ε4.

From this expression we obtain the dominant terms of the four branches, already
separated at this first step,

N1 = 9αεz/4, N2 = 6εz2, N3 = 256εz3/(3α), N4 = −4096εz3/(27α).

We can now summarize the above results as follows.

Proposition 4. For any fixed value of the mass ratio Γ in (0,∞), there is a range
of values of z close to zero, the upper limit of the range depending on Γ, such that
the spectral stability of the orbit is preserved.

This result explains the red domain displayed in the previous figures for z > 0
small. Note, however, that, as soon as Γ → 0, we have ε → ∞, and then the range
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of validity of Proposition 4 is not uniform, since it can go to zero when Γ → 0.
This fact has been already put into the evidence in the figures at the corner near
(Γ, z) = (0, 0) in the first quadrant, where a bifurcation line is seen to emerge from
(0, 0). The required analysis follows in next subsection.

6.3. Study of the vicinity of (Γ, z) = (0, 0) for both z > 0 and z < 0. When
approaching (0, 0) in the (Γ, z)-plane, we have a singular problem. Depending on the
direction, the value of Ω2 can tend to any real non-negative value. Therefore, before
proceeding with the analysis, we must add a short description of the difficulties we
face, based on the following numerical experiment.

For this purpose, we wanted Γ to be neither too small (to exclude a configuration
with too close lines), nor too large (to be inside the domain of interest), and thus
chose Γ = 0.03. Then the values of the solutions M were computed as a function of
z. The value of z corresponding to Ω2 = 0 is z∗ ≈ −0.00649642410717306. Figure
5 on the left plots three of the M values, after multiplying them by Ω2, which is
a measure of the distance from z to z∗. For the values which appear to be almost
constant and tend to coincide when z → (z∗)− (the limit from the left), we also
changed the sign. This means that when approaching Ω2 = 0, one value of M seems
to tend to +∞, whereas two values seem to tend to −∞.

 2
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Figure 5. Evolution of the solutions Mi as functions of z for Γ = 0.03
as an illustration of the behaviour of the zeroes of p̂(M,Γ, z,D(z)) for
small z and Γ. See the text for a detailed explanation.

The other three values of M are plotted in real scale on the middle plot. We
can clearly see the Hamiltonian-Hopf bifurcation near z = −0.00793. After that
value of z, we only plot the real part of these solutions. For a previous value near
z = −0.01072 there is also a double root, which seems to avoid a bifurcation. Fur-
thermore, a multi-precision study in narrow intervals provides evidence that, when
z comes very close to z∗, the solutions that became complex have a real part that
turns to positive (without giving rise to a bifurcation), whereas the negative one
remains negative, tending to a value, when z → z∗, that tends to zero when Γ→ 0.
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In conclusion, we can expect two double zeroes in that domain, only one giving rise
to a bifurcation.

When we pass to values of z > 0, the behaviour of the zeroes is shown in Figure 5
on the right. The solution M1 evolving from 0 remains real while M2, also evolving
from 0, provides a Hopf bifurcation when it collides with the solution that starts at
−1 + N2. The branches starting as −1+N3 and −1+N4 remain real and stay close
to −1. Similarly, the solution starting as −1 +N1 remains real, although it coincides
with the solutions M1 and M2 at two values of z, which are very close. Hence, we
should expect three double roots for that value of Γ at some small z values, only one
giving rise to a bifurcation.

The above numerical evidence will help us obtain some theoretical results. But
before proceeding with the analysis of the bifurcations, it is useful to study the
behaviour of the function in the vicinity of the curve Ω2 = 0 near (Γ, z) = (0, 0).
This approach presents interest in itself because it gives us the eigenvalues and allows
us to interpret the results we will later obtain.

For this purpose, we follow an approach different from the one that led us to
Figure 5. Instead of fixing Γ and allowing z to vary, we fix z < 0 near 0 and vary Γ.
Recall that Γ∗(z) has been defined as the limit value corresponding to Ω2 = 0 (see
equation (14)). We further define γ = Γ∗(z) − Γ and want to study what happens
when γ→0+. Our findings are summarized below.

Proposition 5. For z < 0 close to zero, let Γ∗(z) be the value of Γ corresponding to
Ω2 = 0 and γ = Γ∗ − Γ. Then, when γ → 0+, the roots of the characteristic
polynomial, for a fixed value of z, and then when z → 0−, behave as follows:

(i) Two roots are real and negative, and when multiplied by γ/|z| they tend to a
common value χ1(z), behaving close to the limit, when γ → 0+, like χ1(z)±
O(
√
γz). The value of χ1(z) tends to −8/

√
3 when z → 0− with a dominant

term that is linear in z.
(ii) A third root is real and positive, and when multiplied by γ/|z| it tends to a

value χ3(z), from below, behaving close to the limit like χ3(z) − O(γz). The
value of χ3(z) tends to 8/

√
3 when z → 0− with a dominant term that is

quadratic in z.
(iii) A fourth root is real negative and tends to a value χ4(z) linearly in γ. The

limit value χ4(z) tends to −1 when z→0− with a dominant term linear in z.
(iv) The last two roots are complex, and when multiplied by ψ = γ/z4 they tend

to a common nonzero real value. The real part multiplied by ψ tends to
χ5(z), which tends linearly in z to 27/2 when z → 0−. The imaginary parts
multiplied by

√
ψ tend to values ±χ6(z), which tend linearly in z to ±

√
54

when z → 0−.
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Proof. We only sketch the main steps, the full result following then easily. The
characteristic polynomial p̂ is written as a function of z (a polynomial in z and
D(z)), γ, and M , and we look at the polynomial associated to the Newton polygon
in the variables z, γ, both of them to be seen as small, involving the exponents
(0, 5), (1, 4), (2, 3), (3, 2), (7, 1) and (11, 0), with coefficients that are polynomials in
M , given by

−γ5210M2(M + 1)4 + γ4zα2832M(M + 1)3(M + 2) + γ3(zα)22634(M − 1)(M + 1)3−

γ2(zα)32436(M + 1)3 + γz7α32439(M − 1)(M + 1)− z11α322312(M + 1).

The last equation has the obvious solution M = −1, which is simple. By adding the
remaining terms in p̂, the solution mentioned in (iii), denoted as M4, is obtained.

Using the side between (0, 5) and (3, 2), the variables z and γ should be of the
same order. This suggests to change the variable M to N by M = Nzα/γ. Setting
γ = 0, and simplifying by some powers of z and N , we obtain the polynomial
64N3− 144N2− 324N + 729, which has the roots N = 9/4 (double) and N = −9/4.
Hence, we obtain solutions M1,2 whose main terms are 9αz/(4γ), as stated in (i),
and M3 whose main term is −9αz/(4γ), as stated in (ii).

Using the side between (3,2) and (11,0), we obtain that γ = O(z4), which suggests
a change of variable from M to N defined as M = Nz4/γ. As before, setting γ = 0,
and simplifying the powers of z, we obtain the polynomial 4N2− 108N + 729, which
has the roots 27/2 (double). Hence, we obtain solutions M5,6 whose main terms are
27z4/(2γ), as stated in (iv).

Let us denote by M
(0)
i , i = 1, . . . , 6, the first approximations of the 6 solutions

found up to now. As usual, we write Mi = M
(0)
i + ∆M

(0)
i and substitute them in the

initial equation. We then obtain the new Newton polygons and find the corrections,
as described in the statement. �

Remark 5. The properties described in Proposition 5 agree with the observed fact
that the points close, but below, the line Ω2 = 0 belong to the pale blue domain.

We return now to study a vicinity of (Γ, z) = (0, 0). Our first goal is to prove the
following result.

Proposition 6. In a vicinity of Γ = 0, z = 0, for Γ > 0 there are three lines giving
rise to bifurcations, all emerging from (0, 0):

(i) A line of E → H transition, for z < 0, having a cubic tangency with the axis
Γ = 0.

(ii) A line of E 2 → CS transition, also for z < 0, which has a quadratic tangency
with the line corresponding to Ω2 = 0.

(iii) A line of E 2 → CS transition, for z > 0, for which z is of order Γ2/3.
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Proof. We know that the bifurcations we are looking for are associated to M = 0 or
to double roots. We begin with the case M = 0.

By skipping a suitable factor, the polynomial p̂(0,Γ, z,D(z)) has

32Γ3 + 144DzΓ2 + 162D2z2Γ + 3645D3z5

as terms associated to the Newton polygon in the z,Γ variables, where its coefficients
still depend on D(z).

The last two terms give the branch whose dominant term is Γ = −45Dz3/2,
which can be written around z = 0 as Γ = −45αz3/2 = −80z3/

√
3. This proves

item (i) in the statement of the proposition, in perfect agreement with the numerical
results. This phenomenon is easily identified with the red to magenta transition in
Figure 3 on the left, both top and bottom. The other vertices give rise to a factor
Γ = −9zD(1 + 3z2)/4 + 27z4/2, double up to order 4 in z, but which is located
between z = 0 and the curve Ω2 = 0 and, hence, outside the admissible domain.

We will further study the double roots. As mentioned at the end of Section 3, the
resultant polynomial res(Γ, z,D(z)) is huge (see definition 2), but for (z,Γ) near (0, 0)
it is still feasible to compute the Newton polygon. The relevant vertices bounding
the three sides of the polygon have exponents (16, 0), (12, 2), (9, 4), and (0, 13). After
simplifications, the first side from (16, 0) to (12, 2) leads to branches with dominant
terms given by the zeroes of the equation 324z4α2 + Γ2 = 0. They are complex and
can be discarded.

The second side, with endpoints (12, 2), (9, 4), gives the condition for the dominant
terms 54z3α−Γ2 = 0, with the real solution z = (4×31/6)−1Γ2/3. It is easily identified
as the curve that separates the green and red domains from each other in Figure 3
top, both left and right, near (0, 0). This proves item (iii).

The third side gives branches with dominant terms of the form Γ = 9zα/4,Γ =
−9zα/4, and Γ = −36zα/25 of multiplicities 4, 3, and 2, respectively. We begin
with the case of multiplicity 3. Setting Γ = z(−9D(z)/4 + γ) in the resultant and
simplifying by constants and powers of z and D, we obtain the polynomial

128γ3 + 3888D2zγ2 + 52488D3z3γ + 177147D4z5.

This gives raise to one branch which, to order 2 in z, and using the full D(z) function,
not only D(0) = α, is of the form Γ = −z9D(z)/4 − 243z2D2/8. This is the line
corresponding to item (ii). It is easily identified as the transition from magenta
to pale blue. The other root is double, γ = −27z2D/4. At the next step, Γ =
z(−9D(z)/4) + z3(−27D/4 +ψ), we obtain again a double solution, ψ = 27z/8. But
the first part of Γ given by −9zD(z)(1 + 3z2)/4 is the boundary Ω2 = 0. Hence, the
obtained double branch is already outside the admissible domain at order 4 in z.



28 Florin Diacu, Regina Mart́ınez, Ernesto Pérez-Chavela, and Carles Simó

In what follows we shall prove that the branches with dominant terms Γ = 9zα/4
and Γ = −36zα/25 of multiplicities 4 and 2, respectively, play no role in the bifur-
cations.

We now consider the branch beginning with Γ = −36zα/25 of multiplicity 2. In
fact, the successive Newton polygons that we computed in the expression of Γ as a
power series in z always give multiplicity 2. Hopefully this branch of double zeroes
corresponds to the double zeroes that appear in Figure 5, in the middle, and do
not give rise to a bifurcation. We further computed two additional resultants (see
definition 2). Up to now we are using res(Γ, z,D(z)), obtained from the elimination
of M between p̂ and ∂p̂/∂M . After simplification, the degrees in z,D(z), and Γ are
104, 25, and 13, respectively, as mentioned before, and the polynomial contains 6779
terms.

Let res2(Γ, z,D(z)) be the resultant from the elimination of the variable M from
the polynomials p̂ and ∂p̂/∂Γ and res3(Γ, z,D(z)) be the resultant from the elimi-
nation of M from the polynomials ∂p̂/∂M and ∂p̂/∂Γ. Hence, in a similar way to
what was done in (12), we are using the notation

(16) res2(Γ, z,D(z)) = Res(p̂, ∂p̂/∂Γ), res3(Γ, z,D(z)) = Res(∂p̂/∂M, ∂p̂/∂Γ).

The corresponding degrees and numbers of terms are similar (111, 27, 11, and 7453
for res2(Γ, z,D(z)) and 96, 23, 11, and 5474 for res3(Γ, z,D(z))). But the important
thing is that the Newton polygons of res(Γ, z,D(z)) and res2(Γ, z,D(z)) give, up
to the computed order, a branch of multiplicity 2, while the one of res3(Γ, z,D(z))
is simple. More precisely, the polynomial corresponding to the Newton polygon of
res3(Γ, z,D(z)) has degree 11 and factorizes as

(4y − 9)3(4y + 9)3(8y − 9)(25y − 36)(25y + 36)(80y2 + 720y + 1377),

where y denotes the ratio Γ/(zD). We are interested in the ratio y = −36/25, simple
as claimed. A few terms of the expansion of Γ as a function of z,D(z) are obtained,
in a recurrent way, as

Γ=z(g2 −
36D

25
), g2 =z

g3−(1944D2+54)

625
, g3 =z

g4+(186624D4+31968D2+144)

25D
,

g4 = z
g5−(35831808D6+59222259D4−12906D2+768)

50D
,

g5 = z
g6+(3439853568D8+10318220802D6+42691698D4+226512D2+2048)

25D
, . . .

Hence, the branch of double roots for M is double and, according to Lemma 1
and Remark 4, no bifurcation occurs along that line. As a side information we note
that along that double branch, for z < 0 small, the value of M is close to −1, in
agreement with the middle plot in Figure 5.
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Finally we consider the branch starting with Γ = 9zα/4 of multiplicity 4. Writing
Γ = z(9D/4 + g2) and substituting in res(Γ, z,D(z)), we obtain the polynomial

−16g4
2 + 288zg3

2 − 1368z2g2
2 + 648z3g2 − 81z4,

which factorizes as (4g2
2 − 36zg2 + 9z2)2. Hence, the terms of order 2 in z give rise to

two double solutions, with coefficients 9/2 ± 3
√

2. As in the previous case, keeping
with res, we obtain double solutions for the computed next terms.

We will further use res3(Γ, z,D(z)). As mentioned before, one of its factors is
4y − 9 with multiplicity 3. Setting Γ = z(9D/4 + g2), we obtain the polynomial
associated to the Newton polygon in the (g2, z) variables as

−512g3
2 + (8748D2 + 6656)zg2

2 + (−78732D2 − 19584)z2g2 + (19683D2 + 4608)z3,

which factorizes as (4g2
2 − 36zg2 + 9z2)(−128g2 + (2187D2 + 512)z). The last factor

is irrelevant for our purposes and the quadratic factor gives the two branches with
dominant terms g2 = (9/2±3

√
2)z, which are simple. Hence, as in the previous case,

the two branches of res(Γ, z,D(z)) are double and they give rise to no bifurcation.
Additionally, we can mention that these double solutions occur for M close to −1/2
and that from the plot in Figure 5 on the right we expect them to be close. �

6.4. Analysis of Γ near zero. In this subsection, we need only to consider bifur-
cations that occur away from a vicinity of (Γ, z) = (0, 0), since the behaviour in the
neighbourhood of this point has been already studied in the previous subsection.

For positive z, we must only show that the changes of stability that occur for
the 3-body problem persist when we add the small mass m1. As already shown in
Proposition 2, the behaviour of the small mass gives instability for the full 4-body
problem. Using the results in [35] and of Lemma 1(a), it follows that the changes of
stability of the 3-body problem persist in the case Γ > 0 small.

Next we pass to the more interesting case z < 0. The changes of stability found in
the curved 3-body problem also persist when we pass to Γ > 0, according to Lemma
1(a), and the stability of the body of mass zero does not change the stable domains
for Γ = 0. However, new changes can occur when passing from Γ = 0 to Γ > 0 if
some of the additional zeroes of the form (13) for the restricted problem coincide
with one of the curved 3-body problem.

Figure 6 shows all the relevant zeroes, when real, simultaneously as function of
z. The exact solution M∗ (see Section 4) can be identified as the curve starting at
(−1, 1) and ending at (0, 0) (see also formula (7) in [35]). Double zeroes involving
M∗ should not be taken into consideration in the light of the explanations given in
that paper. In Figure 6, we identified two double zeroes that are responsible for the
Hamiltonian-Hopf bifurcations observed in Figure 3. The main result in that case
can be stated as follows.
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Figure 6. A plot of the negative values of µ2 as a function of z < 0
for the limit problem Γ = 0. The large dots show the location of the
double zeroes associated with the Hamiltonian-Hopf bifurcations that
can be seen as tangencies of the red domains with Γ = 0 shown in
Figure 3 bottom, left and right. The curves of zeroes associated with
the restricted problem are easily identified as having a tangency with
z=0 at µ2 =−1. The branch reaching the lower boundary of the plot
continues down up to z = −1.

Proposition 7. In the passage from the restricted to the general problem for z < 0
and a small mass ratio Γ, excluding a neighbourhood of (Γ, z) = (0, 0), already studied
in Proposition 6, changes in the stability properties occur along lines of the (Γ, z)
plane. Three of these lines tend to the values −z1,−z2,−z3 when Γ→ 0. Additional
changes occur along two curves, with quadratic tangencies to the line Γ = 0 at the two
values z4 and z5 where the characteristic polynomials of the curved 3-body problem
and the restricted problem have zeroes in common. In all these cases a Hamiltonian-
Hopf bifurcation occurs.

Proof. We consider the polynomial Q(M) introduced in Section 4.1. It is convenient
to express the coefficients of Q(M) in terms of Z = z2 = 1 − r2. We will further
denote this polynomial by Q(M,Z). Also we write the equation for the additional
zeroes (13) as S(M) = 0, where

S(M) =

(
M2 + 2M +

z2G3

4
+ 1

)2

− z2G3(M − 1)2.

Using G = 3(1 + 3z2)/4, as defined in (5), we can write S(M) as a polynomial in
M with polynomial coefficients in Z to be denoted as S(M,Z). Then we compute
the resultant R(Z) of Q(M,Z) and S(M,Z) to eliminate M (see definition 2). The
polynomial R(Z), of degree 29, factorizes as R(Z) = R1(Z)R2(Z), with factors of
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degrees 14 and 15, respectively. A part of the expressions is

R1(Z) = 31381059609Z14 + 135984591639Z13 + . . .+ 843283683Z − 2985984,

R2(Z) = 1162261467Z15 + 5036466357Z14 + . . .+ 133996544Z + 16777216.

The polynomial R1(Z) has exactly 4 real zeroes with Z ∈ (0, 1), approximately
located at the following values of z:

−0.071519103755, −0.114735617843, −0.330240264422, −0.736842605000,

whereas R2(Z) has exactly two zeroes in the same interval corresponding to the
values of z

z4 ≈ −0.7389177458229170, z5 ≈ −0.2839588732787964.

This fact is in agreement with the plots in Figure 6. To show that the two zeroes z4, z5

for Γ = 0 give rise to a bifurcation, it is enough to check that ∂res(Γ, z,D(z))/∂Γ 6= 0
at the points (0, zj, D(zj)), j = 4, 5. The computed values are ≈ −0.626660386126 at
z4 and ≈ 27.6667376231 at z5, far away from zero.

In the case of the other four double zeroes, we obtain values of ∂res(Γ, z,D(z))/∂Γ
equal to zero (with the expected accuracy, see the beginning of the present section).
Imposing the condition of double zero for M , ∂p̂(M,Γ, z,D(z))/∂M = 0, and sub-
stituting it in p̂(M,Γ, z,D(z)), we obtain, to low order, a double branch of double
zeroes in the (Γ, z) variables. Using now res3(Γ, z,D(z)), as we did in subsection
6.3, we obtain that the branch is simple. There is no need to employ the Newton
polygon; the Implicit Function Theorem is enough because the linear coefficients are
nonzero. Hence, no bifurcation related to the zeroes of R1 occurs. �

7. Conclusions and outlook

In this last section we will draw some final conclusions about the stability of
tetrahedral relative equilibria and propose three problems that, in order to be solved,
would require certain refinements of the methods we applied here.

Theorem 1 validates the numerical results near the relevant boundaries of the
domain (Γ, z), i.e. near Γ = 0,Γ = ∞, z = 0. We have found all bifurcations
produced by perturbation of the limit problems.

We can now summarize the stability results we obtained in this paper about the
relative equilibria of the tetrahedral 4-body problem in S2 by displaying the full bifur-
cation diagram. To complete the above analysis beyond the limit cases, we present
the diagram computed from the resultant res(Γ, z,D(z)) and from the conditions
p̂(0,Γ, z,D(z)) = 0 (see definition 2). In both cases, given a value of z, we obtain a
polynomial equation for Γ. We computed the zeroes numerically and discarded the
ones that do not give rise to any bifurcation. We checked the facts that occur here
by looking at the derivatives with respect to M and z at the solutions found. Figure
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Figure 7. Bifurcation diagram for the relative equilibrium solutions.
Variables displayed: (Γ/(1 + Γ), z). With the only exception of the
boundary of the admissible domain Ω2 = 0 for z < 0 and the line
going from (0, 0) to the tip of the Ω2 = 0 line, which corresponds to
E-H bifurcation, all the other lines correspond to Hamiltonian-Hopf
bifurcations.

7 depicts the results. As horizontal variable we used Γ/(1 + Γ) in order to display
the full range of Γ ∈ [0,∞].

A possible continuation of the present work is the study of the linear stability for
pyramidal solutions, i.e. orbits of the positively curved n-body problem, for n > 4,
with a fixed body of mass m1 located at the north pole and the other n − 1 bodies
of equal mass m lying at the vertices of a rotating regular polygon, orthogonal to
the z-axis. But the analytic methods pursued here have limits. It seems that the
symbolic computations and the related analysis would become insurmountable for
n larger than 7 or 8. Even a purely numerical study must be done very carefully.
Another interesting problem is to analyze the linear stability of tetrahedral orbits
in S3. Finally, the stability of tetrahedral orbits in S2 when the z-coordinate of the
three equal masses is not constant, but varies periodically in time, would also be a
problem worth approaching. According to the study performed in [13], these orbits
belong to the class of positive elliptic rotopulsators of the curved 4-body problem.
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