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Abstract

We discuss the contributions of Spiru Haretu to the problem of the solar
system’s stability and show their importance relative to the mathematics
research of the late 19th century. We also give a brief survey of the subsequent
developments and the consequences of Haretu’s results.

Keywords: stability, solar system, n-body problem.



Is the solar system stable? Properly speaking, the answer
is still unknown, and yet this question has led to very deep
results which probably are more important than the answer
to the original question.

JURGEN MOSER, 1978

1 Introduction

Like Paul Painlevé (1863-1933), Spiru Haretu (1851-1912) is remembered
both as a great mathematician and as a politician of strong character. His
most important scientific result appeared in his doctoral dissertation, On the
invariance of the planets’ major azes, defended on the morning of January 30,
1878 to a committee formed by Puiseux (president), Briot, and Baillaud, and
published by Gauthier-Villars [H,1878]. His main political achievement was
that of establishing the Romanian elementary school system, while holding
the education portfolio as a liberal member of parliament in several govern-
ments. For these and other contributions he is viewed as a prominent figure
in the history of Romanian cultural and public life and as a scientist of world
fame. A statue representing him stands since 1935 in Bucharest’s University
Square. A lunar crater bears his name.

But while his political achievements present only national interest, the
result of his 1878 dissertation is a landmark in the development of math-
ematics. At a time when very few doctoral degrees were awarded, Haretu
became the first Romanian and foreigner to obtain a Ph.D. in mathematics
at a Parisian institution. He was immediately offered a university position
in France, which he turned down to return to his native land. Romania had
recently declared its independence from the Turkish Empire and was still
involved in a liberation war. Haretu decided that he could contribute to the
well being of his country, so he went back home and eventually received a
professorship at the University of Bucharest.

Before entering politics, Haretu developed several courses at his young
university and continued to do research. In a pioneering book entitled Social
Mechanics [H,1910], he used mathematical tools to study social phenomena.
But none of his new works reached the level of importance and fame of his
doctoral achievement, which we will analyse in what follows. Let us start
with a brief review of the results obtained on the stability of the solar system
before Haretu entered the scene of French and world mathematics.



2 The stability problem

The notion of stability has many mathematical connotations, most of which
developed from a question regarding the solar system. Once the Newtonian
theory of gravitation made clear that planets moved on approximately ellipti-
cal orbits having the sun in their common focus, it was natural to ask whether
this property would be forever preserved. The attempts of understanding the
n-body problem of celestial mechanics led to the growth of mathematics and
eventually to power-series solutions of the differential equations describing
it. These were obtained through the work of Sundman [S,1912], for n = 3,
and Wang [W,1991] for any n > 3. But because of their very slow conver-
gence, these solutions are of little practical interest and add nothing to the
understanding of the stability problem (see [D,1996] for more details).

In Newton’s mind the solar system was unstable. He thought that grav-
itation alone could not account for its stability and that the intervention
of divine forces was necessary for preserving the regular planetary motion
around the sun. In the General Scholium of Principia’s volume two, The
system of the world [N,1966], p. 544, Newton wrote:

...1it is not to be conceived that mere mechanical causes could give birth to
so many regular [planetary] motions, since the comets range over all parts
of the heavens in very eccentric orbits. .. This most beautiful system of the
sun, planets, and comets could only proceed from the counsel and dominion
of an intelligent and powerful Being. And if the fixed stars are the centres
of other like systems, these, being formed by the like wise counsel, must be

all subject to the dominion of One.

Newton, however, never approached the stability question with mathe-
matical tools. His main goal was that of explaining the motion of the moon.
So his belief in the instability of the solar system was based only on intuition.

Already before the mid 18th century, research on the n-body problem split
in two directions: one regarded properties holding in a general gravitational
context, whereas the other considered approximations for as-long-as-possible
time intervals in specific systems, in particular the solar one. The second
direction grew into the theory of perturbations, which is fundamental in the
study of the stability question.

The idea of using perturbation theory to approach stability works as
follows. Consider an n-body problem in which one mass (the sun) is much



larger than all the others (the planets). If the small masses were all zero,
their orbits around the sun would be ellipses with a common focus. Using
the method of variation of parameters (introduced by Euler and perfected by
Lagrange), we can look at the elliptical elements of the orbit of a planet as
being perturbed by the other planets and then find relatively simple formulae
that express this variation in terms of a perturbative function R. For R =0
we recover the elliptical orbits.

Taking the first power-series approximation of R, integration of the re-
sulting equations of motion yields for the elliptical elements first-order per-
turbation terms relative to the masses. If we substitute these values back into
the equations, take a second-order approximation of R, and integrate again,
we obtain second-order perturbation terms in the masses for the elliptical
elements. In principle, we can continue this process to the desired degree of
approximation. However, the computations soon grow so laborious and com-
plicated that only those mastering great technical virtuosity can overcome
the difficulties.

In this chain of computations, two kind of terms can show up: those
derived from summands in R, which do not contain time explicitly, and
those obtained by integration, which may depend on time. The latter terms
are called secular, and their effect on the elliptic elements can be significant
in the long run. Their presence raises a serious doubt on the stability of the
solar system. Their effect could be cancelled out but it could also add up
and thus create instability.

Properly speaking, approximate results of the kind described above can
neither rigorously prove nor disprove stability, but they bring arguments
favouring one belief or the other. Lacking the insight of qualitative meth-
ods, the pioneers of calculus had to content themselves with such estimates,
hoping to show that the results they obtained were true for any degree of
approximation.

Euler was the first to apply the theory of perturbation to the motion of
planets. His memoirs on the perturbations of Jupiter and Saturn won the
prizes of the French Academy in 1748 and 1752. His works opened the way
for the research of Lagrange and Laplace on the stability of the solar system.

In 1773 Laplace showed that in the first power-series approximation of the
eccentricities, the major axes of the planets have no secular terms. He thus
concluded that, within the limits of this approximation, the solar system is
stable. This result incited Lagrange to search deeper into the question. His
research from 1774 and 1776 proved that for all order approximations of the



eccentricities, for all order approximations of the sine of the angle of the
mutual inclinations, and for perturbations of the first order with respect to
the masses, secular terms do not show up in the major axes of the planets.
This result brought even stronger evidence in favour of stability.

In a memoir presented to the Institut de France on June 20, 1808 (pub-
lished in 1809 in Journal de I'Ecole Polytechnique, XV-e Cahier, 1809, p.
1-56), Poisson improved the result of Lagrange by showing that the major
axes of the planets have no secular terms in the perturbations of the second
order with respect to the masses. The computations of Poisson were consid-
erably simplified by Liouville and Puiseux in 1841 and then by Tisserand in
1876, the latter using Jacobi’s method of eliminating the nodes, which can
reduce by two the dimension of the system of differential equations describing
the n-body problem. This was the state of the art of this question at the
time Haretu started thinking about it.

On the other hand the interest in the more theoretical but related as-
pects of solving the n-body problem of celestial mechanics, reached an un-
precedented high. In 1858 Dirichlet mentioned in a letter to Kronecker that
he had found a method of successively approximating its general solution.
Unfortunately, Dirichlet died suddenly without leaving any written evidence
to support his statement. This stirred the interest of many mathematicians,
Weierstrass among them, who tried to recover the lost method. In a letter to
Sonia Kovalevskaya, Weierstrass mentioned that he had found a formal series
solution for the n-body problem, but could not prove its convergence. In the
context of these interesting developments, Haretu considered working on the
stability question for the solar system. He aimed at finding a third-order
approximation of the solution, a tour de force that nobody had completed
before.

3 Haretu’s surprising result

Let us explain Haretu’s contribution in a modern language. On the cotangent
bundle T*IR?", define the Hamiltonian of the n-body problem as

1
H(q,p) = §pTM’1p —Ul(q),



where q; is the position vector of the mass m;, p; = m;q; is the momentum,
q= (qla--'vqn)a pP= (pl>"'7pn)7

V= Y o

1<i<j<n ai — qj

is the potential function, where G denotes Newton’s gravitational constant,
and M represents the matrix having the elements my, my, my, ..., My, My, My,
on the diagonal and 0 elsewhere.

Notice that the Hamiltonian is translation invariant, i.e., H(q + x,p) =
H(q, p) and the linear momentum, J(q,p) = p1+. ..+ Py is conserved along
the flow determined by H.

We further introduce the quotient manifold J~'(x)/IR?, where u € R?
is arbitrary. This manifold, called reduced phase space, is symplectic; more-
over, H induces a Hamiltonian system on it. In fact this is a general phe-
nomenon, which was fully understood by Marsden and Weinstein a century
later [MW,1974]. Using the cotangent-bundle reduction theorem [AM,1978],
it follows that J~'(u)/IR? is symplectically diffeomorphic to T*IR*™~V en-
dowed with the canonical symplectic structure. In more concrete terms, this
reduction procedure fixes the center of mass and the linear momentum of the
system.

In his thesis, Haretu used the previous work of Tisserand to carry out this
reduction in a very clever way, such that at the end he obtained the canonical
variables on T*IR*™ ™Y, explicitly expressed as functions of the old variables;
at the same time he wrote down Lagrange’s equations in the new variables.
Let us emphasize that, in general, the reduction procedure does not produce
canonical variables; one needs to carry out the quotienting process carefully
in order to directly get canonical variables on the reduced phase space.

In the second part of his thesis, Haretu used this reduced manifold to
obtain the expression of the major axes of the planetary ellipses to first and
second order, thus recovering in a different way the results obtained by his
predecessors. This part of his work is very elegant and can be read with ease
by a modern day mathematician.

But Haretu’s most important contribution was in the third and last part of
the thesis, in which he used the reduced manifold to discuss the perturbations
of the great axes for the planetary ellipses to third-order approximation,
going beyond Poisson’s work mentioned before. This is a rare computational
achievement, in which Haretu overcomes all technical difficulties that lead



him to show that secular terms of the form
At cos(¢ + w) + Bt cos(¢ + w)

appear in some of the summands that give the expression of the planetary
axes. Essential in this formula are the factors ¢ and ¢2, which could make
the solution become unbounded in infinite time. This result did not prove
instability, since the effect of these terms may cancel out, but it raised a
serious doubt on the stability property and disproved the constancy claim
for the major axes of the planets.

It is interesting to note that Poisson had himself discussed the third-order
approximation in a paper published in 1816 in the first volume of Mémoires
de "Académie des Sciences, p. 55-67. However, he ignored several aspects
of the problem and concluded that no secular terms show up. Moreover, he
trusted that this was true for any order of approximation and aimed to find
a general proof of this fact. Haretu’s result put an end to such attempts.

Laying aside Newton’s heuristic belief in the instability of planetary mo-
tion, Haretu was the first to dispel the stability myth based on the results of
Lagrange, Laplace, Poisson, and others. His thesis stirred high excitement
not only in scientific circles, but also in the media. He was hailed in news-
paper articles (see [DH,1996]), a rare event for a scientist during the last
quarter of the 19th century. In Romania he became a national hero, a feat
that also helped him later succeed in public life.

4 Subsequent developments

Haretu’s work marked the beginning of the end of an era, that of exclusively
quantitative endeavours in mathematics. His achievement was one of the first
that pointed out the limits of direct attempts to find explicit solutions for
differential equations. It was soon followed by other results of the same kind,
as for example those of Heinrich Bruns (see [B,1887]), who showed that the n-
body problem cannot have more than 10 linearly independent algebraic first
integrals, thus proving the impossibility of reducing the differential equations
of motion to an algebraic system.

Already in 1836, the Swiss mathematician Charles Sturm had introduced
the qualitative methods in the study of linear ordinary differential equations,
but the need for such techniques became obvious only after Haretu, Bruns,
and a few others pointed out the short-sightedness of the exact methods.
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Henri Poincaré was the one who imposed the qualitative approach not only
in the study of linear and nonlinear differential equations, but as a new way
of mathematical thinking. In 1908, after almost three decades of qualitative
achievements, Poincaré stated at the 4th International Congress of Mathe-
maticians in Rome:

In the past an equation was only considered solved when one had expressed
the solution with the aid of a finite number of known functions; but this is
hardly possible one time in a hundred. What we can always do, or rather
what we should always try to do, is to solve the qualitative problem so to
speak, that is to find the general form of the curve representing the unknown

function.

Poincaré was well aware of Haretu’s work, as he shows in his Lec¢ons
de mécanique céleste. In fact one of his main scientific goals was that of
understanding the stability of the solar system. In 1889 Poincaré received
King Oscar’s prize for his contributions to the n-body problem. His work
contained a multitude of novel ideas, among which a first glimpse of chaotic
behaviour in a dynamical system, a property that he discovered while trying
to prove a stability result (for more details see [DH,1996] and [BG,1997]).
Today, the qualitative theory of dynamical systems is a very intense research
area.

In 1958, J. Meffroy reconsidered Haretu’s computations and found a sim-
pler way of obtaining the expression of the secular terms [M,1958]. This
research, however, did not revive the interest in the quantitative methods,
whose limits Haretu had pointed out in 1878. A more detailed discussion
about the above subsequent developments appears in the paper by Vasile
Mioc and Magda Stavinschi, also included in this volume.

Another direction in understanding stable and chaotic behaviour in the
solar system grew during the last few decades after the invention of the
modern computer. Researchers like Jack Wisdom, Gerald Sussman, Matthew
Holman, Jacques Laskar, Scott Tremaine, Gerlad Quinlan, Myron Lecar,
Fred Franklin, Marc Murison, and others investigated the orbital motion of
planets and asteroids using numerical methods, and in some cases computed
the Liapunov exponents, which can indicate chaotic motion. Their main
conclusion is that the solar system is in a state of “relative” stability, in the
sense that we should not expect major changes in the motion of the planets
for the next few hundred million years. However, the final question of its
stability remains still unsolved.



More than a century ago, Poincaré warned us about the true aspect of
this problem (see [P,1891]):

One of the questions with which researchers have been most preoccupied is
that of the stability of the solar system. This is, if truth be told, more of a
mathematical question than a physical one. Even if one were to discover a
general and rigorous proof, one could not conclude that the solar system is

eternal. It may, in fact, be subject to forces other than those of Newton.

But even if only of theoretical importance, this question is an early exam-
ple of collective work in science, of the common effort of several generations
of researchers towards reaching a lofty goal. This paper pays an homage
to one of those contributors, whose achievement showed that the scientific
adventure he and his predecessors had started upon was far from over. His
example further illuminates the path for future generations of researchers in
this and related fields.

Acknowledgement. The authors are indebted to Dr. Vasile Mioc for sug-
gesting many improvements of an earlier form of this paper.
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