
F L O R I N  D I A C U  

A Century-long 
Loop* 

The f irst  goal of this w o r k . . ,  is t o . . .  deal wi th  a branch of geometry called Analysis  Situs, 
which describes the relative position of points, lines, and surfaces, wi th  no regard for their size. 

Henri Poincar~, in Analysis Situs, 1895 

Most  mathemat ica l  theor ies  are  like unfaithful offspring: 
they  forget  thei r  origins. But some  r e m e m b e r  them. In 1892, 
while pursuing his s tudies  on the 3-body problem,  Henri  

Poincar~ laid the foundat ions  of  a lgebra ic  topology.  The 
new field f lourished,  f inding appl ica t ions  in many  b ranches  
of  mathemat ics .  A hundred  years  la te r  its tools  were  used  

to answer  Poincar~ 's  initial question. 
This is a tale  about  a theory  that  g l impsed back  to i ts 

roots,  solving one of  the  p rob lems  that  had  c rea ted  it. But 
before  tel l ing this story,  let  me  general ize  on how mathe-  
mat ica l  theor ies  arise. 

The Birth of New Theories 
Two basic  m e c h a n i s m s - - o n e  internal, the other  e x t e r n a l - -  
govern the development  of  mathematics .  The internal  one 
acts when posing a purely mathemat ica l  problem. This leads 

to theorems,  new concepts,  generalizations, and higher lev- 
els of  abstraction.  Galois theory, for example,  grew as a re- 
sult of  repea ted  a t tempts  to find a formula for the solut ions 
of  a polynomial  equation of  any degree. The external  mech- 
auism is t r iggered by other  fields. Some o f  the questions they 

pose  s t imulate the rise of new mathemat ical  branches.  In 
this sense, Newton founded the theory of  differential equa- 
t ions while trying to explain the mot ion  of  the moon. 

Most  theor ies  grow under  the influence of  both  internal  

and externa l  factors,  thus  closely relat ing the  evolut ion of  
pure  and appl ied  mathemat ics .  A new field is usual ly  born  
under  the  weight  of  one or  more  quest ions  a sked  at the  
right t ime, which  are  intriguing enough to rouse  a t tent ion 

and to keep  the in teres t  alive. But even at  maturi ty,  a the- 
ory may be unable  to solve the original problems.  Most re- 
sea rchers  of  the new domain  are  unaware  of  or  uninter-  

es ted  in the  initial setting, whereas  those  who still seek  
answers  are usual ly  overwhe lmed  by  the growth  of  the  new 
field. If  enough t ime elapses,  changes  in fashion may  dis- 
card  the original s t a t ements  or, in rare cases,  p romote  them 
to the rank of  famous  conjectures .  

So in many  cases  the  bir th of  new mathemat ica l  
b ranches  is a deflective phenomenon:  when  unable  to solve 
a problem,  mathemat ic ians  crea te  a theory  in o rde r  to an- 
swer  the  initial question. Often the  quest ion fades  out  of  
the  collect ive memory  and the new field t akes  on different  
pa ths  (see Figure 1).1 Algebraic  topology fol lowed the same 

rule. But at least  one of  its original quest ions  s tayed  alive 
due to the  growing in teres t  in the  quali tat ive theory  of  dy- 
namical  systems.  

Poincar6's Question 
Soon after  finishing his doc tora l  degree  (1878), Poincar~ 
s ta r ted  working  on the 3-body problem.  At that  t ime he had 

*To the memory of Aristide Halanay (1924-1997) of the University of Bucharest, founding editor of the Journal of Differential Equations. 

1This is not the paradigm-type evolution described by Thomas Kuhn [K,1970]. Unlike scientific theories, which replace each other, mathematical fields live together and 

aim to make connections. To relate Kuhn's model to this one would take another paper. 
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Figure 1. Deflective development: an original question leads to new concepts and to a new theory, which answers other questions but may 

not answer the original one, 

no idea  that  his resul ts  in celest ia l  mechanics  would  launch 
such  a bri l l iant  career.  In 1889 he was awarded  the prest i -  
gious prize of  King Oscar  II of  Sweden and Norway  (see 

[BG,1997] and DH,1996]). Poincar~ publ i shed  the prize pa- 
pe r  a year  later  and  deve loped  it during the nex t  decade  
into the  3-volume mas te rp iece  Les Mdthodes nouvelles de 
la Mdcanique cdleste. 

The ideas  he p r o m o t e d  in the  theory  of  differential  equa- 
t ions and in celes t ia l  mechan ics  were  revolut ionary.  
Ins tead  of  seeking par t icu la r  solut ions  or  a t tempt ing  to re- 

duce  the  order  of  the  sys tem (methods  that  appl ied  only 
to  a few classes  of  problems) ,  he deve loped  a quali tat ive 
po in t  of  view, fol lowing the Swiss mathemat ic ian  Charles  

Sturm, who had s ta r ted  on this pa th  in 1836. F o r  a given 
sys t em of  differential  equations,  

x '  = f ( x ) ,  

Poincard  cons idered  the n-d imensional  set  of  the  var iable  

x, ca l led  phase  space, and v iewed  the solut ions  of  the  sys- 
t em as  curves in this  space.  His goal was  to offer a global  
geomet r ic  descr ip t ion  of  the  solut ion curves.  He exp la ined  
this in his address  to the Four th  Internat ional  Congress  of  

Mathemat ic ians  held  in 1908 in Rome: 

In  the past  an equat ion was  only considered solved 
w h e n  one had expressed the solution wi th  the aid o f  a 
f i n i t e  n u m b e r  o f  k n o w n  funct ions;  but this is hardly 
possible one t ime  in  a hundred. What we  can a lways  
do, or rather what  we  should always try to do, is to 
solve the quali tative problem so to speak, that is, to 
f i n d  the general f o r m  o f  the curve represent ing the un-  
k n o w n  funct ion.  

But applying this s t ra tegy to  the  3-body p rob lem was  no 
easy  task.  The equat ions descr ib ing the gravi ta t ional  mo- 
t ion of  3 poin t  masses  ml ,  m2, m3 in physical  space  are  

q~ = m~- lp~ 
ou(~ i = 1, 2, 3, 

where  qi = (q~, q~, q~) and Pi = ~ ,  P~, P~), i = 1, 2, 3, rep- 
r esen t  the  posi t ion vectors and the m o m e n t a  (i.e., mass  • 
veloci ty) ,  respectively;  

V -mlm2 U(q) = ( Iql  - q21 m2m3 m3ml  
+ I~ -- q3[ + Iq~- qll) 

is the potent ial  f u n c t i o n  (the negat ive of  the  potential  en- 
ergy); q = (ql,  q2, q3) is the conf igurat ion of the par t ic le  
system; and G is the  gravitat ional  constant .  

The 18-dimensional phase  space  can be  first r educed  to 
a 12-dimensional one. More precisely,  the  equations of  mo- 

t ion remain  unchanged  if one shifts the  origin of  the ref- 
erence  f rame to the  center  of  mass  of  the  par t ic le  system, 
a change that  can be expressed  by  6 sca lar  equat ions de- 

r ived from f i r s t  integrals (i.e., funct ions  that  are  cons tan t  
along solut ions):  

m l q l  + m2q2 + m3q3 = 0 and Pl  + P2 + P3 = 0. 

The reduc t ion  can  be  carr ied  fur ther  by  using o ther  first  
integrals.  The energy integral 

T(p) - U(q) = h, (1) 

where  T(p) = '2(m~llptl 2 + m511p212 + m~llp312) is the ki- 

netic energy, p = (Pt, P2, P3) is the  m o m e n t u m ,  and h a 
real  constant ,  fol ia tes  the 12-dimensional phase  space  into 
11-dimensional "slices," which can be  subsequent ly  fol ia ted 
using the 3 angu lar -momen tum integrals 

ql  x P t  + (12 x P2 + q3 x P3 = c ,  ( 2 )  

where  e is a cons tan t  vector.  This means  that  the  initial 18- 

d imensional  space  is par t i t ioned into infmitely many 8-di- 
mens ional  so-cal led integral manifolds,  M = M(h, c). 
Since the  equat ions  of  mot ion  are  invar iant  under  rotat ions,  
the  s tudy can be  fur ther  r educed  to the  7-dimensional  com- 

ponents  M7 = M/S02 (M factor ized to rotat ions) ,  cal led re- 
duced integral manifolds.  If we cons ide r  the  p lanar  3-body 
p rob lem ins tead  of  the spat ial  one, the  integral  manifold  
cor responding  to M, say m, is 6-dimensional;  the one cor- 

responding  to M7 is 5-dimensional;  let  us denote  it by m5. 
To apply  his  p rogram of  descr ib ing the qualitative be- 

havior  o f  solut ion-curves  in M7 and ms, Poincar~ had  first  
to  under s t and  the  shape  of  these  sets,  o r  the i r  topology, as 
we call  it  today.  Fo r  this  he needed  a language, so he 
sea rched  the l i terature  for appropr ia te  tools.  He found 
something 2 in a pos thumous ly  pub l i shed  f ragment  of  a 

2Other aspects of topology started developing at about the same time (see [Sc,1994] and [Da,1994]), viewing manifolds from a different perspective, 
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manuscript by Bernhard Riemann [R,1953] and in a paper 
of Enrico Betti [B,1871]. The two had worked together in 
Pisa, where Riemann, happy to leave the wet climate of 
GOttingen, which worsened his tuberculosis, had accepted 
several long-term invitations of his Italian colleague. But 
Poincar~ found he needed to develop these notions further. 
Thus algebraic topology was born. 

In Search of the Origins 
This is the most plausible scenario. Unfortunately there is 
no clear proof that Poincar~ thought exactly this way. No 
written statement has yet been traced. The American math- 
ematician George David Birkhoff, an expert in Poincar~'s 
work in dynamics, wrote a few decades later ([Bi,1927], 

p. 288), 

The manifold M7 has fundamenta l  importance for  the 
problem of  three bodies, but, so f a r  as I know, it has 
nowhere been studied, even wi th  respect to the ele- 
mentary  question of connectivity. The work of  
Poincard . . . does not consider M7 in the large. 

This is of course no proof that Poincard ignored the 
problem. (Painlev~, for example, attributes to Poincar~ 
what is known today in celestial mechanics as Painlev~'s 
conjecture, though there is no trace of it in Poincard's writ- 
ten heritage (see [DH,1996]). Most probably Painlev6 
learned of it during a private discussion.) There is, how- 
ever, clear evidence that Poincar~ connected algebraic 
topology (or analysis situs, as he called it following 
Riemann [R,1953]) to the 3-body problem. In a 1901 paper, 
published posthumously in 1921, Poincard wrote ([P, 1921], 
p. 101), 

All the various ways  in  which I have successively en- 
gaged myse l f  have led me  to Analysis Situs. I needed 
the results of  this science to pursue  m y  studies of  the 
curves defined by differential equations and for  ex- 
tending them to higher-order differential equations, in 
particular to those of  the 3-body problem. I needed them 
for  the s tudy of nonuni form funct ions  of  two variables. 
I needed them for  the s tudy of periods of multiple in- 
tegrals and for  applying this s tudy to expanding the 
perturbation function. Finally, I would foresee in 
Analysis Situs a way of  approaching an important  
problem of  group theory, the research of  discrete 
groups or of  f in i t e  groups contained in a given con- 
t inuous group. 

Poincard's first contributions to algebraic topology ap- 
peared in 1892 in a Comptes Rendus note, which he de- 
veloped in 1895 into a longer article entitled Analysis  
Situs. This happened at a time when he was deeply in- 
volved in research in celestial mechanics and especially in 
the 3-body problem. Five more papers on topology ap- 

peared between 1899 and 1904 (see [P, 1953]), after the pub- 
lication of Les Mdthodes nouvelles. 

How could Poincar~ connect analysis s i tus to the 3- 
body problem without thinking of the topological descrip- 
tion of M 7 or m5? He was interested in periodic orbits, and 
he needed to determine the topology of the space in order 
to find them. Periodic orbits are crucial for understanding 
what Poincar6 finally aimed at-- the geometry of the flow, 
which he could not possibly study without knowing the 
shape of the integral manifolds. 

Like most of us, Poincar6 reached his results from ex- 
ample to theorem, i.e., from the system describing the 3- 
body problem (on which he worked intensely at the be- 
ginning of the 1890s to expand his prize paper into the first 
two volumes of Les Mdthodes nouveUes) to the general the- 
ory of differential equations. But like most of us too, he 
presented his results the other way around, considering the 
3-body problem as an application of his theory. The previ- 
ous quotation follows the same pattern of thinking. On the 
other hand, Poincar~ made this statement almost two 
decades after publishing his first paper on analysis situs. 
Initially he had foreseen applications only "to higher-order 
differential equations and, in particular, to those of celes- 
tial mechanics" (see the Introduction in [P,1895]). These 
are other arguments favoring the idea that Poincard 
thought of the topological description of M7 and m5. 

But why then did he never state the problem explicitly? 
Perhaps because the tools he invented were too crude to 
help him make significant progress, so his interests shifted 
towards more promising directions. This would be no won- 
d e r - t h e  problem is very difficult. The first to publish a 
statement and make a step towards solving it was Birkhoff, 
who had become famous in 1912 by providing his f ixed- 
point  theorem 3, thus answering another question unsuc- 
cessfully attacked by Poincar~ (see [DH,1996]) and also 
rooted in the 3-body problem. 

Though we will never be sure of what was in Poincar~'s 
mind, it seems likely that in developing analysis si tus he 
was also targeting the topological description of M7 and 

m5. 

From Betti Numbers to Cohomology 
The main tools Poincar~ used for the topological charac- 
terization of a manifold were the Betti numbers, which he 
named after the Italian mathematician Enrico Betti 
(1823-1892), who had previously introduced certain topo- 
logical invariants. Poincar6 defined the Betti numbers of a 
manifold in his first paper on analysis situs, then recon- 
sidered them in some later articles. In today's terminology, 
if X is an n-dimensional topological space, the Betti num- 

bers rio,/31,. �9 �9 are defined as: ri0--the number of con- 
nected components of X; and ~k (k --> 1)--the number of k- 
dimensional holes of X (see Figure 2). 

In connection with Betti numbers, Poincar~ introduced 
the notion of homology, which later on developed into the 

SAt the end of October 1912, Birkhoff presented to the American Mathematical Society a communication entitled "Proof of Poincar~'s geometric theorem." The paper 

derived from this communication appeared a year later ([Bi,1913]). 
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60= 1, 61 = 1 

60= 1, 61=0 , 62=0  

130= 1, 61 = O, 132= 1 

Figure 2. Betti  numbers: {a) A point is 0-dimensional  and has one 

component ,  so/3o = 1. (b) The space formed by two points is 0-di-  

mensional  and has two components,  so 13o = 2. (c) A circle is 1-di-  

mensional,  has one component  and one 1-dimensional hole, so flo = 

/31 = 1. (d) A disc is 2-dimensional,  has one component  and no holes, 

so/30 = 1, /31 = 0 ,  and/32 = 0. (e) A sphere is 2-dimensional,  has one 

component ,  no 1-dimensional holes, but one 2-dimensional  hole, so 

/30 = 1,/~1 = 0, and ~2 = 1. 

concept of homology group. If in its early times algebraic 
topology paid more attention to numerical invariants, as 
fashion dictated, it soon became clear that a structural de- 
scription is richer. In fact, today's idea of algebraic topol- 
ogy is to reduce topological problems to algebraic ones, 
i.e., to obtain information about homeomorphic maps by 
studying the induced isomorphisms between the corre- 
sponding groups. 

Thus new concepts appeared, the cohomology group 
among them, which in a certain sense is the "dual" of a ho- 
mology group. Cohomology groups are not "better" than 
homology groups (in fact they are less natural, so it took 
quite a while for this notion to crystalize), but they reveal 
different topological aspects of the manifolds studied. Also 
they offer an alternative language for expressing certain 
topological properties. Similar things can be said about ho- 
motopy groups, which emerged in the 1930s from the work 
of Witold Hurewicz and Heinz Hopf. 

The growth of algebraic topology has been far from lin- 
ear, and its history is now a research subject in itself. Jean 
Dieudonn~ dedicates an entire volume to the period 1900 

to 1960 [D,1989], claiming that the next twenty years 
would easily fill another volume. Though Poincar~'s work 
on the subject was barely mentioned during the first 
decades after his death (1912), things changed afterwards. 
In the preface to his historical account, Dieudonn~ wrote 

[D,1989], 

At first,  algebraic topology grew very slowly and did 
not attract many  mathematicians; unti l  1920 its ap- 
plications to other parts of mathematics were very 
scanty (and often shaky). This s i tuat ion gradually 
changed wi th  the introduction of  more powerful al- 
gebraic tools, and Poincard's vision of the funda-  
mental role topology should play in  all mathematical 
theories began to materialize. Since 1940, the growth 
of algebraic and differential topology and of its ap- 
plications has been exponential and shows no signs 
of slackening. 

T h e  T o p o l o g y  o f  I n t e g r a l  M a n i f o l d s  

As I mentioned earlier, the first who explicitly dealt with 
the topology of M 7 and m5 was Birkhoff. In 1927 he con- 
sidered the problem but achieved only little success. In his 
now famous Dynamical Systems ([Bi,1927]), Birkhoff 
made a few unsatisfactory arguments for the following 
statement: 

B i rkho f f s  S ta tement .  For h < O, the topologies of M7 
and m5 can change only at points that correspond to rel- 
ative equilibria. 

A relative equilibrium is a point (q, p) in phase space 
which if taken as an initial condition for the 3-body prob- 
lem leads to a uniform motion of the bodies on concentric 
circles. The q-component of a relative equilibrium is called 
a central configuration, and it is always such that the grav- 
itational force has the same direction as the position vec- 
tor, i.e., q" = kq for some constant k > 0. The only possible 
central configurations for three bodies are the equilateral 
triangle, and the straight-line position in which the ratio of 
the distances satisfies a relation depending on the masses 
(see Figure 3). If released with zero velocity from such a 
configuration, the bodies move homothetically towards a 
simultaneous total collapse. Because there are three ways 
of arranging the masses on a line, the spatial 3-body prob- 
lem has four central configurations, ff the 3-body problem 
is restricted to a plane, the equilateral triangle has two pos- 
sible orientations, so the number of central configurations 
increases to five. 

The next notable statement was made by the Austrian 
mathematician Aurel Wintner in a book containing the 
most significant mathematical results obtained on the n- 
body problem up to 1941 [Wi,1941]. In his bibliographical 
notes, Wintner mentions that "... nothing explicit is known 
as to the topological structure of M7." Three decades of si- 
lence followed until the American mathematicians Stephen 
Smale [S,1970a], [S,1970b] and Robert Easton [E,1971] 
came up with important results. Employing Morse theory, 
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Figure 3. The equilateral and straight-line configurations of the 3-body problem. 

Smaie found the bifurcation types and proved Birkhoff's 
statement for m5. Independently, Easton described the 
topology of m5 in case of equal masses in terms of prod- 
ucts of intervals, spheres, and tori. At that time Easton had 
just obtained his Ph.D. degree and was seeking recogni- 
tion. He had considered the problem without knowing 
about Birkhoff's and Wintner's remarks, but in the summer 
of 1970 found out from a famous Brazilian mathematician, 
Mauricio Peixoto, that Smale had already obtained results 
in this sense. Anxious, he sent his paper to Smale, who 
replied with congratulations, saying that these contribu- 
tions paralleled his. 

Using the notes of his mentor Aristide Halanay of the 
University of Bucharest, who had attended Smale's lectures 
on the subject, the Romanian mathematician Andrei Iacob 
rewrote and completed Smale's program [I,1973]. Iacob's 
results were later included in the second edition of the 
book by Abraham and Marsden (see [AM,1978], Theorem 
10.4.21). A few years later the Chinese mathematician X.Y. 
Chen published some interesting results on m5 [Ch,1978]. 
Rotating configurations into the plane, Chen reduced the 
spatial problem to the planar one. Unfortunately, due to 
technical difficulties, Chen missed the complete descrip- 
tion of the topology of M7. Though the planar case could 
now be considered understood, the spatial one still re- 
sisted. But the offensive was strong and all the recent 
progress was seeding hope. 

The attack on the topology of M 7 w a s  launched by the 
Brazilian mathematician Hildeberto Cabrai, who in 1973 
published the results of his Ph.D. thesis written in Berkeley 
under the supervision of Smale. Besides some results on 
m5, Cabral characterized M7 for negative energy and zero 
angular momentum. Robert Easton made the next step 
[E,1975]. He extended some of his previous results by pro- 
jecting the 3-dimensional problem onto the plane. The idea 
of the projection method had already appeared in Cabral's 
paper, but the Brazilian mathematician did not pursue it. 
Easton obtained a series of nice results but unfortunately 
missed the fact that the topology of 1VI 7 may change not 
only at central configurations, but also at so-called criti- 
cal points at infinity.  These are values of the parameter 
v that are not central configurations and appear in con- 
nection with the behavior of the energy function restricted 

to certain level-manifolds of the angular momentum (for a 
technical definition see [A1,1993], p. 475). 

To give an idea of what a critical point at infmity means, 
here is an analogy. Imagine the intersection L n C of the 
curve C in Figure 4 and the line L, which is parallel to the 
horizontal axis. When the line L moves up and down, the 
topology of the set L n C changes at the t'mite critical 
points xl, x2, and x3, but also at +% because the curve C 
is asymptotic to the horizontal axis. 

In 1970 Stephen Smale was the first to point out the pos- 
sible existence of a bifurcation point at infinity. A few years 
later the Spanish mathematician Carles Sim6 [Si,1975] 
proved the existence of three such points at which the 
topology of 1~7 c a n  change. In 1993, in a paper in which he 
attacked the more difficult problem of understanding the 
topology of integral manifolds in the n-body problem, the 
French mathematician Alain Albouy [A1,1993] showed that 
three was the maximum number of critical points at infm- 
ity at which the topology of M7 can change. All these im- 
plied that Birkhoff's statement was false in the 3-dimen- 
sional case. 

T 

X X X 
1 3 2 

Figure 4. The idea of a critical point at infinity can be seen from the 

above picture: when the line L moves up and down, the topology of 

the set L n C changes not only at the finite critical points xl, x2, and 

x3, but at ~ too. 
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Other important results were obtained by the American 
mathematician Donald Saari between 1984 and 1987. Sim6 
had proved the presence of a bifurcation point of the para- 
meter having an interesting property (see [Si, 1975]). For val- 
ues larger than it, there appear restrictions on the orienta- 
tion of the plane of motion (e.g., the angular-momentum 
vector cannot lie in this plane), and for values smaller than 
it there are configurations with unrestricted orientation. 
Using a clever decomposition of the angular momentum, 
Saari gave a geometrical description of the integral mani- 
folds in terms of a sphere bundle and completely explained 
the above restrictions ([Sa,1984], [Sa,1987a], [Sa,1987b]). 

The Solution of the Original Problem 
The announcement of the complete solution of the problem 
came in the fall of 1994 at a conference on Hamiltonian 
Systems and Celestial Mechanics in Cocoyoc, a small town 
south of Mexico City, in a hacienda founded by Hernando 
Cortez. The three authors, Chris McCord, Kenneth Meyer, 
and Quidong Wang of the University of Cincinnati, were all 
present. McCord, trained as a topologist, had learned about 
the problem from his colleague Ken Meyer, a leading re- 
searcher with many important results in celestial mechanics. 
Wang, who had just completed his Ph.D. degree with Meyer, 
was already known for the convergent power series solution 
he had obtained for the singularity-free n-body problem, a 
quest generalizing the problem attacked by Poincard for King 
Oscar's competition (see [W,1991] and [Di,1992]). 

Meyer had first heard of the possibility of bifurcations 
due to critical points at infinity from Alain Albouy at the 
1991 conference on celestial mechanics in Guanajuato. 
Upon his return to Cincinnati, Meyer asked Wang whether 
he would like to read Albouy's paper. Wang was already 
familiar with Chen's and Saari's work and showed imme- 
diate interest. Then McCord joined the team. 

This collaboration was a happy one. McCord was a mas- 
ter of algebraic topology. Beyond his erudition in dynami- 
cal systems, Meyer had a rich and fruitful research expe- 
rience and a good feeling for avoiding traps; Wang brought 
to the team his courage, decisiveness, and enthusiasm. 
Having together all the ingredients for success at a time 
when the problem was ready to yield, McCord, Meyer, and 
Wang provided after many months of intense work a com- 
plete topological description of the integral manifolds 
associated to the 3-body problem. Their 90-page paper ap- 
peared in 1998 in the Memoirs of the American Mathe- 
matical Society [MW, 1998] to rave reviews. 

The main idea followed by McCord, Meyer, and Wang 
was to modify the rotation Chen used in [Ch,1978] and thus 
simplify some of the derived algebraic equations. This al- 
lowed them to overcome the difficulties that had stopped 
Chen. Their work involves several algebraic-topological 
techniques accessible only to specialists: Gysin and Mayer- 
Vietoris sequences, results due to Seifert and Van Kampen, 
Thorn classes, bootstrapping, etc. The final result, however, 
is easy to grasp. 

The integral manifolds are analysed with respect to the 
values of the parameter v = -c2h, where h is the energy 

constant in (1) and c is derived from (2) by taking the ref- 
erence frame such that the angular-momentum constant c 
is of the form c = (0, 0, c). There are 9 special values for 
u at which the topology of integral manifolds may change. 
We must therefore ask about the topology in each of the 
ten intervals for v: I = ( - %  vl), II = (ul, u2), I I I =  (u2, ~3), 
IV  --  (P~3, b'4), V = (~'4, t '5), VI  --  (~5,  ~'6), VII = (u6, P7), VIII = 

(uT, us), IX = (us, ug), X = (~, oo). The values vl, v2, us, ~4, 
and u5 correspond to critical points at infinity (Vl is due to 
the change from h > 0 to h < 0, and ~2, u3, and u4 were 
found by Sim6), whereas us, uT, us, and u9 are due to rela- 
tive equilibria. Apparently the existence of u5 contradicts 
Albouy's finding that there are no other critical points at 
infinity except the ones of Smale and Sim6. But in fact u5 
is there; it's just that the topology of the integral manifolds 
remains unchanged at u5. This came out from the results 
of McCord, Meyer, and Wang, who computed the coho- 
mology groups of M7 in each case. The following table sum- 
marizes their conclusions in terms of Betti numbers. 

Bet t i  n u m b e r  flo ,81 /~2 f13 f14 /35 fie ,87 

I 1 0 0 2 0 0 0 0 

II 1 0 4 0 5 0 2 0 

III 1 0 4 0 3 0 2 0 

IV 1 0 4 0 1 0 2 0 

v 1 0 4 0 0 1 2 0 

VI 1 0 4 0 0 1 2 0 

vii 1 1 3 0 0 0 3 0 

viii 1 0 3 0 0 0 2 0 

IX 2 0 3 0 0 0 1 0 

X 3 0 3 0 0 0 0 0 

us, the critical point at infinity, was particularly troublesome 
for the team. The preliminary computations showed that the 
topology changed at u5, in contradiction with Albouy's pre- 
vious conclusion. Intrigued, Meyer e-mailed a note to 
Albouy, who replied that he had three proofs for his result 
and saw no alternative. Soon Meyer understood that Albouy 
was right and convinced the others that the mistake must 
be their own. But it took several months of checking and 
rechecking their arguments until, to their relief, they found 
a mere computational error, which when corrected proved 
that the topology of l~I 7 W a s  unaffected at us. 

The work of McCord, Meyer, and Wang closes a cen- 
tury-long loop, solving a problem to which many others 
have made direct or indirect contributions. But this is not 
the end of the journey. New questions regarding the topol- 
ogy of integral manifolds associated to different restricted 
3-body problems and to the n-body problem in general can 
now be attacked with the methods developed in all those 
years. Moreover, we might be able to understand better the 
geometry of the flow associated to the 3-body problem-- 
a goal toward which Poincar~ strived his entire life. 
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