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A Century-long

L oop

The first goal of this work . . . is to . .

. deal with a branch of geometry called Analysis Situs,

which describes the relative position of points, lines, and surfaces, with no regard for their size.

Most mathematical theories are like unfaithful offspring:
they forget their origins. But some remember them. In 1892,
while pursuing his studies on the 3-body problem, Henri
Poincaré laid the foundations of algebraic topology. The
new field flourished, finding applications in many branches
of mathematics. A hundred years later its tools were used
to answer Poincaré’s initial question.

This is a tale about a theory that glimpsed back to its
roots, solving one of the problems that had created it. But
before telling this story, let me generalize on how mathe-
matical theories arise.

The Birth of New Theories
Two basic mechanisms—one internal, the other external—
govern the development of mathematics. The internal one
acts when posing a purely mathematical probler. This leads
to theorems, new concepts, generalizations, and higher lev-
els of abstraction. Galois theory, for example, grew as a re-
sult of repeated attempts to find a formula for the solutions
of a polynomial equation of any degree. The external mech-
anistu is triggered by other fields. Some of the questions they
pose stimulate the rise of new mathematical branches. In
this sense, Newton founded the theory of differential equa-
tions while trying to explain the motion of the moon.

Most theories grow under the influence of both internal

Henri Poincaré, in Analysis Situs, 1895

and external factors, thus closely relating the evolution of
pure and applied mathematics. A new field is usually born
under the weight of one or more questions asked at the
right time, which are intriguing enough to rouse attention
and to keep the interest alive. But even at maturity, a the-
ory may be unable to solve the original problems. Most re-
searchers of the new domain are unaware of or uninter-
ested in the initial setting, whereas those who still seek
answers are usually overwhelmed by the growth of the new
field. If encugh time elapses, changes in fashion may dis-
card the original statements or, in rare cases, promote them
to the rank of famous conjectures.

So in many cases the birth of new mathematical
branches is a deflective phenomenon: when unable to solve
a problem, mathematicians create a theory in order to an-
swer the initial question. Often the question fades out of
the collective memory and the new field takes on different
paths (see Figure 1).! Algebraic topology followed the same
rule. But at least one of its original questions stayed alive
due to the growing interest in the qualitative theory of dy-
namical systers.

Poincaré’s Question
Soon after finishing his doctoral degree (1878), Poincaré
started working on the 3-body problem. At that time he had

*To the memory of Aristide Halanay (1924-1997) of the University of Bucharest, founding editor of the Journal of Differential Equations.
This is not the paradigm-type evolution described by Thomas Kuhn [K,1970]. Unlike scientific theories, which replace each other, mathematical fields live together and
aim to make connections. To relate Kuhn's model to this one would take another paper.
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Figure 1. Deflective development: an original question leads to new concepts and to a new theory, which answers other questions but may

not answer the original one.

no idea that his results in celestial mechanics would launch
such a brilliant career. In 1889 he was awarded the presti-
gious prize of King Oscar II of Sweden and Norway (see
[BG,1997] and DH,1996]). Poincaré published the prize pa-
per a year later and developed it during the next decade
into the 3-volume masterpiece Les Méthodes nouvelles de
la Mécanique céleste.

The ideas he promoted in the theory of differential equa-
tions and in celestial mechanics were revolutionary.
Instead of seeking particular solutions or attempting to re-
duce the order of the system (methods that applied only
to a few classes of problems), he developed a qualitative
point of view, following the Swiss mathematician Charles
Sturm, who had started on this path in 1836. For a given
system of differential equations,

x' = fx),

Poincaré considered the n-dimensional set of the variable
x, called phase space, and viewed the solutions of the sys-
tem as curves in this space. His goal was to offer a global
geometric description of the solution curves. He explained
this in his address to the Fourth International Congress of
Mathematicians held in 1908 in Rome:

In the past an equation was only considered solved
when one had expressed the solution with the aid of a
Sinite number of known functions,; but this is hardly
possible one time in a hundred. What we can always
do, or rather what we should always try to do, is to
solve the qualitative problem so lo speak, that is, to
Jind the general form of the curve representing the un-
known function.

But applying this strategy to the 3-body problem was no
easy task. The equations describing the gravitational mo-
tion of 3 point masses m;, mg, ms in physical space are

{q% = m;7 'p;
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where q; = (QL) i, Q7,) and P = (pi1 i, pi)) = 17 25 37 rep-
resent the position vectors and the momenta (i.e., mass X
velocity), respectively; '
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is the potential function (the negative of the potential en-
ergy); 4 = (41, 92, 43) is the configuration of the particle
system; and G is the gravitational constant.

The 18-dimensional phase space can be first reduced to
a 12-dimensional one. More precisely, the equations of mo-
tion remain unchanged if one shifts the origin of the ref-
erence frame to the center of mass of the particle system,
a change that can be expressed by 6 scalar equations de-
rived from first integrals (i.e., functions that are constant
along solutions):

U(q) = G(

msm;y )
a3 — qi

miqy + maqe +m3q3 =0 and p;+pz+ps=0.

The reduction can be carried further by using other first
integrals. The energy integral

T(p) — U(q) = h, e

where T(p) = i(m7pi2 + mz'po2 + m3zps) is the ki-
netic energy, p = (P1, Pz, P3) is the momentum, and h a
real constant, foliates the 12-dimensional phase space into
11-dimensional “slices,” which can be subsequently foliated
using the 3 angular-momentum integrals

QU XprtaXptqzsXpz=c, 2

where c is a constant vector. This means that the initial 18-
dimensional space is partitioned into infinitely many 8-di-
mensional so-called integral manifolds, M = M(h, c).
Since the equations of motion are invariant under rotations,
the study can be further reduced to the 7-dimensional com-
ponents M; = M/SO, (M factorized to rotations), called re-
duced integral manifolds. If we consider the planar 3-body
problem instead of the spatial one, the integral manifold
corresponding to M, say m, is 6-dimensional; the one cor-
responding to My is 5-dimensional; let us denote it by ms.

To apply his program of describing the qualitative be-
havior of solution-curves in M; and ms, Poincaré had first
to understand the shape of these sets, or their topology, as
we call it today. For this he needed a language, so he
searched the literature for appropriate tools. He found
something? in a posthumously published fragment of a

2Other aspects of topology started developing at about the same time (see [Sc,1994] and [Da,1994]), viewing manifolds from a different perspective.
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manuscript by Bernhard Riemann [R,1953] and in a paper
of Enrico Betti [B,1871]. The two had worked together in
Pisa, where Riemann, happy to leave the wet climate of
Gottingen, which worsened his tuberculosis, had accepted
several long-term invitations of his Italian colleague. But
Poincaré found he needed to develop these notions further.
Thus algebraic topology was born.

In Search of the Origins

This is the most plausible scenario. Unfortunately there is
no clear proof that Poincaré thought exactly this way. No
written statement has yet been traced. The American math-
ematician George David Birkhoff, an expert in Poincaré’s
work in dynamics, wrote a few decades later ([Bi,1927],
p. 288),

The manifold M, has fundamental importance for the
problem of three bodies, but, so far as I know, it has
nowhere been studied, even with respect to the ele-
mentary question of connectivity. The work of
Poincaré . . . does not consider M; in the large.

This is of course no proof that Poincaré ignored the
problem. (Painlevé, for example, attributes to Poincaré
what is known today in celestial mechanics as Painlevé’s
conjecture, though there is no trace of it in Poincaré’s writ-
ten heritage (see [DH,1996]). Most probably Painlevé
learned of it during a private discussion.) There is, how-
ever, clear evidence that Poincaré connected algebraic
topology (or analysis situs, as he called it following
Riemann [R,1953]) to the 3-body problem. In a 1901 paper,
published posthumously in 1921, Poincaré wrote ([P,1921],
p. 101),

All the various ways in which I have successively en-
gaged myself have led me to Analysis Situs. I needed
the results of this science to pursue my studies of the
curves defined by differential equations and for ex-
tending them to higher-order differential equations, in
particular to those of the 3-body problem. I needed them
Jor the study of nonuniform functions of two variables.
I needed them for the study of periods of multiple in-
tegrals and for applying this study to expanding the
perturbation function. Finally, I would foresee in
Analysis Situs a way of approaching an important
problem of group theory, the research of discrele
groups or of finite groups contained in a given con-
tinuous group.

Poincaré’s first contributions to algebraic topology ap-
peared in 1892 in a Compies Rendus note, which he de-
veloped in 1895 into a longer article entitled Analysis
Situs. This happened at a time when he was deeply in-
volved in research in celestial mechanics and especially in
the 3-body problem. Five more papers on topology ap-

peared between 1899 and 1904 (see [P,1953)), after the pub-
lication of Les Méthodes nouvelles.

How could Poincaré connect analysis situs to the 3-
body problem without thinking of the topological descrip-
tion of M; or ms? He was interested in periodic orbits, and
he needed to determine the topology of the space in order
to find them. Periodic orbits are crucial for understanding
what Poincaré finally aimed at—the geometry of the flow,
which he could not possibly study without knowing the
shape of the integral manifolds.

Like most of us, Poincaré reached his results from ex-
ample to theorem, i.e., from the system describing the 3-
body problem (on which he worked intensely at the be-
ginning of the 1890s to expand his prize paper into the first
two volumes of Les Méthodes nouvelles) to the general the-
ory of differential equations. But like most of us too, he
presented his results the other way around, considering the
3-body problem as an application of his theory. The previ-
ous quotation follows the same pattern of thinking. On the
other hand, Poincaré made this statement almost two
decades after publishing his first paper on analysis situs.
Initially he had foreseen applications only “to higher-order
differential equations and, in particular, to those of celes-
tial mechanics” (see the Introduction in [P,1895]). These
are other arguments favoring the idea that Poincaré
thought of the topological description of M; and ms.

But why then did he never state the problem explicitly?
Perhaps because the tools he invented were too crude to
help him make significant progress, so his interests shifted
towards more promising directions. This would be no won-
der—the problem is very difficult. The first to publish a
statement and make a step towards solving it was Birkhoff,
who had become famous in 1912 by providing his fixed-
point theorem?, thus answering another question unsuc-
cessfully attacked by Poincaré (see [DH,1996]) and also
rooted in the 3-body problem.

Though we will never be sure of what was in Poincaré’s
mind, it seems likely that in developing analysis situs he
was also targeting the topological description of M; and
ms.

From Betti Numbers to Cohomology
The main tools Poincaré used for the topological charac-
terization of a manifold were the Beiti numbers, which he
named after the Italian mathematician Enrico Betti
(1823-1892), who had previously introduced certain topo-
logical invariants. Poincaré defined the Betti numbers of a
manifold in his first paper on analysis situs, then recon-
sidered them in some later articles. In today’s terminology,
if X is an n-dimensional topological space, the Betti num-
bers By, 81, - - - , Bn are defined as: fo—the number of con-
nected components of X; and By (k = 1)—the number of k-
dimensional holes of X (see Figure 2).

In connection with Betti numbers, Poincaré introduced
the notion of homology, which later on developed into the

3At the end of October 1912, Birkhoff presented to the American Mathematical Society a communication entitled “Proof of Poincaré’s geometric theorem.” The paper

derived from this communication appeared a year later ([Bi,1913]).
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Figure 2. Betli numbers: (a) A point is O-dimensional and has one
component, so 3y = 1. (b) The space formed by two points is 0-di-
mensional and has two components, so 3o = 2. (c) A circle is 1-di-
mensional, has one component and one 1-dimensional hole, so 3y =
B¢ = 1. (d) A disc is 2-dimensional, has one component and no holes,
s0 Bp =1, B1 =0, and 3, = 0. (e) A sphere is 2-dimensional, has one
component, no 1-dimensional holes, but one 2-dimensional hole, so
Bo=1,ﬁ1=0,aﬂdﬁ2=1.

concept of homology group. If in its early times algebraic
topology paid more attention to numerical invariants, as
fashion dictated, it soon became clear that a structural de-
scription is richer. In fact, today’s idea of algebraic topol-
ogy is to reduce topological problems to algebraic ones,
i.e., to obtain information about homeomorphic maps by
studying the induced isomorphisms between the corre-
sponding groups.

Thus new concepts appeared, the cohomology group
among them, which in a certain sense is the “dual” of a ho-
mology group. Cohomology groups are not “better” than
homology groups (in fact they are less natural, so it took
quite a while for this notion to crystalize), but they reveal
different topological aspects of the manifolds studied. Also
they offer an alternative language for expressing certain
topological properties. Similar things can be said about ho-
motopy groups, which emerged in the 1930s from the work
of Witold Hurewicz and Heinz Hopf.

The growth of algebraic topology has been far from lin-
ear, and its history is now a research subject in itself. Jean
Dieudonné dedicates an entire volume to the period 1900
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to 1960 [D,1989], claiming that the next twenty years
would easily fill another volume. Though Poincaré’s work
on the subject was barely mentioned during the first
decades after his death (1912), things changed afterwards.
In the preface to his historical account, Dieudonné wrote
[D,1989],

At first, algebraic topology grew very slowly and did
not attract many mathematicians; until 1920 its ap-
plications to other parts of mathematics were very
scanty (ond often shaky). This situation gradually
changed with the introduction of more powerful al-
gebraic tools, and Poincaré’s vision of the funda-
mental role topology should play in all mathematical
theories began to materialize. Since 1940, the growth
of algebraic and differential topology and of its ap-
plications has been exponential and shows no signs
of slackening.

The Topology of integral Manifolds

As I mentioned earlier, the first who explicitly dealt with
the topology of M; and ms was Birkhoff. In 1927 he con-
sidered the problem but achieved only little success. In his
now famous Dynamical Systems ([Bi,1927]), Birkhoff
made a few unsatisfactory arguments for the following
statement:

Birkhoff’s Statement. For k <0, the topologies of My
and mg can change only at points that correspond to rel-
ative equilibria.

A relative equilibrium is a point (q, p) in phase space
which if taken as an initial condition for the 3-body prob-
lem leads to a uniform motion of the bodies on concentric
circles. The g-component of a relative equilibrium is called
a central configuration, and it is always such that the grav-
itational force has the same direction as the position vec-
tor, i.e., " = kq for some constant & > 0. The only possible
central configurations for three bodies are the equilateral
triangle, and the straight-line position in which the ratio of
the distances satisfies a relation depending on the masses
(see Figure 3). If released with zero velocity from such a
configuration, the bodies move homothetically towards a
simultaneous total collapse. Because there are three ways
of arranging the masses on a line, the spatial 3-body prob-
lem has four central configurations. If the 3-body problem
is restricted to a plane, the equilateral triangle has two pos-
sible orientations, so the number of central configurations
increases to five.

The next notable statement was made by the Austrian
mathematician Aurel Wintner in a book containing the
most significant mathematical results obtained on the n-
body problem up to 1941 [Wi,1941]. In his bibliographical
notes, Wintner mentions that “. . . nothing explicit is known
as to the topological structure of M7.” Three decades of si-
lence followed until the American mathematicians Stephen
Smale [S,1970a], [S,1970b] and Robert Easton [E,1971]
came up with important results. Employing Morse theory,
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Figure 3. The equilateral and straight-line configurations of the 3-body problem.

Smale found the bifurcation types and proved Birkhoff’s
statement for ms. Independently, Easton described the
topology of mjg in case of equal masses in terms of prod-
ucts of intervals, spheres, and tori. At that time Easton had
just obtained his Ph.D. degree and was seeking recogni-
tion. He had considered the problem without knowing
about Birkhoff’s and Wintner’s remarks, but in the summer
of 1970 found out from a famous Brazilian mathematician,
Mauricio Peixoto, that Smale had already obtained results
in this sense. Anxious, he sent his paper to Smale, who
replied with congratulations, saying that these contribu-
tions paralleled his.

Using the notes of his mentor Aristide Halanay of the
University of Bucharest, who had attended Smale’s lectures
on the subject, the Romanian mathematician Andrei lacob
rewrote and completed Smale’s program [1,1973]. Iacob’s
results were later included in the second edition of the
book by Abraham and Marsden (see [AM,1978], Theorem
10.4.21). A few years later the Chinese mathematician X.Y.
Chen published some interesting results on ms [Ch,1978].
Rotating configurations into the plane, Chen reduced the
spatial problem to the planar one. Unfortunately, due to
technical difficulties, Chen missed the complete descrip-
tion of the topology of My. Though the planar case could
now be considered understood, the spatial one still re-
sisted. But the offensive was strong and all the recent
progress was seeding hope.

The attack on the topology of M; was launched by the
Brazilian mathematician Hildeberto Cabral, who in 1973
published the results of his Ph.D. thesis written in Berkeley
under the supervision of Smale. Besides some results on
m;, Cabral characterized M7 for negative energy and zero
angular momentum. Robert Easton made the next step
[E,1975]. He extended some of his previous results by pro-
jecting the 3-dimensional problem onto the plane. The idea
of the projection method had already appeared in Cabral’s
paper, but the Brazilian mathematician did not pursue it.
Easton obtained a series of nice results but unfortunately
missed the fact that the topology of M; may change not
only at central configurations, but also at so-called crifi-
cal points at infinity. These are values of the parameter
v that are not central configurations and appear in con-
nection with the behavior of the energy function restricted

to certain level-manifolds of the angular momentum (for a
technical definition see [Al,1993], p. 475).

To give an idea of what a critical point at infinity means,
here is an analogy. Imagine the intersection L N C of the
curve C in Figure 4 and the line L, which is parallel to the
horizontal axis. When the line L moves up and down, the
topology of the set L N C changes at the finite critical
points x}, X2, and a3, but also at +=, because the curve C
is asymptotic to the horizontal axis.

In 1970 Stephen Smale was the first to point out the pos-
sible existence of a bifurcation point at infinity. A few years
later the Spanish mathematician Carles Simé [Si,1975]
proved the existence of three such points at which the
topology of M7 can change. In 1993, in a paper in which he
attacked the more difficult problem of understanding the
topology of integral manifolds in the n-body problem, the
French mathematician Alain Albouy [Al,1993] showed that
three was the maximum number of critical points at infin-
ity at which the topology of M7 can change. All these im-
plied that Birkhoff’s statement was false in the 3-dimen-
sional case.

X X X
1 3 2
Figure 4. The idea of a critical point at infinity can be seen from the

above picture: when the line L moves up and down, the topology of
the set L N C changes not only at the finite critical points x4, x5, and

X3, but at « too.
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Other important results were obtained by the American
mathematician Donald Saari between 1984 and 1987. Simé
had proved the presence of a bifurcation point of the para-
meter having an interesting property (see [Si,1975]). For val-
ues larger than it, there appear restrictions on the orienta-
tion of the plane of motion (e.g., the angular-momentum
vector cannot lie in this plane), and for values smaller than
it there are configurations with unrestricted orientation.
Using a clever decomposition of the angular momentum,
Saari gave a geometrical description of the integral mani-
folds in terms of a sphere bundle and completely explained
the above restrictions ([Sa,1984], [Sa,1987a], [Sa,1987b]).

The Solution of the Original Problem

The announcement of the complete solution of the problem
came in the fall of 1994 at a conference on Hamiltonian
Systems and Celestial Mechanics in Cocoyoc, a small town
south of Mexico City, in a hacienda founded by Hernando
Cortez. The three authors, Chris McCord, Kenneth Meyer,
and Quidong Wang of the University of Cincinnati, were all
present. McCord, trained as a topologist, had learned about
the problem from his colleague Ken Meyer, a leading re-
searcher with many important results in celestial mechanics.
Wang, who had just completed his Ph.D. degree with Meyer,
was already known for the convergent power series solution
he had obtained for the singularity-free n-body problem, a
quest generalizing the problem attacked by Poincaré for King
Oscar’s competition (see [W,1991] and [Di,1992]).

Meyer had first heard of the possibility of bifurcations
due to critical points at infinity from Alain Albouy at the
1991 conference on celestial mechanics in Guanajuato.
Upon his return to Cincinnati, Meyer asked Wang whether
he would like to read Albouy's paper. Wang was already
familiar with Chen’s and Saari’'s work and showed imme-
diate interest. Then McCord joined the team.

This collaboration was a happy one. McCord was a mas-
ter of algebraic topology. Beyond his erudition in dynami-
cal systems, Meyer had a rich and fruitful research expe-
rience and a good feeling for avoiding traps; Wang brought
to the team his courage, decisiveness, and enthusiasm.
Having together all the ingredients for success at a time
when the problem was ready to yield, McCord, Meyer, and
Wang provided after many months of intense work a com-
plete topological description of the integral manifolds
associated to the 3-body problem. Their 90-page paper ap-
peared in 1998 in the Memoirs of the American Mathe-
matical Society [MW,1998] to rave reviews.

The main idea followed by McCord, Meyer, and Wang
was to modify the rotation Chen used in [Ch,1978] and thus
simplify some of the derived algebraic equations. This al-
lowed them to overcome the difficulties that had stopped
Chen. Their work involves several algebraic-topological
techniques accessible only to specialists: Gysin and Mayer-
Vietoris sequences, results due to Seifert and Van Kampen,
Thom classes, bootstrapping, etc. The final result, however,
is easy to grasp.

The integral manifolds are analysed with respect to the
values of the parameter » = —c%h, where k is the energy
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constant in (1) and ¢ is derived from (2) by taking the ref-
erence frame such that the angular-momentum constant ¢
is of the form ¢ = (0, 0, ¢). There are 9 special values for
v at which the topology of integral manifolds may change.
We must therefore ask about the topology in each of the
ten intervals for v: I = (=%, »), Il = (v, w), I = (19, 1),
IV = (13, 1), V = (34, 15), VI = (5, 1), VIl = (v, v7), VIII =
(V7: VS)v X= (VS) VQ)! X= (VQ) oo) The values vy, Vo, Vg, V4,
and »5 correspond to critical points at infinity (7 is due to
the change from 2 >0 to h <0, and 1, vy, and v, Were
found by Simé), whereas g, 17, 13, and vy are due to rela-
tive equilibria. Apparently the existence of »s contradicts
Albouy’s finding that there are no other critical points at
infinity except the ones of Smale and Simé. But in fact 15
is there; it’s just that the topology of the integral manifolds
remains unchanged at »s. This came out from the results
of McCord, Meyer, and Wang, who computed the coho-
mology groups of M7 in each case. The following table sum-
marizes their conclusions in terms of Betti numbers.

Betti number Bo B B2 B3 Ba Bs Bs Br
| 1 0 0 2 0 0 0 0

Il 1 0 4 ¢} 5 8} 2 0
Il 1 0 4 0 3 0 2 0
v 1 0 4 0 1 0 2 0
A 1 0 4 0 o] 1 2 o}
\ 1 ¢} 4 0 0 1 2 0
Vil 1 1 3 0 0 0 3 0
Vi 1 0 3 0 ¢} 0 2 0
IX 2 ¢} 3 0 0 0 1 0
X 3 0 3 6} 0 0 0 0

m;, the critical point at infinity, was particularly troublesome
for the team. The preliminary computations showed that the
topology changed at 5, in contradiction with Albouy’s pre-
vious conclusion. Intrigued, Meyer e-mailed a note to
Albouy, who replied that he had three proofs for his result
and saw no alternative. Soon Meyer understood that Albouy
was right and convinced the others that the mistake must
be their own. But it took several months of checking and
rechecking their arguments until, to their relief, they found
a mere computational error, which when corrected proved
that the topology of M; was unaffected at 1.

The work of McCord, Meyer, and Wang closes a cen-
tury-long loop, solving a problem to which many others
have made direct or indirect contributions. But this is not
the end of the journey. New questions regarding the topol-
ogy of integral manifolds associated to different restricted
3-body problems and to the n-body problem in general can
now be attacked with the methods developed in all those
years. Moreover, we might be able to understand better the
geometry of the flow associated to the 3-body problem—
a goal toward which Poincaré strived his entire life.
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