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EE
xploring new mathematical territory can be a risky
adventure. With no landmarks in sight, it’s easy to
err, as all the giants, from Fermat and Newton to

Gauss and Poincaré, well knew. Still, an expedition into the
unknown is highly rewarding if planned with care and
advanced with restraint, a thing the masters knew too. I
learned this lesson not only by reading them and about
them, but also from experience.

A Brief History of the Problem
The curved N-body problem is a short name for the
equations that describe the motion of gravitating particle
systems in spaces of constant Gaussian curvature. I dis-
covered this universe a few years ago, and found it
fascinating. Later I also looked into its history, which
proved to be as gripping as the universe itself.

The classical N-body problem has its roots in the work of
Isaac Newton, who introduced it in his masterpiece Prin-
cipia in 1687. His goal was to study the motion of the moon,
and for this he offered a model for the dynamics of celestial
objects under gravitational attraction. It took about 150 years
until the independent founders of hyperbolic geometry,
János Bolyai and Nikolai Lobachevsky, thought of extending
gravitation to spaces of constant curvature [4, 28].

By that time, Gauss had already derived his gravity law,
which is equivalent to Newton’s, but emphasizes that the
gravitational force is inversely proportional to the area of
the sphere of radius equal to the distance between the
attracting bodies. So it’s no wonder that both Bolyai and
Lobachevsky saw the connection between the geometry of
the space and the laws of physics. They defined a Kepler
problem in the hyperbolic space H3 (the gravitational

motion of a body about a fixed point) in which the force is
inversely proportional to the area of a sphere of radius
equal to the hyperbolic arc distance between the body and
the attraction centre. Alas, they never followed this idea to
obtain the equations of motion in analytic form [4, 28].

One mathematician who appreciated the problem was
Lejeune Dirichlet. He told friends he had dealt with it during
his last year inBerlin (1852), but he never published anything
in this direction [27]. It was Ernest Schering, a Göttingen
mathematician and reluctant editor of Gauss’s posthumous
work, who came up with an analytic expression of the
potential in 1870 [33]. Since the area of a sphere in H3 is
proportional to sinh2 r , where r is its radius, Schering pro-
posed a force, F, inversely proportional to this function,
which led him to a potential, U, that involves coth r , because
F = rU. But was this the right way to extend Newton’s law?
After all, there are many ways to do that. Rudolf Lipschitz
must have asked this question, for in 1873 he defined a
potential in S3 proportional to 1= sin r . His attempts to solve
the Kepler problem led him to expressions that depend on
elliptic integrals, which cannot be explicitly solved, so his
approach was a dead end. In 1885, Wilhelm Killing returned
to the original idea and used cot r for the potential in S3 [22].
Still, without knowing whether the orbits following this
gravitational law are conic sections, as it happens in the
Euclidean case, a question mark loomed over this extension
of gravity to spaces of constant curvature.

The breakthrough came at the dawn of the 20th century
thanks to Heinrich Liebmann, a mathematician known
today mostly for his work in hyperbolic geometry. In 1902,
Liebmann published a paper in which he showed that the
orbits of the curved Kepler problem are indeed conic
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sections in the hyperbolic plane and that the coth potential
is a harmonic function in 3D, but not in 2D, the same as in
the classical Kepler problem [25]. His next key result was
related to Bertrand’s theorem, which states that for the
Kepler problem there are only two analytic central poten-
tials in the Euclidean space for which all bounded orbits are
closed, one of the potentials being the inverse square law
[2]. In 1903, Liebmann proved a similar theorem for the
cotangent potential in H2 and S2 [26]. These properties
established the law proposed by Bolyai and Lobachevsky
as the natural extension of gravity to spaces of constant
curvature, and explained why the inverse square of the arc
distance, which seems more natural but doesn’t have these
features, is not the way to go.

This great news, which meant that my research on the
curved N-body problem was on the right track, also made
me curious about Liebmann. I learned that he had been
briefly the rector of the University of Heidelberg, my own
doctoral Alma Mater, but had been ousted from his post
soon after the Nazis came to power, during their abomi-
nable purge of Jewish intellectuals. In 2009, I visited
Heidelberg again, and learned from my Ph.D. supervisor,
Willi Jäger, about the Liebmann Remembrance Colloquium
of 2008. Liebmann’s son Karl-Otto, also an academic, had
donated on this occasion an oil portrait of his father to the
university. This painting has now a place of honour in the
Faculty of Mathematics.

Not much was done after Liebmann’s breakthrough.
Before the recent publication of a paper by the Spanish
mathematicians Cariñena, Rañada, and Santander [3], which

had been my source of inspiration, the only important
development was the work on the 2-body problem initiated
by the Russian school of celestial mechanics, led by Valery
Kozlov [23]. These researchers discovered that, unlike in
Euclidean space, where the Kepler problem and the 2-body
problem are equivalent, in curved space the equations of
motion are distinct. Moreover, the curved Kepler problem is
integrable, whereas the curved 2-body problem is not [34].

When I wanted to extend the curved 2-body problem to
any number N C 2 of bodies, the only reference point I had
was the paper of the Spanish mathematicians. I learned
about the work of Schering, Killing, and Liebmann only
months after discovering this new universe. But before
getting into mathematical details, I will recount how every-
thing started.

Beginnings
We feel restless without a good problem to solve, a point in
life we can reach for various reasons, including loss of
interest in what we’ve been doing. Most of us hit this wall
sooner or later, and so did I. Finding a new appealing
subject can be challenging under such circumstances. But
in this case chance favoured me.

I had worked in the dynamics of particle systems for more
than 20 years. I started with the classical N-body problem
and later introduced the Manev model and its generalization,
the quasihomogeneous law, which includes those of New-
ton, Birkhoff, Coulomb, Schwarzschild, Lennard-Jones, Van
der Waals, and a few others. The mathematical community
embraced the topic and produced some 200 papers so far.
But a few years ago I felt tired of studying the same equations
and ready for a new challenge.

I was teaching a course in non-Euclidean geometry,
focusing on the hyperbolic plane and using synthetic
methods and complex functions in the Poincaré and Klein-
Beltrami disks and the Poincaré upper-half plane. I also
used Weierstrass’s model (often wrongly attributed to Lor-
entz), the natural analogue to the sphere S2 of elliptic
geometry. To define it, take the upper sheet of the

Figure 1. Weierstrass’s model of the hyperbolic plane (given

by the upper sheet of the hyperboloid of two sheets) is

equivalent to the Poincaré disk model, a fact that can be

proved by stereographic projection.
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hyperboloid of two sheets, H2 ¼ fðx; y; zÞjx2 þ y2 % z2 ¼
%1; z [ 0g (see Figure 1). The geodesics are the hyperbo-
las obtained by intersecting this surface with the planes that
contain the frame’s origin. Through a point outside a
geodesic, we can draw two parallel geodesics that meet the
original one at infinity, each at a different end, so the main
axiom of hyperbolic geometry is satisfied.

Indeed, take a geodesic c, i.e., a hyperbola obtained by
intersecting a plane through the origin, O, of the coordinate
system with H2. This hyperbola has two asymptotes in its
plane: the straight lines a and b, intersecting at O. Take a
point, P, on the surface that is not on the chosen hyperbola.
The plane aP produces the geodesic hyperbola a, whereas
bP produces b. These two hyperbolas intersect at P. Then a
and c meet at infinity along a, whereas b and c meet at
infinity along b. All the hyperbolas between a and b (also
obtained from planes through O) are non-secant with c.

But unlike S2, which is embedded in R3, H2 is embed-
ded in the 3D Minkowski space, i.e., R3 with the Lorentz
inner product, which has the (+, +, -) signature instead of
the standard (+, +, +). A different inner product affects
geometric orthogonality. Indeed, a tangent vector to S2 and
the radius vector touching it are orthogonal, i.e., their inner
product is zero. In H2 things change. The vector from the
origin and the corresponding tangent vector don’t look
orthogonal, but their Lorentz inner product is zero, so they
are perpendicular to each other in the Minkowski space.
Moreover, this inner product is responsible for the negative
curvature of H2, which appears positively curved to the
naked eye.

I also happened to read at that time the paper about the
Kepler problem in S2 and H2 by Cariñena, Rañada, and
Santander [3]. The force between the two points acts along
the geodesic that connects them; in S2, the direction is that
of the shortest distance, except for the antipodal case,
when a singularity occurs. The potential defining the
equations uses the cotangent of the arc distance in S2 and
the cotangent hyperbolic of the arc distance in H2. As I
explained earlier, this potential, and not the inverse arc
distance—as intuition suggests— is the natural extension of
the Newtonian model to curved space.

The Spanish mathematicians had written the equations
of motion in intrinsic coordinates, using differential
geometry, and obtained conic sections as orbits in S2 and
H2, in agreement with what we know from R2. This result
gave me the idea to find the equations of the curved N-
body problem, so I tried the intrinsic approach. But the
computations proved complicated, so I emailed my friends
Manuele Santoprete, a former student of mine, now a
professor at Wilfrid Laurier University, and my old collab-
orator Ernesto Pérez-Chavela of Mexico City, hoping that
we could find a new approach. They eagerly accepted my
challenge. We exchanged emails for weeks, during which a
lucky combination of ideas shaped up. The insight we
achieved in this way proved crucial. In the next two sec-
tions I will summarize what we found during the couple of
months that followed. Later, after obtaining the equations
of motion, thus knowing what to expect, we also derived
them in intrinsic coordinates [16, 31].

Deriving the Equations of Motion
In 2D, the right setting for the problem is on spheres and
hyperbolic spheres, i.e.,

S2
j ¼ fðx; y; zÞjx

2 þ y2 þ z2 ¼ j%1g and

H2
j ¼ fðx; y; zÞjx

2 þ y2 % z2 ¼ j%1; z [ 0g;

respectively, depending on the sign of the curvature j.
When j? 0 we recover R2 (see Figure 2). These manifolds
are embedded in the ambient space, which is R3 with the
standard inner product, for positive curvature, but R3 with
the Lorentz inner product, i.e., the Minkowski space R2;1,
for negative curvature. In other words, the inner product
of the vectors a = (ax, ay, az) and b = (bx, by, bz) is
a & b ¼ axbx þ ayby þ razbz , where r = 1 for j [ 0 and
r = -1 for j \ 0.

The Lagrangian formulation of mechanics can be
obtained from a basic variational principle that minimizes a
function called action,

A ¼
Zt2

t1

Ldt;

where L = T - V is the Lagrangian function, with T and
V denoting the kinetic and the potential energy of a certain
mechanical system and t1 \ t2 are two instants in time. Such
a minimum leads to the differential equations that describe
the motion.

The theory of constrained Lagrangian dynamics adds
some conditions, which in our case are those of keeping the
bodies m1;m2; . . .;mN on themanifold [20]. For ourproblem,
if qi = (xi, yi, zi) are the position vectors, _qi ¼ ð _xi; _yi; _ziÞ the
velocities, and the constraints are characterized by the
equations fi ¼ 0; i ¼ 1; 2; . . .;N , then the motion is descri-
bed by the Euler-Lagrange equations with constraints,

d

dt

oL

o _qi

! "
% oL

oqi

% kiðtÞ
ofi
oqi

¼ 0; i ¼ 1; 2; . . .;N ;

where the functions ki; i ¼ 1; 2; . . .;N , are the Lagrange
multipliers.

To bring the positive and negative curvature cases into
one equation, we can follow the Spanish mathematicians
and unify circular and hyperbolic trigonometry. For this,
we define the j-sine as

Figure 2. The continuous deformation of the sphere into a

plane into a hyperbolic sphere.
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snjðxÞ :¼
j%1=2 sinðj1=2xÞ if j [ 0

x if j ¼ 0

ð%jÞ%1=2 sinhðð%jÞ1=2xÞ if j\0;

8
><

>:

the j-cosine as

csnjðxÞ :¼
cosðj1=2xÞ if j [ 0

1 if j ¼ 0

coshðð%jÞ1=2xÞ if j\0;

8
><

>:

as well as the j-tangent and j-cotangent as

tnjðxÞ :¼ snjðxÞ
csnjðxÞ

and ctnjðxÞ :¼ csnjðxÞ
snjðxÞ

;

respectively. The fundamental formula of unified
trigonometry becomes

j sn2
jðxÞ þ csn2

jðxÞ ¼ 1:

For fun, students can try to derive other formulas.
The distance between two points a; b 2 R3 can be

defined as

djða; bÞ :¼ ðrjÞ%1=2csn%1
j

ja & b
ffiffiffiffiffiffiffiffiffiffiffi
ja & a
p ffiffiffiffiffiffiffiffiffiffiffiffi

jb & b
p

! "
;

where csnj
-1 is the inverse trigonometric function of csnj.

On S2
j and H2

j this is the arc distance. For j? 0, we recover
the Euclidean norm.

If we further define the kinetic energy T as

Tjðq; _qÞ :¼ 1

2

XN

i¼1

mið _qi & _qiÞðjqi & qiÞ;

the potential energy as V = -Uj, where

UjðqÞ :¼
X

1' i\j'N

mimjctnjðdjðqi; qjÞÞ

is the force function, and the constraints with the help of
the functions fi ¼ x2

i þ y2
i þ rz2

i % j%1; i ¼ 1; 2; . . .;N ; the
equations of motion take the form

mi€qi ¼ rqi
UjðqÞ % jmið _qi & _qiÞqi; i ¼ 1; 2; . . .;N ;

where rqi
:¼ ðoxi ; oyi ; roziÞ is the gradient operator.

When j? 0, the velocity terms obviously vanish, the arc
distance tends to the Euclidean one, and the potential
becomes the standard Newtonian potential, in other words
we recover the classical equations of motion, which we have
thus extended to spaces of constant curvature. The force acts
along geodesics: if two bodies are placed on the manifold
with zero initial velocities, they will move along the common
geodesic until they collide, the same as in the Euclidean case.
So everything makes sense from the physical point of view.

The next things to look for are the first integrals, since
they not only allow the reduction of the system, but also
have useful physical meaning.

First Integrals
Before finding the first integrals, let’s simplify the problem.
With the coordinate- and time-rescaling transformations

qi ¼ jjj
%1=2ri; i ¼ 1; 2; . . .;N ; and s ¼ jjj3=4t;

and redenoting the new position vectors ri by qi and the
fictitious time s by t, the equations of motion can be written
as:

€qi ¼
XN

j¼1;j 6¼i

mj ½qj % rðqi & qjÞqj )

½r% rðqi & qjÞ
2)3=2

% rð _qi & _qiÞqi; qi & qi ¼ r;

i ¼ 1; 2; . . .;N :

So for positive curvature, the problem is reduced to S2, and
for negative curvature to H2. It is not difficult to see that the
equations of motion are Hamiltonian, with the energy
integral given by

T ðq; _qÞ % U ðqÞ ¼ h;

where h is the energy constant and

T ðq; _qÞ ¼ 1

2

XN

i¼1

mið _qi & _qiÞðrqi & qiÞ;

U ðqÞ ¼
XN

j¼1;j 6¼i

rmimjqi & qj

½rðqi & qiÞðqj & qjÞ % rðqi & qjÞ
2)1=2

are the kinetic energy and force function, respectively, in
the new coordinates. The total angular momentum
produces three more integrals:

XN

i¼1

miqi * _qi ¼ c;

where c is a constant 3-vector and 9 denotes the cross
product.

The equations of motion generalize easily to any higher
dimension, but the ones of physical interest so far are to S3

and H3. For this, we introduce the coordinates
(w, x, y, z) in R4. With this in mind, the equations of
motion and the energy integral have the same form as
above. But the angular momentum integrals change since
the concept of cross product has no meaning in R4. We
need to employ the exterior wedge product, ^, which leads
to 6 angular momentum integrals:

XN

i¼1

miqi ^ _qi ¼ C;

where C = cwxew^ ex + cwyew^ ey + cwzew^ ez + cxyex^ ey +
cxzex ^ ez + cyzey ^ ez, with ew = (1, 0, 0, 0), ex = (0, 1, 0, 0),
ey = (0, 0, 1, 0), and ez = (0, 0, 0, 1) being the unit vectors in
R4;whereas their wedge products form abasis of bivectors in
the corresponding exterior algebra. The real coefficients cwx,
cwy, cwz, cxy, cxz, cyz express the rotationof the system relative
to the planes given by their indices. Indeed, although it
makes sense in R3 to define rotation relative to an axis, it is
better to think of rotations in R4 relative to an invariant (but
not pointwise fixed) plane.

Unlike in Euclidean space, there are no integrals of the
centre of mass and linear momentum. This fact is not
unexpected, given that these first integrals don’t exist for N-
body problems obtained by discretizing Einstein’s field
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equations, as done by Levi-Civita [24], Einstein, Infeld, and
Hoffmann [18], or Fock [19]. So, in general, there are no
points like the centre of mass of a particle system in the
Euclidean case, where forces cancel each other or make the
centre move uniformly along a geodesic. Therefore the
dimension of the phase space ðq; _qÞ is 4N - 4 in S2 and H2,
since there are 4 first integrals, but 6N - 7 in S3 and H3,
because there are 7 first integrals.

Singularities
These equations of motion open a new world. Any math-
ematician would now want to find some solutions, hoping
to understand how they behave. For given initial data,
standard results of the theory of ordinary differential
equations ensure the existence and uniqueness of an ana-
lytic solution, defined locally on some interval, say, [0, t+).
Such a solution can be analytically extended to an interval
½0; t+Þ, with 0 \ t+ \ t+. If t+ ¼1, the solution is globally
defined, i.e., the motion of the bodies takes place forever.
But can it happen that t+ is finite?

To answer this question, we need to determine whether
the equations of motion have singularities. A brief look
reveals that they do. Whenever q 2 D, where

D ¼ [1' i\j'Nfqjðqi & qjÞ
2 ¼ 1g;

at least a denominator cancels, so the equations fail to
make sense. Consequently, for a solution q, the time t+

could be finite if limt!t+ qðtÞ 2 D. To understand what
happens, notice first that D ¼ Dþ [ D%, where

Dþ ¼ [1' i\j'Nfqjqi & qj ¼ 1g and

D% ¼ [1' i\j'Nfqjqi & qj ¼ %1g:

A close look shows that, in H2 or H3, if q tends to an
element of D, its limit must be an element of D%, which
represents a collision between at least two bodies. In S2 or
S3, however, if q tends to an element of D, the solution
could end up in a collision configuration, if the element is
in Dþ, an antipodal configuration, if the element is in D%, or
a collision-antipodal configuration, which requires at least
3 bodies and that the element be in the union Dþ [ D%. So
while in hyperbolic space there are no surprises, spherical
space reveals something new.

Further investigation shows that, for 2 bodies, collisions
on the sphere are ‘‘attractive,’’ whereas antipodal singu-
larities are ‘‘repelling.’’ More precisely, if 2 bodies are
placed close to each other with zero initial velocities, they
soon collide. But if 2 bodies are placed with zero initial
velocities close to the opposite sides of a diameter, they
move fast away from each other along the common geo-
desic, just to end up in a collision, too.

Things become even more interesting with the collision-
antipodal singularities. For simplicity, let us consider
an isosceles problem on the equator z = 0, as shown in
Figure 3. The bodies m1 and m2, which we keep symmetric
relative to the vertical axis, have equal mass M, whereas the
body m3, which stays fixed at (x, y) = (0, -1), has mass
m. The study of this problem teaches us that anything can
happen relative to a the collision-antipodal configuration

corresponding to m1 and m2 at (0, 1) and m3 at (0, -1).
More precisely:

(i) for M = 8m, if the bodies are placed with zero initial
velocities close enough to the above collision-antipo-
dal configuration, they end up in a collision-antipodal
singularity at finite t+;

(ii) for M = 2m, if the bodies are placed, with zero initial
velocities, no matter how close to the collision-antip-
odal configuration, they move away from it, never to
reach it;

(iii) for M = 4m, there exist initial positions, corresponding
to zero initial velocities, for which the bodies reach the
collision-antipodal configuration, but the solution
remains analytic at t+, so it does not encounter a
singularity there [15].

Part of this highly unusual behaviour can be explained
by the following result, which extends to S2 a theorem
Painlevé proved in 1896 for the classical 3-body problem.
The curved version below says that, to have expectable
behaviour, we should stay away from collision-antipodal
configurations [5].

If ðq; _qÞ is an analytic solution of the curved 3-body
problem in S2, defined on ½0; t+Þ, with t+ a singularity, then

lim
t!t+

min
1\i' j\n

jðqi & qjÞ
2 % 1j ¼ 0:

Conversely, assume that ðq; _qÞ is an analytic solution,
defined on ½0; t+Þ, that is bounded away from collision-
antipodal configurations. Then, if

lim
t!t+

min
1\i' j\n

jqi & qj % 1j ¼ 0;

t+ is a singularity of the solution.
But to understand what happens from the physical point

of view, we have to take a better look at the force function
and its gradient.

A Cosmological Detour
Our intuition for gravitation follows the Newtonian view in
Euclidean space: the larger the distance, the weaker the
force. This model stays unchanged in the hyperbolic case.
But things are different on the sphere. Let’s start with N = 2

Figure 3. The initial positions of m1, m2, and m3 on the

geodesic z = 0.
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on S2 and fix a body initially at the north pole. The
potential and the norm of its gradient are, respectively,

U ðqÞ ¼ m1m2ðq1 & q2Þ
½1% ðq1 & q2Þ

2)1=2
;

jrU ðqÞj ¼ m2
1m2

2jq2 % ðq1 & q2Þq1j
2

½1% ðq1 & q2Þ
2)3

þm2
1m2

2jq1 % ðq1 & q2Þq2j
2

½1% ðq1 & q2Þ
2)3

" #1=2

:

For various positions of the other body, U ranges from þ1
at collision to %1 at the antipodal configuration, being 0
when the second body is on the equator. The norm of the
gradient is þ1 at collision, and becomes smaller when the
second body lies farther away from collision in the north-
ern hemisphere; it takes a positive minimum value on the
equator; and becomes larger the farther the second body is
from the north pole while in the southern hemisphere; the
norm of the gradient becomes þ1 when the two bodies lie
at antipodes. These remarks are also true in S3.

The qualitative behaviour described above agrees with
the Newtonian gravitation in flat space only when the
second body doesn’t leave the northern hemisphere. But in
a hypothetical spherical universe with trillions of objects
ejected from a Big-Bang that took place at the north pole,
all the bodies would be now still far away from the equator,
since we know that, even if positive, the curvature would
be extremely small. When the expanding system approa-
ches the equator, many bodies get close to antipodal
singularities, without coming close to collisions (due to the
growing distance between any two bodies, as achieved by
choosing the right initial conditions), so the potential
energy becomes positive, like the kinetic energy. By the
energy integral, the potential energy cannot grow beyond
the value of the energy constant, which, when reached,
makes the kinetic energy zero and stops any motion.

The larger the initial velocities, the larger the energy con-
stant, but it is finite nevertheless, so the motion must stop at
some instant, to reverse from expansion to contraction. In a
highly populated spherical universe, the motion is contained
in the northern hemisphere, away from the equator, never
able to cross into the southern hemisphere. This happens
only if all bodies are initially in the northern hemisphere, a
restriction we don’t have to take into consideration for a
general dynamical study in S3. When the motion takes place
in R3 or H3, the Big-Bang could lead to a finite, eventually
collapsing, or infinite, eternally expanding universe,
depending on the initial velocities taken close to a singularity.

These cosmological conclusions, which are in agree-
ment with those of general relativity, and do not require a
cosmological force, as Newtonian cosmology does in flat

space, are summarized in Table 1 [7]. The possibility of
such applications was a welcome bonus, but I had no
desire to pursue it. General relativity had already answered
the cosmological questions pertaining to this model. I
therefore preferred to remain focused on studying the
mathematical aspects of the curved N-body problem.

Relative Equilibria
When entering a new world, it is always good to start from
simple things and make small, but solid steps forward. In
other words, it’s better to understand a little than to mis-
understand a lot. After taking a peek at singularities, the
first problem I posed to my collaborators was that of
finding relative equilibria (RE), i.e., orbits for which the
system behaves like a rigid body by maintaining equal
mutual distances all along the motion.

This is an active subject in the Euclidean case, where it has
generated a lot of good mathematics. One of its questions
madeSteven Smale’s list of openproblems for the 21st century
[35]. Saari’s conjecture, still an open problem in the general
case, is also related to it [9, 13, 32]. But while this is an old topic
in Euclidean space, the tools used there don’t work in the
curved problem. Even its standard formulation is difficult to
mimic in the new context, although it can be done [14].

The clue to how to start came from geometric
mechanics, a research direction initiated by Ralph Abraham
and Jerry Marsden, where a RE is defined as a solution
generated by a one-parameter subgroup of some Lie group
[1]. In this particular case, the Lie groups to look at are
those that give the isometries of S2; S3; H2, and H3, i.e.,
SOð3Þ; SOð4Þ; LorðR2;1Þ, and LorðR3;1Þ, respectively. Let us
focus on the second and the fourth, since the other two are
respective subgroups of those. It is suitable in our case to
represent them in matrix form.

After fixing a suitable basis in R4, the elements of SO(4),
which are orthogonal matrices of determinant 1, have the
form PAP-1, where P 2 SOð4Þ and

A ¼

cos h % sin h 0 0

sin h cos h 0 0

0 0 cos / % sin /

0 0 sin / cos /

0

BBB@

1

CCCA;

with h;/ 2 R. After fixing a suitable basis in the Minkowski
space R3;1, the elements of the Lorentz group LorðR3;1Þ,
which leave H3 invariant, are of the form PBP-1 or PCP-1,
where P 2 LorðR3;1Þ,

B ¼

cos u % sin u 0 0

sin u cos u 0 0

0 0 cosh s sinh s

0 0 sinh s cosh s

0

BBB@

1

CCCA and

C ¼

1 0 0 0

0 1 %n n

0 n 1% n2=2 n2=2

0 n %n2=2 1þ n2=2

0

BBB@

1

CCCA;

with u; s; n 2 R.

Table 1. Cosmological behaviour in flat and curved classical universes

Geometry Volume Fate

Elliptic, S3 Finite Eventual collapse

Euclidean, R3 Finite or infinite Eternal expansion or eventual collapse

Hyperbolic, H3 Finite or infinite Eternal expansion or eventual collapse
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For A, we call the rotations positive elliptic-elliptic if h,
/ = 0, and positive elliptic if h = 0 and / = 0 (or h = 0
and / = 0, a case we ignore since it’s the same as the
previous); for B, negative elliptic if u = 0 and s = 0,
negative hyperbolic if u = 0 and s = 0, and negative
elliptic-hyperbolic if u, s = 0; for C, negative parabolic if
n = 0. These possibilities lead to the natural definition of
six types of RE, each corresponding to some type of
rotation.

It is easy to see that the negative parabolic RE cannot
satisfy all integrals of the angular momentum, so such
solutions don’t exist. But the other classes of RE seem to be
rich, and the solutions they contain are often surprising [6,
8, 12, 14]. Among them are some orbits of the 6-body
problem of equal masses in S3 for which 3 bodies are at the
vertices of an equilateral triangle inscribed in the circle

S1
wx :¼ fðw; x; y; zÞ jy2 þ z2 ¼ 1;w ¼ x ¼ 0g;

whereas the others are at the vertices of an equilateral tri-
angle inscribed in the circle Syz

1 , whose meaning is obvious
from the above. For one type of solution, a triangle rotates
uniformly along Swx

1 , whereas the other is fixed in Syz
1 . For

the other type of solution, both triangles rotate uniformly
along their respective circles, with whatever angular velo-
cites we assign to each of them. This means that the orbits
are not periodic, but quasiperiodic, a situation that cannot
be encountered in R3.

How are such exotic orbits possible? The answer lies in
the geometry of S3. The circles Swx

1 and Syz
1 are special,

forming a Hopf link in a Hopf fibration, which is the
mapping

H: S3 ! S2;Hðw; x; y; zÞ
¼ ðw2 þ x2 % y2 % z2; 2ðwz þ xyÞ; 2ðxz % wyÞÞ

that takes circles of S3 to points of S2. In particular, H
applies Swx

1 to (1, 0, 0) and Syz
1 to (-1, 0, 0). It can be proved

with the help of stereographic projection that these two
circles are linked like adjacent rings in a chain. Moreover, if
a 2 S1

wx and b 2 S1
yz , then d(a, b) = p/2, i.e., the arc dis-

tance between the two circles is constant. So no matter
where two bodies lie (one on each of these circles), the
magnitude of the attraction force between them is the
same. By suitably aligning the direction of the forces acting
between the two circles, as achieved with the help of two
equilateral triangles, it is possible to obtain orbits like the
ones described above.

Many other interesting RE exist, such as one of the
4-body problem in which the bodies rotate at the vertices of
a regular tetrahedron, and of the 5-body problem where
the bodies are at the vertices of a uniformly rotating pen-
tatope (4-simplex) in S3. All solutions described so far are
positive elliptic-elliptic RE.

For negative curvature, unusual orbits occur too. For
instance, certain negative hyperbolic RE of the 3-body
problem move in H3 like airplanes flying in formation, all
on the same moving geodesic: the pilot in the middle sees
always the other two planes left and right of him, as if
unmoved. Such orbits are not even quasiperiodic, and
don’t come close to any periodicity at all.

The RE of S3 live on Clifford tori, which are tori of R4 :

T2
rq ¼ fðw; x; y; zÞjr

2 þ q2 ¼ 1; 0' h;/\2pg;

where w ¼ r cos h; x ¼ r sin h; y ¼ q cos /, and z ¼ q sin /.
Unlike the standard torus of R3, these surfaces are flat.
Moreover, they are subsets of S3. Each Clifford torus
divides S3 into two solid tori, forming the boundary
between them. The sphere S3 can also be foliated into
Clifford tori, as Figure 4 shows. The RE of H3 live instead
on hyperbolic cylinders,

C2
rg ¼ fðw; x; y; zÞjr

2 % g2 ¼ %1; 0' h\2p; n 2 Rg;

where w¼rcosh; x¼rsinh; y¼gsinhn; z¼gcoshn. Unlike
the Clifford tori, they are surfaces of positive Gaussian cur-
vature. As in the case of the RE of S3, the qualitative
behaviour of each type of orbit in H3 can be described, but
we are not going into these details here.

Instead, I briefly discuss some simple orbits, which bear
the name of Lagrange, who discovered them in 1772 in the
Euclidean case. These RE are formed by equilateral trian-
gles that rotate around the centre of mass. In R2 the masses
can have any values, but in S2 and H2 they must be equal, a
property that occurs because spheres and hyperbolic
spheres have fewer symmetries than flat space.

To understand the importance of this remark, let us
recall an old problem Gauss dealt with: the shape of
physical space. In the early 1820s, he went as far as to
measure the angles of the triangle formed by three moun-
tain peaks near Göttingen (Inselberg, Brocken, and Hoher
Hagen), to see whether their sum deviated from p radians
([7, 8, 21, 30]) and thus prove space hyperbolic or elliptic.
His experiment failed because he found no deviation
beyond the inevitable measurement errors. Gauss’s method
cannot provide an answer for cosmic triangles because we
cannot reach distant stars to measure the required angles.
But if we can mathematically prove the existence of
celestial orbits specific only to one of the hyperbolic, flat, or
elliptic space, and none of the other two, then we might be
able to decide on the shape of physical space by seeking
such orbits in the night sky through astronomical obser-
vations. We know, however, that Lagrangian orbits exist in
our solar system, as for example those formed by the Sun,

Figure 4. A 3-dimensional projection of a 4-dimensional

foliation of the sphere S3 into Clifford tori.
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Jupiter, and any of the Greek or Trojan asteroids. In the
light of the previous result on Lagrangian orbits, does this
mean that, at least for distances of order of 10 AU, space is
Euclidean?

Such a conclusion would be premature, but we might
not be too far from it. We would first have to make sure that
the equality of the masses must also occur in S3 and H3,
and that there are no quasiperiodic orbits of nonequal
masses in curved space that are close to the Lagrangian
ones. We did not prove such results yet, and don’t even
know whether they are true. But this is an incentive to
better understand the equations of the curved and flat N-
body problem.

Rotopulsators
An interesting class of orbits in the Euclidean case is that of
homographic solutions. As their name suggests, they form
configurations that are self-similar during the motion. But
on spheres and hyperbolic spheres the only similar con-
figurations are the congruent ones, since angles change
when increasing or decreasing a given shape, even if the
distances remain proportional. Of course, if viewed in the
background space, the Euclidean figures are similar, but we
like to think in terms of the space’s natural geometry.

I therefore needed a new name for orbits given by
configurations that rotate and expand or shrink at the same
time. After some reflection, I came up with the term roto-
pulsator, which captures the above properties without
implying the geometrical similarity of the configuration. We
can think of an orbit that, say, only expands, as having a
single pulse. The definitions were easy to obtain from RE, by
allowing dilation and contraction and, therefore, a non-
constant angular velocity. So I was led to 5 classes of
rotopulsators: 2 in S3 and 3 in H3, and I started studying
them with my students Shima Kordlou and Brendan Thorn
[10, 17]. Then I also employed a young man, Sergiu Popa,
who—due to personal circumstances—is currently not
enrolled in the academic system, but has high talent for
mathematics and does excellent research. We started
developing this topic and found many new classes of orbits.

But instead of describing such solutions, I will reveal a
trap I fell into, which shows why research in uncharted
territory must be advanced with care and restraint. In the
class of what I called positive elliptic-elliptic rotopulsators
(orbits with two rotations in S3), I checked to see whether
Lagrangian orbits of equal masses occur in the 3-body case.
They do, but the ones I found were very strange: the sides
of the equilateral triangle are constant, so there is no
expansion or contraction. In other words, they are RE. Still,
there is no element in the natural underlying subgroup
SO(2) 9 SO(2) of SO(4) that can generate this orbit. This
orbit, however, passes at every instant through a contin-
uum of SO(2) 9 SO(2) elements.

Since researchers in geometric mechanics define RE as
orbits for which there is an element of some Lie group that
can generate the orbit, I had apparently stumbled into an
example that showed their definition to be inadequate. And
for a couple of weeks I thought that this was the case, so I
told my friends Tudor Ratiu and James Montaldi about it. In

the end, they gave me a new angle from which to look at
the problem, and soon I understood that I had been wrong.

There is a classical result in Lie group theory (of which I
was not aware before), which says that every element of a
semisimple compact Lie group lies in some maximal torus.
SO(4) is such a Lie group, and its maximal tori are of the form
SO(2) 9 SO(2). By fixing a coordinate system in R4, we also
define two rotations, so we fix the underlying SO(2) 9 SO(2)
subgroup. And, indeed, in this naturally fixed subgroup,
there is no element that could generate the Lagrangian RE.
But there is always another system of coordinates, which
fixes a different torus, where we can find such an element, as
the theorem taught me. In other words, I had looked at the
Lagrangian RE in the wrong coordinate system. It was like
watching the uniform motion of a point around a circle in the
projection of this circle (an ellipse) on some inclined plane.
Pursuing the due diligence helped me evade the trap. It was
not the first time. Traps, in various disguises, showed up and
will likely show up again in this world where many things are
surprising and unexpected.

Stability
Trying to decide the curvature of physical space using the
idea described above would make little sense if the orbits
found mathematically to exist are not stable. Of course, the
stability of an orbit does not guarantee that it occurs in
nature, but instability makes certain that we won’t find it in
the universe. So studying the stability of orbits is an
important, though difficult, mathematical task.

There are many kinds of stability for solutions of
ordinary differential equations. The most desirable is the
one defined by Lyapunov, which assures that nearby orbits
stay close for all time. But this property is rare, and the
more so in celestial mechanics, where what one usually
hopes for is orbital stability, which means that at least the
orbits, but not necessarily the positions and velocities of the
bodies, remain close to each other when small perturba-
tions occur. Most of the time, however, we are content to
prove even weaker properties, such as linear stability,
which does not necessarily imply stability in nature,
although it gives hopes for it.

In Euclidean spaceweknow that the Lagrangianorbits are
Lyapunov stable if one of the masses is very small, but
unstable if the masses are comparable. Therefore one would
expect that these orbits are unstable in curved space, since
they occur only for equal masses. But this conclusion might
not even be true. In a recent paper, Regina Martı́nez and
Carles Simó showed that there are zones of linear stability for
the Lagrangian orbits on S2 [29]. As expected, that does not
happen when the equilateral triangle is small, since we get
close to the Euclidean case, but it occurs when the size of the
system is large enough. Similar things happen for other types
of orbits, such as the tetrahedral ones in the 4-body problem
in S2, as shown in [11].

Perspectives
When I present this topic to seasoned researchers, they
often ask me whether I tried to answer this or that question
about the equations of motion. Most of the time my answer
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is no. There is so much to discover in this new world (and
the questions come naturally, by comparing what was done
in the Euclidean case, which has been researched for more
than 3 centuries) that, with my few collaborators and stu-
dents, I have only scratched the surface so far.

This problem also lays bridges between several bran-
ches of mathematics: differential equations, dynamical
systems, geometric mechanics, non-Euclidean and differ-
ential geometry, the theory of polytopes, geometric
topology, Lie groups and algebras, and stability theory [11],
while also showing potential for applications.

Obvious mathematical questions to ask are related to
regularizing collisions and better understanding the other
singularities that show up; discovering more non-equal
mass orbits and determining their stability (spectral, linear,
orbital, nonlinear); finding the bifurcations that occur when
passing from negative to positive curvature through the
Euclidean case, developing a 3D theory in terms of intrinsic
equations, which were written only in 2D so far; seeking
new RE and rotopulsators and understanding their prop-
erties; solving the curved version of Saari’s conjecture and
the corresponding Smale problem, which seems much
harder than in the Euclidean case; and understanding
whether chaotic behaviour shows up. Approaching these
questions will generate other questions, as happens in
every branch of mathematics.

A recent attempt also shows the way into the field of
partial differential equations: I started working with my
colleague Slim Ibrahim and our student Crystal Lind on
understanding the Vlasov-Poisson equations for stellar
dynamics in spaces of constant curvature, which provide
the natural extension of the curved N-body problem to
kinetic theory. This question is independent of everything
mentioned in the previous paragraph and it will likely have
a life of its own.

I have illustrated here both the risks and the rewards
encountered when stepping into a new world. Thoughts of
this kind belong to our research lives, but they never make
it into journal papers. I have also tried to convey the idea
that mathematics is not, as many people think, just about
proving a famous conjecture, but it is first of all about
finding new viable paths that keep our curiosity alive. The
great masters knew that too.
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[15] F. Diacu, E. Pérez-Chavela, and M. Santoprete, The N-body

problem in spaces of constant curvature. Part II: Singularities, J.

Nonlinear Sci. 22, 2 (2012), 267–275.
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