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Preface

The guiding light of this monograph is a question easy to understand but difficult
to answer: What is the shape of the universe? In other words, how do we measure
the shortest distance between two points of the physical space? Should we follow a
straight line, as on a flat table, fly along a great circle of a sphere, as between Paris
and New York, or take some other course, and if so, what would that path look like? If
we accept the model proposed here, which assumes that a Newtonian gravitational
law extended to a universe of constant curvature is a good approximation of the
physical reality (and we will later outline a few arguments in favor of this approach),
then we can hint at a potential proof to the above question for distances comparable
to those of our solar system. More precisely, this monograph provides a first step
towards showing that, for distances of the order of 10AU, space is Euclidean. Even if
rigorously proved, this conclusion won’t surprise astronomers, who accept the small-
scale flatness of the universe due to the many observational confirmations they have.
But the analysis of some recent spaceship orbits raises questions either about the
geometry of space or our understanding of gravitation, [26].

Figure 1: Ernst Christian Friedrich Schering (1824-1897) was a professor at Georg-August
University in Gttingen and a reluctant editor of Gauss’s papers.



viii Preface

However, we cannot emphasize enough that the main goal of this monograph is
mathematical. We aim to shed some light on the dynamics of N point masses that
move in spaces of nonzero constant curvature according to an attraction law which
extends classical Newtonian gravitation beyond R3. This natural generalization em-
ploys the cotangent potential, first introduced in 1870 by Ernst Schering, who ob-
tained its analytic expression following the geometric approach of János Bolyai and
Nikolai Lobachevsky for a 2-body problem in hyperbolic space, [87], [8], [70]. As
Newton’s idea of gravitation was to use a force inversely proportional to the area
of a sphere of radius equal in length to the Euclidean distance between the bodies,
Bolyai and Lobachevsky thought of a similar definition in terms of the hyperbolic
distance in hyperbolic space. Our generalization of the cotangent potential to any
number N of bodies led us to the recent discovery of some interesting properties,
[35], [36]. These new results reveal certain connections among at least five branches
of mathematics: classical dynamics, non-Euclidean geometry, geometric topology,
Lie groups, and the theory of polytopes. But how does the astronomical aspect
mentioned above relate to these mathematical endeavors?

Figure 2: Carl Friedrich Gauss (1777-1855), dubbed Princeps Mathematicorum, was ar-
guably the greatest mathematician of all times.

To answer this question, let us get into some history. It appears that, sometime
between 1818 and 1820, Carl Friedrich Gauss was the first ever to wonder about the
shape of the physical space, [51]. Before him, the straight line was assumed to be the
shortest distance between two points. What prompted Gauss to rebuff the general
belief and conduct experiments to find the answer was his research into a question
mathematicians had asked since ancient times1: Does Euclid’s fifth postulate follow

1The first to doubt the self-evidence of Euclid’s fifth postulate seems to have been the Greek
neoplatonist philosopher Proclus Lycaeus (412-487), [99].
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from the other axioms of classical geometry? Unlike what most of his contemporaries
believed, Gauss reached the conclusion that it was independent, as Euclid had im-
plied when introducing this axiom. But Gauss never made his ideas public, for he
feared “the scream of the Boeotians,” as he wrote to Friedrich Bessel in 1829, before
learning about the independent advances of Bolyai (1823) and Lobachevsky (1826),
[11], [8], [51]. The two young mathematicians had made explicit statements about
the independence of the fifth postulate, based on their abundant evidence that a new
geometry seemed to arise when this axiom was negated.

Gauss believed in a classical universe. He accepted Newton’s mechanical model
of a 3-dimensional space and an independent 1-dimensional time. In his view, grav-
itation was a universal force that acts through space. Like Bolyai and Lobachevsky,
he understood that there is a strong connection between geometry and physics, a
fact Poincaré took later to a different level in his philosophical essays about math-
ematics and science, [83]. Then Einstein brought matter, space, and time together
in his general relativity, where gravitation became a geometric property of the 4-
dimensional space-time, [41]. His model involves an expanding universe in which
the geodesics may be straight lines, great circles of great spheres, or hyperbolic lines.
More recently, string theory introduced new models of the universe with ten or eleven
dimensions, [5].

This monograph is independent of the development of physics since Einstein
because the property investigated here is valid in any model invented so far. We
are interested only in the shortest distance between two points, an issue that does
not interfere with an expanding universe. So we can restrict our study to Newton’s
approach, leaving open the possibility that space could be elliptic, flat, or hyperbolic.

There is another way to look at the problem. Rejecting Gauss’s point of view,
Poincaré thought that the laws of physics should be always expressed in terms of
Euclidean geometry because this setting is simpler than any other geometry that
could describe the surrounding reality. To him, if we found out someday that light
travels along great circles instead of straight lines, we should accept this physical
property and express all the laws of physics accordingly, within the Euclidean space,
[83]. Under this assumption, however, the real difficulties are not overcome, but only
pushed somewhere else.

By measuring the sum of the angles of topographic triangles, a result that could in
principle decide the shape of the physical space, Gauss implicitly assumed that light
obeys the geometry of the universe by travelling along geodesics. But his experiment
failed to provide an answer because, if space is not flat, the difference between his
topographical readings and the physical reality proved to be below the measurement
errors that occur for triangles some 10 km wide.
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The connection between the N -body problem in spaces of constant curvature and
the shape of the physical space becomes now apparent. Instead of measuring angles
of triangles, we can observe celestial motions. If some of the latter correspond only
to orbits found in Euclidean space, and are proved mathematically not to exist in
other spaces of constant curvature, then space must be flat, at least within the range
of these orbits. As mentioned earlier, we will make a first step towards proving this
statement for distances comparable to those of our solar system, i.e. of the order of
10 AU. Nevertheless, more work is necessary to achieve this goal.

This probable result, however, seems to be the limitation of the method, in the
sense that it has little chance to apply to much larger distances. As Gauss was stuck
with measuring angles of triangles on Earth, since he could not travel in space, and
we cannot apply his approach to some triangle of stars because such cosmic objects
are beyond our reach, the method of observing celestial motions has its limitations
too. To become specific within a certain geometry alone, celestial orbits appear to
be complicated enough only within the range of a planetary system. Galaxies and
clusters merely move away from each other, so their simple dynamics could be found
in physical spaces of any shape. The current astronomical methods have so far failed
to detect whether these objects have more complicated orbits than radial motion.

But another intriguing aspect of the model given by the cotangent potential is
that it includes the main features of a standard relativistic Big-Bang system, in which
particles eject from a singularity. Under the classical assumption that space exists a
priori instead of being created during the expansion of matter, these conclusions can
be summarized in the table below (explained in Section 3.10):

Geometry Volume Fate [b]

elliptic, S3 finite eventual collapse

Euclidean, R3 finite or infinite eternal expansion or eventual collapse

hyperbolic, H3 finite or infinite eternal expansion or eventual collapse [t]

This monograph presents some results we obtained since 2008. Finding a suitable
framework, deriving the equations of motion that naturally extend the Newtonian
N -body problem to curved space, and trying to understand some of the properties
these equations possess, proved to be a highly gratifying experience. We hope that
the reader will enjoy this intellectual adventure as much as we did.

Florin Diacu
Victoria, B.C., Canada, 24 April 2012



Chapter 1

Introduction

In this introductory chapter, we provide the motivation that led us to this research,
define the problem, explain its importance, outline its history, and present the struc-
ture of the monograph.

1.1 Motivation

In the early 1820s, with his recently invented heliotrope1 (see Figure 1.1), Carl Frie-
drich Gauss, later dubbed Princeps Mathematicorum, allegedly tried to determine
the nature of the physical space within the framework of classical mechanics, under
the assumption that space and time exist a priori and are independent of each other,
[75], [49]. He measured the angles of a triangle formed by three hills near Göttingen
(Inselsberg, Brocken, and Hoher Hagen) and computed their sum, S, hoping to learn
whether space is hyperbolic (S < π radians) or elliptic (S > π radians), [99]. But the
results of his measurements did not deviate form π radians beyond the unavoidable
measurement errors, so his experiment was inconclusive. Since we cannot reach
distant stars to measure all the angles of some cosmic triangle, Gauss’s method is of
no practical use for astronomic distances either.2

1The heliotrope, which Gauss invented in 1820, is an instrument that uses a mirror to reflect
sunlight in order to mark the positions of the land surveyors (see “The Gentleman’s magazine,”
Volume 92, Part 2, July 1822, p. 358).

2There are other methods, such as cosmic crystallography and the Boomerang experiment,
which show strong evidence that if the universe is not flat, its deviation from zero curvature must
be very small, [98], [6]. But, in spite of their merits, these attempts rely on certain physical models,
principles, and interpretations we do not need in the framework of celestial mechanics. Moreover,
they do not yet provide a final answer to the question posed in the Preface.
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Figure 1.1: A drawing of a heliotrope designed by William Würdemann, a German-
American optical instrument maker of the 19th century.

But celestial mechanics can help us find a new approach towards establishing the
geometric nature of the physical space. The idea we suggest is to use the connection
between geometry and dynamics, and reduce the problem to performing astronomical
observations instead of taking measurements. To explain this method in more detail,
let us recall that, in the 17th century, Isaac Newton derived the equations of motion
of the N -body problem in Euclidean space, i.e. obtained the system of differential
equations that describe the gravitational dynamics of N point masses, albeit in a
geometric form, very different form how we write these equations today. Physicists
agreed later that a universe of constant Gaussian curvature is a good approximation
of the macrocosmic reality, a hypothesis they still accept. So if we succeed to extend
Newton’s gravitational law to 3-dimensional spheres and 3-dimensional hyperbolic
manifolds, and also prove the existence of solutions that are specific to only one of
the negative, zero, or positive constant Gaussian curvature spaces, but not to the
other two, then the problem of understanding the geometric nature of the universe
reduces to finding, through astronomical observations, some of the orbits proved
mathematically to exist.

Therefore obtaining a natural extension of the Newtonian N -body problem to
spaces of nonzero constant Gaussian curvature, such that the properties of the orig-
inal potential are satisfied when taking the Euclidean space as a limit, and studying
the system of differential equations thus derived, appears to be a worthy endeavor
towards comprehending the geometry of the physical space. Additionally, an investi-
gation of this system when the curvature tends to zero may help us better understand
the dynamics of the classical Euclidean case, viewed as a particular problem within
a more general mathematical framework. This general methodological approach has
been useful in many branches of mathematics.
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1.2 The problem

A first difficulty we are facing towards reaching our goal is that of finding a natural
extension of the Newtonian N -body problem to spaces of nonzero constant curvature.
Since there is no unique way of generalizing the classical equations of motion, to
recover them at the limit, i.e. when the curved ambient space flattens out, we seek
a potential that satisfies the same basic properties as the Newtonian potential in its
simplest possible setting, that of one body moving around a fixed center, a pivotal
question in celestial mechanics known as the Kepler problem. Two basic properties
characterize it, a mathematical and a dynamical one: the Newtonian potential of the
Kepler problem is a harmonic function in 3-dimensional (but not in 2-dimensional)
space, i.e. it satisfies Laplace’s equation, and generates a central field in which all
bounded orbits are closed, a result proved by Joseph Louis Bertrand in 1873, [7].

On one hand, the cotangent potential we define in Chapter 3 approaches the clas-
sical Newtonian potential when the curvature tends to zero, whether through positive
or negative values. In the Kepler problem, on the other hand, this potential satisfies
Bertrand’s property and is a 3-dimensional (but not a 2-dimensional) solution of
the Laplace-Beltrami equation, the natural generalization of Laplace’s equation to
Riemannian and pseudo-Riemannian manifolds, which include the spaces of constant
curvature κ 6= 0 we are interested in: the spheres S3

κ, for κ > 0, and the hyperbolic
manifolds H3

κ, for κ < 0, [61]. For simplicity, we will further call the dynamical
problem defined in these spaces: the curved N -body problem.

In the Euclidean case, the Kepler problem and the 2-body problem are equiva-
lent. The reason for this likeness is the existence of the center-of-mass and linear-
momentum integrals. It can be shown with their help that the behavior of the orbits
is identical, whether the origin of the coordinate system is fixed at the center of mass
or fixed at one of the two bodies. For nonzero curvature, however, things change.
As we will later see, the equations of motion of the curved N -body problem lack the
integrals of the center of mass and linear momentum, which prove to characterize
only the Euclidean case. Consequently the curved Kepler problem and the curved
2-body problem are not equivalent anymore. It turns out that, as in the Euclidean
case, the curved Kepler problem is integrable in the sense of Liouville (i.e. there is
a maximal set of Poisson commuting invariants), but, unlike in the Euclidean case,
the curved 2-body problem is not integrable, [94]. The curved N -body problem is
not integrable for N ≥ 3, a property that is also true in the Euclidean case. As we
will show, however, the loss of symmetries, when passing from flat to curved space,
seems to make the curved N -body problem less rich from the dynamical point of
view, if compared to its classical counterpart.



4 Introduction

As stated in Section 1.1, our main goal is to find solutions that are specific to
each of the spaces corresponding to κ < 0, κ = 0, and κ > 0. We did that in some
previously published papers, but only in the 2-dimensional case, [28], [37], [35], [36].
In this monograph, we will see that the 3-dimensional curved N -body problem puts
into the evidence even more differences between the qualitative behavior of orbits in
each of these spaces.

1.3 Importance

We already mentioned that the study of the curved N -body problem may help us
better understand the geometry of the universe and put the classical Euclidean case
in a broader mathematical perspective. In fact, in [33] and [35], we made a first step
towards proving that space is Euclidean for distances of the order of 10 AU. The
reason is the existence of Lagrangian orbits of unequal masses (e.g., the equilateral
triangles formed by the Sun, Jupiter, and the Trojan/Greek asteroids) in our solar
system and the fact that, for nonzero curvature, 2-dimensional Lagrangian solutions
exist only if the masses are equal, a fact which makes them unlikely to form in a
universe of nonzero constant curvature. We will present and analyze these aspects
in detail in the last part of this monograph.

These results, however, only hint at the fact that space is Euclidean for solar-
system scales. Indeed, the motions of the Trojan and Greek asteroids are not exactly
at the vertices of equilateral triangles but close to them, the physical existence of
these orbits following from their stability for a certain range of masses. A better way
to approach this issue is through the circular restricted 3-body problem, when the
Trojan and Greek asteroids are close to moving on 3-dimensional invariant tori, but
the values of the inclinations are large for most of these little planets. Nonetheless,
this approach must also take into account the perturbation from the other planets.
Finally, we do not yet exclude the existence of Lagrangian quasiperiodic orbits of
unequal masses in 3-dimensional curved space, motions that might be hard to dis-
tinguish in practice from the orbits we observe in our solar system. So a final answer
about the curvature of our local universe still awaits an extensive investigation of
the differential equations we will derive here.

Another practical aspect that has not been studied so far has to do with motion
in the neighborhood of large celestial bodies, such as the Sun. While for distances of
1 AU or so, space can be assumed to have constant curvature, light rays are known
to bend near large cosmic objects. These things are explained in terms of general
relativity, but the ideas that led to the derivation of the curved N -body problem
may be also used to study this bending with classical tools.
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Apart from these philosophical and applicative aspects, the curved N -body prob-
lem lays bridges between the theory of dynamical systems and several other branches
of mathematics: the geometry and topology of 3-dimensional manifolds of constant
curvature, Lie group theory, and the theory of regular polytopes, all of which we
use in this monograph, and with differential geometry and Lie algebras, as already
shown in [37] and [81].

As the results we prove here point out, many of which are surprising and non-
intuitive, the geometry of the space in which the bodies move strongly influences
their dynamics, including some important qualitative properties, stability among
them. Topological concepts, such as the Hopf fibration and the Hopf link; geometric
objects, like the pentatope, the Clifford torus, and the hyperbolic cylinder; or geo-
metric properties, such as the Hegaard splitting of genus 1, become essential tools
for understanding the gravitational motion of the bodies.

Since we provide here only a first study in this direction of research, reduced to
the simplest orbits the equations of motion have, namely the relative equilibria (and
the fixed points in the case of positive curvature), we expect that many more con-
nections between dynamics, geometry, topology, and other branches of mathematics
will be discovered in the near future through a deeper exploration of the curved
3-dimensional problem.

1.4 History

The first researchers who took the idea of gravitation beyond the Euclidean space
were Nikolai Lobachevsky and János Bolyai, the founders of hyperbolic geometry.
In 1835, Lobachevsky proposed a Kepler problem in the 3-dimensional hyperbolic
space, H3, by defining an attractive force proportional to the inverse area of the
2-dimensional sphere of radius equal in length to the distance between bodies, [70].
Independently of him, and at about the same time, Bolyai came up with a similar
idea, [8]. Both of them grasped the intimate connection between geometry and phys-
ical laws, a relationship that proved very prolific ever since. Gauss also understood
that hyperbolic geometry existed independently, but never went as far as Bolyai and
Lobachevsky, and there is no historical evidence (until now) that he thought of how
to extend Newton’s gravitational law beyond the Euclidean space.

These co-discoverers of the first non-Euclidean geometry had no followers in their
pre-relativistic attempts until 1860, when Paul Joseph Serret3 extended the gravi-

3Paul Joseph Serret (1827-1898) should not be mixed up with another French mathematician,
Joseph Alfred Serret (1819-1885), known for the Frenet-Serret formulas of vector calculus.
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Figure 1.2: János Bolyai (1802-1860) was a Hungarian mathematician born in Transylva-
nia (then in Hungary, now in Romania), where he spent most of his life. This sculpture
on the frontispiece of the Culture Palace in Târgu Mureş (known in Hungarian as Maros-
Vásárhely) seems to be the only true image left of him, [24].

tational force to the sphere S2 and solved the corresponding Kepler problem, [90].
Ten years later, Ernst Schering revisited the Bolyai-Lobachevsky law, for which he
obtained an analytic expression given by the curved cotangent potential we study in
this paper, [87]. Schering also wrote that Lejeune Dirichlet had told some friends to
have dealt with the same problem during his last years in Berlin4, but Dirichlet never
published anything in this direction, and we found no evidence of any unpublished
manuscripts in which he had studied this particular topic, [88]. In 1873, Rudolph Lip-
schitz considered the problem in S3, but defined a potential proportional to 1/ sin r

R
,

where r denotes the distance between bodies and R is the curvature radius, [69]. He
succeeded to obtain the general solution of the corresponding differential equations
only in terms of elliptic functions, a dead end nobody followed. His failure to provide
an explicit formula, which could have helped him draw some conclusions about the
motion of the bodies, showed the advantage of Schering’s approach.

In 1885, Wilhelm Killing adapted the Bolyai-Lobachevsky gravitational law to
S3 and defined an extension of the Newtonian force given by the inverse area of a
2-dimensional sphere (in the spirit of Schering), for which he proved a generalization
of Kepler’s three laws, a step which suggested that the cotangent potential was a
good way to extend the classical approach, [59]. Then a breakthrough took place. In
1902, Heinrich Liebmann5 showed that the orbits of the Kepler problem are conics

4This must have happened around 1852, as claimed by Rudolph Lipschitz, [68].
5Although he signed his papers and books as Heinrich Liebmann, his full name was Karl Otto
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Figure 1.3: Nikolai Ivanovich Lobachevsky (1792-1856) was a Russian mathematician at
the University of Kazan, where he also served as president. As in the case of Bolyai, his
mathematical work received little recognition during his life time.

in S3 and H3 and further generalized Kepler’s three laws to κ 6= 0, [65]. One year
later, he proved S2- and H2-analogues of Bertrand’s theorem, which states that for
the Kepler problem there exist only two analytic central potentials in the Euclidean
space for which all bounded orbits are closed, one of which corresponds to gravitation,
[7], [100], [66]. Liebmann also included his results in the last chapter of a book on
hyperbolic geometry published in 1905, which saw two more editions, one in 1912
and the other in 1923, [67]. Intriguing enough, in the third edition he replaced the
constant-curvature approach with relativistic considerations.

Liebmann’s change of mind about the importance of the constant-curvature ap-
proach may explain why this direction of research was ignored in the decades im-
mediately following the birth of special and general relativity. The reason for this
neglect was probably connected to the idea that general relativity could allow the
study of 2-body problems on manifolds with variable Gaussian curvature, so the
constant-curvature case appeared to be outdated. Indeed, although the most im-
portant subsequent success of relativity was in cosmology and related fields, there
were attempts to discretize Einstein’s equations and define a gravitational N -body
problem. Remarkable in this direction were the contributions of Jean Chazy, [15],

Heinrich Liebmann (1874-1939). He did most of his work in Heidelberg, where he became briefly the
university’s president, before the Nazis forced him to retire. A remembrance colloquium was held
in his honor at the University of Heidelberg in 2008. On this occasion, Liebmann’s son, Karl-Otto
Liebmann, also and academic, donated to the Faculty of Mathematics an oil portrait of his father,
painted by Adelheid Liebmann, [91]. This author had the opportunity to see that portrait on a
visit to Heidelberg in 2009, when Willi Jäger, his former Ph.D. supervisor, showed it to him.
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Figure 1.4: Karl Otto Heinrich Liebmann (1874-1939) was a professor at Ruprecht-Karls
University in Heidelberg, where he also served as president.

Tullio Levi-Civita, [62], [63], Arthur Eddington, [40], Albert Einstein, Leopold In-
feld6, Banesh Hoffmann, [42], and Vladimir Fock, [46]. Subsequent efforts led to
refined post-Newtonian approximations (see, e.g., [20], [21], [22]), which prove very
useful in practice, from understanding the motion of artificial satellites—a field with
applications in geodesy and geophysics—to using the GPS, [23]. But the equations of
the N -body problem derived from relativity are highly complicated even for N = 2
and are not prone to analytical studies similar to the ones done in the classical case.
This is probably the reason why the need for some simpler equations revived the
research on the motion of 2 bodies in spaces of constant curvature.

In 1940, Erwin Schrödinger developed a quantum-mechanical analogue of the Ke-
pler problem in S2, [89]. He used the same cotangent potential, which he deemed
to be the natural extension of Newton’s law to the sphere7. Further results in this
direction were obtained by Leopold Infeld, [54], [97]. In 1945, Infeld and his student
Alfred Schild extended this problem to spaces of constant negative curvature using
the hyperbolic-cotangent potential, [56]. A comprehensive list of the contributions
mentioned above is given in [92], except for Serret’s book, [90], which was inadver-
tently omitted. An extensive bibliography of works on dynamical problems in spaces
of constant curvature published before 2006 appears in [94] and [95].

The Russian school of celestial mechanics led by Valeri Kozlov also studied the
curved 2-body problem given by the cotangent potential and, starting with the 1990s,

6A vivid description of the collaboration between Einstein and Infeld appears in Infeld’s auto-
biographical book [55].

7“The correct form of [the] potential (corresponding to 1/r of the flat space) is known to be
cotχ,” [89], p. 14.
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considered related problems in spaces of constant curvature, [61]. An important
contribution to the case N = 2 and the Kepler problem belongs to José Cariñena,
Manuel Rañada, and Mariano Santander, who provided a unified approach in the
framework of differential geometry with the help of intrinsic coordinates, emphasizing
the dynamics of the cotangent potential in S2 and H2, [13] (see [14] and [50] as well).
They also proved that the conic orbits known in Euclidean space extend naturally to
spaces of constant curvature, in agreement with the results obtained by Liebmann,
[92]. Moreover, the authors used the rich geometry of the hyperbolic plane to search
for new orbits, whose existence they either proved or conjectured. The study of their
paper made us look for a way to write down the equations of motion for any number
N ≥ 2 of bodies.

Thus inspired, we proposed a new setting, which allowed us an easy derivation of
the equations of motion for any N ≥ 2 in terms of extrinsic coordinates, [35]. The
combination of two main ideas helped us achieve this goal: the use of Weierstrass’s
model of the hyperbolic plane (also known as the Lorentz model on the hyperbolic
sphere), which is embedded in the 3-dimensional Minkowski space, and the appli-
cation of the variational approach of constrained Lagrangian dynamics, [48]. The
equations we obtained are valid in any finite dimension. In [35] we explored relative
equilibria and solved Saari’s conjecture in the collinear case (see also [34], [31]), in [36]
and [27] we studied the singularities of the curved N -body problem, in [33] we gave a
complete classification of the Lagrangian and Eulerian solutions in the 3-body case,
and in [28] we obtained some results about polygonal orbits, including a generaliza-
tion of the Perko-Walter-Elmabsout theorem to both the case of relative equilibria
and when expansion/contraction takes place, [43], [82]. Ernesto Pérez-Chavela and
J. Guadalupe Reyes Victoria derived the equations of motion in intrinsic coordinates
in the case of positive curvature and showed them to be equivalent with the extrinsic
equations, [81]. The analysis of the intrinsic equations in the case of negative cur-
vature was done in [37]. This study is more complicated than the one for positive
curvature, involving both the Poincaré disk and the upper-half-plane model. Some
preliminary results about relative equilibria in the 3-dimensional case occur in [29],
out of which many properties will be presented here.

A study of the stability of Lagrangian relative equilibria of the curved 3-body
problem in S2 appeared in [73]. Regina Mart́ınez and Carles Simó thus discovered
two zones on the sphere in which the orbit is stable. This result is surprising because
equal-mass Lagrangian orbits are unstable in the Euclidean case. Currently we are
performing a study of the stability of tetrahedral orbits for the curved 4-body problem
in S2, [32].
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1.5 Structure

In what follows, we will present some results obtained in the 2- and 3-dimensional
curved N -body problem in the context of differential equations in extrinsic coordi-
nates, as derived in [35]. We are mainly concerned with understanding the motion
of the simplest possible orbits, the relative equilibria, which move like rigid bodies
by maintaining constant mutual distances for all time.

The main part of this monograph is structured in five parts. Part I provides
the mathematical background and gives a complete derivation of the equations of
motion. Part II deals with isometries, whose group representations allow us to mean-
ingfully define relative equilibria for spheres and hyperbolic manifolds. Part III is
concerned with finding existence criteria for relative equilibria and describing the
qualitative behavior of these orbits. Part IV gives many explicit examples of relative
equilibria, which illustrate each type of dynamical behavior previously described.
Finally, Part V focuses on the 2-dimensional case, provides a proof that Lagrangian
orbits must have equal masses (the result that throws some light on the shape of
the physical space), and ends with an extension of Saari’s conjecture to spaces of
constant curvature, which is proved in the geodesic case.

The parts are divided into chapters, numbered increasingly throughout the text.
Each part starts with a preamble that provides a brief idea of what to expect, and the
beginning of each chapter outlines the main properties we found. To avoid repetition,
we will not describe those results here. The rest of the text can therefore be read
linearly or by going first to the preambles of the parts and the introductions to the
chapters to get a general idea about what results will be proved.

We finally reached the starting point into a mathematical universe that will reveal
connections between several branches of mathematics and bring some insight into the
geometry of the physical space. We hope that the above introduction has given the
reader enough reasons to explore this new world.



Part I

Background and Equations of
Motion
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Preamble

The goal of Part I is to lay the mathematical foundations for future developments
and to obtain the equations of motion of the curved N -body problem together with
their first integrals. We will also identify the singularities of the equations of motion
in order to avoid impossible configurations for the relative equilibria we are going to
construct in Part V. A basic property we prove, which will simplify our presentation,
is that, up to its sign, the curvature can be eliminated from the equations of motion
through suitable coordinate and time-rescaling transformations. Consequently our
study can be reduced to the unit sphere, S3, for positive curvature, and the unit
hyperbolic sphere, H3, for negative curvature.
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Chapter 2

Preliminary developments

In this chapter we will introduce some concepts needed for the derivation of the
equations of motion of the N -body problem in spaces of constant curvature as well
as for the study of the relative equilibria, which are special classes of orbits that we
will investigate later. We will start by introducing a model for hyperbolic geometry,
usually attributed to Hendrik Lorentz, but actually due to Karl Weierstrass.

The 2-sphere is familiar to everybody as a complete and compact surface of con-
stant positive Gaussian curvature, κ = 1/R2, where R is the radius. But the under-
standing of its dual, the hyperbolic sphere, which has constant negative curvature,
κ = −1/R2, needs more imagination. This object is connected to hyperbolic geom-
etry. The standard models of 2-dimensional hyperbolic geometry are the Poincaré
disk and the Poincaré upper-half plane, which are conformal, i.e. maintain the an-
gles existing in the hyperbolic plane, as well as the Klein-Beltrami disk, which is not
conformal. But we won’t use any of these models here.

In the first part of this chapter, we will introduce a less known model, due to
Karl Weierstrass, which geometers call the hyperbolic sphere or, sometimes ambigu-
ously, the pseudosphere, whereas physicists refer to it as the Lorentz model. We will
first present the 2-dimensional case, which can be easily extended to 3 dimensions.
This model is more natural than the ones previously mentioned in the sense that
it is analytically similar to the sphere, and will thus be essential in our endeavors
to develop a unified N -body problem in spaces of constant positive and negative
curvature. We will then provide a short history of this model, and introduce some
geometry concepts that are going to be useful later. In the last part of this chapter,
we will define the natural metric of the sphere and of the hyperbolic sphere and unify
circular and hyperbolic trigonometry in order to introduce a single potential function
for both the positive and the negative curvature case.
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2.1 The hyperbolic sphere

Since Weierstrass’s model of hyperbolic geometry is not widely known among non-
linear analysts or experts in differential equations and dynamical systems, we will
briefly present it here. We first discuss the 2-dimensional case, which we will then
extend to 3 dimensions. In its 2-dimensional form, this model appeals for at least two
reasons: it allows an obvious comparison with the 2-sphere, both from the geometric
and from the algebraic point of view, and emphasizes the difference between the hy-
perbolic (Bolyai-Lobachevsky) and the Euclidean plane as clearly as the well-known
difference between the Euclidean plane and the sphere. From the dynamical point
of view, the equations of motion of the curved N -body problem in S3

κ resemble the
equations of motion in H3

κ, with just a few sign changes, as we will show soon. The
dynamical consequences, however, are going to be significant, but we will be able
to use the resemblances between the sphere and the hyperbolic sphere to study the
dynamics of the problem.

The 2-dimensional Weierstrass model is built on the hyperbolic sphere, repre-
sented by one of the sheets of the hyperboloid of two sheets,

x2 + y2 − z2 = κ−1,

where κ < 0 represents the curvature of the surface in the 3-dimensional Minkowski
space R2,1 := (R3,�), in which

a � b := axbx + ayby − azbz,

defines the Lorentz inner product of the vectors a = (ax, ay, az) and b = (bx, by, bz).
We pick for our model the sheet z > 0 of the hyperboloid of two sheets and identify
this connected component with the hyperbolic plane H2

κ. We can think of this surface
as being a pseudosphere of imaginary radius iR, a case in which the relationship
between radius and curvature is given by (iR)2 = κ−1.

A linear transformation T : R2,1 → R2,1 is called orthogonal if it preserves the
inner product, i.e.

T (a) � T (a) = a � a

for any a ∈ R2,1. The set of these transformations, together with the Lorentz inner
product, forms the orthogonal Lie group O(R2,1), given by matrices of determinant
±1. Therefore the connected Lie group SO(R2,1) of orthogonal transformations of
determinant 1 is a subgroup of O(R2,1). Another subgroup of O(R2,1) is G(R2,1),
which is formed by the transformations T that leave H2

κ invariant. Furthermore,
G(R2,1) has the closed Lorentz subgroup, Lor(R2,1) := G(R2,1) ∩ SO(R2,1).
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An important result, with deep consequences in our paper, is the principal axis
theorem for Lor(R2,1), [38], [52]. To present it, let us define the Lorentzian rotations
about an axis as the 1-parameter subgroups of Lor(R2,1) that leave the axis pointwise
fixed. Then the principal axis theorem states that every Lorentzian transformation
has one of the matrix representations:

A = P

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

P−1,

B = P

1 0 0

0 cosh s sinh s

0 sinh s cosh s

P−1,
or

C = P

1 −t t

t 1− t2/2 t2/2

t −t2/2 1 + t2/2

P−1,
where θ ∈ [0, 2π), s, t ∈ R, and P ∈ Lor(R2,1). These transformations are called
elliptic, hyperbolic, and parabolic, respectively. They are all isometries, i.e. preserve
the distances in H2

κ.
In its standard setting of Einstein’s relativity, the Minkowski space has time and

space coordinates. In our case, however, all coordinates are spatial. Nevertheless,
we will use the standard terminology and say that the elliptic transformations are
rotations about a timelike axis (the z axis in our case) and act along a circle, like
in the spherical case; the hyperbolic rotations are about a spacelike axis (the x axis
in this context) and act along a hyperbola; and the parabolic transformations are
rotations about a lightlike (or null) axis (represented here by the line x = 0, y = z)
and act along a parabola. This result is analogous to Euler’s principal axis theorem
for the sphere, which states that any element of the rotation group SO(3) can be
written, in some orthonormal basis, as a rotation about the z axis.

The geodesics of H2
κ are the hyperbolas obtained by intersecting the hyperbolic

sphere with planes passing through the origin of the coordinate system. For any two
distinct points a and b of H2

κ, there is a unique geodesic that connects them, and
the distance between these points is given by

d(a,b) = (−κ)−1/2 cosh−1(κa � b). (2.1)

In the framework of Weierstrass’s model, the parallels’ postulate of hyperbolic
geometry can be translated as follows. Take a geodesic γ, i.e. a hyperbola obtained
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by intersecting the hyperbolic sphere with a plane through the origin, O, of the
coordinate system. This hyperbola has two asymptotes in its plane: the straight
lines a and b, which intersect at O. Take a point, P , on the upper sheet of the
hyperboloid but not on the chosen hyperbola. The plane aP produces the geodesic
hyperbola α, whereas bP produces β. These two hyperbolas intersect at P . Then α
and γ are parallel geodesics meeting at infinity along a, while β and γ are parallel
geodesics meeting at infinity along b. All the hyperbolas between α and β (also
obtained from planes through O) are non-secant with γ.

Like the Euclidean plane, the abstract Bolyai-Lobachevsky plane has no privileged
points or geodesics. But the Weierstrass model, given by the hyperbolic sphere, has
some convenient points and geodesics, such as the point (0, 0, |κ|−1/2), namely the
vertex of the sheet z > 0 of the hyperboloid, and the geodesics passing through
it. The elements of Lor(R2,1) allow us to move the geodesics of H2

κ to convenient
positions, a property that can be used to simplify certain arguments.

More detailed introductions to the 2-dimensional Weierstrass model can be found
in [45] and [84]. The Lorentz group is treated in some detail in [4] and [84], but
the principal axis theorems for the Lorentz group contained in [4] fails to include
parabolic rotations, and is therefore incomplete.

The generalization of the hyperbolic 2-sphere to 3 dimensions is straightforward.
Consider first the 4-dimensional Minkowski space R3,1 = (R4,�), where � is now
defined as the Lorentz inner product

a � b = awbw + axbx + ayby − azbz,

with a = (aw, ax, ay, az) and b = (bw, bx, by, bz) belonging to R3,1. We further embed
in this Minkowski space the connected component with z > 0 of the 3-dimensional
hyperbolic manifold given by the equation

w2 + x2 + y2 − z2 = κ−1, (2.2)

which models the hyperbolic 3-sphere H3
κ of constant curvature κ < 0. The distance

is given by the same formula (2.1), where a and b are now points in R4 that lie in
the hyperbolic 3-sphere (2.2) with z > 0.

The next issue to discuss would be that of Lorentzian transformations in H3
κ, i.e.

the elements of the corresponding Lorentz group. But we postpone this topic, to
present it in Chapter 4 together with the isometries of the 3-sphere and the group
SO(4) that generates them. There are two good reasons for this postponement. First,
we would like to obtain the equations of motion of the curved N -body problem as
soon as possible and, second, to present the similarities and the differences between
these transformations in a larger geometrical context than the one considered here.
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Some historical remarks

The idea of an “imaginary sphere,” at a time when mathematicians were knocking
unsuccessfully at the gates of hyperbolic geometry, seems to have first appeared in
1766 in the work of Johann Heinrich Lambert, [9]. In 1826, Franz Adolph Taurinus
referred to a “sphere of imaginary radius” in connection with some trigonometric
research, [9], but was clearly unaware of the work of Bolyai and Lobachevsky, who
were then trying, independently of each other, to make progress in the new universe
of the hyperbolic plane. Neither Lambert, nor Taurinus, seem to have viewed these
concepts as we do today.

The first mathematician who mentioned Karl Weierstrass in connection with
the hyperbolic sphere was Wilhelm Killing. In a paper published in 1880, [58], he
used what he called Weierstrass’s coordinates to describe the “exterior hyperbolic
plane” as an “ideal region” of the Bolyai-Lobachevsky plane. In 1885, he added that
Weierstrass had introduced these coordinates, in combination with “numerous appli-
cations,” during a seminar held in 1872, but also mentioned that Eugenio Beltrami
had previously used some related coordinates, [60], pp. 258-259. We found no other
evidence of any written account of the hyperbolic sphere for the Bolyai-Lobachevsky
plane prior to the one Killing gave in [60], p. 260. His remarks might have inspired
Richard Faber to name this model after Weierstrass and to dedicate a chapter to it
in [45], pp. 247-278.

2.2 More geometric background

Since we are interested in the motion of point particles on 3-dimensional manifolds,
the natural background structure for the study of the 3-dimensional curved N -body
problem is the Euclidean ambient space, R4, endowed with a specific inner-product,
which depends on whether the curvature is positive or negative. For positive constant
curvature, κ > 0, the motion takes place on a 3-sphere embedded in the Euclidean
space R4, endowed with the standard dot product, · , i.e. on the manifold

S3
κ = {(w, x, y, z) |w2 + x2 + y2 + z2 = κ−1}.

For negative constant curvature, κ < 0, the motion takes place on the hyperbolic
sphere, the manifold introduced in the previous subsection, represented by the upper
connected component of a 3-dimensional hyperboloid of two connected components
embedded in the Minkowski space R3,1, i.e. on the manifold

H3
κ = {(w, x, y, z) |w2 + x2 + y2 − z2 = κ−1, z > 0},
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where R3,1 is R4 endowed with the Lorentz inner product, �. Generically, we will
denote these manifolds by

M3
κ = {(w, x, y, z) ∈ R4 |w2 + x2 + y2 + σz2 = κ−1, with z > 0 for κ < 0},

where σ is the signum function,

σ =

{
+1, for κ > 0

−1, for κ < 0.
(2.3)

In Section 3.7, we will show that, using suitable coordinate and time-rescaling
transformations, we can reduce the mathematical study of the equations of motion
to the unit sphere,

S3 = {(w, x, y, z) |w2 + x2 + y2 + z2 = 1},

for positive curvature, and to the unit hyperbolic sphere,

H3 = {(w, x, y, z) |w2 + x2 + y2 − z2 = −1},

for negative curvature. Generically, we will denote these manifolds by

M3 = {(w, x, y, z) ∈ R4 | w2 + x2 + y2 + σz2 = σ, with z > 0 for κ < 0}.

Given the 4-dimensional vectors

a = (aw, ax, ay, az) and b = (bw, bx, by, bz),

we define their inner product as

a� b := awbw + axbx + ayby + σazbz, (2.4)

so M3
κ is endowed with the operation �, meaning · for κ > 0 and � for κ < 0.

If R is the radius of the sphere S3
κ, then the relationship between κ > 0 and R

is κ−1 = R2. As we already mentioned, to have an analogue interpretation in the
case of negative curvature, H3

κ can be viewed as a hyperbolic 3-sphere of imaginary
radius iR, such that the relationship between κ < 0 and iR is κ−1 = (iR)2.

Let us further define some concepts that will be useful later. Since we are going
to work with them only in the context of S3 and H3, i.e. for κ = 1 and κ = −1,
respectively, we will introduce them relative to these manifolds.

Definition 1. A great sphere of S3 is a 2-sphere of radius 1.
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Great spheres of S3 are obtained by intersecting S3 with hyperplanes of R4 that
pass through the origin of the coordinate system. Examples of great spheres are:

S2
w = {(w, x, y, z) |x2 + y2 + z2 = 1, w = 0} (2.5)

for all possible relabelings of the variables.

Definition 2. A great circle of a great sphere of S3 is a 1-sphere of radius 1.

Definition 2 implies that the curvature of a great circle is the same as the curvature
of S3. Notice that this is not true in general, i.e. for spheres of curvature κ. Then
the curvature of a great circle is κ = 1/R, where R is the radius of S3

κ and of the
great circle.

A great circle can be obtained by intersecting a great sphere with a plane passing
through the origin of the coordinate system. Examples of great circles in S3 are:

S1
wx = {(w, x, y, z) | y2 + z2 = 1, w = x = 0} (2.6)

for all possible relabelings of the variables. Notice that S1
wx is a great circle for both

the great spheres S2
w and S2

x, whereas S1
yz is a great circle for the great spheres S2

y

and S2
z. Similar remarks can be made about any of the above great circles.

Definition 3. Two great circles, C1 and C2, of two distinct great spheres of S3 are
called complementary if there is a coordinate system wxyz such that either of the
following two conditions is satisfied:

C1 = S1
wx and C2 = S1

yz, (2.7)

C1 = S1
wy and C2 = S1

xz. (2.8)

The conditions (2.7) and (2.8) for C1 and C2 exhaust all possibilities. Indeed, the
representation

C1 = S1
wz and C2 = S1

xy,

for instance, is the same as (2.7) after we perform a circular permutation of the
coordinates w, x, y, z. For simplicity, and without loss of generality, we will always
use representation (2.7).

In topological terms, the complementary circles C1 and C2 of S3 form a Hopf link
in a Hopf fibration, which is the map

H : S3 → S2, H(w, x, y, z) = (w2 + x2 − y2 − z2, 2(wz + xy), 2(xz − wy))
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that takes circles of S3 to points of S2, [53], [71]. In particular, H takes S1
wx to

(1, 0, 0) and S1
yz to (−1, 0, 0). Using the stereographic projection, it can be shown

that the circles C1 and C2 are linked (like any adjacent rings in a chain), hence the
name of the pair, [71]. Hopf fibrations have important physical applications in fields
such as rigid body mechanics, [72], quantum information theory, [77], and magnetic
monopoles, [78]. As we will see later, they are also useful in celestial mechanics via
the curved N -body problem.

We will show in the next section that the distance between two points lying on
complementary great circles is independent of their position. This remarkable geo-
metric property turns out to be even more surprising from the dynamical point of
view. Indeed, given the fact that the distance between 2 complementary great circles
is constant, the magnitude of the gravitational interaction (but not the direction of
the force) between a body lying on a great circle and a body lying on the comple-
mentary great circle is the same, no matter where the bodies are on their respective
circles. This simple observation will help us construct some interesting, nonintuitive
classes of solutions of the curved N -body problem.

In analogy with great spheres of S3, we will further define great hyperbolic spheres
of H3.

Definition 4. A great hyperbolic sphere of H3 is a hyperbolic 2-sphere of curvature
−1.

Great hyperbolic spheres of H3 are obtained by intersecting H3 with hyperplanes
of R4 that pass through the origin of the coordinate system, whenever this intersec-
tion is not empty. Examples of great hyperbolic spheres of H3 are:

H2
w = {(w, x, y, z) |x2 + y2 − z2 = −1, w = 0}, (2.9)

and the its analogues obtained by replacing w with x or y.

2.3 The metric

A basic preparatory issue lies with introducing the metric used on the manifolds S3
κ

and H3
κ, which, according to the corresponding inner products, we naturally define

as

dκ(a,b) :=


κ−1/2 cos−1(κa · b), κ > 0

|a− b|, κ = 0

(−κ)−1/2 cosh−1(κa � b), κ < 0,

(2.10)
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where the vertical bars denote the standard Euclidean norm.

When κ → 0, with either κ > 0 or κ < 0, then R → ∞, where R represents
the radius of the sphere S3

κ or the real factor in the expression iR of the imaginary
radius of the hyperbolic sphere H3

κ. As R→∞, both S3
κ and H3

κ become R3, and the
vectors a and b become parallel, so the distance between them gets to be measured
in the Euclidean sense, as indicated in (2.10). Therefore, in a way, d is a continuous
function of κ when the manifolds S3

κ and H3
κ are pushed away to infinity relative to

the origin of the coordinate system.

In terms of intrinsic coordinates, as introduced in [37], [81], the plane does not
get pushed to infinity, and the transition from S3

κ to R3 to H3
κ takes place contin-

uously, since all three manifolds have a common point, as Figure 2.1 shows in the
2-dimensional case.

 

Figure 2.1: The transition from S3κ up to (and from H3
κ down to) R3, as κ→ 0, is continuous

since these manifolds have a common point, as suggested here in the 2-dimensional case.

In S3
κ, for instance, formula (2.10) is nothing but the well known length of an arc

of a circle (the great circle of the sphere that connects the two points): dκ(a,b) = Rα,
where R = κ−1/2 is the radius of the sphere and α = α(a,b) is the angle from the
center of the circle (sphere) that subtends the arc. When R → ∞, we have α → 0,
so the limit of Rα is undetermined. To see that the distance is a finite number,
let us denote by ε the length of the chord that subtends the arc. Then, solving the
right triangle formed by the vector a, half the chord, and the height of the isosceles
triangle formed by a,b, and the chord, we obtain α = 2 sin−1[ε/(2R)], which means
that the length of the arc is

dκ(a,b) = Rα = 2R sin−1
ε

2R
.

If we assume ε constant, then the length of the arc must match the length of the
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chord when R→∞. Indeed, using l’Hôpital’s rule, we obtain that

lim
R→∞

2R sin−1
ε

2R
= lim

R→∞

ε√
1− [ε/(2R)]2

= ε.

To get more insight into the fact that the metrics in S3
κ and H3

κ become the
Euclidean metric in R3 when κ→ 0, let us use the stereographic projection. Consider
the points of coordinates (w, x, y, z) ∈M3

κ and map them to the points of coordinates
(W,X, Y ) of the 3-dimensional hyperplane z = 0 through the bijective transformation

W =
Rw

R− σz
, X =

Rx

R− σz
, Y =

Ry

R− σz
, (2.11)

which has the inverse

w =
2R2W

R2 + σW 2 + σX2 + σY 2
, x =

2R2X

R2 + σW 2 + σX2 + σY 2
,

y =
2R2Y

R2 + σW 2 + σX2 + σY 2
, z =

R(W 2 +X2 + Y 2 − σR2)

R2 + σW 2 + σX2 + σY 2
.

From the geometric point of view, the correspondence between a point of M3
κ and

a point of the hyperplane z = 0 is made via a straight line through the point
(0, 0, 0, σR), called the north pole, for both κ > 0 and κ < 0.

For κ > 0, the projection is the Euclidean space R3, whereas for κ < 0 it is the
solid Poincaré 3-ball of radius κ−1/2. The metric in coordinates (W,X, Y ) of the
hyperplane z = 0 is given by

ds2 =
4R4(dW 2 + dX2 + dY 2)

(R2 + σW 2 + σX2 + σY 2)2
,

which can be obtained by substituting the inverse of the stereographic projection
into the metric

ds2 = dw2 + dx2 + dy2 + σdz2.

The stereographic projection is conformal (angle preserving), but it is neither isomet-
ric (distance preserving) nor area preserving. Therefore we cannot expect to recover
the exact Euclidean metric when κ → 0, i.e. when R → ∞, but hope, nevertheless,
to obtain an expression that resembles it. Indeed, we can divide the numerator and
denominator of the right hand side of the above metric by R4 and write it after
simplification as

ds2 =
4(dW 2 + dX2 + dY 2)

(1 + σW 2/R2 + σX2/R2 + σY 2/R2)2
.
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When R→∞, we have

ds2 = 4(dW 2 + dX2 + dY 2),

which is the Euclidean metric of R3 up to a constant factor.

Remark 1. When κ > 0, we can conclude from (2.10) that if C1 and C2 are two
complementary great circles, as described in Definition 3, and a ∈ C1,b ∈ C2, then
the distance between a and b is

dκ(a,b) = κ−1/2π/2.

(In S3, the distance is π/2.) This fact shows that two complementary circles are
equidistant, a simple property of essential importance for some of the unexpected
dynamical orbits we will construct in this monograph.

Since, to derive the equations of motion, we will apply a variational principle, we
need to extend the distance from the 3-dimensional manifolds of constant curvature
S3
κ and H3

κ to the 4-dimensional ambient space in which they are embedded. We
therefore redefine the distance between a and b as

d̄κ(a,b) :=


κ−1/2 cos−1 κa·b√

κa·a
√
κb·b , κ > 0

|a− b|, κ = 0

(−κ)−1/2 cosh−1 κa�b√
κa�a

√
κb�b

, κ < 0.

(2.12)

Notice that in S3
κ we have

√
κa · a =

√
κb · b = 1 and in H3

κ we have
√
κa � a =√

κb � b = 1, which means that the new distance, d̄κ, reduces to the distance dκ
defined in (2.10), when we restrict d̄κ to the corresponding 3-dimensional manifolds
of constant curvature, i.e. dκ = d̄κ in M3

κ.

2.4 Unified trigonometry

Following the work of Cariñena, Rañada, and Santander, [13], we will further define
the trigonometric κ-functions, which unify circular and hyperbolic trigonometry. The
reason for this step is to obtain the equations of motion of the curvedN -body problem
in both constant positive and constant negative curvature spaces. We define the κ-
sine, snκ, as

snκ(x) :=


κ−1/2 sin(κ1/2x) if κ > 0

x if κ = 0

(−κ)−1/2 sinh((−κ)1/2x) if κ < 0,



26 Preliminary developments

the κ-cosine, csnκ, as

csnκ(x) :=


cos(κ1/2x) if κ > 0

1 if κ = 0

cosh((−κ)1/2x) if κ < 0,

as well as the κ-tangent, tnκ, and κ-cotangent, ctnκ, as

tnκ(x) :=
snκ(x)

csnκ(x)
and ctnκ(x) :=

csnκ(x)

snκ(x)
,

respectively. The entire trigonometry can be rewritten in this unified context, but
the only identity we will further need is the fundamental formula

κ sn2
κ(x) + csn2

κ(x) = 1. (2.13)

Notice that all the above trigonometric κ-functions are continuous with respect
to κ. In the above formulation of the unified trigonometric κ-functions, we assigned
no particular meaning to the real parameter κ. In what follows, however, κ will
represent the constant curvature of a 3-dimensional manifold. Therefore, with this
notation, the distance (2.10) on the manifold M3

κ can be written as

dκ(a,b) = csn−1κ (κa� b)

for any a,b ∈M3
κ and κ 6= 0. Similarly, we can write that

d̄κ(a,b) = csn−1κ

(
κa� b√

|a� a|
√
|b� b|

)
for any a,b ∈ R4 and κ 6= 0.



Chapter 3

Equations of motion

The main purpose of this chapter is to derive the equations of motion of the curved
N -body problem on the 3-dimensional manifolds M3

κ. To achieve this goal, we will
define the curved potential function, which also represents the potential of the par-
ticle system, introduce and apply Euler’s formula for homogeneous functions to the
curved potential function, describe the variational method of constrained Lagrangian
dynamics, and write down the Euler-Lagrange equations with constraints. After de-
riving the equations of motion of the curved N -body problem, we will prove that
their study can be reduced, by suitable coordinate and time-rescaling transforma-
tions, to the unit manifold M3. Finally, we will show that the equations of motion
can be put in Hamiltonian form and will find their first integrals.

3.1 The potential

Since the classical Newtonian equations of the N -body problem are expressed in
terms of a potential function, our next goal is to define such a function that extends
to spaces of constant curvature and reduces to the classical Newtonian potential in
the Euclidean case, i.e. when κ = 0.

Consider the point particles (which we will also call point masses or bodies) of
masses m1,m2, . . . ,mN > 0 in R4, for κ > 0, and in R3,1, for κ < 0, whose positions
are given by the vectors qi = (wi, xi, yi, zi), i = 1, 2, . . . , N . Let q = (q1,q2, . . . ,qN)
be the configuration of the system and p = (p1,p2, . . . ,pN), with pi = miq̇i, i =
1, 2, . . . , N , the momentum of the system. The gradient operator with respect to the
vector qi is defined as

∇̃qi := (∂wi , ∂xi , ∂yi , σ∂zi), i = 1, 2, . . . , N.
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From now on we will rescale the units such that the gravitational constant G is
1. We thus define the potential of the curved N -body problem, which we will call
the curved potential, as the function −Uκ, where

Uκ(q) :=
1

2

N∑
i=1

N∑
j=1,j 6=i

mimjctnκ(dκ(qi,qj))

stands for the curved force function. Notice that, for κ = 0, we have

ctn0(d0(qi,qj)) = |qi − qj|−1,

which means that the curved potential becomes the classical Newtonian potential in
the Euclidean case, [100]. Moreover, Uκ → U0 as κ → 0, whether through positive
or negative values of κ because, as shown in Section 2.3, dκ → d0 as κ → 0. It
is interesting to notice that Uκ is a homogeneous function of degree 0 for κ 6= 0,
but the Newtonian potential, U0, defined in the Euclidean space, is a homogeneous
function of degree −1. In other words, a bifurcation of Uκ occurs at the transition
from κ = 0 to κ 6= 0. Such bifurcations are not unusual. For instance, the function
gα : (0,∞) → R given by gα(x) = αxp, with p a nonzero integer, is homogeneous of
degree p for α 6= 0, but homogeneous of any degree for α = 0.

Now that we defined a potential that satisfies the basic limit condition we required
of any extension of the N -body problem beyond the Euclidean space, we emphasize
that this function also satisfies the basic properties the classical Newtonian poten-
tial fulfills in the case of the Kepler problem, as mentioned in the Introduction: it
obeys Bertrand’s property, according to which every bounded orbit is closed, and is a
solution of the Laplace-Beltrami equation (see Section 3.11), the natural generaliza-
tion of Laplace’s equation to Riemannian and pseudo-Riemannian manifolds. These
properties ensure that the cotangent potential provides us with a natural extension
of Newton’s gravitational law to spaces of constant curvature.

Let us now focus on the case κ 6= 0. A straightforward computation, which uses
the fundamental trigonometric formula (2.13), shows that

Uκ(q) =
1

2

N∑
i=1

N∑
j=1,j 6=i

mimj(σκ)1/2
κqi�qj√

κqi�qi
√
κqj�qj√

σ − σ
(

κqi�qj√
κqi�qi

√
κqj�qj

)2 , κ 6= 0, (3.1)

an expression that is equivalent to

Uκ(q) =
∑

1≤i<j≤N

mimj|κ|1/2κqi � qj
[σ(κqi � qi)(κqj � qj)− σ(κqi � qj)2]1/2

, κ 6= 0. (3.2)
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In fact, we could simplify Uκ even more by recalling that κqi�qi = 1, i = 1, 2, . . . , N .
But since we still need to compute ∇̃Uκ, which means differentiating Uκ, we will not
make that simplification yet.

3.2 Euler’s formula for homogeneous functions

In 1755, Leonhard Euler proved a beautiful formula related to homogeneous func-
tions, [44]. We will further present it and show how it applies to the curved potential.

Definition 5. A function F : Rm → R is called homogeneous of degree α ∈ R if for
all η 6= 0 and q ∈ Rm, we have

F (ηq) = ηαF (q).

Euler’s formula shows that, for any homogeneous function of degree α ∈ R, we
have

q · ∇F (q) = αF (q)

for all q ∈ Rm.
Notice that Uκ(ηq) = Uκ(q) = η0Uκ(q) for any η 6= 0, which means that the

curved potential is a homogeneous function of degree zero. With our notations, we
have m = 3N , therefore Euler’s formula can be written as

q� ∇̃F (q) = αF (q).

Since α = 0 for Uκ with κ 6= 0, we conclude that

q� ∇̃Uκ(q) = 0. (3.3)

We can also write the curved force function as Uκ(q) = 1
2

∑N
i=1 U

i
κ(qi), where

U i
κ(qi) :=

N∑
j=1,j 6=i

mimj(σκ)1/2
κqi�qj√

κqi�qi
√
κqj�qj√

σ − σ
(

κqi�qj√
κqi�qi

√
κqj�qj

)2 , i = 1, 2, . . . , N,

are also homogeneous functions of degree 0. Applying Euler’s formula for functions
F : R3 → R, we obtain that qi�∇̃qiU

i
κ(q) = 0. Then using the identity ∇̃qiUκ(q) =

∇̃qiU
i
κ(qi), we can conclude that

qi � ∇̃qiUκ(q) = 0, i = 1, 2, . . . , N. (3.4)
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3.3 Constrained Lagrangian dynamics

To obtain the equations of motion of the curved N -body problem, we will use the
classical variational theory of constrained Lagrangian dynamics, [48]. According to
this theory, let

L = T − V
be the Lagrangian of a system of N particles constrained to move on a manifold,
where T is the kinetic energy and V is the potential energy of the system. If the posi-
tions and the velocities of the particles are given by the vectors qi, q̇i, i = 1, 2, . . . , N ,
and the constraints are characterized by the equations f i = 0, i = 1, 2, . . . , N , re-
spectively, then the motion is described by the Euler-Lagrange equations with con-
straints,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
− λi(t)∂f

i

∂qi
= 0, i = 1, 2, . . . , N, (3.5)

where λi, i = 1, 2, . . . , N , are called Lagrange multipliers. For the above equations,
the distance is defined in the entire ambient space. Using this classical result, we
can now derive the equations of motion of the curved N -body problem.

3.4 Derivation of the equations of motion

In our case, the potential energy V of Section 3.3 is V = −Uκ, given by the curved
force function (3.1), and we define the kinetic energy of the system of particles as

Tκ(q, q̇) :=
1

2

N∑
i=1

mi(q̇i � q̇i)(κqi � qi).

The reason for introducing the factors κqi�qi = 1, i = 1, 2, . . . , N , into the definition
of the kinetic energy will become clear in Section 3.6. Then the Lagrangian of the
curved N -body system has the form

Lκ(q, q̇) = Tκ(q, q̇) + Uκ(q).

So, according to the theory of constrained Lagrangian dynamics presented in Section
3.3, which requires the use of a distance defined in the ambient space, a condition
we satisfied when producing formula (2.12), the equations of motion are

d

dt

(
∂Lκ
∂q̇i

)
− ∂Lκ
∂qi
− λiκ(t)

∂f iκ
∂qi

= 0, i = 1, 2, . . . , N, (3.6)
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where f iκ = qi � qi − κ−1 is the function that characterizes the constraints f iκ =
0, i = 1, 2, . . . , N . Each constraint keeps the body of mass mi on the surface of
constant curvature κ, and λiκ is the Lagrange multiplier corresponding to the same
body. Since qi � qi = κ−1 implies that q̇i � qi = 0, it follows that

d

dt

(
∂Lκ
∂q̇i

)
= miq̈i(κqi � qi) + 2mi(κq̇i � qi) = miq̈i, i = 1, 2, . . . , N.

This relationship, together with

∂Lκ
∂qi

= miκ(q̇i � q̇i)qi + ∇̃qiUκ(q), i = 1, 2, . . . , N,

implies that equations (3.6) are equivalent to

miq̈i −miκ(q̇i � q̇i)qi − ∇̃qiUκ(q)− 2λiκ(t)qi = 0, i = 1, 2, . . . , N. (3.7)

To determine λiκ, notice that 0 = f̈ iκ = 2q̇i � q̇i + 2(qi � q̈i), so

qi � q̈i = −q̇i � q̇i, i = 1, 2, . . . , N. (3.8)

Let us also remark that�-multiplying equations (3.7) by qi and using Euler’s formula
(3.4), we obtain that

mi(qi � q̈i)−mi(q̇i � q̇i)− qi � ∇̃qiUκ(q) = 2λiκqi � qi = 2κ−1λiκ, i = 1, 2, . . . , N,

which, via (3.8), implies that λiκ = −κmi(q̇i�q̇i), i = 1, 2, . . . , N . Substituting these
values of the Lagrange multipliers into equations (3.7), the equations of motion and
their constraints become

miq̈i = ∇̃qiUκ(q)−miκ(q̇i� q̇i)qi, qi�qi = κ−1, κ 6= 0, i = 1, 2, . . . , N. (3.9)

The qi-gradient of the curved force function, obtained from (3.1), has the form

∇̃qiUκ(q) =
N∑

j=1,j 6=i

mimj(σκ)
1/2

(
σκqj−σ

κ2qi�qj
κqi�qi

qi

)
√
κqi�qi

√
κqj�qj[

σ − σ
(

κqi�qj√
κqi�qi

√
κqj�qj

)2
]3/2 , κ 6= 0, i = 1, 2, . . . , N, (3.10)
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which is equivalent to

∇̃qiUκ(q) =
N∑
j=1
j 6=i

mimj|κ|3/2(κqj � qj)[(κqi � qi)qj − (κqi � qj)qi]

[σ(κqi � qi)(κqj � qj)− σ(κqi � qj)2]3/2
, i = 1, 2, . . . , N.

(3.11)
Using the fact that κqi � qi = 1, i = 1, 2, . . . , N , we can write this gradient as

∇̃qiUκ(q) =
N∑

j=1,j 6=i

mimj|κ|3/2 [qj − (κqi � qj)qi][
σ − σ (κqi � qj)

2]3/2 , κ 6= 0, i = 1, 2, . . . , N. (3.12)

We can often use the simpler form (3.12) of the gradient of the force function, but
whenever we need to exploit the homogeneity of the gradient, or have to differentiate
it, we must revert to its original form (3.11). Thus equations (3.9) and (3.11) describe
the N -body problem on surfaces of constant curvature for κ 6= 0. Though more
complicated than the equations of motion Newton derived for the Euclidean space,
system (3.9) is simple enough to allow an analytic approach.

3.5 Independence of curvature

Recently, Carles Simó pointed to us an important property, which will greatly sim-
plify the study of the equations of motion. For S2, he found a change of coordinates
and a rescaling of time that allow the elimination of the parameter κ, up to its sign,
from the equations of motion. His idea can be easily generalized to spheres and hy-
perbolic manifolds of any dimension. So consider the coordinate and time-rescaling
transformations given by

qi = |κ|−1/2ri, i = 1, 2, . . . , N, and τ = |κ|3/4t. (3.13)

The rescaling of the time variable is equivalent to writing d
dt

= |κ|3/4 d
dτ

, which is a
relationship between differentiation with respect to t and differentiation with respect
to τ . Let r′i and r′′i denote the first and second derivative of ri with respect to the
rescaled time variable τ . Then the equations of motion (3.9) take the form

r′′i =
N∑

j=1,j 6=i

mj[rj − σ(ri � rj)ri]

[σ − σ(ri � rj)2]3/2
− σ(r′i � r′i)ri, i = 1, 2, . . . , N, (3.14)

where κ does not appear explicitly anymore. They only depend on the sign of κ,
given that we must take σ = 1 for κ > 0 and σ = −1 for κ < 0. Moreover, the
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change of coordinates (3.13) shows that

ri � ri = |κ|qi � qi = |κ|κ−1 = σ.

Consequently, for positive curvature we have ri ∈ S3, i = 1, 2, . . . , N , and for negative
curvature we have ri ∈ H3, i = 1, 2, . . . , N . This means that, from the qualitative
point of view, the behavior of the orbits is independent of the curvature’s value,
and that, without loss of generality, we can restrict our study to the unit sphere,
for positive curvature, and the unit hyperbolic sphere, for negative curvature. Of
course, for any practical or quantitative purposes, which will not be addressed in
this monograph, we would have to use system (3.9).

Instead of employing the new equations of motion (3.14), in which the ris rep-
resent the coordinates, we will use the old notations in the particular cases κ = 1,
which stands for positive curvature, and κ = −1, which stands for negative curva-
ture. This is as if we would redenote the variables ri by qi, the rescaled time τ by t,
and use the upper dots instead of the primes for the derivatives. In other words, for
positive curvature we will use the system

q̈i =
N∑

j=1,j 6=i

mj[qj − (qi · qj)qi]
[1− (qi · qj)2]3/2

− (q̇i · q̇i)qi, qi · qi = 1, i = 1, 2, . . . , N, (3.15)

where · is the standard inner product. The constraints show that the motion takes
place on the unit sphere S3. For negative curvature we will use the system

q̈i =
N∑

j=1,j 6=i

mj[qj + (qi � qj)qi]

[(qi � qj)2 − 1]3/2
+(q̇i� q̇i)qi, qi�qi = −1, i = 1, 2, . . . , N, (3.16)

where � is the Lorentz inner product. The constraints show that the motion takes
place on the unit hyperbolic manifold H3. When referring to both equations simul-
taneously, we will consider the form

q̈i =
N∑

j=1,j 6=i

mj[qj − σ(qi � qj)qi]

[σ − σ(qi � qj)2]3/2
−σ(q̇i�q̇i)qi, qi�qi = σ, i = 1, 2, . . . , N. (3.17)

The last term in each equation, involving the Lagrange multipliers, occurs due to the
constraints that keep the bodies moving on the manifold. In Euclidean space those
terms vanish.

The force function and its gradient are then expressed as

U(q) =
∑

1≤i<j≤N

σmimjqi � qj
[σ(qi � qi)(qj � qj)− σ(qi � qj)2]1/2

, (3.18)
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∇̃qiU(q) =
N∑

j=1,j 6=i

mimj [qj − σ(qi � qj)qi][
σ − σ (qi � qj)

2]3/2 , (3.19)

respectively, and he kinetic energy is given by

T (q, q̇) :=
1

2

N∑
i=1

mi(q̇i � q̇i)(σqi � qi). (3.20)

3.6 Hamiltonian formulation

It is always desirable to place any new problem in a more general framework. The
theory of Hamiltonian systems turns out to be the suitable structure in this case,
the same as for the Euclidean N -body problem. In classical mechanics, a Hamilto-
nian system is a physical system that is momentum invariant. In mathematics, a
Hamiltonian system is usually formulated in terms of Hamiltonian vector fields on a
symplectic manifold or, more generally, on a Poisson manifold. Hamiltonian systems
cover a wide range of applications, and their mathematical properties have been in-
tensely investigated in recent times. Consequently the Hamiltonian character of the
curved N -body problem adds another argument in favor of the statement that these
equations naturally extend Newtonian gravitation to spaces of constant curvature.

The Hamiltonian function describing the motion of the curved N -body problem
is provided by

H(q,p) = T (q,p)− U(q),

where T is defined in (3.20) and U in (3.18). The Hamiltonian form of the equations
of motion (3.17) is given by the system with constraints

q̇i = ∇̃piH(q,p) = m−1i pi,

ṗi = −∇̃qiH(q,p) = ∇̃qiU(q)−m−1i (pi � pi)qi,

qi � qi = σ, qi � pi = 0, i = 1, 2, . . . , N.

(3.21)

The configuration space is the manifold (M3)N , where, recall, M3 denotes S3

or H3. Then (q,p) ∈ T∗(M3)N , where T∗(M3)N is the cotangent bundle, which
represents the phase space. The constraints qi�qi = σ, qi�pi = 0, i = 1, 2, . . . , N,
keep the bodies on the manifold and show that the position vectors and the momenta
of each body are orthogonal to each other. They reduce the 8N -dimensional system
(3.21) by 2N dimensions. So, before taking into consideration the first integrals
of motion, which we will compute in Section 3.8, the phase space has dimension
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6N , as it should, given the fact that we are studying the motion of N bodies on
3-dimensional manifolds.

3.7 Invariance

In the Euclidean case, planes are invariant sets for the equations of motion. In other
words, if the initial positions and momenta are contained in a plane, the motion takes
place in that plane for all time for which the solution is defined. We can now prove
the natural analogue of this result for the curved N -body problem. More precisely,
we will show that, in S3 and H3, the motion can take place on 2-dimensional great
spheres and 2-dimensional great hyperbolic spheres, respectively, if we assign suitable
initial positions and momenta. This result is also true on 1-dimensional manifolds,
letting aside that such motions may end up in singularities.

Proposition 1. Let N ≥ 2 and consider the bodies of masses m1,m2, . . . ,mN > 0
in M3. Assume that M2 is any 2-dimensional submanifold of M3 having the same
curvature, i.e. a great sphere S2 for S3 or a great hyperbolic sphere H2 for H3. Then,
for any nonsingular initial conditions (q(0),p(0)) ∈ (M2)N × (T (M2))N , where ×
denotes the cartesian product of two sets and T (M2) is the tangent space of M2, the
motion takes place in M2.

Proof. Without loss of generality, it is enough to prove the result for M2
w, where

M2
w := {(w, x, y, z) |x2 + y2 + σz2 = σ, w = 0}

is the great 2-dimensional sphere S2
w, for κ = 1, and the great 2-dimensional hy-

perbolic sphere H2
w, for κ = −1, which we defined in (2.5) and (2.9), respectively.

Indeed, we can obviously restrict to this case since any great sphere or great hyper-
bolic sphere can be reduced to it by a suitable change of coordinates.

Let us denote the coordinates and the momenta of the body mi, i = 1, 2, . . . , N ,
by

qi = (wi, xi, yi, zi) and pi = (ri, si, ui, vi), i = 1, 2, . . . , N,

which, when restricted to M2
w and the tangent space T (M2

w), respectively, become

qi = (0, xi, yi, zi) and pi = (0, si, ui, vi), i = 1, 2, . . . , N.

Relative to the first component, w, the equations of motion (3.21) have the form
ẇi = m−1i ri,

ṙi =
∑N

j=1,j 6=i
mimj [wj−σ(qi�qj)wi]

[σ−σ(qi�qj)2]
3/2 − σm−1i (pi � pi)wi,

qi � qi = σ, qi � pi = 0, i = 1, 2, . . . , N.
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For our purposes, we can view this first-order system of differential equations as
linear in the variables wi, ri, i = 1, 2, . . . , N . But on M2

w, the initial conditions are
wi(0) = ri(0) = 0, i = 1, 2, . . . , N , therefore wi(t) = ri(t) = 0, i = 1, 2, . . . , N , for
all t for which the corresponding solutions are defined. Consequently, given initial
conditions (q(0),p(0)) ∈ (M2

w)N × (T (M2
w))N , the motion is confined to M2

w, a
remark that completes the proof.

3.8 First integrals

In this section we will determine the first integrals of the equations of motion. These
integrals lie at the foundation of the reduction method, which played an important
role in the theory of differential equations ever since mathematicians discovered the
existence of functions that remain constant along solutions. The classical N -body
problem in R3 has 10 first integrals that are algebraic with respect to q and p, known
already to Lagrange in the mid 18th century, [100]. In 1887, Heinrich Bruns proved
that there are no other first integrals, algebraic with respect to q and p, [10].

In our case, the existing integrals follow from Noether’s theorem, according to
which differentiable symmetries generated by local actions correspond to a conserved
flow. But we can also prove the existence of the first integrals of the curved N -body
problem through elementary computations.

The Hamiltonian function provides the integral of energy,

H(q,p) = h, (3.22)

where h is the energy constant. Indeed, �-multiplying system (3.9) by q̇i, we obtain

N∑
i=1

miq̈i � q̇i =
N∑
i=1

[∇̃qiU(q)]� q̇i −
N∑
i=1

σmi(q̇i � q̇i)qi � q̇i =
d

dt
U(q(t)).

Then equation (3.22) follows by integrating the first and last term in the above
equation.

Unlike in the classical Euclidean case, there are no integrals of the center of mass
and the linear momentum (for more details see [30]). This fact is far from surprising,
given that N -body problems obtained by discretizing Einstein’s field equations lack
these integrals as well, [42], [46], [62], [63]. Their absence, however, complicates the
study of the problem since many of the standard methods used in the classical case
don’t apply anymore.

We could, of course, define some artificial center of mass for the particle system,
but this move would be to no avail. In general, forces do not cancel each other
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at such a point, neither do they make it move uniformly along a geodesic, as it
happens in the Euclidean case, so no advantage can be gained from introducing this
concept. Nevertheless, for particular orbits, most of which have many symmetries,
there exist points on the manifold that behave like a center of mass, i.e. where the
forces that act on them cancel each other or make the point move uniformly along a
geodesic. Unlike in the Euclidean case, this point may not be unique, as it happens
for instance in the case of Lagrangian solutions (equilateral triangles) of the curved
3-body problem in S2 (see Chapter 13), when 3 bodies of equal masses rotate along
the equator. Then both the north pole, (0, 0, 1), and the south pole, (0, 0,−1), act
like centers of mass in the sense that, at those points, forces cancel each other on the
surface of the sphere.

As we will further show, equations (3.21) have 6 angular momentum integrals. To
prove their existence, we need to introduce the notion of bivector, which generalizes
the idea of vector. A scalar has dimension 0, a vector has dimension 1, and a bivector
has dimension 2. Bivectors are constructed with the help of the wedge product, a∧b,
defined below, of two vectors a and b. Its magnitude can be intuitively understood
as the oriented area of the parallelogram with edges a and b. A bivector lies in a
vector space different from that of the vectors it is generated from, therefore the
wedge product is an exterior operation. The space of bivectors together with the
wedge product is called a Grassmann algebra.

To make these concepts precise, let

ew = (1, 0, 0, 0), ex = (0, 1, 0, 0), ey = (0, 0, 1, 0), ez = (0, 0, 0, 1)

denote the elements of the canonical basis of R4, and let us consider the vectors
u = (uw, ux, uy, uz) and v = (vw, vx, vy, vz). We define the wedge product (also
called outer product or exterior product) of u and v of R4 as

u ∧ v := (uwvx − uxvw)ew ∧ ex + (uwvy − uyvw)ew ∧ ey+
(uwvz − uzvw)ew ∧ ez + (uxvy − uyvx)ex ∧ ey+ (3.23)
(uxvz − uzvx)ex ∧ ez + (uyvz − uzvy)ey ∧ ez,

where ew ∧ ex, ew ∧ ey, ew ∧ ez, ex ∧ ey, ex ∧ ez, ey ∧ ez represent the bivectors that
form a canonical basis of the exterior Grassmann algebra over R4 (for more details,
see, e.g., [39]). In R3, the exterior product is equivalent with the cross product.

Let us define
∑N

i=1miqi ∧ q̇i to be the total angular momentum of the particles
of masses m1,m2, . . . ,mN > 0 in R4. We will further show that the total angular
momentum is conserved for the equations of motion, i.e.

N∑
i=1

miqi ∧ q̇i = c, (3.24)
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where c = cwxew ∧ ex + cwyew ∧ ey + cwzew ∧ ez + cxyex ∧ ey + cxzex ∧ ez + cyzey ∧ ez,
with the coefficients cwx, cwy, cwz, cxy, cxz, cyz ∈ R. Indeed, relations (3.24) follow by
integrating the identity formed by the first and last term of the equations

N∑
i=1

miq̈i ∧ qi =
N∑
i=1

N∑
j=1,j 6=i

mimjqi ∧ qj
[σ − σ(qi � qj)2]3/2

−
N∑
i=1

[
N∑

j=1,j 6=i

σmimjqi � qj
[σ − σ(qi � qj)2]3/2

− σmi(q̇i � q̇i)

]
qi ∧ qi = 0, (3.25)

obtained after ∧-multiplying the equations of motion (3.17) by qi and summing up
from i = 1 to i = N . The last of the above identities follows from the skew-symmetry
of the ∧ operation and the fact that qi ∧ qi = 0, i = 1, 2, . . . , N , as can be easily
seen from the definition (3.23) of the wedge product.

On components, the 6 integrals in (3.24) can be written as

N∑
i=1

mi(wiẋi − ẇixi) = cwx,
N∑
i=1

mi(wiẏi − ẇiyi) = cwy, (3.26)

N∑
i=1

mi(wiżi − ẇizi) = cwz,
N∑
i=1

mi(xiẏi − ẋiyi) = cxy, (3.27)

N∑
i=1

mi(xiżi − ẋizi) = cxz,
N∑
i=1

mi(yiżi − ẏizi) = cyz. (3.28)

The physical interpretation of these six integrals is related to the geometry of R4. The
coordinate axes Ow,Ox,Oy, and Oz determine six orthogonal planes, wx,wy, wz, xy,
xz, and yz. We call them basis planes, since they correspond to the bivectors ew∧ex,
ew ∧ ey, ew ∧ ez, ex ∧ ey, ex ∧ ez, and ey ∧ ez, respectively, that form a basis of the
Grassmann algebra generated from the basis vectors ew, ex, ey, ez of R4. Then the
constants cwx, cwy, cwz, cxy, cxz, cyz measure the rotation of an orbit relative to a point
in the plane their indices define. This reference point is the same for all 6 basis planes,
namely the origin of the coordinate system.

To clarify this interpretation of rotations in R4, let us point out that, in R3,
rotation is understood as a motion around a pointwise invariant axis orthogonal to a
basis plane, which the rotation leaves globally (but not pointwise) invariant. In R4,
there are infinitely many axes orthogonal to this plane, and the angular momentum
is the same for them all, since each of the 6 equations of the total angular momentum
depends only on the 2 coordinates of the plane and the corresponding velocities. It
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is, therefore, more convenient to think of these rotations in R4 as taking place around
a point in a plane, in spite of the fact that the rotation moves points outside the
plane too.

Whatever sense of rotation a scalar constant of the angular momentum deter-
mines, the opposite sign indicates the opposite sense. A zero scalar constant means
that there is no rotation relative to the origin in that particular plane.

Notice that, after taking into account the integrals of motion described above,
the dimension of the phase space can be reduced to 6n− 7.

3.9 Singularities

Before we begin the study of relative equilibria, it is important to know whether
there are configurations the bodies cannot achieve. It turns out that impossible
configurations exist, and they occur when system (3.17) encounters singularities, i.e.
if at least one denominator in the sum on the right hand sides of system (3.17)
vanishes. So a configuration is singular when

(qi � qj)
2 = 1 for some i, j ∈ {1, 2, . . . , N}, i 6= j,

which is the same as saying that

qi � qj = 1 or qi � qj = −1, for some i, j ∈ {1, 2, . . . , N}, i 6= j.

The following result shows that the former case corresponds to collisions, i.e. to
configurations for which at least two bodies have identical coordinates, whereas the
latter case occurs in S3, but not in H3, and corresponds to antipodal configurations,
i.e. when at least two bodies have coordinates of opposite signs. These are impossible
initial configurations, which we must avoid in the following endeavors.

Proposition 2. (Collision and antipodal configurations) Consider the 3-dimen-
sional curved N-body problem, N ≥ 2, with masses m1,m2, . . . ,mN > 0. Then, in
S3, if there are i, j ∈ {1, 2, . . . , N}, i 6= j, such that qi ·qj = 1, the bodies mi and mj

form a collision configuration, and if qi�qj = −1, they form an antipodal configura-
tion. In H3, if there are i, j ∈ {1, 2, . . . , N}, i 6= j, such that qi�qj = −1, the bodies
mi and mj form a collision configuration, whereas configurations with qi � qj = 1
don’t exist.

Proof. Let us first prove the implication related to collision configurations for positive
curvature. Assume that there exist i, j ∈ {1, 2, . . . , N}, i 6= j, such that qi · qj = 1,
a relationship that can be written as

wiwj + xixj + yiyj + zizj = 1. (3.29)
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But since the bodies are in S3, the coordinates satisfy the conditions

w2
i + x2i + y2i + z2i = w2

j + x2j + y2j + z2j = 1.

Consequently we can write that

(wiwj + xixj + yiyj + zizj)
2 = (w2

i + x2i + y2i + σz2i )(w
2
j + x2j + y2j + z2j ),

which is the equality case of the Cauchy-Schwarz inequality. Therefore there is a
constant τ 6= 0 such that wj = τwi, xj = τxi, yj = τyi, and zj = τzi. Substituting
these values in equation (3.29), we obtain that

τ(wiwj + xixj + yiyj + zizj) = 1. (3.30)

Comparing (3.29) and (3.30), it follows that τ = 1, so wi = wj, xi = xj, yi = yj, and
zi = zj, therefore the bodies mi and mj form a collision configuration.

The proof of the implication related to antipodal configurations for positive cur-
vature is very similar. Instead of relation (3.29), we have

wiwj + xixj + yiyj + zizj = −1.

Then, following the above steps, we obtain that τ = −1, so wi = −wj, xi = −xj, yi =
−yj, and zi = −zj, therefore the bodies mi and mj form an antipodal configuration.

Let us now prove the implication related to collision configurations in the case
of negative curvature. Assume that there exist i, j ∈ {1, 2, . . . , N}, i 6= j, such that
qi � qj = −1, a relationship that can be written as

wiwj + xixj + yiyj − zizj = −1,

which is equivalent to
wiwj + xixj + yiyj + 1 = zizj. (3.31)

But since the bodies are in H3, the coordinates satisfy the conditions

w2
i + x2i + y2i − z2i = w2

j + x2j + y2j − z2j = −1,

which are equivalent to

w2
i + x2i + y2i + 1 = z2i and w2

j + x2j + y2j + 1 = z2j . (3.32)

From (3.31) and (3.32), we can conclude that

(wiwj + xixj + yiyj + 1)2 = (w2
i + x2i + y2i + 1)(w2

j + x2j + y2j + 1),
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which is the same as

(wixj − wjxi)2 + (wiyj − wjyi)2 + (xiyj − xjyi)2+

[(wi − wj)2 + (xi − xj)2 + (yi − yj)2] = 0.

It follows from the above relation that wi = wj, xi = xj, and yi = yj. Then relation
(3.32) implies that z2i = z2j . But since for negative curvature all z coordinates are
positive, we can conclude that zi = zj, so the bodies mi and mj form a collision
configuration.

For negative curvature, we can now prove the non-existence of configurations with
qi � qj = 1 with i, j ∈ {1, 2, . . . , N}, i 6= j. Let us assume that they exist. Then

wiwj + xixj + yiyj = zizj + 1. (3.33)

But we also have that

w2
i + x2i + y2i = z2i − 1 and w2

j + x2j + y2j = z2j − 1. (3.34)

It then follows from the Cauchy-Schwarz inequality that

(wiwj + xixj + yiyj)
2 ≤ (w2

i + x2i + y2i )(w
2
j + x2j + y2j ),

so, by (3.33) and (3.34), we can conclude that

(zizj + 1)2 ≤ (z2i − 1)(z2j − 1),

which is equivalent to
(zi + zj)

2 ≤ 0.

This relationship is satisfied only if zi = −zj, which is impossible because zi, zj > 0,
a contradiction that completes the proof.

It is easy to construct solutions ending in collisions. In S3, we can place, for
instance, 3 bodies of equal masses at the vertices of an Euclidean equilateral triangle,
not lying on the same great circle, and release them with zero initial velocities. The
bodies will end up in a triple collision. (If the bodies lie initially on a geodesic and
have zero initial velocities, they won’t move in time, a situation that corresponds to
a fixed-point solution of the equations of motion, as we will show in Chapter 6.) The
question of whether there exist solutions ending in antipodal or hybrid (collision-
antipodal) singularities is harder, and it was treated in [36]. But since we are not
touching on this subject when dealing with relative equilibria, we will not discuss it
further. All we need to worry about in this monograph is to avoid placing the bodies
at singular initial configurations, i.e. at collisions, for any curvature, or at antipodal
positions for positive curvature.
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3.10 Some physical remarks

The antipodal and the collision-antipodal singularities seem to obstruct the natural
translation of the dynamical properties of the N -body problem from 0 to positive
curvature. To better understand this issue, let us first compare how the force function
and its gradient differ in the Euclidean and in the curved case. For simplicity, we
will restrict to R2, S2 and H2, but all the remarks below can be extended to the
3-dimensional case.

Let’s start with N = 2. The Euclidean force function, U0(q) = m1m2/|q1 − q2|,
is infinite at collision and tends to zero when the distance between bodies tends to
infinity. The norm of the gradient, |∇U0(q)|, has a similar behavior, which agrees
with our perception that the gravitational force decreases when the distance between
bodies increases. But the curved force function,

U(q) =
σm1m2(q1 � q2)

[σ − σ(q1 � q2)2]1/2
,

and the norm of its gradient obtained from (3.11),

|∇̃U(q)| =
[
m2

1m
2
2(q2 � q2)|(q1 � q1)q2 − σ(q1 � q2)q1|2

[σ − σ(q1 � q2)2]3

+
m2

1m
2
2(q1 � q1)|(q1 � q2)q1 − σ(q1 � q2)q2|2

[σ − σ(q1 � q2)2]3

]1/2
,

which stems from a homogeneous function of degree −1, depend on the sign of the
curvature. In H2 the motion behaves qualitatively as in R2. In S2, let’s assume that
one body is fixed at the north pole. Then U ranges from +∞ at collision to −∞
at the antipodal configuration, taking the value 0 when the second body is on the
equator. The norm of the gradient is +∞ at collision, and becomes smaller when
the second body lies farther away from collision in the northern hemisphere; it takes
a positive minimum value on the equator; and becomes larger the farther the second
body is from the north pole while lying in the southern hemisphere; finally, the norm
of the gradient becomes +∞ when the two bodies lie at antipodes.

This behavior of the gradient seems to agree with our understanding of gravitation
only when the second body doesn’t leave the northern hemisphere, but not after it
passes the equator, i.e. only when the arc distance between the two bodies does not
exceed π/2. There is cosmological evidence that, in a hypothetical spherical universe
with billions of objects ejected from a Big-Bang that took place at the north pole,
all the bodies are still close to the origin of the explosion, i.e. far away from the
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equator, [6]. But when the expanding system approaches the equator, many bodies
come close to antipodal singularities, so the potential energy becomes positive, like
the kinetic energy. By the energy integral, the potential energy cannot grow beyond
the value of the energy constant, which, when reached, makes the kinetic energy zero
and stops any motion. (Of course, the larger the initial velocities are, the greater
the energy constant will be, but finite nevertheless, so the moment when the system
stops moving arrives sooner or later.) The motion then reverses from expansion to
contraction, in agreement with the cosmological scenario of general relativity. So in a
highly populated spherical universe, the motion would be contained in the northern
hemisphere, away from the equator, never able to cross into the southern hemisphere.
Obviously, all this happens only if all bodies are initially in the northern hemisphere,
a restriction we don’t have to take into consideration for a general dynamical study
in S2. When the motion takes place in Euclidean or hyperbolic space, the Big-Bang
could lead to a finite, eventually collapsing, or infinite, eternally expanding universe,
depending on the initial velocities taken close to a singularity. These remarks explain
the table presented at the end of the Preface.

3.11 The curved Kepler problem

As mentioned earlier, the Kepler problem describes the motion of a single body
around a fixed point. An important property of the Kepler potential in the Euclidean
case is that of being a harmonic function in R3, i.e. it satisfies Laplace’s equation,

∂2U(x, y, z)

∂x2
+
∂2U(x, y, z)

∂y2
+
∂2U(x, y, z)

∂z2
= 0, (3.35)

where
U : R3 → R, U(x, y, z) =

m

(x2 + y2 + z2)1/2

is the force function (recall that −U is the potential) and (x, y, z) are the coordinates
of the body of mass m, which moves around the origin of the coordinate system.
Indeed,

∂U(x, y, z)

∂x
= − mx

(x2 + y2 + z2)3/2
and

∂2U(x, y, z)

∂x2
= −m(2x2 − y2 − z2)

(x2 + y2 + z2)5/2
,

with the corresponding expressions obtained by circular permutations for ∂2U(x,y,z)
∂y2

and ∂2U(x,y,z)
∂z2

, which show that U satisfies equation (3.35). It is easy to see that this
property is not satisfied if we restrict the Kepler potential to R2.
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Similar things happen in curved space. The Laplace-Beltrami equation for some
function g : M3

κ → R can be written as

∂2f(q)

∂w2
+
∂2f(q)

∂x2
+
∂2f(q)

∂y2
+ σ

∂2f(q)

∂z2
= 0, (3.36)

where q = (w, x, y, z) and f(q) = g(q/
√
σq� q), see, e.g., [57]. In our case, g is

the force function (3.18) when a single body rotates around a fixed point. To derive
the expression of the curved Kepler force function, U , in this particular case, let us
choose N = (0, 0, 0, 1) to play the role of the fixed point, assumed to act as if having
mass 1. This choice of the fixed point does not restrict generality, but will make our
computations easier. Let then q = (w, x, y, z) denote the position vector of the body
of mass m. A straightforward computation shows that U , given by (3.18), becomes

U(q) = U(w, x, y, z) =
mz

(w2 + x2 + y2)1/2
.

By computation, or simply invoking the fact that U is a homogeneous function of
degree 0, we can see that

U(q/
√
σq� q) = U(q),

which means that U can be taken as the function f in equation (3.36). Notice that

∂U(w, x, y, z)

∂w
= − mwz

(x2 + y2 + z2)3/2
,

therefore
∂2U(w, x, y, z)

∂w2
=
m(2w2 − x2 − y2)z
(x2 + y2 + z2)5/2

,

with similar formulas, obtained by circular permutations, for the partial derivatives
∂2U(w,x,y,z)

∂x2
and ∂2U(w,x,y,z)

∂y2
. Using the fact that

∂U(w, x, y, z)

∂z
=

m

(w2 + x2 + y2)1/2
and

∂2U(w, x, y, z)

∂z2
= 0,

we see that the curved Kepler force function, U , satisfies the Laplace-Beltrami equa-
tion (3.36), therefore U is a harmonic function in M3. It is an easy exercise to check
that, as in the Euclidean case, this property is not satisfied if we restrict U to M2.

So both the classical Kepler potential in Euclidean space and its extension to
spaces of constant curvature are harmonic functions in the 3-dimensional, but not in
the 2-dimensional, case. This analogy explains why the extension introduced here for
the Newtonian gravitational law to spaces of constant curvature, originally suggested
by Bolyai and Lobachevsky for hyperbolic space, provides a natural gravitational
model within the framework of classical mechanics.



Part II

Isometries and Relative Equilibria
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Preamble

We will begin now to study the equations of gravitational motion for N point masses
in S3 and H3. The goal of Part II is to define the concept of relative equilibrium for
the curved N -body problem. Since for this kind of orbits the mutual distances remain
constant during the motion, we need first to understand the isometric rotations in
S3 and H3. Then we will define a natural class of relative equilibria for each possible
isometry. At the end we will study a particular type of relative equilibrium, the fixed
point, i.e. explore the possibility that the particles don’t move at all. Such orbits
don’t occur in the classical case, and neither do they show up in H3, but we will
prove that they exist in S3.
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Chapter 4

Isometric rotations

In this chapter we will first introduce the isometries of R4 and R3,1 and connect them
with the corresponding principal axis theorem. Then we aim to understand how these
isometries act in S3 and H3. In fact we will be interested only in the transformations
represented by the matrices A and B, defined in (4.1) and (4.2), respectively. As we
will see in Section 7.6, the negative parabolic rotations represented by the matrix
C, defined in (4.3), generate no relative equilibria in H3, so we don’t need to worry
about their geometric properties for the purposes of the research presented in this
monograph. Our main reason for investigating these geometrical aspects is that of
understanding how some previous research we did on the curved N -body problem in
S2 and H2 can be geometrically connected to S3 and H3, respectively. In other words,
we would like to see whether the above rotations preserve 2-dimensional spheres in
S3 and H3 and 2-dimensional hyperbolic spheres in H3.

4.1 The principal axis theorems

This section introduces the isometric rotations in S3 and H3, since they play an
essential role in defining the relative equilibria of the curved N -body problem, and
connects them to the principal axis theorems of R4 and R3,1. There are many ways
to express these rotations, but their matrix representations will suit our goals best,
as they did in Section 2.1 for the 2-dimensional hyperbolic sphere H2.

For positive curvature, the isometric transformations of S3 are given by the el-
ements of the Lie group SO(4) of R4 that keep S3 invariant. They consist of all
orthogonal transformations of the Lie group O(4) represented by matrices of deter-
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minant 1, and have the form PAP−1, with P ∈ SO(4) and

A =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cosφ − sinφ

0 0 sinφ cosφ

 , (4.1)

where θ, φ ∈ R. We will call these rotations positive elliptic-elliptic if θ 6= 0 and
φ 6= 0, and positive elliptic if θ 6= 0 and φ = 0 (or θ = 0 and φ 6= 0, a possibility
we ignore since it perfectly resembles the previous case). When θ = φ = 0, A is the
identity matrix, so no rotation takes place. The above description is a generalization
to S3 of Euler’s principle axis theorem for S2. As we will next explain, the reference
to a fixed axis is, from the geometric point of view, far from suggestive in R4.

The form of the matrix A given by (4.1) shows that the positive elliptic-elliptic
transformations have two circular rotations, one relative to the origin of the coordi-
nate system in the plane wx and the other relative to the same point in the plane
yz. In this case, the only fixed point in R4 is the origin of the coordinate system.
The positive elliptic transformations have a single rotation around the origin of the
coordinate system that leaves infinitely many axes (in fact, an entire plan) of R4

pointwise fixed.
For negative curvature, the isometric transformations of H3 are given by the

elements of the Lorentz group Lor(3, 1), a Lie group in the Minkowski space R3,1.
Lor(3, 1) is formed by all orthogonal transformations of determinant 1 that keep H3

invariant. The elements of this group are negative elliptic, negative hyperbolic, and
negative elliptic-hyperbolic transformations, on one hand, and negative parabolic
transformations, on the other hand; they can be represented as matrices of the form
PBP−1 and PCP−1, respectively, with P ∈ Lor(3, 1),

B =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cosh s sinh s

0 0 sinh s cosh s

 , (4.2)

C =


1 0 0 0

0 1 −ξ ξ

0 ξ 1− ξ2/2 ξ2/2

0 ξ −ξ2/2 1 + ξ2/2

 , (4.3)

where θ, s, ξ are some fixed values in R. The negative elliptic, negative hyperbolic,
and negative elliptic-hyperbolic transformations correspond to θ 6= 0 and s = 0, to
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θ = 0 and s 6= 0, and to θ 6= 0 and s 6= 0, respectively. The above description is
a generalization to H3 of the principle axis theorem for H2, which we presented in
Section 2.1. Again, as in the case of the group SO(4), the reference to a fixed axis
has no real geometric meaning in R3,1.

Indeed, from the geometric point of view, the negative elliptic transformations of
R3,1 are similar to their counterpart, positive elliptic transformations, in R4, namely
they have a single circular rotation around the origin of the coordinate system that
leaves infinitely many axes of R3,1 pointwise invariant. The negative hyperbolic
transformations correspond to a single hyperbolic rotation around the origin of the
coordinate system that also leaves infinitely many axes of R3,1 pointwise invariant.
The negative elliptic-hyperbolic transformations have two rotations, a circular one
about the origin of the coordinate system, relative to the wx plane, and a hyperbolic
one about the origin of the coordinate system, relative to the yz plane. The only
point they leave fixed is the origin of the coordinate system. Finally, parabolic
transformations correspond to parabolic rotations about the origin of the coordinate
system that leave only the w axis pointwise fixed.

4.2 Invariance of 2-spheres

Let us start with the positive elliptic-elliptic rotations in S3 and consider first great
spheres, which can be obtained, for instance, by the intersection of S3 with the
hyperplane z = 0. We thus obtain the 2-dimensional great sphere

S2
z = {(w, x, y, 0)|w2 + x2 + y2 = 1}, (4.4)

already defined in (2.5). Let (w, x, y, 0) be a point on S2
z. Then the positive elliptic-

elliptic transformation (4.1) takes (w, x, y, 0) to the point (w1, x1, y1, z1) given by
w1

x1
y1
z1

 =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cosφ − sinφ

0 0 sinφ cosφ




w

x

y

0

 = (4.5)


w cos θ − x sin θ

w sin θ + x cos θ

y cosφ

y sinφ

 .
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Since, in general, y is not zero, it follows that z1 = y sinφ = 0 only if φ = 0, a
case that corresponds to positive elliptic transformations. For a positive elliptic-
elliptic transformation, (w1, x1, y1, z1) does not lie on S2

z because this point is not in
the hyperplane z = 0. Without loss of generality, we can always find a coordinate
system in which the considered sphere is S2

z. We can therefore draw the following
conclusion.

Remark 2. For every great sphere of S3, there is a suitable system of coordinates
such that positive elliptic rotations leave the great sphere invariant. However, there
is no system of coordinates for which we can find a positive elliptic-elliptic rotation
that leaves a great sphere invariant.

Let us now see what happens with non-great spheres of S3. Such spheres can be
obtained, for instance, by intersecting S3 with a hyperplane z = z0, where |z0| < 1
and z0 6= 0. These 2-dimensional spheres are of the form

S2
κ0,z0

= {(w, x, y, z)|w2 + x2 + y2 = 1− z20 , z = z0}, (4.6)

where κ0 = (1− z20)−1/2 is the curvature.

Let (w, x, y, z0) be a point on a non-great sphere S2
κ0,z0

, given by some z0 as above.
Then the positive elliptic-elliptic transformation (4.1) takes the point (w, x, y, z0) to
the point (w2, x2, y2, z2) given by

w2

x2
y2
z2

 =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cosφ − sinφ

0 0 sinφ cosφ




w

x

y

z0

 = (4.7)


w cos θ − x sin θ

w sin θ + x cos θ

y cosφ− z0 sinφ

y sinφ+ z0 cosφ

 .

Since, in general, y is not zero, it follows that z2 = y sinφ + z0 cosφ = z0 only if
φ = 0, a case that corresponds to positive elliptic transformations. In the case of a
positive elliptic-elliptic transformation, the point (w2, x2, y2, z2) does not lie on S2

κ0,z0

because this point is not in the hyperplane z = z0. Without loss of generality, we can
always reduce the question we posed above to the sphere S2

κ0,z0
. We can therefore

draw the following conclusion, which resembles Remark 2.
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Remark 3. For every non-great sphere of S3, there is a suitable system of coordinates
such that positive elliptic rotations leave that non-great sphere invariant. However,
there is no system of coordinates for which there exists a positive elliptic-elliptic
rotation that leaves a non-great sphere invariant.

Since in H3 we have z > 0, 2-dimensional spheres cannot be centered around the
origin of the coordinate system. We therefore look for 2-dimensional spheres centered
on the z axis, with z > 1, because z = 1 is the smallest possible z coordinate in H3,
attained only by the point (0, 0, 0, 1). Such spheres can be obtained by intersecting
H3 with a plane z = z0, where z0 > 1, and they are given by

S2,h
κ0,z0

= {(w, x, y, z)|w2 + x2 + y2 = z20 − 1, z = z0}, (4.8)

where h indicates that the spheres lie in a 3-dimensional hyperbolic space, and κ0 =
(z20 − 1)−1/2 > 0 is the curvature of the sphere.

Let (w, x, y, z0) be a point on the sphere S2,h
κ0,z0

. Then the negative elliptic trans-
formation B, given by (4.2) with s = 0, takes the point (w, x, y, z0) to the point
(w3, x3, y3, z3) given by

w3

x3
y3
z3

 =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1




w

x

y

z0

 =


w cos θ − x sin θ

w sin θ + x cos θ

y

z0

 , (4.9)

which also lies on the sphere S2,h
κ0,z0

. Indeed, since z3 = z0 and w2
3 + x23 + y23 = z20 − 1,

it means that (w3, x3, y3, z3) also lies on the sphere S2,h
κ0,z0

.
Since for any 2-dimensional sphere of H3 we can find a coordinate system and

suitable values for κ0 and z0 such that the sphere has the form S2,h
κ0,z0

, we can draw
the following conclusion.

Remark 4. For every 2-dimensional sphere of H3, there is a system of coordinates
such that negative elliptic rotations leave the sphere invariant.

Let us further see what happens with negative hyperbolic transformations in H3.
Let (w, x, y, z0) be a point on the sphere S2,h

κ0,z0
. Then the negative hyperbolic trans-

formation B, given by (4.2) with θ = 0, takes the point (w, x, y, z0) to (w4, x4, y4, z4)
given by 

w4

x4
y4
z4

 =


1 0 0 0

0 1 0 0

0 0 cosh s sinh s

0 0 sinh s cosh s




w

x

y

z0

 = (4.10)
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
w

x

y cosh s+ z0 sinh s

y sinh s+ z0 cosh s

 ,

which does not lie on S2,h
κ0,z0

. Indeed, since z3 = y sinh s + z0 cosh s = z0 only for
s = 0, a case we exclude because the above transformation is the identity, the point
(w4, x4, y4, z4) does not lie on a sphere of radius

√
z20 − 1. Therefore we can draw

the following conclusion.

Remark 5. Given a 2-dimensional sphere of curvature κ0 = (z0 − 1)−1/2, with
z0 > 1, in H3

κ, there is no coordinate system for which some negative hyperbolic
transformation would leave the sphere invariant. Consequently the same holds for
negative elliptic-hyperbolic transformations.

We will further see how the problem of invariance relates to 2-dimensional hy-
perbolic spheres in H3.

4.3 Invariance of hyperbolic 2-spheres

Let us first check whether negative elliptic rotations preserve the great 2-dimensional
hyperbolic spheres of H3. For this consider the 2-dimensional hyperbolic sphere

H2
y = {(w, x, 0, z) | w2 + x2 − z2 = −1}, (4.11)

already defined in (2.9), and obtained by intersecting H3 with the hyperplane y = 0.
Let (w, x, 0, z) be a point on H2

y. Then a negative elliptic rotation takes the point
(w, x, 0, z) to the point (w5, x5, y5, z5) given by

w5

x5
y5
z5

 =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1




w

x

0

z

 = (4.12)


w cos θ − x sin θ

w sin θ + x cos θ

0

z

 ,

which, obviously, also belongs to H2
y. Since for any 2-dimensional hyperbolic sphere

of curvature κ we can find a coordinate system such that the hyperbolic sphere can
be represented as H2

y, we can draw the following conclusion.
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Remark 6. Given a great 2-dimensional hyperboloid in H3, there is a coordinate
system for which the hyperbolic sphere is invariant to negative elliptic rotations.

Let us further check what happens in the case of negative hyperbolic rotations.
Consider the great 2-dimensional hyperbolic sphere given by

H2
w = {(0, x, y, z) | x2 + y2 − z2 = −1}, (4.13)

already defined in (2.9), and obtained by intersecting H3 with the hyperplane w = 0.
Let (0, x, y, z) be a point on H2

w. Then a negative hyperbolic rotation takes the point
(0, x, y, z) to the point (w6, x6, y6, z6) given by

w6

x6
y6
z6

 =


1 0 0 0

0 1 0 0

0 0 cosh s sinh s

0 0 sinh s cosh s




0

x

y

z

 = (4.14)


0

x

y cosh s+ z sinh s

y sinh s+ z sinh s

 ,

which, obviously, also belongs to H2
w. Since for any great 2-dimensional hyperbolic

sphere we can find a coordinate system such that the hyperbolic sphere can be
represented as H2

w, we can draw the following conclusions.

Remark 7. Given a great 2-dimensional hyperbolic sphere in H3, there is a coor-
dinate system for which the hyperbolic sphere is invariant to negative hyperbolic
rotations.

Remark 8. The coordinate system in Remark 6 is different from the coordinate
system in Remark 7, so negative elliptic-hyperbolic transformation don’t leave great
2-dimensional hyperbolic spheres invariant in H3.

The next step is to see whether negative elliptic rotations preserve the 2-dimensio-
nal hyperbolic spheres of curvature κ0 = −(y20 + 1)−1/2 of H3. For this consider the
2-dimensional hyperbolic sphere

H2
κ0,y0

= {(w, x, y, z) | w2 + x2 − z2 = −1− y20, y = y0}, (4.15)
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obtained by intersecting H3 with the hyperplane y = y0, with y0 6= 0. Let (w, x, y0, z)
be a point on H2

y. Then a negative elliptic rotation takes the point (w, x, y0, z) to
the point (w7, x7, y7, z7) given by

w7

x7
y7
z7

 =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1




w

x

y0
z

 =


w cos θ − x sin θ

w sin θ + x cos θ

y0
z

 , (4.16)

which, obviously, also belongs to H2
κ0,y0

. Since for any 2-dimensional hyperbolic
sphere of curvature κ0 we can find a coordinate system such that the hyperbolic
sphere can be represented as H2

κ0,y0
, we can draw the following conclusion.

Remark 9. Given a 2-dimensional hyperbolic sphere of curvature κ0 = −(y20+1)−1/2

in H3, there is a coordinate system for which the hyperbolic sphere is invariant to
negative elliptic rotations.

Consider finally the 2-dimensional hyperbolic sphere of curvature κ0 = −(w2
0 +

1)−1/2 given by

H2
κ0,w0

= {(w, x, y, z) | x2 + y2 − z2 = −1− w2
0, w = w0}, (4.17)

obtained by intersecting H3 with the hyperplane w = w0 6= 0. Let the point
(w0, x, y, z) belong to H2

κ0,w0
. Then a negative hyperbolic rotation takes the point

(w0, x, y, z) to the point (w8, x8, y8, z8) given by
w8

x8
y8
z8

 =


1 0 0 0

0 1 0 0

0 0 cosh s sinh s

0 0 sinh s cosh s




w0

x

y

z

 = (4.18)


w0

x

y cosh s+ z sinh s

y sinh s+ z sinh s

 ,

which, obviously, also belongs to H2
κ0,w0

. Since for any 2-dimensional hyperbolic

sphere of curvature κ0 = −(w2
0 + 1)−1/2 we can find a coordinate system such that

the hyperbolic sphere can be represented as H2
κ0,w0

, we can draw the following con-
clusions.
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Remark 10. Given a 2-dimensional hyperbolic sphere of curvature κ0 = −(w2
0 +

1)−1/2 in H3, there is a coordinate system for which the hyperbolic sphere is invariant
to negative hyperbolic rotations.

Remark 11. Since the coordinate system in Remark 9 is different from the coordi-
nate system in Remark 10, negative elliptic-hyperbolic transformations don’t leave
2-dimensional hyperbolic spheres of curvature κ0 6= −1 invariant in H3.
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Chapter 5

Relative equilibria (RE)

The goal of this chapter is to introduce the concepts we will explore in the rest of this
monograph, namely the relative equilibrium solutions, also called relative equilibrium
orbits or, simply, relative equilibria (from now on denoted by RE, whether in the
singular or the plural form of the noun) of the curved N -body problem. For RE,
the particle system behaves like a rigid body, i.e. all the mutual distances between
the point masses remain constant during the motion. In other words, the bodies
move under the action of an element belonging to a rotation group, so, in the light
of Chapter 4, we can define six types of RE in M3: two in S3 and four in H3. In each
case, we will bring the expressions involved in these natural definitions to simpler
forms. In Section 7.6 we will see that one of the four types of RE we define in H3

does not translate into solutions of the equations of motion.

5.1 Positive elliptic RE

The first kind of RE we will introduce are inspired by the positive elliptic rotations
of S3.

Definition 6. (Positive elliptic RE) Let q0 = (q0
1,q

0
2, . . . ,q

0
N) be a nonsingular

initial position of the point particles of masses m1,m2, . . . ,mN > 0, N ≥ 2, on the
manifold S3, where q0

i = (w0
i , x

0
i , y

0
i , z

0
i ), i = 1, 2, . . . , N . Then a solution of the form

q = (A[q0
1]
T ,A[q0

2]
T , . . . ,A[q0

N ]T ) of system (3.17), with

A(t) =


cosαt − sinαt 0 0

sinαt cosαt 0 0

0 0 1 0

0 0 0 1

 , (5.1)



60 Relative equilibria (RE)

where the upper T denotes the transpose of a vector and α 6= 0 represents the fre-
quency, is called a (simply rotating) positive elliptic RE.

Remark 12. In A, the elements involving trigonometric functions could be in the
lower right corner instead of the upper left corner of the matrix, but the behavior of
the bodies would be similar, so we will always use the above form of the matrix.

If ri =:
√

(w0
i )

2 + (x0i )
2, we can find constants ai ∈ R, i = 1, 2, . . . , N , such that

w0
i = ri cos ai, x

0
i = ri sin ai, i = 1, 2, . . . , N . Then

A(t)[q0
i ]
T =


w0
i cosαt− x0i sinαt

w0
i sinαt+ x0i cosαt

y0i
z0i

 =


ri cos ai cosαt− ri sin ai sinαt
ri cos ai sinαt+ ri sin ai cosαt

y0i
z0i

 =


ri cos(αt+ ai)

ri sin(αt+ ai)

y0i
z0i

 ,

i = 1, 2, . . . , N.

5.2 Positive elliptic-elliptic RE

The second kind of RE we will introduce here are inspired by the positive elliptic-
elliptic rotations of S3.

Definition 7. (Positive elliptic-elliptic RE) Let q0 = (q0
1,q

0
2, . . . ,q

0
N) be a non-

singular initial position of the bodies of masses m1,m2, . . . ,mN > 0, N ≥ 2, on the
manifold S3, where q0

i = (w0
i , x

0
i , y

0
i , z

0
i ), i = 1, 2, . . . , N . Then a solution of the form

q = (B[q0
1]
T ,B[q0

2]
T , . . . ,B[q0

N ]T ) of system (3.17), with

B(t) =


cosαt − sinαt 0 0

sinαt cosαt 0 0

0 0 cos βt − sin βt

0 0 sin βt cos βt

 , (5.2)

where α, β 6= 0 are the frequencies, is called a (doubly rotating) positive elliptic-
elliptic RE.
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If ri =:
√

(w0
i )

2 + (x0i )
2, ρi :=

√
(y0i )

2 + (z0i )
2, we can find constants ai, bi ∈

R, i = 1, 2, . . . , N , such that w0
i = ri cos ai, x

0
i = ri sin ai, y

0
i = ρi cos bi, and

z0i = ρi sin bi, i = 1, 2, . . . , N . Then

B(t)[q0
i ]
T =


w0
i cosαt− x0i sinαt

w0
i sinαt+ x0i cosαt

y0i cos βt− z0i sin βt

y0i sin βt+ z0i cos βt

 =


ri cos ai cosαt− ri sin ai sinαt
ri cos ai sinαt+ ri sin ai cosαt

ρi cos bi cos βt− ρi sin bi sin βt
ρi cos bi sin βt+ ρi sin bi cos βt

 =


ri cos(αt+ ai)

ri sin(αt+ ai)

ρi cos(βt+ bi)

ρi sin(βt+ bi)

 ,

i = 1, 2, . . . , N.

5.3 Negative elliptic RE

The third kind of RE we will introduce here are inspired by the negative elliptic
rotations of H3.

Definition 8. (Negative elliptic RE) Let q0 = (q0
1,q

0
2, . . . ,q

0
N) be a nonsingular

initial position of the point particles of masses m1,m2, . . . ,mN > 0, N ≥ 2, in H3,
where q0

i = (w0
i , x

0
i , y

0
i , z

0
i ), i = 1, 2, . . . , N . Then a solution of system (3.17) of the

form q = (C[q0
1]
T , C[q0

2]
T , . . . , C[q0

N ]T ), with

C(t) =


cosαt − sinαt 0 0

sinαt cosαt 0 0

0 0 1 0

0 0 0 1

 , (5.3)

where α 6= 0 is the frequency, is called a (simply rotating) negative elliptic RE.

If ri =:
√

(w0
i )

2 + (x0i )
2, we can find ai ∈ R, i = 1, 2, . . . , N, such that w0

i =
ri cos ai, x

0
i = ri sin ai, i = 1, 2, . . . , N , so

C(t)[q0
i ]
T =


w0
i cosαt− x0i sinαt

w0
i sinαt+ x0i cosαt

y0i
z0i

 = (5.4)
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
ri cos ai cosαt− ri sin ai sinαt
ri cos ai sinαt+ ri sin ai cosαt

y0i
z0i

 =


ri cos(αt+ ai)

ri sin(αt+ ai)

y0i
z0i

 ,

i = 1, 2, . . . , N.

5.4 Negative hyperbolic RE

The fourth kind of RE we will introduce here are inspired by the negative hyperbolic
rotations of H3.

Definition 9. (Negative hyperbolic RE) Let q0 = (q0
1,q

0
2, . . . ,q

0
N) be a non-

singular initial position of the bodies of masses m1,m2, . . . ,mN > 0, N ≥ 2, in H3,
where the initial positions are q0

i = (w0
i , x

0
i , y

0
i , z

0
i ), i = 1, 2, . . . , N . Then a solution

of system (3.17) of the form q = (D[q0
1]
T ,D[q0

2]
T , . . . ,D[q0

N ]T ), with

D(t) =


1 0 0 0

1 0 0 0

0 0 cosh βt sinh βt

0 0 sinh βt cosh βt

 , (5.5)

where β 6= 0 denotes the frequency, is called a (simply rotating) negative hyperbolic
RE.

If ηi :=
√

(z0i )
2 − (y0i )

2, we can find constants bi ∈ R, i = 1, 2, . . . , N , such that
y0i = ηi sinh bi and z0i = ηi cosh bi, i = 1, 2, . . . , N . Then

D(t)[q0
i ]
T =


w0
i

x0i
y0i cosh bt+ z0i sinh bt

y0i sinh bt+ z0i cosh bt

 =


w0
i

x0i
ηi sinh bi cosh bt+ ηi cosh bi sinh bt

ηi sinh bi sinh bt+ ηi cosh bi cosh bt

 =


w0
i

x0i
ηi sinh(bt+ bi)

ηi cosh(bt+ bi)

 ,

i = 1, 2, . . . , N.
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5.5 Negative elliptic-hyperbolic RE

The fifth kind of RE we will introduce here are inspired by the negative elliptic-
hyperbolic rotations of H3.

Definition 10. (Negative elliptic-hyperbolic RE) Let q0 = (q0
1,q

0
2, . . . ,q

0
N)

be a nonsingular initial position of the point particles of masses m1,m2, . . . ,mN >
0, N ≥ 2, in H3, where q0

i = (w0
i , x

0
i , y

0
i , z

0
i ), i = 1, 2, . . . , N . Then a solution of

system (3.17) of the form q = (E [q0
1]
T , E [q0

2]
T , . . . , E [q0

N ]T ), with

E(t) =


cosαt − sinαt 0 0

sinαt cosαt 0 0

0 0 cosh βt sinh βt

0 0 sinh βt cosh βt

 , (5.6)

where α, β 6= 0 denote the frequencies, is called a (doubly rotating) negative elliptic-
hyperbolic RE.

If ri :=
√

(w0
i )

2 + (x0i )
2, ηi :=

√
(z0i )

2 − (y0i )
2, we can find constants ai, bi ∈

R, i = 1, 2, . . . , N , such that w0
i = ri cos ai, x

0
i = ri sin ai, y

0
i = ηi sinh bi, and

z0i = ηi cosh bi, i = 1, 2, . . . , N . Then

E(t)[q0
i ]
T =


w0
i cosαt− x0i sinαt

w0
i sinαt+ x0i cosαt

y0i cosh βt+ z0i sinh βt

y0i sinh βt+ z0i cosh βt

 =


ri cos ai cosαt− ri sin ai sinαt
ri cos ai sinαt+ ri sin ai cosαt

ηi sinh βi cosh βt+ ηi cosh βi sinh βt

ηi sinh βi sinh βt+ ηi cosh βi cosh βt

 =


ri cos(αt+ ai)

ri sin(αt+ ai)

ηi sinh(βt+ bi)

ηi cosh(βt+ bi)

 ,

i = 1, 2, . . . , N.

5.6 Negative parabolic RE

The sixth class of RE we will introduce here are inspired by the negative parabolic
rotations of H3.
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Definition 11. (Negative parabolic RE) Consider a nonsingular initial position
q0 = (q0

1,q
0
2, . . . ,q

0
N) of the point particles of masses m1,m2, . . . ,mN > 0, N ≥ 2,

on the manifold H3, where q0
i = (w0

i , x
0
i , y

0
i , z

0
i ), i = 1, 2, . . . , N . Then a solution of

system (3.17) of the form q = (F [q0
1]
T ,F [q0

2]
T , . . . ,F [q0

N ]T ), with

F(t) =


1 0 0 0

0 1 −t t

0 t 1− t2/2 t2/2

0 t −t2/2 1 + t2/2

 , (5.7)

is called a (simply rotating) negative parabolic RE.

For simplicity, we denote αi := w0
i , βi := x0i , γi := y0i , δi := z0i , i = 1, 2, . . . , N .

Then parabolic RE take the form

F(t)[q0
i ]
T =


w0
i

x0i − y0i t+ z0i t

x0i t+ y0i (1− t2/2) + z0i t
2/2

x0i t− y0i t2/2 + z0i (1 + t2/2)



=


αi

βi + (δi − γi)t
γi + βit+ (δi − γi)t2/2
δi + βit+ (δi − γi)t2/2,

 , i = 1, 2, . . . , N.

5.7 Formal expressions of the RE

To summarize the previous findings, we can represent the above 6 types of RE of the
3-dimensional curved N -body problem in the form

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

[positive elliptic] :


wi(t) = ri cos(αt+ ai)

xi(t) = ri sin(αt+ ai)

yi(t) = yi (constant)

zi(t) = zi (constant),

(5.8)
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with w2
i + x2i = r2i , r

2
i + y2i + z2i = 1, i = 1, 2, . . . , N ;

[positive elliptic−elliptic] :


wi(t) = ri cos(αt+ ai)

xi(t) = ri sin(αt+ ai)

yi(t) = ρi cos(βt+ bi)

zi(t) = ρi sin(βt+ bi),

(5.9)

with w2
i + x2i = r2i , y

2
i + z2i = ρ2i , so r2i + ρ2i = 1, i = 1, 2, . . . , N ;

[negative elliptic] :


wi(t) = ri cos(αt+ ai)

xi(t) = ri sin(αt+ ai)

yi(t) = yi (constant)

zi(t) = zi (constant),

(5.10)

with w2
i + x2i = r2i , r

2
i + y2i − z2i = −1, i = 1, 2, . . . , N ;

[negative hyperbolic] :


wi(t) = wi (constant)

xi(t) = xi (constant)

yi(t) = ηi sinh(βt+ bi)

zi(t) = ηi cosh(βt+ bi),

(5.11)

with y2i − z2i = −η2i , w2
i + x2i − η2i = −1, i = 1, 2, . . . , N ;

[negative elliptic−hyperbolic] :


wi(t) = ri cos(αt+ ai)

xi(t) = ri sin(αt+ ai)

yi(t) = ηi sinh(βt+ bi)

zi(t) = ηi cosh(βt+ bi),

(5.12)

with w2
i + x2i = r2i , y

2
i − z2i = −η2i , so r2i − η2i = −1, i = 1, 2, . . . , N ;

[negative parabolic] :


wi(t) = αi (constant)

xi(t) = βi + (δi − γi)t
yi(t) = γi + βit+ (δi − γi)t2/2
zi(t) = δi + βit+ (δi − γi)t2/2,

(5.13)

with α2
i + β2

i + γ2i − δ2i = −1, i = 1, 2, . . . , N .
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Chapter 6

Fixed Points (FP)

In this chapter we will introduce the concept of fixed-point solution, also simply called
fixed point (from now on denoted by FP, whether in the singular or the plural form
of the noun) of the equations of motion, show that FP exist in S3, provide a couple
of examples, and finally prove that they don’t show up in H3 and in hemispheres of
S3, provided that at least one body is not on the boundary of the hemisphere.

6.1 FP in S3

Although the goal of this monograph is to study RE of the curved N -body prob-
lem, some of these orbits can be generated from FP configurations by imposing on
the initial positions of the bodies suitable nonzero initial velocities. It is therefore
necessary to discuss FP as well. Let us start with their definition.

Definition 12. A solution of system (3.21) is called a fixed point if it is a zero of

the vector field, i.e. pi(t) = ∇̃qiU(q(t)) = 0 for all t ∈ R, i = 1, 2, . . . , N .

In [33] and [35], we showed that FP exist in S2, but don’t exist in H2. Examples
of FP are the equilateral triangle, and in general any regular N -gon of equal masses,
N odd, lying on any great circle of S2, and the regular tetrahedron of equal masses
inscribed in S2 in the 4-body case. There are also examples of FP of unequal masses.
We showed in [28] that, for any acute triangle inscribed in a great circle of the
sphere S2, there exist masses m1,m2,m3 > 0 that can be placed at the vertices of
the triangle such that they form a FP, and therefore can generate RE in the curved
3-body problem. The problem of the existence of N -gons with unequal masses is
open, though very likely to be true, for N > 3.
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6.2 Two examples

We can construct FP of S3 for which none of its great spheres contains them. A
first simple example occurs in the 6-body problem if we take 6 bodies of equal
positive masses, place 3 of them at the vertices of an equilateral triangle inscribed
in a great circle of a great sphere, and place the other 3 bodies at the vertices of
an equilateral triangle inscribed in a complementary great circle (see Definition 3)
of another great sphere. Some straightforward computations show that 6 bodies of
masses m1 = m2 = m3 = m4 = m5 = m6 =: m > 0, with zero initial velocities and
initial conditions given, for instance, by

w1 = 1, x1 = 0, y1 = 0, z1 = 0,

w2 = −1

2
, x2 =

√
3

2
, y2 = 0, z2 = 0,

w3 = −1

2
, x3 = −

√
3

2
, y3 = 0, z3 = 0,

w4 = 0, x4 = 0, y4 = 1, z4 = 0,

w5 = 0, x5 = 0, y5 = −1

2
, z5 =

√
3

2
,

w6 = 0, x6 = 0, y6 = −1

2
, z6 = −

√
3

2
,

form a FP.

The second example is inspired from the theory of regular polytopes, [18], [19].
The simplest regular polytope in R4 is the pentatope (also called 5-cell, 4-simplex,
pentachrone, pentahedroid, or hyperpyramid). The pentatope has Schläfli symbol
{3, 3, 3}, which translates into: 3 regular polyhedra that have 3 regular polygons
of 3 edges at every vertex (i.e. 3 regular tetrahedra) are attached to each of the
pentatope’s edges. (From the left to the right, the numbers in the Schläfli symbol
are in the order we described them.)

A different way to understand the pentatope is to think of it as the generalization
to R4 of the equilateral triangle of R2 or of the regular tetrahedron of R3. Then the
pentatope can be constructed by adding to the regular tetrahedron a fifth vertex in
R4 that connects the other four vertices with edges of the same length as those of
the tetrahedron. Consequently the pentatope can be inscribed in the sphere S3, in
which it has no antipodal vertices, so there is no danger of encountering singular
configurations for the FP we want to construct. Specifically, the coordinates of the
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5 vertices of a pentatope inscribed in the sphere S3 can be taken, for example, as

w1 = 1, x1 = 0, y1 = 0, z1 = 0,

w2 = −1

4
, x2 =

√
15

4
, y2 = 0, z2 = 0,

w3 = −1

4
, x3 = −

√
5

4
√

3
, y3 =

√
5√
6
, z3 = 0,

w4 = −1

4
, x4 = −

√
5

4
√

3
, y4 = −

√
5

2
√

6
, z4 =

√
5

2
√

2
,

w5 = −1

4
, x5 = −

√
5

4
√

3
, y5 = −

√
5

2
√

6
, z5 = −

√
5

2
√

2
.

Straightforward computations show that the distance from the origin of the coordi-
nate system to each of the 5 vertices is 1 and that, for equal masses, m1 = m2 =
m3 = m4 = m5 =: m > 0, this configuration produces a FP of system (3.15). Like
in the previous example, the FP lying at the vertices of the pentatope is specific to
S3 in the sense that there is no 2-dimensional sphere that contains it.

It is natural to ask whether other convex regular polytopes of R4 can form FPs
in S3 if we place equal masses at their vertices. Apart from the pentatope, there are
five other such geometrical objects: the tesseract (also called 8-cell, hypercube, or
4-cube, with 16 vertices), the orthoplex (also called 16-cell or hyperoctahedron, with
8 vertices), the octaplex (also called 24-cell or polyoctahedron, with 24 vertices), the
dodecaplex (also called 120-cell, hyperdodecahedron, or polydodecahedron, with 600
vertices), and the tetraplex (also called 600-cell, hypericosahedron, or polytetrahe-
dron, with 120 vertices). All these polytopes, however, are centrally symmetric, so
they have antipodal vertices. Therefore, if we place bodies of equal masses at their
vertices, we encounter singularities. Consequently the only convex regular polytope
of R4 that can form a FP if we place equal masses at its vertices is the pentatope.

6.3 Cases of nonexistence

We will show further that there are no FP in H3 or in any hemisphere of S3. In the
latter case, for FP not to exist it is necessary that at least one body is not on the
boundary of the hemisphere.

Proposition 3. (No FP in H3) There are no masses m1,m2, . . . ,mN > 0, N ≥ 2,
that can form FP in H3.
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Proof. Consider N bodies of masses m1,m2, . . . ,mN > 0, N ≥ 2, lying in H3, in
a nonsingular configuration (i.e. without collisions) and with zero initial velocities.
Then one or more bodies, say, m1,m2, . . . ,mk with k ≤ N , have the largest z co-
ordinate. Consequently each of the bodies mk+1, . . . ,mN will attract each of the
bodies m1,m2, . . . ,mk along a geodesic hyperbola towards lowering the z coordinate
of the latter. For any 2 bodies with the same largest z coordinate, the segment of
hyperbola connecting them has points with lower z coordinates. Therefore these 2
bodies attract each other towards lowering their z coordinates as well. So each of
the bodies m1,m2, . . . ,mk will move towards lowering their z coordinate, therefore
the initial configuration of the bodies is not fixed.

Proposition 4. (No FP in hemispheres of S3) There are no masses m1,m2, . . . ,
mN > 0, N ≥ 2, that can form FP in any closed hemisphere of S3 (i.e. a hemisphere
that contains its boundary), as long as at least one body doesn’t lie on the boundary.

Proof. The idea of the proof is similar to the idea of the proof we gave for Proposition
3. Let us assume, without loss of generality, that the bodies are in the hemisphere
z ≤ 0 and they form a nonsingular initial configuration (i.e. without collisions or
antipodal positions), with at least one of the bodies not on the boundary z = 0, and
with zero initial velocities. Then one or more bodies, say, m1,m2, . . . ,mk, with k < N
(a strict inequality is essential to the proof), have the largest z coordinate, which
can be at most 0. Consequently the bodies mk+1, . . . ,mN have lower z coordinates.
Each of the bodies mk+1, . . . ,mN attract each of the bodies m1,m2, . . . ,mk along a
geodesic arc of a great circle towards lowering the z coordinate of the latter.

The attraction between any 2 bodies among m1,m2, . . . ,mk is either towards
lowering each other’s z coordinate, when z < 0 or along the geodesic z = 0, when
they are on that geodesic. In both cases, however, composing all the forces that
act on each of the bodies m1,m2, . . . ,mk will make them move towards a lower z
coordinate, which means that the initial configuration is not fixed. This remark
completes the proof.
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Criteria and Qualitative Behavior
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Preamble

Now that we found natural definitions for the RE of the curved N -body problem, we
must understand under what circumstances they may exist. So the goal of Part III
is to provide existence criteria for each type of RE previously defined and to obtain
some results that describe their qualitative behavior. For this purpose, we will also
review some aspects of geometric topology related to S3 and H3, building on certain
properties proved in Part I. Our results are exhaustive in the sense that no other
type of dynamical behavior can occur for these orbits, but we don’t deal here with
proving their actual existence, an issue we will address in Part IV.
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Chapter 7

Existence criteria

In this chapter we establish criteria for the existence of positive elliptic and elliptic-
elliptic as well as negative elliptic, hyperbolic, and elliptic-hyperbolic RE. These
criteria will be employed in later chapters to obtain concrete examples of such orbits.
The proofs are similar in spirit, but for completeness and future reference we describe
them all since the specifics differ in each case. We close this chapter by showing that
negative parabolic RE do not exist in the curved N -body problem.

7.1 Criteria for RE

We will next provide a criterion for the existence of (simply rotating) positive elliptic
RE and then prove a corollary that shows under what conditions such solutions can
be generated from FP configurations.

Criterion 1. (Positive elliptic RE) Let m1,m2, . . . ,mN > 0 represent the masses
of N ≥ 2 point particles moving in S3. Then system (3.15) admits a solution of the
form

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = ri cos(αt+ ai), xi(t) = ri sin(αt+ ai), yi(t) = yi, zi(t) = zi,

with w2
i + x2i = r2i , r

2
i + y2i + z2i = 1, and yi, zi constant, i = 1, 2, . . . , N , i.e. a (sim-

ply rotating) positive elliptic RE, if and only if there are constants ri, ai, yi, zi, i =
1, 2, . . . , N, and α 6= 0, such that the following 4N conditions are satisfied:

N∑
j=1

j 6=i

mj(rj cos aj − νijri cos ai)

(1− ν2ij)3/2
= (r2i − 1)α2ri cos ai, (7.1)
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N∑
j=1

j 6=i

mj(rj sin aj − νijri sin ai)
(1− ν2ij)3/2

= (r2i − 1)α2ri sin ai, (7.2)

N∑
j=1

j 6=i

mj(yj − νijyi)
(1− ν2ij)3/2

= α2r2i yi, (7.3)

N∑
j=1

j 6=i

mj(zj − νijzi)
(1− ν2ij)3/2

= α2r2i zi, (7.4)

i = 1, 2, . . . , N, where νij = rirj cos(ai − aj) + yiyj + zizj, i, j = 1, 2 . . . , N, i 6= j.

Proof. Consider a candidate, as described above, for a solution q of system (3.15).
Some straightforward computations show that

νij := qi � qj = rirj cos(ai − aj) + yiyj + zizj, i, j = 1, 2 . . . , n, i 6= j,

q̇i � q̇i = α2r2i , i = 1, 2, . . . , N,

ẅi = −α2ri cos(αt+ ai), ẍi = −α2ri sin(αt+ ai),

ÿi = z̈i = 0, i = 1, 2, . . . , N.

Substituting the suggested solution and the above expressions into system (3.15),
for the w coordinates we obtain conditions involving cos(αt + ai), whereas for the
x coordinates we obtain conditions involving sin(αt + ai). In the former case, using
the fact that cos(αt+ ai) = cosαt cos ai − sinαt sin ai, we can split each equation in
two, one involving cosαt and the other sinαt as factors. The same thing happens
in the latter case if we use the formula sin(αt + ai) = sinαt cos ai + cosαt sin ai.
Each of these equations are satisfied if and only if conditions (7.1) and (7.2) take
place. Conditions (7.3) and (7.4) follow directly from the equations involving the
coordinates y and z. This remark completes the proof.

Criterion 2. (Positive elliptic RE generated from FP configurations) Con-
sider the point particles of masses m1,m2, . . . ,mN > 0, N ≥ 2, in S3. Then, for any
α 6= 0, system (3.15) admits a solution of the form (5.8):

q = (q1,q2, . . . ,qn),qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = ri cos(αt+ ai), xi(t) = ri sin(αt+ ai), yi(t) = yi, zi(t) = zi,
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with w2
i +x2i = r2i , r

2
i +y2i +z2i = 1, and yi, zi constant, i = 1, 2, . . . , N , generated from

a FP configuration, i.e. a (simply rotating) positive elliptic RE generated from the
same initial positions that would form a FP for zero initial velocities, if and only if
there are constants ri, ai, yi, zi, i = 1, 2, . . . , N, such that the following 4N conditions
are satisfied:

N∑
j=1

j 6=i

mj(rj cos aj − νijri cos ai)

(1− ν2ij)3/2
= 0, (7.5)

N∑
j=1

j 6=i

mj(rj sin aj − νijri sin ai)
(1− ν2ij)3/2

= 0, (7.6)

N∑
j=1

j 6=i

mj(yj − νijyi)
(1− ν2ij)3/2

= 0, (7.7)

N∑
j=1

j 6=i

mj(zj − νijzi)
(1− ν2ij)3/2

= 0, (7.8)

i = 1, 2, . . . , N , where νij = rirj cos(ai − aj) + yiyj + zizj, i, j = 1, 2, . . . , N, i 6= j,
and one of the following two properties takes place:

(i) ri = 1 for all i ∈ {1, 2 . . . , N},
(ii) there is a proper subset I ⊂ {1, 2, . . . , N} such that ri = 0 for all i ∈ I and

rj = 1 for all j ∈ {1, 2, . . . , N} \ I.

Proof. We are seeking a (simply rotating) elliptic RE, as in Criterion 1, that is valid
for any α 6= 0. But the solution is also generated from a FP configuration, so the left
hand sides of equations (7.1), (7.2), (7.3), and (7.4) necessarily vanish, thus leading
to conditions (7.5), (7.6), (7.7), and (7.8). However, the right hand sides of equations
(7.1), (7.2), (7.3), and (7.4) must also vanish, so we have the 4N conditions:

(r2i − 1)α2ri cos ai = 0, i = 1, 2, . . . , N,

(r2i − 1)α2ri sin ai = 0, i = 1, 2, . . . , N,

α2r2i yi = 0, i = 1, 2, . . . , N,

α2r2i zi = 0, i = 1, 2, . . . , N.

Since α 6= 0 and there is no γ ∈ R such that the quantities sin γ and cos γ vanish
simultaneously, the above 4N conditions are satisfied in each of the following cases:
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(a) ri = 0 (consequently wi = xi = 0 and y2i + z2i = 1) for all i ∈ {1, 2, . . . , N},
(b) ri = 1 (consequently w2

i + x2i = 1 and yi = zi = 0) for all i ∈ {1, 2 . . . , N},
(c) there is a proper subset I ⊂ {1, 2, . . . , N} such that ri = 0 (and consequently

y2i + z2i = 1) for all i ∈ I and rj = 1 (and consequently yj = zj = 0) for all
j ∈ {1, 2, . . . , N} \ I.

In case (a), we recover the FP, so there is no rotation of any kind, therefore
this case does not lead to any simply rotating positive elliptic RE. As we will see
in Theorem 2, case (b), which corresponds to (i) in the above statement, and case
(c), which corresponds to (ii), lead to RE of this kind. This remark completes the
proof.

7.2 Criteria for positive elliptic-elliptic RE

We can now provide a criterion for the existence of (doubly rotating) positive elliptic-
elliptic RE and a criterion about how such orbits can be obtained from FP configu-
rations.

Criterion 3. (Positive elliptic-elliptic RE) Let m1,m2, . . . ,mN > 0 represent
the masses of N ≥ 2 point particles moving in S3. Then system (3.15) admits a
solution of the form (5.9):

q = (q1,q2, . . . ,qn),qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = ri cos(αt+ ai), xi(t) = ri sin(αt+ ai),

yi(t) = ρi cos(βt+ bi), zi(t) = ρi sin(βt+ bi),

with w2
i + x2i = r2i , y

2
i + z2i = ρ2i , r

2
i + ρ2i = 1, i = 1, 2, . . . , N , i.e. a (doubly

rotating) positive elliptic-elliptic RE, if and only if there are constants ri, ρi, ai, bi, i =
1, 2, . . . , N , and α, β 6= 0, such that the following 4N conditions are satisfied

N∑
j=1

j 6=i

mj(rj cos aj − ωijri cos ai)

(1− ω2
ij)

3/2
= (α2r2i + β2ρ2i − α2)ri cos ai, (7.9)

N∑
j=1

j 6=i

mj(rj sin aj − ωijri sin ai)
(1− ω2

ij)
3/2

= (α2r2i + β2ρ2i − α2)ri sin ai, (7.10)
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N∑
j=1

j 6=i

mj(ρj cos bj − ωijρi cos bi)

(1− ω2
ij)

3/2
= (α2r2i + β2ρ2i − β2)ρi cos bi, (7.11)

N∑
j=1

j 6=i

mj(ρj sin bj − ωijρi sin bi)
(1− ω2

ij)
3/2

= (α2r2i + β2ρ2i − β2)ρi sin bi, (7.12)

i = 1, 2, . . . , N , where ωij = rirj cos(ai−aj)+ρiρj cos(bi−bj), i, j = 1, 2, . . . , N, i 6= j.

Proof. Consider a candidate q as above for a solution of system (3.15). Some straight-
forward computations show that

ωij := qi � qj = rirj cos(ai − aj) + ρiρj cos(bi − bj), i, j = 1, 2 . . . , N, i 6= j,

q̇i � q̇i = α2r2i + β2ρ2i , i = 1, 2, . . . , N,

ẅi = −α2ri cos(αt+ ai), ẍi = −α2ri sin(αt+ ai),

ÿi = −β2ρi cos(βt+ bi), z̈i = −β2ρi sin(βt+ bi), i = 1, 2, . . . , N.

Substituting q and the above expressions into system (3.15), for the w coordinates
we obtain conditions involving cos(αt+ ai), whereas for the x coordinates we obtain
conditions involving sin(αt+ai). In the former case, using the fact that cos(αt+ai) =
cosαt cos ai−sinαt sin ai, we can split each equation in two, one involving cosαt and
the other sinαt as factors. The same thing happens in the latter case if we use the
formula sin(αt+ai) = sinαt cos ai+cosαt sin ai. Each of these equations are satisfied
if and only if conditions (7.9) and (7.10) take place.

For the y coordinate, the substitution of the above solution leads to conditions
involving cos(βt+bi), whereas for z coordinate it leads to conditions involving sin(βt+
bi). Then we proceed as we did for the w and x coordinates and obtain conditions
(7.11) and (7.12). This remark completes the proof.

Criterion 4. (Positive elliptic-elliptic RE generated from FP configura-
tions) Consider the point particles of masses m1,m2, . . . , mN > 0, N ≥ 2, moving
in S3. Then, for any α, β 6= 0, system (3.15) admits a solution of the form (5.9):

q = (q1,q2, . . . ,qn),qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = ri cos(αt+ ai), xi(t) = ri sin(αt+ ai),

yi(t) = ρi cos(βt+ bi), zi(t) = ρi sin(βt+ bi),
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with w2
i + x2i = r2i , y

2
i + z2i = ρ2i , r

2
i + ρ2i = 1, i = 1, 2, . . . , N , generated from a FP

configuration, i.e. a (doubly rotating) positive elliptic-elliptic RE generated from the
same initial positions that would form a FP for zero initial velocities, if and only if
there are constants ri, ρi, ai, bi, i = 1, 2, . . . , N , such that the 4N relationships below
are satisfied:

N∑
j=1

j 6=i

mj(rj cos aj − ωijri cos ai)

(1− ω2
ij)

3/2
= 0, (7.13)

N∑
j=1

j 6=i

mj(rj sin aj − ωijri sin ai)
(1− ω2

ij)
3/2

= 0, (7.14)

N∑
j=1

j 6=i

mj(ρj cos bj − ωijρi cos bi)

(1− ω2
ij)

3/2
= 0, (7.15)

N∑
j=1

j 6=i

mj(ρj sin bj − ωijρi sin bi)
(1− ω2

ij)
3/2

= 0, (7.16)

i = 1, 2, . . . , N , where ωij = rirj cos(ai−aj)+ρiρj cos(bi− bj), i, j = 1, 2, . . . , N, i 6=
j, and, additionally, one of the following properties takes place:

(i) there is a proper subset J ⊂ {1, 2, . . . , N} such that ri = 0 for all i ∈ J and
ρj = 0 for all j ∈ {1, 2, . . . , N} \ J ,

(ii) the frequencies α, β 6= 0 satisfy the condition |α| = |β|.

Proof. A FP configuration requires that the left hand sides of equations (7.9), (7.10),
(7.11), and (7.12) vanish, so we obtain the conditions (7.13), (7.14), (7.15), and
(7.16). A RE can be generated from a FP configuration if and only if the right hand
sides of (7.9), (7.10), (7.11), and (7.12) vanish as well, i.e.

(α2r2i + β2ρ2i − α2)ri cos ai = 0,

(α2r2i + β2ρ2i − α2)ri sin ai = 0,

(α2r2i + β2ρ2i − β2)ρi cos bi = 0,

(α2r2i + β2ρ2i − β2)ρi sin bi = 0,

where r2i + ρ2i = 1, i = 1, 2, . . . , N . Since there is no γ ∈ R such that sin γ and
cos γ vanish simultaneously, the above expressions are zero in each of the following
circumstances:
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(a) ri = 0, and consequently ρi = 1, for all i ∈ {1, 2, . . . , N};
(b) ρi = 0, and consequently ri = 1, for all i ∈ {1, 2, . . . , N};
(c) there is a proper subset J ⊂ {1, 2, . . . , N} such that ri = 0 (consequently

ρi = 1) for all i ∈ J and ρj = 0 (consequently rj = 1) for all j ∈ {1, 2, . . . , N} \ J ;

(d) α2r2i + β2ρ2i − α2 = α2r2i + β2ρ2i − β2 = 0, i ∈ {1, 2, . . . , N}.
Cases (a) and (b) correspond to (simply rotating) positive elliptic RE, thus recov-

ering condition (i) in Criterion 2. Case (c) corresponds to (i) in the above statement.
Since, from Definition 6, it follows that α, β 6= 0, the identities in case (d) can obvi-
ously take place only if α2 = β2, i.e. |α| = |β| 6= 0, so (d) corresponds to condition
(ii) in the above statement. This remark completes the proof.

7.3 Criterion for negative elliptic RE

We further consider the motion of point masses in H3 and start with proving a
criterion for the existence of simply rotating negative elliptic RE.

Criterion 5. (Negative elliptic RE) Consider the point particles of masses m1,m2,
. . . ,mN > 0, N ≥ 2, moving in H3. Then system (3.16) admits solutions of the form
(5.10):

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = ri cos(αt+ ai), xi(t) = ri sin(αt+ ai), yi(t) = yi, zi(t) = zi,

with w2
i +x2i = r2i , r

2
i +y2i −z2i = −1, and yi, zi constant, i = 1, 2, . . . , N , i.e. (simply

rotating) negative elliptic RE, if and only if there are constants ri, ai, yi, zi, i =
1, 2, . . . , N , and α 6= 0, such that the following 4N conditions are satisfied:

N∑
j=1

j 6=i

mj(rj cos aj + εijri cos ai)

(ε2ij − 1)3/2
= −(r2i + 1)α2ri cos ai, (7.17)

N∑
j=1

j 6=i

mj(rj sin aj + εijri sin ai)

(ε2ij − 1)3/2
= −(r2i + 1)α2ri sin ai, (7.18)

N∑
j=1

j 6=i

mj(yj + εijyi)

(ε2ij − 1)3/2
= −α2r2i yi, (7.19)
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N∑
j=1

j 6=i

mj(zj + εijzi)

(ε2ij − 1)3/2
= −α2r2i zi, (7.20)

i = 1, 2, . . . , N , where εij = rirj cos(ai − aj) + yiyj − zizj, i, j = 1, 2, . . . , N, i 6= j.

Proof. Consider a candidate q as above for a solution of system (3.16). Some straight-
forward computations show that

εij := qi � qj = rirj cos(ai − aj) + yiyj − zizj, i, j = 1, 2 . . . , N, i 6= j,

q̇i � q̇i = α2r2i , i = 1, 2, . . . , N,

ẅi = −α2ri cos(αt+ ai), ẍi = −α2ri sin(αt+ ai),

ÿi = z̈i = 0, i = 1, 2, . . . , N.

Substituting q and the above expressions into the equations of motion (3.16), for
the w coordinates we obtain conditions involving cos(αt + ai), whereas for the x
coordinates we obtain conditions involving sin(αt + ai). In the former case, using
the fact that cos(αt+ ai) = cosαt cos ai − sinαt sin ai, we can split each equation in
two, one involving cosαt and the other sinαt as factors. The same thing happens
in the latter case if we use the formula sin(αt + ai) = sinαt cos ai + cosαt sin ai.
Each of these equations are satisfied if and only if conditions (7.17) and (7.18) take
place. Conditions (7.19) and (7.20) follow directly from the equations involving the
coordinates y and z. This remark completes the proof.

7.4 Criterion for negative hyperbolic RE

We continue our study of the hyperbolic space with proving a criterion that shows
under what conditions (simply rotating) negative hyperbolic RE exist.

Criterion 6. (Negative hyperbolic RE) Consider the point particles of masses
m1,m2, . . . ,mN > 0, N ≥ 2, moving in H3. Then system (3.16) admits solutions of
the form (5.11):

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = wi (constant), xi(t) = xi (constant),

yi(t) = ηi sinh(βt+ bi), zi(t) = ηi cosh(βt+ bi),
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with y2i − z2i = −η2i , w2
i + x2i − η2i = −1, i = 1, 2, . . . , N , i.e. (simply rotating)

negative hyperbolic RE, if and only if there are constants ηi, wi, xi, i = 1, 2, . . . , N ,
and β 6= 0, such that the following 4N conditions are satisfied:

N∑
j=1

j 6=i

mj(wj + µijwi)

(µ2
ij − 1)3/2

= −β2η2iwi, (7.21)

N∑
j=1

j 6=i

mj(xj + µijxi)

(µ2
ij − 1)3/2

= −β2η2i xi, (7.22)

N∑
j=1

j 6=i

mj(ηj sinh bj + µijηi sinh bi)

(µ2
ij − 1)3/2

= (1− η2i )β2ηi sinh bi, (7.23)

N∑
j=1

j 6=i

mj(ηj cosh bj + µijηi cosh bi)

(µ2
ij − 1)3/2

= (1− η2i )β2ηi cosh bi, (7.24)

i = 1, 2, . . . , N , where µij = wiwj +xixj− ηiηj cosh(bi− bj), i, j = 1, 2, . . . , N, i 6= j.

Proof. Consider a candidate q as above for a solution of system (3.16). Some straight-
forward computations show that

µij := qi � qj = wiwj + xixj − ηiηj cosh(bi − bj), i, j = 1, 2, . . . , N, i 6= j,

q̇i � q̇i = β2η2i , i = 1, 2, . . . , N,

ẅi = ẍi = 0,

ÿi = β2ηi sinh(βt+ bi), z̈i = β2ηi cosh(βi+ bi), i = 1, 2, . . . , N.

Substituting q and the above expressions into the equations of motion (3.16), we are
led for the w and x coordinates to the equations (7.21) and (7.22), respectively. For
the y and z coordinates we obtain conditions involving sinh(βt+bi) and cosh(βt+bi),
respectively. In the former case, using the fact that sinh(βt+ bi) = sinh βt cosh bi +
cosh βt sinh bi, we can split each equation in two, one involving sinh βt and the other
cosh βt as factors. The same thing happens in the later case if we use the formula
cosh(βt+ bi) = cosh βt cosh bi + sinh βt sinh bi. Each of these conditions are satisfied
if and only of conditions (7.23) and (7.24) take place. This remark completes the
proof.
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7.5 Criterion for negative elliptic-hyperbolic RE

We end our study of existence criteria for RE in hyperbolic space with a result that
shows under what conditions (doubly rotating) negative elliptic-hyperbolic RE exist.

Criterion 7. (Negative elliptic-hyperbolic RE) Consider the point particles of
masses m1,m2, . . . ,mN > 0, N ≥ 2, moving in H3. Then system (3.16) admits
solutions of the form (5.12):

q = (q1,q2, . . . ,qn),qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = ri cos(αt+ ai), xi(t) = ri sin(αt+ ai),

yi(t) = ηi sinh(βt+ bi), zi(t) = ηi cosh(βt+ bi),

with w2
i + x2i = r2i , y

2
i − z2i = −η2i , r2i − η2i = −1, i.e. (doubly rotating) negative

elliptic-hyperbolic RE, if and only if there are constants ri, ηi, ai, bi, i = 1, 2 . . . , N ,
and α, β 6= 0, such that the following 4N conditions are satisfied:

N∑
j=1

j 6=i

mj(rj cos aj + γijri cos ai)

(γ2ij − 1)3/2
= −(α2r2i + β2η2i + α2)ri cos ai, (7.25)

N∑
j=1

j 6=i

mj(rj sin aj + γijri sin ai)

(γ2ij − 1)3/2
= −(α2r2i + β2η2i + α2)ri sin ai, (7.26)

N∑
j=1

j 6=i

mj(ηj sinh bj + γijηi sinh bi)

(γ2ij − 1)3/2
= (β2 − α2r2i − β2η2i )ηi sinh bi, (7.27)

N∑
j=1

j 6=i

mj(ηj cosh bj + γijηi cosh bi)

(γ2ij − 1)3/2
= (β2 − α2r2i − β2η2i )ηi cosh bi, (7.28)

i = 1, 2, . . . , N , where γij = rirj cos(ai−aj)−ηiηj cosh(bi−bj), i, j = 1, 2, . . . , N, i 6= j.

Proof. Consider a candidate q as above for a solution of system (3.16). Some straight-
forward computations show that

γij := qi � qj = rirj cos(ai − aj)− ηiηj cosh(bi − bj), i, j = 1, 2, . . . , N, i 6= j,
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q̇i � q̇i = α2r2i + β2η2i , i = 1, 2, . . . , N,

ẅi = −α2ri cos(αt+ ai), ẍi = −α2ri sin(αt+ ai),

ÿi = β2ηi sinh(βt+ bi), z̈i = β2ηi cosh(βi+ bi), i = 1, 2, . . . , N.

Substituting these expression and those that define q into the equations of motion
(3.16), we obtain for the w and x coordinates conditions involving cos(αt + ai) and
sin(αt + ai), respectively. In the former case, using the fact that cos(αt + ai) =
cosαt cos ai − sinαt sin ai, we can split each equation in two, one involving cosαt
and the other sinαt as factors. The same thing happens in the latter case if we use
the formula sin(αt + ai) = sinαt cos ai + cosαt sin ai. Each of these equations are
satisfied if and only if conditions (7.25) and (7.26) take place.

For the y and z coordinates we obtain conditions involving sinh(βt + bi) and
cosh(βt + bi), respectively. In the former case, using the fact that sinh(βt + bi) =
sinh βt cosh bi+cosh βt sinh bi, we can split each equation in two, one involving sinh βt
and the other cosh βt as factors. The same thing happens in the latter case if we use
the formula cosh(βt+ bi) = cosh βt cosh bi + sinh βt sinh bi. Each of these conditions
are satisfied if and only of conditions (7.27) and (7.28) take place. These remarks
complete the proof.

7.6 Nonexistence of negative parabolic RE

As in the curved N -body problem restricted to H2, negative parabolic RE do not
exist in H3. The idea of the proof exploits the fact that a RE of parabolic type would
violate the conservation law of the angular momentum. Here are a formal statement
and a proof of this result.

Proposition 5. (Nonexistence of negative parabolic RE) Consider the point
particles of masses m1,m2, . . . ,mN > 0, N ≥ 2, in H3. Then system (3.16) does not
admit solutions of the form (5.13), which means that negative parabolic RE do not
exist in the 3-dimensional curved N-body problem.

Proof. Checking a solution of the form (5.13) into the last integral of (3.28), we
obtain that

cyz =
N∑
i=1

mi(yiżi − ẏizi) =
N∑
i=1

mi

[
γi + βit+ (δi − γi)

t2

2

]
[βi + (δi − γi)t]

−
N∑
i=1

mi

[
δi + βit+ (δi − γi)

t2

2

]
[βi + (δi − γi)t]
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=
N∑
i=1

miβi(γi − δi)−
N∑
i=1

mi(γi − δi)2t, i = 1, 2, . . . , N.

Since cyz is constant, it follows that γi = δi, i = 1, 2, . . . , N . But from (5.13) we
obtain that α2

i + β2
i = −1, a contradiction which proves that negative parabolic RE

cannot exist. This remark completes the proof.



Chapter 8

Qualitative behavior

In this chapter we will describe some qualitative dynamical properties for the posi-
tive elliptic, positive elliptic-elliptic, negative elliptic, negative hyperbolic, and neg-
ative elliptic-hyperbolic RE, under the assumption that they exist. (Examples of
such solutions will be given in Part IV for various values of N and of the masses
m1,m2, . . . ,mN > 0.) For this purpose we will also provide some geometric-topologic
considerations about S3 and H3.

8.1 Some geometric topology in S3

Consider the circle of radius r in the wx plane of R4 and the circle of radius ρ in the
yz plane of R4, with r2 + ρ2 = 1. Then T2

rρ is the cartesian product of these two
circles, i.e. a 2-dimensional surface of genus 1, called a Clifford torus. Since these
two circles are submanifolds embedded in R2, T2

rρ is embedded in R4. But T2
rρ also

belongs to the sphere S3. Indeed, we can represent this torus as

T2
rρ = {(w, x, y, z) | r2 + ρ2 = 1, 0 ≤ θ, φ < 2π}, (8.1)

where w = r cos θ, x = r sin θ, y = ρ cosφ, and z = ρ sinφ, so the distance from the
origin of the coordinate system to any point of the Clifford torus is

(r2 cos2 θ + r2 sin2 θ + ρ2 cos2 φ+ ρ2 sin2 φ)1/2 = (r2 + ρ2)1/2 = 1.

When r (and, consequently, ρ) takes all the values between 0 and 1, the family of
Clifford tori such defined foliates S3 (see Figure 8.1). Each Clifford torus splits S3

into two solid tori and forms the boundary between them. The two solid tori are
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congruent when r = ρ = 1/
√

2. For the sphere S3, this is the standard Heegaard
splitting1 of genus 1.

Figure 8.1: A 3-dimensional projection of a 4-dimensional foliation of the sphere S3 into
Clifford tori.

Unlike regular tori embedded in R3, Clifford tori have zero Gaussian curvature
at every point. Their flatness is due to the existence of an additional dimension in
R4. Indeed, cylinders, obtained by pasting two opposite sides of a square, are flat
surfaces both in R3 and R4. But to form a torus by pasting the other two sides of the
square, cylinders must be stretched and squeezed in R3. In R4, the extra dimension
allows pasting without stretching or squeezing.

8.2 RE in S3

The above considerations lead us to state and prove the following result, under the
assumption that positive elliptic and positive elliptic-elliptic RE exist in S3.

Theorem 1. (Qualitative behavior of the RE in S3) Assume that, in the curved
N-body problem in S3, N ≥ 2, with bodies of masses m1,m2, . . . ,mN > 0, positive
elliptic and positive elliptic-elliptic RE exist. Then the corresponding solution q may
have one of the following dynamical behaviors:

(i) If q is given by (5.8), the orbit is a (simply rotating) positive elliptic RE, with
the body of mass mi moving on a (not necessarily geodesic) circle Ci, i = 1, 2, . . . , N,
of a 2-dimensional sphere in S3; in the hyperplanes wxy and wxz, the circles Ci are
parallel with the plane wx. In particular, some bodies can rotate on a great circle of

1A Heegaard splitting, named after the Danish mathematician Poul Heegaard (1871-1943), is a
decomposition of a compact, connected, oriented 3-dimensional manifold along its boundary into
two manifolds having the same genus g, with g = 0, 1, 2, . . .



8.2 RE in S3 89

a great sphere, while the other bodies stay fixed on a complementary great circle of
another great sphere.

(ii) If q is given by (5.9), the orbit is a (doubly rotating) positive elliptic-elliptic
RE, with each body mi moving on the Clifford torus T2

riρi
, i = 1, 2, . . . , N . In partic-

ular, some bodies can rotate on a great circle of a great sphere, while the other bodies
rotate on a complementary great circle of another great sphere.

Proof. (i) The bodies move on circles Ci, i = 1, 2, . . . , N , because, by (5.8), the
analytic expression of the orbit is given by

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = ri cos(αt+ ai), xi(t) = ri sin(αt+ ai), yi(t) = yi, zi(t) = zi,

with w2
i + x2i = r2i , r

2
i + y2i + z2i = 1, and yi, zi constant, i = 1, 2, . . . , N . This proves

the first part of (i), except for the statements about parallelism.
In particular, if some bodies are on the circle

S1
wx = {(0, 0, y, z) | y2 + z2 = 1},

with yi(t) = yi = constant and zi(t) = zi = constant, then the elliptic rotation,
which changes the coordinates w and x, does not act on the bodies, therefore they
don’t move. This remark proves the second part of statement (i).

To prove the parallelism statement from the first part of (i), let us first remark
that, as the concept of two parallel lines makes sense only if the lines are contained
in the same plane, the concept of two parallel planes has meaning only if the planes
are contained in the same 3-dimensional space. This explains our formulation of the
statement. Towards proving it, notice first that

cwx =
N∑
i=1

mi(wiẋi − ẇixi) = α
N∑
i=1

mir
2
i

and

cyz =
N∑
i=1

mi(yiżi − ẏizi) = 0.

These constants are independent of the bodies’ position, a fact that confirms that
they result from first integrals. To determine the values of the constants cwy, cwz, cxy,
and cxz, we first compute that

cwy =
N∑
i=1

mi(wiẏi − ẇiyi) = α
N∑
i=1

miriyi sin(αt+ ai),
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cwz =
N∑
i=1

mi(wiżi − ẇizi) = α

N∑
i=1

mirizi sin(αt+ ai),

cxy =
N∑
i=1

mi(xiẏi − ẋiyi) = α

N∑
i=1

miriyi cos(αt+ ai),

cxz =
N∑
i=1

mi(xiżi − ẋizi) = α

N∑
i=1

mirizi cos(αt+ ai).

Since they are constant, the first integrals must take the same value for the arguments
t = 0 and t = π/α. But at t = 0, we obtain

cwy = α
N∑
i=1

miriyi sin ai, cwz = α
N∑
i=1

mirizi sin ai,

cxy = α
N∑
i=1

miriyi cos ai, cxz = α
N∑
i=1

mirizi cos ai,

whereas at t = π/α, we obtain

cwy = −α
N∑
i=1

miriyi sin ai, cwz = −α
N∑
i=1

mirizi sin ai,

cxy = −α
N∑
i=1

miriyi cos ai, cxz = −α
N∑
i=1

mirizi cos ai.

Consequently, cwy = cwz = cxy = cxz = 0. Since, as we already showed, cyz = 0, it
follows that the only nonzero constant of the total angular momentum is cwx. This
means that the particle system has nonzero total rotation with respect to the origin
only in the wx plane.

To prove that the circles Ci, i = 1, 2, . . . , N, are parallel with the plane wx in
the hyperplanes wxy and wxz, assume that one circle, say C1, does not satisfy this
property. Then some orthogonal projection of C1 (within either of the hyperplanes
wxy and wxz) in at least one of the other base planes, say xy, is an ellipse, not a
segment—as it would be otherwise. Then the angular momentum of the body of
mass m1 relative to the plane xy is nonzero. Should other circles have an elliptic
projection in the plane xy, the angular momentum of the corresponding bodies would
be nonzero as well. Moreover, all angular momenta would have the same sign because
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all bodies move in the same direction on the original circles. Consequently cxy 6= 0,
in contradiction with our previous findings. Therefore the circles Ci, i = 1, 2, . . . , N ,
must be parallel, as stated.

(ii) When a positive elliptic-elliptic (double) rotation acts on a system, if some
bodies are on a great circle of a great sphere of S3, while other are on a complementary
great circle of another great sphere, then the former bodies move only because of
one rotation, while the latter bodies move only because of the other rotation. The
special geometric properties of complementary circles leads to this kind of qualitative
behavior.

To prove the general qualitative behavior, namely that the body of mass mi of the
(doubly rotating) positive elliptic-elliptic RE moves on the Clifford torus T2

riρi
, i =

1, 2, . . . , N , of which the situation described above is a notable particular case, it
is enough to compare the form of the orbit given in (5.9) with the characterization
(8.1) of a Clifford torus. This remark completes the proof.

8.3 RE generated from FP configurations

We will further outline the dynamical consequences of Criterion 2 and Criterion 4,
under the assumption that positive elliptic and positive elliptic-elliptic RE, both
generated from FP configurations, exist in S3. This theorem deals with a subclass of
the orbits whose qualitative behavior we have just described.

Theorem 2. (Qualitative behavior of the RE generated from FP configu-
rations in S3) Consider the bodies of masses m1,m2, . . . ,mN > 0, N ≥ 2, moving in
S3. Then a RE q generated from a FP configuration may have one of the following
characteristics:

(i) q is a (simply rotating) positive elliptic RE for which all bodies rotate on the
same great circle of a great sphere of S3;

(ii) q is a (simply rotating) positive elliptic RE for which some bodies rotate on
a great circle of a great sphere, while the other bodies are fixed on a complementary
great circle of a different great sphere;

(iii) q is a (doubly rotating) positive elliptic-elliptic RE for which some bodies
rotate with frequency α 6= 0 on a great circle of a great sphere, while the other bodies
rotate with frequency β 6= 0 on a complementary great circle of a different sphere;
the frequencies may be different in size, i.e. |α| 6= |β|;

(iv) q is a (doubly rotating) positive elliptic-elliptic RE that does not rotate on
complementary circles, a case in which the frequencies α, β 6= 0 are equal in size, i.e.
|α| = |β|.
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Proof. (i) From conclusion (i) of Criterion 2, a (simply rotating) positive elliptic RE
of the form

q = (q1,q2, . . . ,qn),qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi = ri cos(αt+ ai), xi(t) = ri sin(αt+ ai), yi(t) = yi, zi(t) = zi,

with w2
i + x2i = r2i , r

2
i + y2i + z2i = 1 and yi, zi constant, i = 1, 2, . . . , N , generated

from a FP configuration, must satisfy one of two additional conditions (besides the
initial 4N equations), the first of which translates into

ri = 1, i = 1, 2, . . . , N.

This property implies that yi = zi = 0, i = 1, 2, . . . , N , so all bodies rotate along the
same great circle of radius 1, namely S1

yz, thus proving the statement in this case.
(ii) From conclusion (ii) of Criterion 2, there is a proper subset I ⊂ {1, 2, . . . , N}

such that ri = 0 for all i ∈ I and rj = 1 for all j ∈ {1, 2, . . . , N} \ I.
The bodies for which ri = 0 must have wi = xi = 0 and y2i + z2i = 1, so they are

fixed on the great circle S1
wx, since yi and zi are constant, i ∈ I, and no rotation acts

on the coordinates w and x.
As in the proof of (i) above, it follows that the bodies with rj = 1, j ∈

{1, 2, . . . , N}\I rotate on the circle S1
yz, which is complementary to S1

wx, so statement
(ii) is also proved.

(iii) From conclusion (i) of Criterion 4, a (doubly rotating) positive elliptic-elliptic
RE of the form

q = (q1,q2, . . . ,qn),qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = ri cos(αt+ ai), xi(t) = ri sin(αt+ ai),

yi(t) = ρi cos(βt+ bi), zi(t) = ρi sin(βt+ bi),

with w2
i + x2i = r2i , y

2
i + z2i = ρ2i , r

2
i + ρ2i = 1, i = 1, 2, . . . , N , generated from a FP

configuration, must satisfy one of two additional conditions (besides the initial 4N
equations), the first of which says that there is a proper subset J ⊂ {1, 2, . . . , N}
such that ri = 0 for all i ∈ J and ρj = 0 for all j ∈ {1, 2, . . . , N}\J . But this means
that the bodies mi with i ∈ J have wi = xi = 0 and y2i + z2i = ρ2i , so one rotation
acts along the great circle S1

wx, while the bodies with mi, i ∈ {1, 2, . . . , N}\J satisfy
the conditions w2

i + x2i = r2i and yi = zi = 0, so the other rotation acts on them
along the great circle S1

yz, which is complementary to S1
wx. Moreover, since the
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bodies are distributed on two complementary circles, there are no constraints on the
frequencies α, β 6= 0, which can be independent of each other, a remark that proves
the statement.

(iv) From statement (d) in the proof of Criterion 4, a (doubly rotating) positive
elliptic-elliptic RE may exist also when the bodies are not necessarily on complemen-
tary circles but the frequencies satisfy the condition |α| = |β|, a case that concludes
the last statement of this result.

8.4 Some geometric topology in H3

Usually, compact higher-dimensional manifolds have a richer geometry than noncom-
pact manifolds of the same dimension. This fact is also true about S3 if compared
to H3. Nevertheless, we will be able to characterize the relative equilibria of H3 in
geometric-topologic terms.

The surface we are introducing in this section, which will play for our dynamical
analysis in H3 the same role the Clifford torus played in S3, is homeomorphic to a
cylinder. Consider a circle of radius r in the wx plane of R4 and the upper branch
of the hyperbola r2 − η2 = −1 in the yz plane of R4. Then we will call the surface
C2
rη obtained by taking the cartesian product between the circle and the hyperbola a

hyperbolic cylinder since it equidistantly surrounds a branch of a geodesic hyperbola
in H3. Indeed, we can represent this cylinder as

C2
rη = {(w, x, y, z) | r2 − η2 = −1, 0 ≤ θ < 2π, ξ ∈ R}, (8.2)

where w = r cos θ, x = r sin θ, y = η sinh ξ, z = η cosh ξ. But the hyperbolic cylinder
C2
rη also lies in H3 because the coordinates w, x, y, z, endowed with the Lorentz inner

product, satisfy the equations

w2 + x2 + y2 − z2 = r2 − η2 = −1.

As in the case of S3, which is foliated by a family of Clifford tori, H3 can be foliated
by a family of hyperbolic cylinders. The foliation is, of course, not unique. But
unlike the Clifford tori of R4, the hyperbolic cylinders of R3,1 are not flat surfaces. In
general, they have constant positive Gaussian curvature, which varies with the size
of the cylinder, becoming zero only when the cylinder degenerates into a geodesic
hyperbola.
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8.5 RE in H3

The above considerations allow us to state and prove the following result, under
the assumption that negative elliptic, hyperbolic, and elliptic-hyperbolic RE exist.
Notice that, on one hand, due to the absence of complementary circles, and, on the
other hand, the absence of FP in H3, the dynamical behavior of RE is less complicated
than in S3.

Theorem 3. (Qualitative behavior of the RE in H3) In the curved N-body
problem in H3, N ≥ 2, with bodies of masses m1,m2, . . . ,mN > 0, every RE q has
one of the following potential behaviors:

(i) if q is given by (5.10), the orbit is a (simply rotating) negative elliptic RE,
with the body of mass mi moving on a circle Ci, i = 1, 2, . . . , N , of a 2-dimensional
hyperbolic sphere in H3; in the hyperplanes wxy and wxz, the planes of the circles
Ci are parallel with the plane wx;

(ii) if q is given by (5.11), the orbit is a (simply rotating) negative hyperbolic
RE, with the body of mass mi moving on some (not necessarily geodesic) hyperbola
Hi of a 2-dimensional hyperbolic sphere in H3, i = 1, 2, . . . , N ; in the hyperplanes
wyz and xyz, the planes of the hyperbolas Hi are parallel with the plane yz;

(iii) if q is given by (5.12), the orbit is a (doubly rotating) negative elliptic-
hyperbolic RE, with the body of mass mi moving on the hyperbolic cylinder C2

riηi
, i =

1, 2, . . . , N .

Proof. (i) The bodies move on circles, Ci, i = 1, 2, . . . , N, because, by (5.10), the
analytic expression of the orbit is given by

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = ri cos(αt+ ai), xi(t) = ri sin(αt+ ai), yi(t) = yi, zi(t) = zi,

with w2
i + x2i = r2i , r

2
i + y2i − z2i = −1, and yi, zi constant, i = 1, 2, . . . , N . The

parallelism of the planes of the circles in the hyperplanes wxy and wxz follows
exactly as in the proof of part (i) in Theorem 1, using the integrals of the total
angular momentum.

(ii) The bodies move on hyperbolas, Hi, i = 1, 2, . . . , N , because, by (5.11), the
analytic expression of the orbit is given by

q = (q1,q2, . . . ,qn),qi = (wi, xi, yi, zi), i = 1, 2, . . . , N,

wi(t) = wi (constant), xi(t) = xi (constant),

yi(t) = ηi sinh(βt+ bi), zi(t) = ηi cosh(βt+ bi),
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with y2i − z2i = −η2i , w2
i + x2i − η2i = −1, i = 1, 2, . . . , N .

Let us now prove the parallelism statement for the planes containing the hyper-
bolas Hi. For this purpose, notice that

cwx =
N∑
i=1

mi(wiẋi − ẇixi) = 0

and

cyz =
N∑
i=1

mi(yiżi − ẏizi) = −β
N∑
i=1

miη
2
i .

These constants are independent of the bodies’ position, a fact which confirms that
they result from first integrals. To determine the values of the constants cwy, cwz, cxy,
and cxz, we first compute that

cwy =
N∑
i=1

mi(wiẏi − ẇiyi) = β
N∑
i=1

miwiηi cosh(βt+ bi),

cwz =
N∑
i=1

mi(wiżi − ẇizi) = β
N∑
i=1

miwiηi sinh(βt+ bi),

cxy =
N∑
i=1

mi(xiẏi − ẋiyi) = β
N∑
i=1

mixiηi cosh(βt+ bi),

cxz =
N∑
i=1

mi(xiżi − ẋizi) = β
N∑
i=1

mixiηi sinh(βt+ bi).

We next show that cwy = 0. For this, notice first that, using the formula cosh(βt+
bi) = cosh bi cosh βt+ sinh bi sinh βt, we can write

cwy = β[A(t) +B(t)], (8.3)

where

A(t) =
N∑
i=1

miwiηi cosh bi cosh βt and B(t) =
N∑
i=1

miwiηi sinh bi sinh βt.

But the function cosh is even, whereas sinh is odd. Therefore A is even and B is
odd. Since cwy is constant, we also have

cwy = β[A(−t) +B(−t)] = β[A(t)−B(t)]. (8.4)
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From (8.3) and (8.4) and the fact that β 6= 0, we can conclude that

cwy = βA(t) and B(t) = 0,

so d
dt
B(t) = 0. However, d

dt
B(t) = βA(t), which proves that cwy = 0.

The fact that cxy = 0 can be proved exactly the same way. The only difference
when showing that cwz = 0 and cxz = 0 is the use of the corresponding hyperbolic
formula, sinh(βt+ bi) = sinh βt cosh bi + cosh βt sinh bi. In conclusion,

cwx = cwy = cwz = cxy = cxz = 0 and cyz 6= 0,

which means that the hyperbolic rotation takes place relative to the origin of the
coordinate system solely with respect to the plane yz.

Using a similar reasoning as in the proof of (i) for Theorem 1, it can be shown that
the above conclusion proves the parallelism of the planes that contain the hyperbolas
Hi in the 3-dimensional hyperplanes wyz and xyz.

(iii) To prove that (doubly rotating) negative elliptic-hyperbolic RE move on
hyperbolic cylinders, it is enough to compare the form of the orbit given in (5.11)
with the characterization (8.2) of a hyperbolic cylinder.



Part IV

Examples
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Preamble

The goal of Part IV is to provide examples of RE for each type of qualitative be-
havior described in Part III. The dynamics appear to be richer and more interesting
in S3 than in H3, probably because, unlike the latter, the former is a compact man-
ifold. Nevertheless, the curved N -body problem in H3 exhibits certain specific, as
well as unexpected, RE as well, a fact we will use in Part V to make a first step
towards proving that, for distances comparable to those of our solar system, space
is Euclidean.
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Chapter 9

Positive elliptic RE

Since Theorems 1, 2, and 3 provide us with the qualitative behavior of all the five
classes of RE that we expect to find in S3 and H3, we know what kind of rigid-
body-type orbits to look for in the curved N -body problem for various values of
N ≥ 3. Ideal, of course, would be to find them all, but this problem appears to be
very difficult, and it might never be completely solved. As a first step towards this
(perhaps unreachable) goal, we will show that each type of orbit described in the
above criteria and theorems exists for some values of N ≥ 3 and m1,m2, . . . ,mN > 0.

To appreciate the difficulty of the above mentioned question, we remark that
its Euclidean analogue is that of finding all central configurations for the New-
tonian potential. The notoriety of this problem has been recognized for at least
seven decades, [100]. In fact, we don’t even know whether, for some given masses
m1,m2, . . . ,mN > 0, with N ≥ 5, the number of classes of central configurations
(after we factorize the central configurations by size and rotation) is finite or not1

and, should it be infinite, whether the set of classes of central configurations is dis-
crete or contains a continuum. The finiteness of the number of classes of central
configurations is Problem 6 on Steven Smale’s list of mathematics problems for the
21st century, [96]. Its analogue in our case would be that of deciding whether, for
given masses, m1,m2, . . . ,mN > 0, the number of classes of RE of the 3-dimensional
curved N -body problem is finite or not.

In this chapter, we will provide specific examples of positive elliptic RE, i.e. orbits
on the sphere S3 that have a single rotation. The first example is a RE in a 3-body
problem in which 3 equal masses are at the vertices of an equilateral triangle that

1Alain Albouy and Vadim Kaloshin have recently reported to have proved the finiteness of central
configurations in the planar Euclidean 5-body problem for any given positive masses, except perhaps
for a codimension 2 submanifold of the mass space, [3].



102 Positive elliptic RE

rotates along a not necessarily great circle of a great or non-great sphere. The second
example is a RE of a 3-body problem in which 3 unequal masses move at the vertices
of an acute scalene triangle along a great circle of a great sphere. The third example
is a RE generated from a FP configuration in a 6-body problem of equal masses
for which 3 bodies move along a great circle of a great sphere at the vertices of an
equilateral triangle, while the other 3 masses are fixed on a complementary great
circle of another great sphere at the vertices of an equilateral triangle. The fourth,
and last example of this chapter, generalizes the third example to the case of acute
scalene, not necessarily congruent, triangles and unequal masses.

9.1 Lagrangian RE

In the light of Remark 2, we expect to find solutions in S3 that move on 2-dimensional
spheres. A simple example is that of the Lagrangian RE (i.e. equilateral triangles)
of equal masses in the curved 3-body problem. Their existence in S2, and the fact
that they occur only when the masses are equal, was first proved in [35]. This proof
will also be presented in Part V. So, in this case, we have N = 3 and m1 = m2 =
m3 =: m > 0. The solution of the corresponding system (3.15) we are seeking is of
the form

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3, (9.1)

w1(t) = r cosωt, x1(t) = r sinωt,

y1(t) = y (constant), z1(t) = z (constant),

w2(t) = r cos(ωt+ 2π/3), x2(t) = r sin(ωt+ 2π/3),

y2(t) = y (constant), z2(t) = z (constant),

w3(t) = r cos(ωt+ 4π/3), x3(t) = r sin(ωt+ 4π/3),

y3(t) = y (constant), z3(t) = z (constant),

with r2 + y2 + z2 = 1. Consequently, for the equations occurring in Criterion 1, we
have

r1 = r2 = r3 =: r, a1 = 0, a2 = 2π/3, a3 = 4π/3,

y1 = y2 = y3 =: y (constant), z1 = z2 = z3 =: z (constant).

Substituting these values into the equations (7.1), (7.2), (7.3), (7.4), we obtain either
identities or the equation

ω2 =
8m√

3r3(4− 3r2)3/2
.
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Therefore, given m > 0, r ∈ (0, 1), and y, z with r2 + y2 + z2 = 1, we can always
find two frequencies,

ω1 =
2

r

√
2m√

3r(4− 3r2)3/2
and ω2 = −2

r

√
2m√

3r(4− 3r2)3/2
,

such that system (3.17) has a solution of the form (9.1). The positive frequency
corresponds to one sense of rotation, whereas the negative frequency corresponds to
the opposite sense.

Notice that if r = 1, i.e. when the bodies move along a great circle of a great
sphere, equations (7.1), (7.2), (7.3), (7.4) are identities for any ω ∈ R, so any fre-
quency leads to a solution. This phenomenon happens because, under those circum-
stances, the motion is generated from a FP configuration, a case in which we can
apply Criterion 2, whose statement is independent of the frequency.

The bodies move on the great circle S1
yz of a great sphere only if y = z = 0.

Otherwise they move on non-great circles of great or non-great spheres. So we can
also interpret this example as existing in the light of Remark 3, which says that there
are positive elliptic rotations that leave non-great spheres invariant.

The constants of the angular momentum are

cwx = 3mω 6= 0 and cwy = cwz = cxy = cxz = cyz = 0,

which means that the rotation takes place around the origin of the coordinate system
only relative to the plane wx.

9.2 Scalene triangles

It is natural to ask whether solutions such as the one in the previous example also ex-
ist for unequal masses. The answer is positive, and it was first answered in [28], where
we proved that, given a 2-dimensional sphere and any triangle inscribed in a great
circle of it (for instance inside the equator z = 0), there are masses, m1,m2,m3 > 0,
such that the bodies form a relative equilibrium that rotates around the z axis.

We will consider a similar solution here in S3, which moves on the great circle
S1
yz of the great sphere S2

y or S2
z. The expected analytic expression of the solution

depends on the shape of the triangle, i.e. it has the form

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3, (9.2)
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w1(t) = cos(ωt+ a1), x1(t) = sin(ωt+ a1),

y1(t) = 0, z1(t) = 0,

w2(t) = cos(ωt+ a2), x2(t) = sin(ωt+ a2),

y2(t) = 0, z2(t) = 0,

w3(t) = cos(ωt+ a3), x3(t) = sin(ωt+ a3),

y3(t) = 0, z3(t) = 0,

where the constants a1, a2, a3, with 0 ≤ a1 < a2 < a3 < 2π, determine the triangle’s
shape. The other constants involved in the description of this orbit are

r1 = r2 = r3 = 1. (9.3)

We can use now Criterion 2 to prove that (9.2) is a positive elliptic RE for any
frequency ω 6= 0. Indeed, we know from [28] that, for any shape of the triangle, there
exist masses that yield a FP on the great circle S1

yz, so the corresponding equations
(7.5), (7.6), (7.7), (7.8) are satisfied. Since conditions (9.3) are also satisfied, the
proof that (9.2) is a solution of (3.15) is complete.

The constants of the angular momentum integrals are

cwx = (m1 +m2 +m3)ω 6= 0 and cwy = cwz = cxy = cxz = cyz = 0,

which means that the bodies rotate in R4 around the origin of the coordinate system
only relative to the plane wx.

9.3 A regular RE with a fixed subsystem

The following example of a (simply rotating) positive elliptic RE in the curved 6-body
problem corresponds to the second type of orbit described in part (i) of Theorem
1, and it is interesting from two points of view. First, it is an orbit that is specific
to S3 in the sense that it cannot exist on any 2-dimensional sphere. Second, 3
bodies of equal masses move on a great circle of a great sphere at the vertices of an
equilateral triangle, while the other 3 bodies of masses equal to the first stay fixed on
a complementary great circle of another great sphere at the vertices of an equilateral
triangle. So consider the equal masses

m1 = m2 = m3 = m4 = m5 = m6 =: m > 0.

Then a solution as described above has the form

q = (q1,q2,q3,q4,q5,q6), qi = (wi, xi, yi, zi), i = 1, 2, . . . , 6,
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w1 = cosαt, x1 = sinαt, y1 = 0, z1 = 0,

w2 = cos(αt+ 2π/3), x2 = sin(αt+ 2π/3), y2 = 0, z2 = 0,

w3 = cos(αt+ 4π/3), x3 = sin(αt+ 4π/3), y3 = 0, z3 = 0,

w4 = 0, x4 = 0, y4 = 1, z4 = 0,

w5 = 0, x5 = 0, y5 = −1

2
, z5 =

√
3

2
,

w6 = 0, x6 = 0, y6 = −1

2
, z6 = −

√
3

2
.

A straightforward computation shows that this attempted orbit, which is generated
from a FP configuration, satisfies Criterion 2, therefore it is indeed a solution of
system (3.15) for N = 6 and for any frequency α 6= 0.

The constants of the angular momentum are

cwx = 3mα 6= 0 and cwy = cwz = cxy = cxz = cyz = 0,

which implies that the rotation takes place around the origin of the coordinate system
only relative to the wx plane.

9.4 An irregular RE with a fixed subsystem

To prove the existence of positive elliptic RE with unequal masses not contained in
any 2-dimensional sphere, we have only to combine the ideas of Sections 9.2 and
9.3. More precisely, we consider a 6-body problem in which 3 bodies of unequal
masses, m1,m2,m3 > 0, rotate on a great circle (lying, say, in the plane wx) of a
great sphere at the vertices of an acute scalene triangle, while the other 3 bodies
of unequal masses, m4,m5,m6 > 0, are fixed on a complementary great circle of
another great sphere (lying, as a consequence of our choice of the previous circle, in
the plane yz) at the vertices of another acute scalene triangle, which is not necessarily
congruent with the first.

Notice that, as shown in [28], we must first choose the shapes of the triangles
and then determine the masses that correspond to them, not the other way around.
The reason for proceeding in this order is that not any 3 positive masses can rotate
along a great circle of a great sphere. Like the solution in Section 9.3, this orbit
is specific to S3 in the sense that it cannot exist on any 2-dimensional sphere. Its
analytic expression depends on the shapes of the two triangles, i.e.

q = (q1,q2,q3,q4,q5,q6), qi = (wi, xi, yi, zi), i = 1, 2, . . . , 6, (9.4)
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w1 = cos(αt+ a1), x1 = sin(αt+ a1), y1 = 0, z1 = 0,

w2 = cos(αt+ a2), x2 = sin(αt+ a2), y2 = 0, z2 = 0,

w3 = cos(αt+ a3), x3 = sin(αt+ a3), y3 = 0, z3 = 0,

w4 = 0, x4 = 0, y4 = cos b4, z4 = sin b4,

w5 = 0, x5 = 0, y5 = cos b5, z5 = sin b5,

w6 = 0, x6 = 0, y6 = cos b6, z6 = sin b6.

where the constants a1, a2, and a3, with 0 ≤ a1 < a2 < a3 < 2π, and b4, b5, and b6,
with 0 ≤ b4 < b5 < b6 < 2π, determine the shape of the first and second triangle,
respectively. For t = 0, we obtain the configuration given by the coordinates

w1 = cos a1, x1 = sin a1, y1 = 0, z1 = 0,

w2 = cos a2, x2 = sin a2, y2 = 0, z2 = 0,

w3 = cos a3, x3 = sin a3, y3 = 0, z3 = 0,

w4 = 0, x4 = 0, y4 = cos b4, z4 = sin b4,

w5 = 0, x5 = 0, y5 = cos b5, z5 = sin b5,

w6 = 0, x6 = 0, y6 = cos b6, z6 = sin b6.

We will prove next that this is a FP configuration. For this purpose, let us first
compute that

ν12 = ν21 = cos(a1 − a2),

ν13 = ν31 = cos(a1 − a3),

ν23 = ν32 = cos(a2 − a3),

ν14 = ν41 = ν15 = ν51 = ν16 = ν61 = 0,

ν24 = ν42 = ν25 = ν52 = ν26 = ν62 = 0,

ν34 = ν43 = ν35 = ν53 = ν36 = ν63 = 0,

ν45 = ν54 = cos(b4 − a5),

ν46 = ν64 = cos(b4 − b6),

ν56 = ν65 = cos(b5 − b6).

Since y1 = y2 = y3 = z1 = z2 = z3 = 0, it follows that, at t = 0, the equations
involving the force for the coordinates w1, x1, w2, x2, w3, x3 have only the constants
m1,m2,m3, a1, a2, a3. In other words, for these coordinates, the forces acting on the
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masses m1,m2, and m3 do not involve the masses m4,m5, and m6. But the bodies
m1,m2, and m3 are on the great circle S1

yz, which can be seen as lying on the great
sphere S2

z. This means that, by applying the result of [28], the bodies m1,m2, and
m3 form an independent FP configuration. Similarly, we can show that the masses
m4,m5, and m6 form an independent FP configuration. Therefore all 6 bodies form
a FP configuration.

Consequently, we can now use Criterion 2 to check whether q given by (9.4)
is a positive elliptic RE generated from a FP configuration. We can approach
this problem in two ways. One is computational, and it consists of using the fact
that the positions at t = 0 form a FP configuration to determine the relationships
between the constants m1,m2,m3, a1, a2, and a3, on one hand, and the constants
m4,m5,m6, b4, b5, and b6, on the other hand. It turns out that these relationships
reduce to conditions (7.5), (7.6), (7.7), and (7.8). Then we only need to remark that

r1 = r2 = r3 = 1 and r4 = r5 = r6 = 0,

which means that condition (ii) of Criterion 2 is satisfied. The other approach is to
invoke again the result of [28] and a reasoning similar to the one we used to show
that the position at t = 0 is a FP configuration. Each approach helps us conclude
that q given by (9.4) is a solution of system (3.15) for any α 6= 0.

The constants of the angular momentum are

cwx = (m1 +m2 +m3)α 6= 0 and cwy = cwz = cxy = cxz = cyz = 0,

which means, as expected, that the bodies rotate in R4 around the origin of the
coordinate system only relative to the plane wx.
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Chapter 10

Positive elliptic-elliptic RE

In this chapter we will construct examples of positive elliptic-elliptic RE, i.e. orbits
with two elliptic rotations on the sphere S3. The first example is that of a 3-body
problem in which 3 bodies of equal masses are at the vertices of an equilateral triangle,
which has two rotations of the same frequency. The second example is that of a 4-
body problem in which 4 equal masses are at the vertices of a regular tetrahedron,
which has two rotations of the same frequency. The third example is that of a 5-
body problem in which 5 equal masses lying at the vertices of a pentatope have two
rotations of same-size frequencies. This is the only regular polytope that allows RE,
because the five other existing regular polytopes of R4 have antipodal vertices, so
they introduce singularities. As in the previous example, this motion cannot take
place on any 2-dimensional sphere. The fourth example is that of a 6-body problem,
with 3 bodies of equal masses rotating at the vertices of an equilateral triangle along
a great circle of a great sphere, while the other 3 bodies, of the same mass as the
others, rotate at the vertices of an equilateral triangle along a complementary great
circle of another great sphere. In general, the frequencies of the two rotations are
distinct. The fifth example generalizes the fourth example in the sense that the
triangles are scalene, acute, not necessarily congruent, and the masses as well as the
frequencies of the rotations are distinct, in general.

10.1 Equilateral triangle with equal frequencies

The example we will now construct is that of a (doubly rotating) positive elliptic-
elliptic equilateral triangle of equal masses in the curved 3-body problem in S3 for
which the rotations have the same frequency. Such solutions cannot be found on
2-dimensional spheres. So we consider the masses m1 = m2 = m3 =: m > 0 in S3.
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Then the solution we check for system (3.15) with N = 3 has the form:

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3, (10.1)

w1 = r cosαt, x1 = r sinαt,

y1 = ρ cosαt, z1 = ρ sinαt,

w2 = r cos (αt+ 2π/3) , x2 = r sin (αt+ 2π/3) ,

y2 = ρ cos(αt+ 2π/3), z2 = ρ sin(αt+ 2π/3),

w3 = r cos (αt+ 4π/3) , x3 = r sin (αt+ 4π/3) ,

y3 = ρ cos(αt+ 4π/3), z3 = ρ sin(αt+ 4π/3),

with r2 + ρ2 = 1. For t = 0, the above attempted solution gives for the 3 bodies the
coordinates

w1 = r, x1 = 0, y1 = ρ, z1 = 0,

w2 = −r
2
, x2 =

r
√

3

2
, y2 = −ρ

2
, z2 =

ρ
√

3

2
,

w3 = −r
2
, x3 = −r

√
3

2
, y3 = −ρ

2
, z3 = −ρ

√
3

2
,

which is a FP configuration, since the bodies have equal masses and are at the vertices
of an equilateral triangle inscribed in a great circle of a great sphere. Consequently,
we can use Criterion 4 to check whether a solution of the form (10.1) satisfies sys-
tem (3.15) for any α 6= 0. A straightforward computation shows that the first 4N
conditions are satisfied. Moreover, since the two rotations have the same frequency,
it follows that condition (ii) of Criterion 4 is verified, therefore (10.1) is indeed a
solution of system (3.15) for any α 6= 0.

The angular momentum constants are

cwx = 3mαr2, cwy = 0, cwz = 3mαrρ,

cxy = −3mαrρ, cxz = 0, cyz = 3mαρ2,

which show that rotations around the origin of the coordinate system take place
relative to 4 planes: wx,wz, xy, and yz. Consequently the bodies don’t move on
circles, but on the same Clifford torus, namely T2

rρ, a case that agrees with the
qualitative result described in part (ii) of Theorem 1.

Notice that for r = 1 and ρ = 0, the orbit becomes a (simply rotating) positive
elliptic RE that rotates along a great circle of a great sphere in S3, i.e. an orbit such
as the one we described in Section 9.1.
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10.2 Regular tetrahedron

We will further construct a (doubly rotating) positive elliptic-elliptic RE of the 4-
body problem in S3, in which 4 equal masses are at the vertices of a regular tetrahe-
dron that has rotations of equal frequencies. So let us fix m1 = m2 = m3 = m4 =:
m > 0 and consider the initial position of the 4 bodies to be given as in the first
example of Section 6.2, i.e. by the coordinates

w0
1 = 0, x01 = 0, y01 = 0, z01 = 1,

w0
2 = 0, x02 = 0, y02 =

2
√

2

3
, z02 = −1

3
,

w0
3 = 0, x03 = −

√
6

3
, y03 = −

√
2

3
, z03 = −1

3
,

w0
4 = 0, x04 =

√
6

3
, y04 = −

√
2

3
, z04 = −1

3
,

which is a FP configuration. Indeed, the masses are equal and the bodies are at the
vertices of a regular tetrahedron inscribed in a great sphere of S3.

For this choice of initial positions, we can compute that

r1 = r2 = 0, ρ1 = ρ2 = 1, r3 = r4 =

√
6

3
, ρ3 = ρ4 =

√
3

3
,

which means that m1 and m2 move on the Clifford torus with r = 0 and ρ = 1 (i.e.
one of the two Clifford tori, within the class of a given foliation of S3, which is also a
great circle of S3, see Figure 8.1, the other corresponding to r = 1 and ρ = 0), while

we expect m3 and m4 to move on the Clifford torus with r =
√
6
3

and ρ =
√
3
3

.
These considerations allow us to obtain the constants that determine the angles.

Indeed, a1 and a2 can take any values,

a3 = 3π/2, a4 = π/2, b1 = π/2,

and b2, b3, b4 are such that

sin b2 = −1/3, cos b2 = 2
√

2/3,

cos b3 = −
√

6/3, sin b3 = −
√

3/3

cos b4 = −
√

6/3, sin b4 = −
√

3/3,

which means that b3 = b4.
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We can now compute the form of the candidate for a solution generated from the
above FP configuration. Using the above values of ri, ρi, ai and bi, i = 1, 2, 3, 4, we
obtain from the equations

w0
i = ri cos ai, x

0
i = ri sin ai, y

0
i = ρi cos bi, z

0
i = ρi sin bi, i = 1, 2, 3, 4,

that the candidate for a solution is given by

q = (q1,q2,q3,q4), qi = (wi, xi, yi, zi), i = 1, 2, 3, 4, (10.2)

w1 = 0, x1 = 0,

y1 = cos(αt+ π/2), z1 = sin(αt+ π/2),

w2 = 0, x2 = 0,

y2 = cos(αt+ b2), z2 = sin(αt+ b2),

w3 =

√
6

3
cos(βt+ 3π/2), x3 =

√
6

3
sin(βt+ 3π/2),

y3 =

√
3

3
cos(βt+ b3), z3 =

√
3

3
sin(βt+ b3),

w4 =

√
6

3
cos(βt+ π/2), x4 =

√
6

3
sin(βt+ π/2),

y4 =

√
3

3
cos(βt+ b4), z4 =

√
3

3
sin(βt+ b4).

If we invoke Criterion 4, do a straightforward computation, and use the fact that the
frequencies of the two rotations have the same size, i.e. are equal in absolute value,
we can conclude that q, given by (10.2), satisfies system (3.15), so it is indeed a
solution of the curved 4-body problem in S3.

Straightforward computations lead us to the following values of the angular mo-
mentum constants:

cwx =
4

3
mα, cwy = cwz = cxy = cxz = 0, cyz =

8

3
mα,

for β = α, and

cwx =
4

3
mα, cwy = cwz = cxy = cxz = 0, cyz = −8

3
mα,

for β = −α, a fact which shows that rotations around the origin of the coordinate
system takes place only relative to the planes wx and yz.
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10.3 Regular pentatope

We will next construct a (doubly rotating) positive elliptic-elliptic RE of the 5-body
problem in S3, in which 5 equal masses are at the vertices of a regular pentatope
that has two rotations of equal-size frequencies. So let us fix m1 = m2 = m3 = m4 =
m5 =: m > 0 and consider the initial position of the 5 bodies to be given as in the
second example of Section 6.2, i.e. by the coordinates

w0
1 = 1, x01 = 0, y01 = 0, z01 = 0,

w0
2 = −1

4
, x02 =

√
15

4
, y02 = 0, z02 = 0,

w0
3 = −1

4
, x03 = −

√
5

4
√

3
, y03 =

√
5√
6
, z03 = 0,

w0
4 = −1

4
, x04 = −

√
5

4
√

3
, y04 = −

√
5

2
√

6
, z04 =

√
5

2
√

2
,

w0
5 = −1

4
, x05 = −

√
5

4
√

3
, y05 = −

√
5

2
√

6
, z05 = −

√
5

2
√

2
,

which is a FP configuration because the masses are equal and the bodies are at the
vertices of a regular pentatope inscribed in S3.

For this choice of initial positions, we can compute that

r1 = r2 = 1, ρ1 = ρ2 = 0,

r3 = r4 = r5 = 1/
√

6, ρ3 = ρ4 = ρ5 =
√

5/
√

6,

which means that m1 and m2 move on the Clifford torus with r = 1 and ρ = 0 (i.e.
one of the two Clifford tori, in a class of a given foliation of S3, which is also a great
circle of S3, the other corresponding to r = 0 and ρ = 1), while we expect m3,m4,

and m5 to move on the Clifford torus with r = 1√
6

and ρ =
√
5√
6
.

These considerations allow us to compute the constants that determine the angles.
We obtain that

a1 = 0,

a2 is such that
cos a2 = −1/4, sin a2 = −

√
15/4

and a3, a4, a5 are such that

cos a3 = −
√

6/4, sin a3 = −
√

10/4,
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cos a4 = −
√

6/4, sin a4 = −
√

10/4,

cos a5 = −
√

6/4, sin a5 = −
√

10/4,

which means that a3 = a4 = a5. We further obtain that, since ρ1 = ρ2 = 0, the
constants b1 and b2 can be anything, in particular 0. Further computations lead us
to the conclusion that

b1 = b2 = b3 = 0, b4 = 2π/3, b5 = 4π/3.

We can now compute the form of the candidate for a solution generated from the
above FP configuration. Using the above values of ri, ρi, ai and bi, i = 1, 2, 3, 4, 5, we
obtain from the equations

w0
i = ri cos ai, x

0
i = ri sin ai, y

0
i = ρi cos bi, z

0
i = ρi sin bi, i = 1, 2, 3, 4, 5

that the candidate for a solution is given by

q = (q1,q2,q3,q4,q5), qi = (wi, xi, yi, zi), i = 1, 2, 3, 4, 5, (10.3)

w1 = cosαt, x1 = sinαt,

y1 = 0, z1 = 0,

w2 = cos(αt+ a2), x2 = sin(αt+ a2),

y2 = 0, z2 = 0,

w3 =
1√
6

cos(αt+ a3), x3 =
1√
6

sin(αt+ a3),

y3 =

√
5√
6

cos βt, z3 =

√
5√
6

sin βt,

w4 =
1√
6

cos(αt+ a4), x4 =
1√
6

sin(αt+ a4),

y4 =

√
5√
6

cos(βt+ 2π/3), z4 =

√
5√
6

sin(βt+ 2π/3),

w5 =
1√
6

cos(αt+ a5), x5 =
1√
6

sin(αt+ a5),

y5 =

√
5√
6

cos(βt+ 4π/3), z5 =

√
5√
6

sin(βt+ 4π/3),

If we invoke Criterion 4, do a straightforward computation, and use the fact that the
frequencies of the two rotations have the same size, i.e. |α| = |β|, we can conclude
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that q, given by (10.3), satisfies system (7.13), (7.14), (7.15), (7.16) and condition
(ii), so it is indeed a (doubly rotating) positive elliptic-elliptic RE generated from a
FP configuration, i.e. a solution of system (3.15) with N = 5 for any value of α and
β with |α| = |β| 6= 0.

A straightforward computation shows that the constants of the angular momen-
tum are

cwx =
5

2
mα, cwy = cwz = cxy = cxz = 0, cyz =

5

2
mα

for β = α and

cwx =
5

2
mα, cwy = cwz = cxy = cxz = 0, cyz = −5

2
mα

for β = −α, which means that the bodies rotate around the origin of the coordinate
system only relative to the planes wx and yz.

10.4 Pair of equilateral triangles

We will next construct an example in the 6-body problem in S3 in which 3 bodies
of equal masses move along a great circle at the vertices of an equilateral triangle,
while the other 3 bodies of masses equal to those of the previous bodies move along
a complementary circle of another great sphere, also at the vertices of an equilateral
triangle. So consider the masses m1 = m2 = m3 = m4 = m5 = m6 =: m > 0 and
the frequencies α, β 6= 0, which, in general, we can take as distinct, α 6= β. Then a
candidate for a solution as described above has the form

q = (q1,q2,q3,q4,q5,q6), qi = (wi, xi, yi, zi), i = 1, 2, . . . , 6, (10.4)

w1 = cosαt, x1 = sinαt,

y1 = 0, z1 = 0,

w2 = cos(αt+ 2π/3), x2 = sin(αt+ 2π/3),

y2 = 0, z2 = 0,

w3 = cos(αt+ 4π/3), x3 = sin(αt+ 4π/3),

y3 = 0, z3 = 0,

w4 = 0, x4 = 0,

y4 = cos βt, z4 = sin βt,
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w5 = 0, x5 = 0,

y5 = cos(βt+ 2π/3), z5 = sin(βt+ 2π/3),

w6 = 0, x6 = 0,

y6 = cos(βt+ 4π/3), z6 = sin(βt+ 4π/3).

For t = 0, we obtain the FP configuration specific to S3 similar to the one constructed
in Section 6.2, namely

w1 = 0, x1 = 1, y1 = 0, z1 = 0,

w2 = −1

2
, x2 =

√
3

2
, y2 = 0, z2 = 0,

w3 = −1

2
, x3 = −

√
3

2
, y3 = 0, z3 = 0,

w4 = 0, x4 = 0, y4 = 1, z4 = 0,

w5 = 0, x5 = 0, y5 = −1

2
, z5 =

√
3

2
,

w6 = 0, x6 = 0, y6 = −1

2
, z6 = −

√
3

2
.

To prove that q given by (10.4) is a solution of system (3.15), we can therefore apply
Criterion 4. A straightforward computation shows that the 4N conditions (7.13),
(7.14), (7.15), (7.16) are satisfied, and then we can observe that condition (i) is also
verified because

r1 = r2 = r3 = 1, ρ1 = ρ2 = ρ3 = 0,

r4 = r5 = r6 = 0, ρ4 = ρ5 = ρ6 = 1.

Consequently q given by (10.4) is a positive elliptic-elliptic RE of the 6-body problem
given by system (3.15) with N = 6 for any α, β 6= 0. If α/β is rational, a case in
which the set of frequency pairs has measure zero in R2, the corresponding orbits are
periodic. In general, however, α/β is irrational, so the orbits are quasiperiodic.

This property is quite interesting since, in R3, no quasiperiodic RE were ever
found. Nevertheless, quasiperiodic RE were discovered for the Newtonian N -body
problem in R4, [2], [17].

A straightforward computation shows that the constants of the angular momen-
tum integrals are

cwx = 3mα 6= 0, cyz = 3mβ 6= 0, cwy = cwz = cxy = cxz = 0,
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which means that the rotation takes place around the origin of the coordinate system
only relative to the planes wx and yz.

Notice that, in the light of [28], the kind of example constructed here in the
6-body problem can be easily generalized to any (N + M)-body problem of equal
masses, N,M ≥ 3 and odd, in which N bodies rotate along a great circle of a great
sphere at the vertices of a regular N -gon, while the other M bodies rotate along a
complementary great circle of another great sphere at the vertices of a regular M -gon.
The same as in the 6-body problem discussed here, the rotation takes place around
the origin of the coordinate system only relative to 2 out of 6 reference planes.

10.5 Pair of scalene triangles

We will next extend the example constructed in Section 10.4 to unequal masses. The
idea is the same as the one we used in Section 9.4, based on the results proved in
[28], according to which, given an acute scalene triangle inscribed in a great circle of
a great sphere, we can find 3 masses such that this configuration forms a FP. The
difference is that we don’t keep the configuration fixed here by assigning zero initial
velocities, but make it rotate uniformly, thus leading to a RE. In fact, in this 6-body
problem, 3 bodies of unequal masses rotate along a great circle of a great sphere
at the vertices of an acute scalene triangle, while the other 3 bodies rotate along a
complementary great circle of another great sphere at the vertices of another acute
scalene triangle, not necessarily congruent with the previous one.

So consider the allowable masses m1,m2,m3,m4,m5,m6 > 0, which, in general,
are not equal. Then a candidate for a solution as described above has the form

q = (q1,q2,q3,q4,q5,q6), qi = (wi, xi, yi, zi), i = 1, 2, . . . , 6, (10.5)

w1 = cos(αt+ a1), x1 = sin(αt+ a1),

y1 = 0, z1 = 0,

w2 = cos(αt+ a2), x2 = sin(αt+ a2),

y2 = 0, z2 = 0,

w3 = cos(αt+ a3), x3 = sin(αt+ a3),

y3 = 0, z3 = 0,

w4 = 0, x4 = 0,

y4 = cos(βt+ b4), z4 = sin(βt+ b4),
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w5 = 0, x5 = 0,

y5 = cos(βt+ b5), z5 = sin(βt+ b5),

w6 = 0, x6 = 0,

y6 = cos(βt+ b6), z6 = sin(βt+ b6),

where the constants a1, a2, and a3, with 0 ≤ a1 < a2 < a3 < 2π, and b1, b2, and b3,
with 0 ≤ b4 < b5 < b6 < 2π, determine the shape of the first and second triangle,
respectively, in agreement with the values of the masses.

Notice that for t = 0, the position of the bodies is the FP configuration described
and proved to be as such in Section 9.4. Therefore we can apply Criterion 4 to check
whether q given in (10.5) is a positive elliptic-elliptic RE. Again, as in Section 9.4,
we can approach this problem in two ways. One is computational, and it consists of
using the fact that the positions at t = 0 form a FP configuration to determine the
relationships between the constants m1,m2,m3, a1, a2, and a3, on one hand, and the
constants m4,m5,m6, b4, b5, and b6, on the other hand. It turns out that they reduce
to conditions (7.13), (7.14), (7.15), and (7.16). Then we only need to remark that

r1 = r2 = r3 = 1 and r4 = r5 = r6 = 0,

which means that condition (i) of Criterion 4 is satisfied. The other approach is to
invoke again the result of [28] and a reasoning similar to the one we used to show that
the position at t = 0 is a FP configuration. Both help us conclude that q given by
(10.5) is a solution of system (3.15) for any α, β 6= 0. Again, when α/β is rational, a
case that corresponds to a negligible set of frequency pairs, the solutions are periodic.
In the generic case, when α/β is irrational, the solutions are quasiperiodic.

A straightforward computation shows that the constants of the total angular
momentum integrals are

cwx = (m1 +m2 +m3)α 6= 0, cyz = (m1 +m2 +m3)β 6= 0,

cwy = cwz = cxy = cxz = 0,

which means that the rotation takes place around the origin of the coordinate system
only relative to the planes wx and yz.
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Negative RE

In this chapter we will provide examples of negative RE, one for each type of orbit
of this kind: elliptic, hyperbolic, and elliptic-hyperbolic. The first is the Lagrangian
RE of equal masses, which is a negative elliptic RE of the 3-body problem in H3, the
second is the Eulerian orbit of equal masses, which is a negative hyperbolic RE of
the 3-body problem in H3, and the third is an elliptic-hyperbolic orbit that combines
the previous two examples in the sense that it inherits their rotations.

11.1 Negative elliptic RE

The class of examples we construct here is the analogue of the one presented in
Section 9.1 in the case of the sphere, namely Lagrangian solutions (i.e. equilateral
triangles) of equal masses in H3. In the light of Remark 9, we expect that the bodies
move on a 2-dimensional hyperbolic sphere, whose curvature is not necessarily the
same as the one of H3. The existence of these orbits in H2, and the fact that they
occur only when the masses are equal, was first proved in [35]. So, in this case, we
have N = 3 and m1 = m2 = m3 =: m > 0. The solution of the corresponding system
(3.16) we are seeking is of the form

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3, (11.1)

w1(t) = r cosωt, x1(t) = r sinωt,

y1(t) = y (constant), z1(t) = z (constant),

w2(t) = r cos(ωt+ 2π/3), x2(t) = r sin(ωt+ 2π/3),

y2(t) = y (constant), z2(t) = z (constant),
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w3(t) = r cos(ωt+ 4π/3), x3(t) = r sin(ωt+ 4π/3),

y3(t) = y (constant), z3(t) = z (constant),

with r2 + y2− z2 = −1. Consequently, for the equations occurring in Criterion 5, we
have

r1 = r2 = r3 =: r, a1 = 0, a2 = 2π/3, a3 = 4π/3,

y1 = y2 = y3 =: y (constant), z1 = z2 = z3 =: z (constant).

Substituting these values into the equations (7.17), (7.18), (7.19), (7.20), we obtain
either identities or the same equation as in Section 9.1, namely

α2 =
8m√

3r3(4− 3r2)3/2
.

Consequently, given m > 0, r > 0, and y, z with r2 + y2 − z2 = −1 and z > 1, we
can always find two frequencies,

α1 =
2

r

√
2m√

3r(4− 3r2)3/2
and α2 = −2

r

√
2m√

3r(4− 3r2)3/2
,

such that system (3.16) has a solution of the form (11.1). The positive frequency
corresponds to one sense of rotation, whereas the negative frequency corresponds to
the opposite sense.

Notice that the bodies move on the 2-dimensional hyperbolic sphere

H2
κ0,y0

= {(w, x, y0, z) |w2 + x2 − z2 = −1− y20, y0 = constant, z > 0},

which has curvature κ0 = −(1+y20)−1/2. When y0 = 0, we have a great 2-dimensional
hyperbolic sphere, i.e. its curvature is 1, so the motion is in agreement with Remark
6.

A straightforward computation shows that the constants of the angular momen-
tum are

cwx = 3mα 6= 0 and cwy = cwz = cxy = cxz = cyz = 0,

which means that the rotation takes place around the origin of the coordinate system
only relative to the plane wx.
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11.2 Negative hyperbolic RE

In this section we will construct a class of negative hyperbolic RE for which, in
agreement with Remark 7, the bodies rotate on a 2-dimensional hyperbolic sphere of
the same curvature as H3. In the 2-dimensional case, the existence of a similar orbit
was already pointed out in [33], where we have also proved it to be unstable. So let
us check a solution of the form

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3, (11.2)

w1 = 0, x1 = 0, y1 = sinh βt, z1 = cosh βt,

w2 = 0, x2 = x (constant), y2 = η sinh βt, z2 = η cosh βt,

w3 = 0, x3 = −x (constant), y3 = η sinh βt, z3 = η cosh βt,

with x2 − η2 = −1. Consequently

η1 = 1, η2 = η3 =: η (constant), b1 = b2 = b3 = 0.

We then compute that

µ12 = µ21 = µ13 = µ23 = −η, µ23 = µ32 = 1− 2η2.

We can now use Criterion 6 to determine whether a candidate q given by (11.2) is
a (simply rotating) negative hyperbolic RE. Straightforward computations lead us
from equations (7.21), (7.22), (7.23), and (7.24) either to identities or to the equation

β2 =
1 + 4η2

4η3(η2 − 1)3/2
.

Therefore, given m,x, η > 0 with x2 − η2 = −1, there exist two nonzero frequencies,

β1 =
1

2η

√
1 + 4η2

η(η2 − 1)3/2
and β2 = − 1

2η

√
1 + 4η2

η(η2 − 1)3/2
,

such that q given by (11.2) is a (simply rotating) positive hyperbolic relative equi-
librium. Notice that the motion takes place on the 2-dimensional hyperbolic sphere

H2
w = {(0, x, y, z) |x2 + y2 − z2 = −1, z > 0}.

These orbits are neither periodic nor quasiperiodic. A straightforward computation
shows that the constants of the angular momentum are

cwx = cwy = cwz = cxy = cxz = 0, cyz = mβ(1− 2η2),

which means that the rotation takes place about the origin of the coordinate system
only relative to the yz plane.
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11.3 Negative elliptic-hyperbolic RE

In this section we will construct a class of (doubly rotating) negative elliptic-hyperbo-
lic RE. In the light of Remark 11, we expect that the motion cannot take place on
any 2-dimensional hyperboloid of H3. In fact, as we know from Theorem 3, relative
equilibria of this type may rotate on hyperbolic cylinders, which is also the case with
the solution we introduce here.

Consider the masses m1 = m2 = m3 =: m > 0. We will check a solution of the
form

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3, (11.3)

w1 = 0, x1 = 0, y1 = sinh βt, z1 = cosh βt,

w2 = r cosαt, x2 = r sinαt, y2 = η sinh βt, z2 = η cosh βt,

w3 = −r cosαt, x3 = −r sinαt, y3 = η sinh βt, z3 = η cosh βt.

In terms of the form (5.12) of an elliptic-hyperbolic RE, (11.3) is realized when

r1 = 0, r2 = r3 =: r, η1 = 1, η2 = η3 =: η,

a1 = a2 = 0, a3 = π, b1 = b2 = b3 = 0.

Substituting these values into the equations (7.25), (7.26), (7.27), (7.28) of Criterion
7 and using the fact that r2 − η2 = −1, we obtain the equation

α2 + β2 =
m(4η2 + 1)

4η3(η2 − 1)3/2
,

which is satisfied for infinitely many values of α and β. Therefore, for any masses
m1 = m2 = m3 =: m > 0, and r, η with r2 − η2 = −1, there are infinitely many
frequencies α and β that correspond to negative elliptic-hyperbolic RE of the form
(11.3). These orbits are neither periodic nor quasiperiodic.

The bodies m2 and m3 move on the same hyperbolic cylinder, namely C2
rη, which

has constant positive curvature, while m1 moves on the degenerate hyperbolic cylin-
der C2

01, which is a geodesic hyperbola, therefore has zero curvature.
A straightforward computation shows that the constants of the angular momen-

tum are
cwx = 2mαr2, cyz = −1− 2βη2, cwy = cwz = cxy = cxz = 0,

which means that the rotation takes place around the origin of the coordinate system
only relative to the wx and yz planes.



Part V

The 2-dimensional case
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Preamble

The goal of Part V is to study some properties of the curved N -body problem on
the surfaces S2 and H2, which are invariant for the equations of motion. We will
focus on polygonal RE for N ≥ 3 as well as on Lagrangian and Eulerian RE for
N = 3. The Lagrangian RE are behind a modest first step towards proving that
space is Euclidean for distances comparable to those of our solar system. We will
show that such orbits exist in the curved case only if the masses are equal. In
Euclidean space they also occur for unequal masses, both in theory and in nature,
such as the approximate equilateral triangles formed by the Sun, Jupiter, and the
Trojan/Greek asteroids. We will end this monograph with extending the formulation
of Saari’s conjecture to the curved N -body problem in the 2-dimensional case and
proving it when the motion of the bodies is restricted to a rotating geodesic.



126



Chapter 12

Polygonal RE

The goal of this chapter is to study polygonal RE in S2 and H2. Since these manifolds
are embedded in R3, we will drop the w coordinate from now on and use an xyz
frame. Given the fact that the dimension is reduced by one, we will not encounter
positive elliptic-elliptic and negative elliptic-hyperbolic RE anymore. So the only
orbits we will deal with from now on are the positive and negative elliptic as well as
the negative hyperbolic RE.

We will first show that FP configurations lying on geodesics of S2 can generate
RE for any nonzero value of the angular frequency. Then we will prove that if the
bodies’ initial configuration is on a great circle of S2, then a RE can be generated
only along that great circle. We will further show that RE formed by regular N -gons
having equal masses at their vertices can also move on non-great circles. Finally we
will prove that this result is also true in H2.

Both in the classical and the curved N -body problem, given the size of a con-
figuration, a RE exists for it, if at all, only for certain angular frequencies, i.e. for
two angular velocities of equal size and opposite signs. The exception from this rule
occurs for RE generated from some FP configurations. Let us prove this fact in S2.

Theorem 4. Consider a nonsingular FP configuration given by the bodies of masses
m1,m2, . . . ,mN > 0, N ≥ 2, that initially lie on a great circle of S2. Then, for every
nonzero angular velocity applied in the plane of the circle, this FP configuration
generates a positive elliptic RE that rotates along that great circle.

Proof. Without loss of generality, we assume that the great circle is the equator
z = 0 and that for some given masses m1,m2, . . . ,mN > 0 there exist α1, α2, . . . , αN
such that

q = (q1,q2, . . . ,qN), qi = (xi, yi, 0), (12.1)
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xi = cos(ωt+ αi), yi = sin(ωt+ αi), i = 1, 2, . . . , N,

is a FP for ω = 0. This configuration can also be interpreted as being q(0), i.e. the
solution q at t = 0 for any ω 6= 0. So we can conclude that

∇qiU(q(0)) = 0, i = 1, 2, . . . , N.

But then, for t = 0, the equations of motion (3.15) reduce to{
ẍi = −(ẋ2i + ẏ2i )xi

ÿi = −(ẋ2i + ẏ2i )yi,
(12.2)

i = 1, 2, . . . , N. Notice, however, that

ẋi = −ω sin(ωt+ αi), ẍi = −ω2 cos(ωt+ αi),

ẏi = −ω cos(ωt+ αi), ÿi = −ω2 sin(ωt+ αi),

therefore ẋ2i + ẏ2i = ω2. Using these expressions, it is easy to see that q given by
(12.1) is a solution of (12.2) for every t. Since ∇qiU(q(0)) = 0, i = 1, 2, . . . , N , it
follows that the gravitational forces are in equilibrium at the initial moment, so no
gravitational forces act on the bodies. Consequently, the rotation imposed by ω 6= 0
makes the system move like a rigid body, so the gravitational forces further remain
in equilibrium, consequently ∇qiU(q(t)) = 0, i = 1, 2, . . . , N , for all t. Therefore q
given by (12.1) satisfies equations (3.15), so it is a positive elliptic RE. This remark
completes the proof.

12.1 Polygonal RE on geodesics of S2

The following result shows that positive elliptic RE generated from FP configurations
given by regular N -gons of equal masses on a great circle of S2 can occur only if
certain conditions are satisfied.

Theorem 5. Consider an odd number of equal bodies, initially at the vertices of a
regular N-gon inscribed in a great circle of S2. Then the only positive elliptic RE
that can be generated from this configuration are the ones that rotate in the plane of
the original great circle.

Proof. Without loss of generality, we can prove this result for the equator z = 0.
Consider therefore a potential positive elliptic RE of the form

q = (q1,q2, . . . ,qN), qi = (xi, yi, zi), (12.3)
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xi = ri cos(ωt+ αi), yi = ri sin(ωt+ αi), zi = ±(1− r2i )1/2,

i = 1, 2, . . . , N, with + taken for zi > 0 and − for zi < 0. The only condition we
impose on this solution is that ri and αi, i = 1, 2, . . . , N , are chosen such that, at
all times, the configuration is a regular N -gon inscribed in a moving great circle of
S2. Therefore the plane of the N -gon can have any angle with, say, the z-axis. This
solution has the derivatives

ẋi = −riω sin(ωt+ αi), ẏi = riω cos(ωt+ αi), żi = 0, i = 1, 2, . . . , N,

ẍi = −riω2 cos(ωt+ αi), ÿi = −riω2 sin(ωt+ αi), z̈i = 0, i = 1, 2, . . . , N.

Then
ẋ2i + ẏ2i + ż2i = r2iω

2, i = 1, 2, . . . , N.

Since any N -gon solution with N odd satisfies the conditions

∇qiU(q) = 0, i = 1, 2, . . . , N,

system (3.15) reduces to
ẍi = −(ẋ2i + ẏ2i + ż2i )xi,

ÿi = −(ẋ2i + ẏ2i + ż2i )yi,

z̈i = −(ẋ2i + ẏ2i + ż2i )zi, i = 1, 2, . . . , N.

Then the substitution of (12.3) into the above system leads to:{
ri(1− r2i )ω2 cos(ωt+ αi) = 0,

ri(1− r2i )ω2 sin(ωt+ αi) = 0, i = 1, 2, . . . , N.

But assuming ω 6= 0, this system is nontrivially satisfied if and only if ri = 0 for
some i ∈ {1, 2, . . . , N} and ri = 1 for the rest of the indices. But given the fact that
the configuration is an N -gon, the former possibility cannot take place, so we obtain
that zi = 0, i = 1, 2, . . . , N. Therefore the bodies must rotate along the equator
z = 0.

12.2 Polygonal RE on non-great circles of S2

Theorem 5 raises the question whether positive elliptic RE given by regular polygons
can rotate on other curves than geodesics. The answer is positive and is given by
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the following result, which we prove in the case of equal masses and N odd, to avoid
singular configurations. However, we expect that the result is true in general for
any nonsingular shape of the polygon and the masses that correspond to such a
configuration.

Theorem 6. Consider the curved N-body problem with equal masses, m1 = m2 =
· · · = mN =: m > 0 in S2. Then, for any N odd, m > 0, and z ∈ (−1, 1), there are
a positive and a negative ω that produce positive elliptic RE for which the bodies are
at the vertices of a regular N-gon rotating in the plane z = constant. If N is even,
this property is still true if we exclude the case when the motion takes place along
the equator z = 0.

Proof. The proof could be presented in general, but for the transparency of the
exposition we will discuss the two possible cases: (i) N odd and (ii) N even.

(i) To simplify the presentation, we further denote the bodies by mi, i = −s,−s+
1, . . . ,−1, 0, 1, . . . , s − 1, s, where s is a positive integer. Without loss of generality
we can further check into system (3.15) a solution candidate of the form (12.3) with
i as above, α−s = − 4sπ

2s+1
, . . . , α−1 = − 2π

2s+1
, α0 = 0, α1 = 2π

2s+1
, . . . , αs = 4sπ

2s+1
,

r := ri, z := zi, and consider only the equations for i = 0. The study of this case
suffices due to the involved symmetry, which yields the same conclusions for any
other value of i.

The equation corresponding to the z0 coordinate takes the form

s∑
j=−s,j 6=0

m(z − k0jz)

(1− k20j)3/2
− r2ω2z = 0,

where k0j = x0xj+y0yj+z0zj = cosαj−z2 cosαj+z
2. Using the fact that r2+z2 = 1,

cosαj = cosα−j, and k0j = k0(−j), this equation becomes

s∑
j=1

2(1− cosαj)

(1− k20j)3/2
=
ω2

m
. (12.4)

Now we need to check whether the equations corresponding to x0 and y0 lead to the
same relationship. In fact, checking for x0, and ignoring y0, suffices due to the same
symmetry reasons invoked earlier or the duality of the trigonometric functions sin
and cos. The substitution of the the above functions into the first equation of (3.15)
leads us to

(r2 − 1)ω2 cosωt =
s∑

j=−s,j 6=0

m[cos(ωt+ αj)− k0j cosωt]

(1− k20j)3/2
.
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A straightforward computation, which uses the fact that r2 + z2 = 1, sinαj =
− sinα−j, cosαj = cosα−j, and k0j = k0(−j), yields the same equation (12.4). Writing
the denominator of equation (12.4) explicitly, we are led to

s∑
j=1

2

(1− cosαj)1/2(1− z2)3/2[2− (1− cosαj)(1− z2)]3/2
=
ω2

m
. (12.5)

The left hand side is always positive, so for any m > 0 and z ∈ (−1, 1) fixed, there
are a positive and a negative ω that satisfy the equation. Therefore the N -gon with
an odd number of sides is a positive elliptic RE.

(ii) To simplify the presentation when n is even, we denote the bodies by mi, i =
−s+ 1, . . . ,−1, 0, 1, . . . , s− 1, s, where s is a positive integer. Without loss of gener-
ality, we can substitute into equations (3.15) a solution candidate of the form (12.3)

with i as above, α−s+1 = (−s+1)π
s

, . . . , α−1 = −π
s
, α0 = 0, α1 = π

s
, . . . , αs−1 = (s−1)π

s
,

αs = π, r := ri, z := zi, and consider as in the previous case only the equations for
i = 0. Then using the fact that k0j = k0(−j), cosαj = cosα−j, and cosπ = −1, a
straightforward computation brings the equation corresponding to z0 to the form

s−1∑
j=1

2(1− cosαj)

(1− k20j)3/2
+

2

(1− k20s)3/2
=
ω2

m
. (12.6)

Using additionally the relations sinαj = − sinα−j and sinπ = 0, we obtain for the
equation corresponding to x0 the same form (12.6), which—for k0j and k0s written
explicitly—becomes

s−1∑
j=1

2

(1− cosαj)1/2(1− z2)3/2[2− (1− cosαj)(1− z2)]3/2

+
1

4z2|z|(1− z2)3/2
=
ω2

m
.

Since the left hand side of this equations is positive and finite, given any m > 0 and
z ∈ (−1, 0) ∪ (0, 1), there are a positive and a negative ω that satisfy it. So except
for the case z = 0, which introduces antipodal singularities, the rotating N -gon with
an even number of sides is a positive elliptic RE.

12.3 Polygonal RE in H2

We will further show that negative elliptic RE, similar to the ones proved in Theorem
6, also exist in H2.
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Theorem 7. Consider the curved N-body problem with equal masses, m1 = m2 =
· · · = mN =: m > 0 in H2. Then, for any m > 0 and z > 1, there are a positive and
a negative ω that produce negative elliptic RE in which the bodies are at the vertices
of a regular N-gon rotating in the plane z = constant.

Proof. The proof works in the same way as for Theorem 6, by considering the cases
N odd and even separately. The only differences are that we replace r with ρ, the
relation r2+z2 = 1 with z2 = ρ2+1, and the denominator (1−k20j)3/2 with (c20j−1)3/2,
wherever it appears, where c0j = −k0j replaces k0j. Unlike in S2, the case N even is
satisfied for all admissible values of z.
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Lagrangian and Eulerian RE

The caseN = 3 presents particular interest in Euclidean space because the equilateral
triangle is a RE for any values of the masses, a property discovered by Joseph Louis
Lagrange in 1772, [100]. We will further show that this is not the case in S2 and
H2, where the positive and negative elliptic Lagrangian RE exist only if the masses
are equal. This conclusion provides a first step towards understanding with the help
of these equations whether space is Euclidean for distances of the order of 10 AU
because Lagrangian orbits of unequal masses show up in our solar system, as for
example the approximate equilateral triangle formed by the Sun, Jupiter, and the
Trojan/Greek asteroids. Following this result, we will prove the existence of positive
elliptic Eulerian RE in S2 and negative elliptic Eulerian RE in H2, i.e. orbits formed
by 3 bodies lying on a rotating geodesic. In the end we will show that the curved
3-body problem in H2 also exhibits negative hyperbolic Eulerian RE, i.e. orbits that
lie on a geodesic that rotates hyperbolically.

13.1 Positive Elliptic Lagrangian RE

We start with a result that refines Theorem 6 in the case N = 3 in S2 by clarifying
exactly when the equilateral triangle of equal masses is a Lagrangian RE.

Proposition 6. Consider the 3-body problem with equal masses, m1 = m2 = m3 =:
m, in S2. Then for any m > 0 and z ∈ (−1, 1), there are a positive and a negative
ω that produce positive elliptic RE in which the bodies are at the vertices of an
equilateral triangle that rotates in the plane z = constant. Moreover, for every ω2/m
there are two values of z that lead to relative equilibria if ω2/m ∈ (8/

√
3,∞) ∪ {3},

three values if ω2/m = 8/
√

3, and four values if ω2/m ∈ (3, 8/
√

3).
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Figure 13.1: The graph of the function f(z) = 8√
3(1+2z2−3z4)3/2 for z ∈ (−1, 1).

Proof. The first part of the statement is a consequence of Theorem 6 for N = 3.
Alternatively, we can substitute into system (3.15) a solution of the form (12.3) with
i = 1, 2, 3, r := r1 = r2 = r3, z = ±(1 − r2)1/2, α1 = 0, α2 = 2π/3, α3 = 4π/3, and
obtain the equation

8√
3(1 + 2z2 − 3z4)3/2

=
ω2

m
. (13.1)

The left hand side is positive for z ∈ (−1, 1) and tends to infinity when z → ±1
(see Figure 13.1). So for any z in this interval and m > 0, there are a positive
and a negative ω for which the above equation is satisfied. A qualitative argument
justifying Figure 13.1 and a straightforward computation also clarify the second part
of the statement.

Remark 13. A result similar to Proposition 6 can be proved for 2 equal masses
that rotate on a non-geodesic circle when the bodies are situated at opposite ends
of a rotating diameter. Then, for m > 0 and z ∈ (−1, 0) ∪ (0, 1), the analogue of
relationship (13.1) is the equation

1

4z2|z|(1− z2)3/2
=
ω2

m
.

The case z = 0 yields no solution because it involves an antipodal singularity.

We have reached now the point when we can decide whether the equilateral
triangle can be a positive elliptic RE in S2 if the masses are not equal. The following
result shows that, unlike in the Euclidean case, the answer is negative when the
bodies move on the sphere in the same Euclidean plane.
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Proposition 7. In the 3-body problem in S2, if the bodies m1,m2,m3 > 0 are initially
at the vertices of an equilateral triangle in the plane z = constant for some z ∈
(−1, 1), then there are initial velocities that lead to a positive elliptic RE in which
the triangle rotates in its own plane if and only if m1 = m2 = m3.

Proof. The implication which shows that if m1 = m2 = m3, the rotating equilateral
triangle is a RE, follows from Proposition 6. To prove the other implication, we
substitute into equations (3.15) a solution of the form (12.3) with i = 1, 2, 3, r :=
r1, r2, r3, z := z1 = z2 = z3 = ±(1− r2)1/2, and α1 = 0, α2 = 2π/3, α3 = 4π/3. The
computations then lead to the system

m1 +m2 = γω2

m2 +m3 = γω2

m3 +m1 = γω2,

(13.2)

where γ =
√

3(1 + 2z2 − 3z4)3/2/4. But for any z = constant in the interval (−1, 1),
the above system has a solution only for m1 = m2 = m3 = γω2/2. Therefore the
masses must be equal.

The next result leads to the conclusion that Lagrangian solutions in S2 can take
place only in Euclidean planes of R3. This property is known to be true in the
Euclidean case for all RE, [100], but Wintner’s proof doesn’t work in our case because
it uses the integral of the center of mass. Most importantly, our result also implies
that Lagrangian orbits with unequal masses cannot exist in S2.

Theorem 8. For all positive elliptic Lagrangian RE of the curved 3-body problem in
S2, the masses m1,m2,m3 > 0 have to rotate on the same circle, whose plane must
be orthogonal to the rotation axis, and therefore m1 = m2 = m3.

Proof. Consider a positive elliptic Lagrangian RE in S2 with bodies m1,m2,m3 > 0.
This means that the solution must have the form

x1 = r1 cosωt, y1 = r1 sinωt, z1 = (1− r21)1/2,
x2 = r2 cos(ωt+ a), y2 = r2 sin(ωt+ a), z2 = (1− r22)1/2,
x3 = r3 cos(ωt+ b), y3 = r3 sin(ωt+ b), z3 = (1− r23)1/2,

with b > a > 0. In other words, we assume that this equilateral triangle forms a
constant angle with the rotation axis, z, such that each body describes its own circle
on S2. But for such a solution to exist, the total angular momentum must be either
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zero or is given by a constant vector parallel with the z axis. Otherwise this vector
rotates around the z axis, in violation of the total angular-momentum integrals. This
means that at least the first two components of the vector

∑3
i=1miqi × q̇i must be

zero, where × represents the cross product. A straightforward computation shows
this constraint to lead to the condition

m1r1z1 sinωt+m2r2z2 sin(ωt+ a) +m3r3z3 sin(ωt+ b) = 0,

assuming that ω 6= 0. For t = 0, this equation becomes

m2r2z2 sin a = −m3r3z3 sin b. (13.3)

Using now the fact that

α := x1x2 + y1y2 + z1z2 = x1x3 + y1y3 + z1z3 = x3x2 + y3y2 + z3z2

is constant because the triangle is equilateral, the equation of the system of motion
corresponding to ÿ1 takes the form

Kr1(r
2
1 − 1)ω2 sinωt = m2r2 sin(ωt+ a) +m3r3 sin(ωt+ b),

where K is a nonzero constant. For t = 0, this equation becomes

m2r2 sin a = −m3r3 sin b. (13.4)

Dividing (13.3) by (13.4), we obtain that z2 = z3. Similarly, we can show that z1 =
z2 = z3, therefore the motion must take place in the same Euclidean plane on a circle
orthogonal to the rotation axis. Proposition 7 then implies that m1 = m2 = m3.

13.2 Negative Elliptic Lagrangian RE

Our next result is the analogue in H2 of Proposition 6.

Proposition 8. Consider the curved 3-body problem with equal masses, m1 = m2 =
m3 =: m, in H2. Then for any m > 0 and z > 1, there are a positive and a
negative ω that produce negative elliptic RE in which the bodies are at the vertices
of an equilateral triangle that rotates in the plane z = constant. Moreover, for every
ω2/m > 0 there is a unique z > 1 that satisfies this property.
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Proof. Substituting in system (3.16) a solution of the form

xi = ρ cos(ωt+ αi), yi = ρ sin(ωt+ αi), zi = z, (13.5)

with z =
√
ρ2 + 1, α1 = 0, α2 = 2π/3, α3 = 4π/3, we are led to the equation

8√
3(3z4 − 2z2 − 1)3/2

=
ω2

m
. (13.6)

The left hand side is positive for z > 1, tends to infinity when z → 1, and tends to
zero when z →∞. So for any z in this interval and m > 0, there are a positive and
a negative ω for which the above equation is satisfied.

As we previously proved, an equilateral triangle rotating in its own plane forms
a positive elliptic RE in S2 only if the 3 masses lying at its vertices are equal. The
same result is true in H2, as we will further show.

Proposition 9. In the curved 3-body problem in H2, if the bodies m1,m2,m3 > 0
are initially at the vertices of an equilateral triangle in the plane z = constant for
some z > 1, then there are initial velocities that lead to a negative elliptic RE in
which the triangle rotates in its own plane if and only if m1 = m2 = m3.

Proof. The implication which shows that if m1 = m2 = m3, the rotating equilat-
eral triangle is a negative elliptic RE, follows from Theorem 7. To prove the other
implication, we substitute into equations (3.16) a solution of the form (13.5) with
i = 1, 2, 3, ρ := ρ1, ρ2, ρ3, z := z1 = z2 = z3 = (ρ2 + 1)1/2, and α1 = 0, α2 =
2π/3, α3 = 4π/3. The computations then lead to the system

m1 +m2 = ζω2

m2 +m3 = ζω2

m3 +m1 = ζω2,

(13.7)

where ζ =
√

3(3z4 − 2z2 − 1)3/2/4. But for any z = constant with z > 1, the above
system has a solution only for m1 = m2 = m3 = ζω2/2. Therefore the masses must
be equal.

The following result perfectly resembles Theorem 8. The proof works the same
way, by just replacing the circular trigonometric functions with hyperbolic ones and
changing the signs to reflect the equations of motion in H2. This result finalizes
our argument that space is Euclidean for distances comparable to those of our solar
system.
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Theorem 9. For all negative elliptic Lagrangian RE of the curved 3-body problem in
H2, the masses m1,m2,m3 > 0 have to rotate on the same circle, whose plane must
be orthogonal to the rotation axis, and therefore m1 = m2 = m3.

13.3 Positive Elliptic Eulerian RE

It is now natural to ask whether positive elliptic RE in which the bodies lie on a
rotating geodesic exist in S2, since—as Theorem 5 shows—they cannot be generated
from regular N -gons. The answer in the case N = 3 of equal masses is given by the
following result.

Theorem 10. Consider the curved 3-body problem in S2 with equal masses, m1 =
m2 = m3 =: m. Fix the body m1 at (0, 0, 1) and the bodies m2 and m3 at the
opposite ends of a diameter on the circle z = constant. Then, for any m > 0 and
z ∈ (−0.5, 0) ∪ (0, 1), there are a positive and a negative ω that produce positive
elliptic Eulerian RE.

Proof. Substituting into the equations of motion (3.15) a solution of the form

x1 = 0, y1 = 0, z1 = 1,

x2 = r cosωt, y2 = r sinωt, z2 = z,

x3 = r cos(ωt+ π), y3 = r sin(ωt+ π), z3 = z,

with r ≥ 0 and z constants satisfying r2 + z2 = 1, leads either to identities or to the
algebraic equation

4z + |z|−1

4z2(1− z2)3/2
=
ω2

m
. (13.8)

The function on the left hand side is negative for z ∈ (−1,−0.5), takes the value 0
at z = −0.5, is positive for z ∈ (−0.5, 0)∪ (0, 1), and undefined at z = 0. Therefore,
for every m > 0 and z ∈ (−0.5, 0)∪ (0, 1), there are a positive and a negative ω that
lead to an Eulerian RE. For z = −0.5, we recover the equilateral FP. The sign of ω
determines the sense of rotation.

Remark 14. A qualitative argument shows that for every ω2/m ∈ (0, 64
√

15/45),
there are three values of z that satisfy relation (13.8): one in the interval (−0.5, 0)
and two in the interval (0, 1) (see Figure 13.2).
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Figure 13.2: The graph of the function f(z) = 4z+|z|−1

4z2(1−z2)3/2 in the intervals (−1, 0) and

(0, 1), respectively.

Remark 15. If in Theorem 10 we take the masses m1 =: m and m2 = m3 =: M ,
the analogue of equation (13.8) is

4mz +M |z|−1

4z2(1− z2)3/2
=
ω2

m
.

Then solutions exist for any z ∈ (−
√
M/m/2, 0)∪ (0, 1). This means that there are

no FP for M ≥ 4m, a fact that agrees with Theorem 1 of [36], so positive elliptic
Eulerian RE exist for such masses for all z ∈ (−1, 0) ∪ (0, 1).

13.4 Negative Elliptic Eulerian RE

We will further prove the H2 analogue of Theorem 10.

Theorem 11. Consider the curved 3-body problem in H2 with masses m1 = m2 =
m3 =: m. Initially fix the body m1 at the “north pole” (0, 0, 1) and the bodies m2

and m3 at the opposite ends of a diameter on the circle z = constant. Then, for
any m > 0 and z > 1, there are a positive and a negative ω, which produce negative
elliptic Eulerian RE that rotate around the z axis.

Proof. Substituting into the equations of motion (3.16) a solution of the form

x1 = 0, y1 = 0, z1 = 1,

x2 = ρ cosωt, y2 = ρ sinωt, z2 = z,

x3 = ρ cos(ωt+ π), y3 = ρ sin(ωt+ π), z3 = z,
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Figure 13.3: The graph of the function f(z) = 4z2+1
4z3(z2−1)3/2 for z > 1.

where ρ ≥ 0 and z ≥ 1 are constants satisfying z2 = ρ2 + 1, leads either to identities
or to the algebraic equation

4z2 + 1

4z3(z2 − 1)3/2
=
ω2

m
. (13.9)

The function on the left hand side is positive for z > 1. Therefore, for every m > 0
and z > 1, there are a positive and a negative ω that lead to a negative elliptic
Eulerian RE. The sign of ω determines the sense of rotation.

Remark 16. A qualitative argument shows that for every ω2/m > 0, there is exactly
one z > 1 that satisfies equation (13.9) (see Figure 13.3).

13.5 Negative Hyperbolic RE

In this section, we will prove a negative result concerning the existence of negative
hyperbolic RE moving along geodesics of H2. More precisely, we will show that,
unlike in S2, there are no orbits for which the bodies chase each other along a geodesic
and maintain the same initial distances for all times.

Theorem 12. Along any fixed geodesic, the curved N-body problem in H2 has no
negative hyperbolic RE.

Proof. Without loss of generality, we can restrict our proof to the geodesic x = 0.
We will show that there are no m1,m2, . . . ,mN > 0 such that system (3.16) has
solutions of the form

q = (q1,q2, . . . ,qN), qi = (xi, yi, zi), (13.10)
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xi = 0, yi = sinh(ωt+ αi), zi = cosh(ωt+ αi), αi ∈ R, i = 1, 2, . . . , N.

After substitution, the equation corresponding to the yi coordinate becomes

n∑
j=1,j 6=i

mj[sinh(ωt+ αj)− cosh(αi − αj) sinh(ωt+ αi)]

| sinh(αi − αj)|3
= 0. (13.11)

Assume that αi > αj for all j 6= i and ω > 0. Let αM(i) be the maximum of all αj
with j 6= i. Then for t ∈ (−αM(i)/ω,−αi/ω), we have that sinh(αt + αj) < 0 for
all j 6= i and sinh(αt + αi) > 0. Therefore the left hand side of equation (13.11) is
negative in this interval, so the identity cannot take place for all t ∈ R. It follows
that a necessary condition to satisfy equation (13.11) is that αM(i) ≥ αi. But this
inequality must be verified for all i = 1, 2, . . . , N , a fact that can be written as:

α1 ≥ α2 or α1 ≥ α3 or . . . or α1 ≥ αN ,

α2 ≥ α1 or α2 ≥ α3 or . . . or α2 ≥ αN ,

. . .

αN ≥ α1 or αN ≥ α2 or . . . or αN ≥ αN−1.

The constants α1, α2, . . . , αN must satisfy one inequality from each of the above lines.
But every possible choice implies the existence of at least one i and one j with i 6= j
and αi = αj. For those i and j, we have sinh(αi − αj) = 0, so equation (13.11)
is undefined, therefore equations (3.16) cannot have solutions of the form (13.10).
Consequently, negative hyperbolic RE do not exist along the geodesic x = 0.

13.6 Negative hyperbolic Eulerian RE

Theorem 12 raises the question whether negative hyperbolic RE do exist at all in H2

(their existence in H3 was proved in Chapter 11). For 3 equal masses, the answer
is given by the following result, which shows that, in H2, 3 bodies can move along
hyperbolas lying in parallel planes of R3, maintaining the initial distances among
themselves and remaining on the same geodesic (which rotates hyperbolically). Such
orbits resemble fighter planes flying in formation, rather than celestial bodies moving
under the action of gravity alone.

Theorem 13. In the curved 3-body problem of equal masses, m1 = m2 = m3 =: m,
in H2, for any given m > 0 and x 6= 0, there exist a positive and a negative ω that
lead to negative hyperbolic Eulerian RE.
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Proof. We will show that qi(t) = (xi(t), yi(t), zi(t)), i = 1, 2, 3, is a negative hyper-
bolic RE of system (3.16) for

x1 = 0, y1 = sinhωt, z1 = coshωt,

x2 = x, y2 = ρ sinhωt, z2 = ρ coshωt,

x3 = −x, y3 = ρ sinhωt, z3 = ρ coshωt,

where ρ = (1 + x2)1/2. Notice first that

x1x2 + y1y2 − z1z2 = x1x3 + y1y3 − z1z3 = −ρ,

x2x3 + y2y3 − z2z3 = −2x2 − 1,

ẋ21 + ẏ21 − ż21 = ω2, ẋ22 + ẏ22 − ż22 = ẋ23 + ẏ23 − ż23 = ρ2ω2.

Substituting the above coordinates and expressions into equations (3.16), we are led
either to identities or to the equation

4x2 + 5

4x2|x|(x2 + 1)3/2
=
ω2

m
, (13.12)

from which the statement of the theorem follows.

Remark 17. The left hand side of equation (13.12) is undefined for x = 0, but it
tends to infinity when x → 0 and to 0 when x → ±∞. This means that for each
ω2/m > 0 there are exactly one positive and one negative x (equal in absolute value),
which satisfy the equation.

Remark 18. Theorem 13 is also true if, say, m1 =: m > 0 and m2 = m3 =: M > 0,
with m 6= M . Then the analogue of equation (13.12) is

m

x2|x|(x2 + 1)1/2
+

M

4x2|x|(x2 + 1)3/2
= ω2,

and it is obvious that for any m,M > 0 and x 6= 0, there are a positive and negative
ω satisfying the above equation.

Remark 19. Theorem 13 also works for 2 bodies of equal masses, m1 = m2 =: m >
0, of coordinates

x1 = −x2 = x, y1 = y2 = ρ sinhωt, z1 = z2 = ρ coshωt,

where x is a positive constant and ρ = (x2 + 1)3/2. Then the analogue of equation
(13.12) is

1

4x2|x|(x2 + 1)3/2
=
ω2

m
,

which obviously supports a statement similar to the one in Theorem 13.



Chapter 14

Saari’s conjecture

In 1970, Don Saari conjectured that solutions of the classical N -body problem with
constant moment of inertia are relative equilibria, [85], [86]. This statement is sur-
prising since one does not expect that such a weak constraint would force the bodies
to maintain constant mutual distances all along the motion. Perhaps this is also the
reason why the conjecture led to several wrong attempts at proving it, some of which
were even published, [79], [80].

The case N = 3 was finally solved by Rick Moeckel in 2005, [76], and the collinear
case, when all the bodies are on a rotating line, for any potential that depends only
on the mutual distances, was settled in [34] in 2006. The problem is open in general.
A homographic version of the conjecture was also stated, part of which was solved
in the case N = 3, [31]. A complete proof for N = 3 in the case of equal masses was
recently announced, [47].

14.1 Extension of Saari’s conjecture to S2 and H2

The moment of inertia is defined in classical Newtonian celestial mechanics as

1

2

N∑
i=1

miqi · qi,

a function that gives a crude measure of the bodies’ distribution in space. But
this definition makes little sense in S2 and H2 because σqi � qi = 1 for every i =
1, 2, . . . , N . To avoid this problem, we adopt the standard point of view used in
physics, and define the moment of inertia in S2 and H2 about the direction of the
angular momentum. But while fixing an axis in S2 does not restrain generality, the
symmetries of H2 makes us distinguish between two cases.
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Indeed, in S2 we can assume that the rotation takes place around the z axis, and
thus define the moment of inertia as

I :=
N∑
i=1

mi(x
2
i + y2i ). (14.1)

In H2, all possibilities can be reduced via suitable isometric transformations to:
(i) the symmetry about the z axis, when the moment of inertia takes the same

form (14.1), and
(ii) the symmetry about the x axis, which corresponds to hyperbolic rotations,

when—in agreement with the definition of the Lorentz product—we define the mo-
ment of inertia as

J :=
N∑
i=1

mi(y
2
i − z2i ). (14.2)

The case of the negative parabolic rotations will not be considered because there are
no such RE.

These definitions allow us to formulate the following conjecture:

Saari’s conjecture in S2 and H2. For the curved N-body problem in S2 and H2,
every solution that has a constant moment of inertia about the direction of the angular
momentum is either an elliptic relative equilibrium, in S2 or H2, or a hyperbolic
relative equilibrium in H2.

14.2 The proof in the geodesic case

By generalizing an idea we used in the Euclidean case, we can now settle this con-
jecture when the bodies undergo another constraint. More precisely, we will prove
the following result.

Theorem 14. For the curved N-body problem in S2 and H2, every solution with
constant moment of inertia about the direction of the angular momentum for which
the bodies remain aligned along a geodesic that rotates elliptically in S2 or H2, or
hyperbolically in H2, is either an elliptic relative equilibrium, in S2 or H2, or a
hyperbolic relative equilibrium in H2.

Proof. Let us first prove the case in which I is constant in S2 and H2, i.e. when the
geodesic rotates elliptically. According to the above definition of I, we can assume
without loss of generality that the geodesic passes through the point (0, 0, 1) and



14.2 The proof in the geodesic case 145

rotates about the z-axis with angular velocity ω(t) 6= 0. The angular momentum of
each body is Li = miqi ⊗ q̇i, so its derivative with respect to t takes the form

L̇i = miq̇i ⊗ q̇i +miqi ⊗ q̈i = miqi ⊗ ∇̃qiU(q)−miq̇
2
iqi ⊗ qi =

miqi ⊗ ∇̃qiU(q),

with κ = 1 in S2 and κ = −1 in H2. Here⊗ is a general notation for the cross product,
which means the standard cross product in R3, for positive curvature, and the cross
product of the Minkowski space R2,1 (i.e. the third component having the opposite
sign of the standard cross product’s third component), for negative curvature. Since

qi�∇̃qiU(q) = 0, it follows that ∇̃qiUκ(q) is either zero or orthogonal to qi. (Recall
that orthogonality here is meant in terms of the standard inner product because,
both in S2 and H2, qi � ∇̃qiU(q) = qi · ∇qiU(q).) If ∇̃qiU(q) = 0, then L̇i = 0, so
L̇zi = 0.

Assume now that ∇̃qiU(q) is orthogonal to qi. Since all the particles are on a
geodesic, their corresponding position vectors are in the same plane, therefore any
linear combination of them is in this plane, so ∇̃qiU(q) is in the same plane. Thus

∇̃qiU(q) and qi are in a plane orthogonal to the xy plane. It follows that L̇i is
parallel to the xy plane and orthogonal to the z axis. Thus the z component, L̇zi , of

L̇i is 0, the same conclusion we obtained in the case ∇̃qiU(q) = 0. Consequently,
Lzi = ci, where ci is a constant.

Let us also remark that since the angular momentum and angular velocity vectors
are parallel to the z axis, Lzi = Iiω(t), where Ii = mi(x

2
i +y2i ) is the moment of inertia

of the body mi about the z-axis. Since the total moment of inertia, I, is constant,
and ω(t) is the same for all bodies because they belong to the same rotating geodesic,
it follows that

N∑
i=1

Iiω(t) = Iω(t) = c,

where c is a constant. Consequently, ω is a constant vector.
Moreover, since Lzi = ci, it follows that Iiω(t) = ci. Then every Ii is constant,

and so is every zi, i = 1, 2, . . . , N . Hence each body of mass mi has a constant
zi-coordinate, and all bodies rotate with the same constant angular velocity around
the z-axis, properties that agree with our definition of an elliptic RE.

We now prove the case J = constant, i.e. when the geodesic rotates hyperbolically
in H2. According to the definition of J, we can assume that the bodies are on a
moving geodesic whose plane contains the x axis for all time and whose vertex slides
along the geodesic hyperbola x = 0. (This moving geodesic hyperbola can be also
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visualized as the intersection between the sheet z > 0 of the hyperbolic sphere and
the plane containing the x axis and rotating about it. For an instant, this plane also
contains the z axis.)

The angular momentum of each body is Li = miqi�q̇i, where � denotes the cross
product in the Minkowski space R2,1, so we can show as before that its derivative
takes the form L̇i = miqi � ∇qiU(q), where ∇ = (∂x, ∂y,−∂z). Again, ∇qiU(q) is
either zero or orthogonal to qi. In the former case we can draw the same conclusion
as earlier, that L̇i = 0, so in particular L̇xi = 0. In the latter case, qi and ∇qiU(q)
are in the plane of the moving hyperbola, so their cross product, qi � ∇qiU(q), is
orthogonal to the x axis, and therefore L̇xi = 0. Thus L̇xi = 0 in either case.

From here the proof proceeds as before by replacing I with J and the z axis with
the x axis, and noticing that Lxi = Jiω(t), to show that every mi has a constant xi
coordinate. In other words, each body is moving along a (in general non-geodesic)
hyperbola given by the intersection of the hyperboloid with a plane orthogonal to the
x axis. These facts, in combination with the sliding of the moving geodesic hyperbola
along the fixed geodesic hyperbola x = 0, are in agreement with our definition of a
hyperbolic relative equilibrium.
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[17] A. Chenciner and H. Jiménez-Pérez, Angular momentum and Horn’s problem,
arXiv:1110.5030v2.

[18] H.S.M. Coxeter, Regular polytopes, Methuen & Co., London, 1948.

[19] H.S.M. Coxeter, Introduction to Geometry, 2nd edition, John Wiley & Sons,
New York, 1969.

[20] T. Damour, M. Soffel, and C. Xu, General-relativistic celestial mechanics. I.
Method and definition of reference systems, Phys. Rev. D 43, 10 (1991), 3273-
3307.

[21] T. Damour, M. Soffel, and C. Xu, General-relativistic celestial mechanics. II.
Translational equations of motion, Phys. Rev. D 45, 4 (1992), 1017-1044.

[22] T. Damour, M. Soffel, and C. Xu, General-relativistic celestial mechanics. III.
Rotational equations of motion, Phys. Rev. D 47, 8 (1993), 3124-3135.

[23] T. Damour, M. Soffel, and C. Xu, General-relativistic celestial mechanics. IV.
Theory of satellite motion, Phys. Rev. D 49, 2 (1994), 618-635.
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[50] L. Garćıa Gutiérrez and M. Santander, Levi-Civita regularization and geodesic
flows for the ‘curved’ Kepler problem, arXiv:0707.3810v2, 2007.

[51] G.B. Halsted, Gauss and non-Euclidean geometry, Amer. Math. Monthly 7, 11
(1900), 247-252.



BIBLIOGRAPHY 151

[52] J. Hano and K. Nomizu, On isometric immersions of the hyperbolic plane into
the Lorentz-Minkowski space and the Monge-Ampère equation of certain type,
Math. Ann. 262 (1983), 245-253.
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