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THE MASSES IN A SYMMETRIC CENTERED SOLUTION 
OF THE n-BODY PROBLEM 
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(Communicated by George C. Papanicolaou) 

ABSTRACT. We prove that if a planar solution of the n-body problem has a 
symmetry axis, fixed with respect to the considered frame, and the center of 
mass of the particle system lies on this axis during the motion, then the sym- 
metric masses must be equal. We also show that the set of initial conditions 
leading to symmetric solutions has measure zero and is nowhere dense relative 
to the set of all initial conditions that define solutions in the space. 

1. INTRODUCTION 

We saw recently (see [4]) that if a noncollinear solution of the four body 
problem has a symmetry axis, then the center of mass of the particle system 
lies on this axis and the symmetric masses are equal. Following the proof of 
that paper it is easy to see that the property remains true for a solution of the 
n-body problem having two pairs of symmetric masses relative to an axis while 
the other n - 4 particles belong, for all time, to this axis. Unfortunately, the 
method developed there cannot be used for more than two pairs of symmetric 
particles. 

We will give here a different wav to treat this problem in the case of a planar 
solution with any number of symmetric bodies but imposing the restriction that 
the baricenter of the particle system lies (at least for an open interval of time) 
on the symmetry axis. Such a solution will be called symmetric centered. It 
is actually not known (excepting the particular case with only two symmetric 
pairs-discussed above) if any symmetric solution with respect to an axis is 
always symmetric centered, but this property might be true. Anyway, the author 
doesn't know of any proof of this fact. 

It will be shown that if a planar solution of the n-body problem leads to a 
motion that has at least one pair of symmetric particles relative to a symme- 
try axis, the other particles and the center of mass of the system belonging to 
the axis, then the symmetric particles have equal masses. In order to perform 
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the proof we will also see that along a nonsymmetric solution, the set of time 
moments when symmetric configurations occur is formed by isolated points. 

Finally we prove that the set of initial conditions leading to symmetric cen- 
tered solutions is of measure zero and nowhere dense relative to the set of all 

2 initial conditions that define solutions in R . This means that such solutions 
are improbable in the sense that the set of initial conditions leading to them is 
poor from the measure theory and topological point of view. 

2. DEFINITIONS AND CRITERIA 

The equations of motion of the n-body problem, in an arbitrary fixed frame 
in R , are 

-1 
j n (1) q1=mi pi, i=1,n, 

Pi OjU(q), i-l ,n , 

where qi = (qJ1, q) E R2, p = Mi i = 1, n are the position vectors and 
momenta, 

2n 
U: Rn- A R+, U(q)= mimj/lqi -qjl 

1<i<j<n 

is the potential function (- U(q) being the potential energy) of the system, 

A= U {q=(q1j,..,q,)ER 2fljqi = qj} 
l<i<j<n 

represents the collision set, is the Euclidean norm, Oi denotes the ith 
gradient and mi > 0, i = 1, n are the masses of the n particles. 

The standard results of the theory of differential equations ensure, for given 
initial conditions (q, p)(0) E (R 2n - A) x R 2n, the existence and uniqueness of 
an analytic solution (q, p) of the Equations (1), defined on a maximal interval 
(tF, t+), -oo < t < 0 < t+ < +oo. If t+ (or t ) is finite, then the solution 
is said to experience a singularity at this moment. 

Without loss of generality we will study the Equations (1) restricted to the 
invariant set Q x P, where 

Q= {qREnR j Emiqi = O} and P= {PER 2nI Pi = O} 

which also means that the origin of the frame is considered in the baricenter of 
the particle system. This invariance is a consequence of the center of mass and 
momenta first integrals. 

Consider (q, p) to be a solution of the Equations (1) and let k E N, 1 < 

k < n/2. Denote 
U = 

(Ul,* Un) 1 1 
~~~22 2 

where u2i-1 = q2i-I - q2iI U2i = q2i-1 + q2i I = 1, k, and uj := qj , j = 
2k + 1 , n. 
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Definition 1. A solution (q, p) of the Equations (1), defined on (t , t+), is 
called symmetric centered, if there exists k E N, 1 < k < n/2, such that 

u(t) = O, vt E (t ,t+) 

where the bodies are, eventually, renumbered. 

A general example (and thus the proof of the existence) of a symmetric cen- 
tered solution in the n-body problem with equal symmetric masses is given by 
Wintner [6]. 

Since u is analytic the following result becomes obvious using the identity 
theorem of analytic functions. 

Theorem 2. Let (q, p) be a solution of the Equations (1), defined on a maximal 
interval (t-, t+), consider k E N, 1 < k < n/2, the corresponding u, and 
denote 

T = {t E (t_ , t+)1*0t = O}. 

If T has an accumulation point in (t, t+) then the solution is symmetric 
centered. 

An important consequence of this theorem is the following criterion. 

Corollary 3. Let (q, p) be a solution of the Equations (1) and k E N, 1 < k < 

n/2, such that the corresponding u fulfills the conditions 

u(v) (0) = O, Vvo E N. 

Then the solution is symmetric centered. 

Proof. Since u(t) = ?%0(l1/v!)u(v)(O)tv for t in a sufficiently small interval 
containing 0, it yields that u = 0 on this interval and, by Theorem 2, the 
conclusion follows. 

3. THE MASSES IN A SYMMETRIC CENTERED SOLUTION 

Let's now state the main result of our paper 

Theorem 4. In a symmetric centered solution of the n-body problem the sym- 
metric bodies have equal masses. 

In order to perform the proof consider Mi to be the intersection point of 
the straight line through mi that is perpendicular on the symmetry axis, and 
denote: 

a; := OMi and xi := miPi 
where Pi is the point of the plane where the particle mi lies. Then, obviously 

qi = a; +xi, i= 1, n. 

Since the Equations (1) are restricted to the invariant set Q x P, for a sym- 
metric centered solution of the Equations (1) we have 

n 

Z mi(a; + xi) = 0. 
i=l 
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As xi = 0 i = 2k + 1, n and x2i11 +x2= 0, i = 1, k, it follows that 

n k 

E mia1 + E(M2i- M2dX2i = 0. 
i=l i=1 

Observe that the vectors ai, i = 1, n, belong to the symmetry axis and the 
vectors x2;, i = 1, k, are perpendicular on it. The above relation can therefore 
be fulfilled if and only if each of the two sums vanishes. Interesting for our 
purpose is the second one: 

k 

(2) Z(m22i1 - m2d)X2i = 0. 
i=1 

The idea of the proof is to show that relation (2) can be fulfilled for all 
symmetric centered solutions only if m2iI1 = Mi2i, i = 1, k. 

Let's suppose that m2in1 7$ M2i for every i E {1, ... , k}. Since x2;, i = 

1, k, are collinear vectors, relation (2) is an equality between real numbers, 
where x2i, i = 1, k, have all the same sign and therefore the expressions 

m2i_1 - m2i, i = 1, k, cannot have all the same sign. 
Consider a partition {A, B} of the set { 1,... , k} such that 

(m2i11 - m2d)x2i > 01 for i E A, 

and 

(m2j1i - m2j)x2j < 0, for j E B. 

It follows that we can write relation (2) as 

(3) (M2i-I1 - M2d)x2i + Z(M2j_1 - IM2j)x2j = 0. 
iEA jEB 

In case A = 0 or B = 0 we have m2n1 - m2i, Vi = 1 ,k, and the theorem 
is proved. Let's therefore suppose that A 5$ 0 and B 5$ 0. We will show that 
there exist symmetric centered solutions of the Equations (1) that do not fulfill 
relation (3) all along the motion. 

Remark. It is obvious that to each (q, p)(0) there corresponds a unique (q, qi)(0) 
and vice versa. We will therefore talk sometimes, for expository reasons, about 
(q, q)(0) instead of (q, p)(0). 

In order to reach our goal consider the set 

S = {(q, q)(0)13k E N, 1 < k < n/2 such that u(v)(0) = 0, Vv E N}. 

Observe that every u(v)(0), v E N, is constructed using only q(0) and q(0). 
By Corollary 3, every r := (q, q)(0) E S leads to a symmetric centered solu- 

tion (q, q) of the Equations (1). If r := (q1, .. , qn, '1, 
.1 

, qn)(0)I denote 
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The following result expresses the fact that if initial conditions, leading to a 
symmetric centered solution, are given and if we change simultaneously (con- 
serving the symmetry) the magnitude or/and the sense of the velocities of two 
symmetric particles, without changing the direction, then the new initial condi- 
tions also lead to a symmetric centered solution. 

Lemma 5. If r E S then r2i- 1' 2i E S, Vi = 1 , k, Vy E R. 

Proof. Let u correspond to r and u to r2i- 12i. Then, obviously, u(O) = 
ui(O) = 0. Also observe that 

u5(O) = ( 4 * li- I1-q ) 1) Y (42 1 + 42i )1***) (?) 

Since ui(O) = 0 it follows that 

(4 i-I - 41i)(0) = (W2i-1 + q2 )(O) = 0 

and thus ii(O) = 0. Analogously, using the fact that u(v)(0) = 0, Vv > 2, we 
obtain j(v)(O) = 0, Vv > 2, and our lemma is proved. 

Let's now state a result which shows that a particle of the n-body system, 
having a nonzero initial velocity, firstly moves on the direction given by the 
velocity vector. 

Proposition 6. Consider (q, q)(0) E (R - A) x R2n to be initial conditions of 
the Equations (1) and (q, p) the corresponding solution, defined on a maximal 
interval (t-, t+). Choose a particle mi and consider a fixed straight line Fi 
through mi at t = 0 but such that the velocity vector 4i(O) $& 0 has not Fi as 
support line. Then there exists t* > 0, sufficiently small, such that the particle 
mi belongs, at t = t*, to the half-plane containing 4j(O). 
Proof. Since for every t > 0 there exists Tt E (0, t) such that 

qi(t) = qi(O) + ji(O)t + (1/2)qi(Tt)t2, 

and since we can always choose an interval (0, t) where the motion (and con- 
sequently qi) is bounded, the conclusion follows for t* > 0, sufficiently small. 

Consider now (q, qj)(0) E S. Using the property of Lemma 5 a finite number 
of times, we can obtain (q, q)(O) E S with q(0) suitably choosen such that, by 
Proposition 6, 

(m2i- I- m2d)x2i(t*) > (M2i1I - m2d)x2i(0), Vi E A, 

and 

2j- - m2j)x2j(t*) > (M2j1I - m2j)x2j(0), Vj E B, 
which means that relation (3) fails for the corresponding solution (q, p) at time 
t* . Therefore, for at least one i E { 1, . .. , k}, we have m2i- 1 = Mi2i . Iterating 
the above process, after a finite number of steps, we obtain 

m2i- I= m2i for all i e {1, ..., k} 

and Theorem 4 is proved. 



1084 F. N. DIACU 

Remark. Apparently this proof does not make obvious that dynamics is es- 
sential. Actually, relation (3) is derived from the fact that the solutions are 
restricted to the invariant set Q x P, restriction which is possible by the ex- 
istence of the momenta and center of mass integrals. These first integrals are 
clearly consequences of the dynamics (even for the more general attraction law 
of the inverse (a + 1)-power of the distance, with a > 0) . Also observe that for 
n = 4 the equality of the symmetric masses follows directly from the equations 
of motion. We have seen in [4] that this fact can be proved (also in the spatial 
problem) without having to impose the condition that the center of mass of the 
system lies on the symmetry axis. Hitherto we could not extend this method to 
the general case and it seems that a direct algebraic attack on the equations of 
motion is unsucessful even in the symmetric centered case. 

4. IMPROBABILITY OF SYMMETRIC SOLUTIONS 

In some previous papers (see [1, 2, 3, 5]) we have studied the sets of initial 
conditions leading to some special solutions of the n-body problem (rectilinear, 
collinear, flat, syzygy) from the measure theory and topological point of view. 
Excepting the set of initial conditions leading to syzygy solutions in the planar 
3-body problem (which is nonvoid and open) all the others are of measure zero 
and nowhere dense. Using the same principle we will prove the following result 
that actually states that symmetric centered solutions are very improbable. 

Theorem 7. The set D of initial conditions leading to symmetric centered solu- 
tions in the planar n-body problem (general) measure zero and nowhere dense 
relative to the set (R - A) x R2n (with the induced topology) of all initial con- 
ditions that define solutions in the considered plane. 
Proof. In order to prove the first part observe that 

u(O) = u(0) = O 

represents 2n scalar, independent relations that must be fulfilled by the initial 
conditions leading to a symmetric centered solution. Thus the dimension of D 
in (R2n - A) x R2n (which dimension is 4n, see [1]) is at most 4n - 2n = 2n 
and the conclusion concerning the measure theory point of view follows. 

Suppose now that intD $& 0 . Since intD is open, it follows that there exists 
another open set V, such that V c intD c D. As D c D but D ? D (because 
if this is not the case then D = D and using the fact that V = intV c D = D 
it would follow that D is not of measure zero, contradicting the above proof), 
the existence of some s = (q, p)(0) G D such that s 0 D, follows. Therefore 
the corresponding solution of the Equations (1), defined on (t, t+), is not 
symmetric centered. It means that, for each k E N, 1 < k < n/2, every 
corresponding u fulfills the condition that there exists tu E (t , t+) such that 
u(tu) $& 0. (By every u we understand that all possibilities of renumbering 
the bodies are taken into account.) Thus, for every u we can say that there 
exists i E {1, ... , n} such that ui(tu) $0 O. In case i E {1, ... , 2k} then, if 
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i= 2j - 1, it follows that q2j I(tu) $ qlj(tu) and if i = 2j then qij-I(tu) $ 
-q` (tu) . For i E {2k + 1,..., n} we have q7(tU) o 0. 

By the theorem of continuity of the solution with respect to initial data we 
have: Vc > 0, VI c (t , t+), I compact, there exists a V, a neighborhood of 
(q, p)(0) such that, for every (q, p)(0) E V, the corresponding solution (q, p) 
is defined on I and 

1 (q, p) (t) -(q, p) (t) < e, Vt E I . 

It is now easy to see that, considering each of the above cases, for e > 0 
sufficiently small, every u of the corresponding (q, p) solution, defined by 
(q, p)(0) E V, fulfills the condition ui(tu) $& 0. Since there exists an open set 
V of initial conditions leading to nonsymmetric centered solution, with s E V, 
the existence of s E D, with s 0 D, is contradicted. Thus intD = 0 and the 
theorem is proved. 

Observe that Theorem 7 is also true if we consider a symmetric (not neces- 
sarily centered) spatial solution of the n-body problem. We have chosen this 
way to present the facts because of expository reasons. 

Note finally that all results work for the more general law of the inverse 
(a + 1)-power of the distance, a > 0. 
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