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A GENERIC PROPERTY OF THE BOUNDED SYZYGY SOLUTIONS 
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(Communicated by George G. Papanicolaou) 

ABSTRACT. For a set of masses having positive measure, excepting eventually a 
negligible set of initial conditions, every noncollinear bounded solution of the 
planar three-body problem that has a syzygy configuration encounters an infinity 
of such configurations. Along a noncollinear syzygy solution, the set of syzygy 
configuration instants is discrete. 

1. INTRODUCTION 

Very little is known about the syzygy solutions of the three-body problem 
although these special configurations present interest in applications for the 
conjunction-opposition and eclipses phenomena in the solar system. We have 
proved in a previous paper [D] that, in the planar case, the set of initial condi- 
tions leading to syzygy solutions is nonempty and open. Sitnikov [Si] and later 
Moser [M] have studied oscillatory motion in connection with stability problems 
and found out that, in the spatial restricted isosceles three-body problem, there 
exist unbounded solutions having an infinity of syzygy configurations. Samarov 
[Sa] proved that, along a solution of the general isosceles three-body problem 
with nonnegative constant of energy (i.e., when usually at least a particle escapes 
from the system), there is only a finite number of syzygy configurations. 

The goal of this note is to give a generic property of the noncollinear bounded 
syzygy solutions of the planar three-body problem. We prove that there exists 
a set of masses having positive measure such that if a bounded noncollinear 
solution of the eqs. (*) below has a syzygy configuration then it has an infin- 
ity of such configurations, excepting eventually a set of solutions of Lebesgue 
measure zero. This is mainly a consequence of a result due to Arnol'd [A] con- 
cerning quasi-periodic solutions, the above-mentioned result of the author [D] 
and the classical ergodic theorem of Poincare. Finally we observe that, along 
a noncollinear solution, the sequence of syzygy configuration instants cannot 
accumulate in finite time. 
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2. EQUATIONS OF MOTION AND DEFINITIONS 

Consider the equations 

(*) fqi=mm1pi, i=1,2,3, 

Pi =0iU(q), i=1,2,3, 

describing the motion in the planar three-body problem, where qi = (ql, q2), 
Pi = mi4j, i = 1, 2, 3, are the position vectors and momenta, the constants 
mi > 0, i = 1, 2, 3, are the masses, ii is the ith gradient, and 

U: RI6\A A -+R, U(q)= E mimj/lqi-qjl, 
1 i<j<3 

represents the potential function of the system of particles, 

A = U {q = (qi, q2, q3); qi = qj} 
1<i<j<3 

being the collision set and denoting the Euclidean norm in 1R2. 
Standard results of the theory of differential equations ensure, for given ini- 

tial conditions (q, p) E (1R6 \ A) x 1R6, the existence and uniqueness of an an- 
alytic solution (q, p) of the eqs. (*), defined on a maximal interval (t-, t+), 
-oo < t- < t+ < +oo. It is known that if t- or t+ is finite then the solution 
experiences a singularity due to a double or a triple collision at the correspond- 
ing time moment [P]. It means that if an orbit of the planar three-body problem 
does not begin or end in a collision, then it is defined on the whole IR. 

Without loss of generality we may consider the eqs. (*) restricted to the 
invariant set Q x P, where 

Q= {q; mlqi +m2q2+m3q3 = 0}, P={P; PI + P2+ P3 = O}, 

which physically means that the motion is considered relative to the center of 
mass of the three-body system. 

Observe that the masses define the open set 

Ri 3 {(ml, M2, M3); Mi > 0, i = 1, 2, 3} 

in Ri3. To different choices of the masses correspond different problems, i.e., 
different forms of the eqs. (*). 

Definition 1. A solution (q, p) of the eqs. (*) is called collinear iffor every 
t E (t-, t+) there exists a straight line (depending on t) that contains the bodies 
at this time. In case the line is independent on t then the solution is called 
rectilinear. 

Definition 2. A solution (q, p) of the eqs. (*) is said to have a syzygy con- 
figuration at time to E (t-, t+) if there is a straight line in the plane containing 
all the bodies at to instant. A solution is called syzygy in case it encounters 
at least one syzygy configuration. Observe that since to cannot be t- or t+, 
collisions are not syzygy configurations. 
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3. THE GENERIC PROPERTY 

Denote by S the set of initial conditions in (Q \ A) x P leading to bounded 
noncollinear syzygy solutions of the eqs. (*). Let Cr(O), r E N, be the hy- 
persphere of dimension 11 and radius r contained in the phase space and 
centered in the origin of the frame. Denote by Br, the set of the initial data of 
solutions that do not leave the 12-dimensional ball bounded by Cr(0), and let 
B := UrEN Br. Then, obviously, S c B. Denote Sr = S n Br . We will prove 
the following result. 

Theorem. There exists a set of masses of positive Lebesgue measure in R3 
such that for any choice of the masses in this set the corresponding form of the 
eqs. (*) has the following property: excepting a set of Lebesgue measure zero 
included in S, every (q, p)(0) E S leads to a solution (q, p), of the eqs. (*), 
having an infinity of syzygy configurations. The set of syzygy-configuration in- 
stants along any solution is formed by isolated points. 
Proof. First observe that since the set of initial conditions leading to collisions 
is of Lebesgue measure zero [S], almost all solutions are defined on IR. We 
further need a result due to Arnol'd [A], which can be stated in the following 
way, suitable for our purposes. For the planar three-body problem there is a class 
of masses of positive Lebesgue measure (namely, when one mass is large and the 
others are small) and a set G of initial conditions such that every (q, p) (0) E G 
leads to a quasi-periodic solution of the eqs. (*) (for their definition see, e.g., 
[SM]). Moreover G has the structure of a Cantor set with positive Lebesgue 
measure. By the definition of quasi-periodic solutions it is easy to show that 
the orbits determined by G do not encounter collisions and are bounded. 

On the other side we have proved in [D] that the set E of initial conditions in 
(Q \ A) x P leading to noncollinear syzygy solutions of the eqs. (*) is nonempty 
and open. In [D] we gave a general example of syzygy solutions that can be 
used in order to see that G n E :A 0; more precisely, we can always find initial 
data in G determining a syzygy solution. Since G is a Cantor set, E is open 
and G n E c s, and it follows that S contains a Cantor set of the same type 
and has, consequently, positive Lebesgue measure in the phase space. 

Since the set of solutions bounded by Cr(0), defined above, is of finite mea- 
sure, invariant for the eqs. (*) and 

div(m7I pi, m1 P2, m3 P3, &U(q),02U(q), 03U(q)) = O, 

by the Recurrence Theorem of Poincare, for every (q, p)(0) E Br, excepting 
eventually a negligible set Mr of initial conditions, we have: for every e > 0 
and t* E IR, there exists an increasing sequence (tn)nEN, tn = tn(t*, e), with 
I'nO ,n=? such that 11(q , p)(tn) -(q , p)(t*) 11< e, n E N. 

Using the above-described structure of S we may draw the conclusion that 
for some (q, p)(0) E S there exists a neighborhood of S of diameter 5 > 0 
having positive Lebesgue measure. Without loss of generality we can suppose 
that (q, p) has a syzygy configuration at to :A 0 and choose t* = 0 and e = 5 . 
Thus, (q, p)(to) is near a syzygy configuration and may be considered as the 
initial value of another solution, let us say as a point (q*, p*) (0) of the phase 
space. Since the distance between (q*, p*) (0) is less than e5, by the continuity 
of the solution with respect to initial data, it follows that (q*, p*)(0) E S, i.e., 
(q, p) (0) leads to a sygyzy configuration at some instant to near to, but not 
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near 0. Repeating this process for t1, t2, ..., ...t , by choosing suitable 
values of t* and the same e = (5, we obtain an increasing sequence of time 
moments (t*)flcN with t* near tn for every n, such that (q, p) encounters 
syzygy configurations at each t*. 

Thus we have seen that for any r E N, every (q, p) E Sr \ Mr has an infinity 
of syzygy configurations. Observe that since Mr has Lebesgue measure zero, 
the set M = UrENMr is also negligible. Now, since S \ McB = UrEN Br and 
BrcBr+i, r e N, it follows that for any (q, p) E S \ M there exists an index 
r E N such that (q, p) E Sr \ Mr, i.e., (q, p) has the required property. The 
conclusion concerning the infinity of sygyzy configurations, therefore follows, 
for almost all bounded noncollinear syzygy solutions. 

The last part of the theorem is obvious by the fact proved in [D] (which 
uses the identity theorem of analytic functions) that if the set of syzygy con- 
figuration moments of a solution of the N-body problem, N > 3, has a finite 
accumulation point, then the solution is collinear. 5 
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