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POLYGONAL HOMOGRAPHIC ORBITS

OF THE CURVED n-BODY PROBLEM

FLORIN DIACU

Abstract. In the 2-dimensional n-body problem, n ≥ 3, in spaces of constant
curvature, κ �= 0, we study polygonal homographic solutions. We first provide
necessary and sufficient conditions for the existence of these orbits and then
consider the case of regular polygons. We further use this criterion to show
that, for any n ≥ 3, the regular n-gon is a polygonal homographic orbit if and
only if all masses are equal. Then we prove the existence of relative equilibria
of nonequal masses on the sphere of curvature κ > 0 for n = 3 in the case
of scalene triangles. Such triangular relative equilibria occur only along fixed

geodesics and are generated from fixed points of the sphere. Finally, through a
classification of the isosceles case, we prove that not any choice of three masses
can form a triangular relative equilibrium.

1. Introduction

We study here the curved n-body problem, defined as the motion of n point
particles of massesm1,m2, . . . ,mn > 0 in spaces of constant curvature, κ �= 0, under
the influence of a natural extension of Newton’s gravitational law. The potential
defining this law is given by the force function Uκ, whose expression appears in
(4). The corresponding potential, given by −Uκ, preserves the basic properties of
its Euclidean analogue: it is a harmonic function in 3-dimensional space, i.e., it
satisfies Laplace’s equation, and generates a central field in which bounded orbits
are closed, [24], in agreement with an old result proved by Joseph Louis Bertrand
for the Euclidean case, [2].

The research direction we are following here started in the 1830s, when János
Bolyai and Nikolai Lobachevsky independently proposed a curved 2-body problem
in the hyperbolic space H3, given by a force proportional to the inverse of the
area of the sphere of radius equal to the distance between bodies. This problem
was studied by top mathematicians, such as Lejeune Dirichlet, Ernest Schering,
[31], [32], Wilhelm Killing, [18], [19], [20], and Heinrich Liebmann, [23], [24], [25].
Schering was the one who came up with an analytic form of the potential, which
can be expressed in terms of the cotangent of the distance, for κ > 0, and the
hyperbolic cotangent of the distance, for κ < 0. The Newtonian law is recovered
when κ → 0. Recently, José Cariñena, Manuel Rañada, and Mariano Santander, [3],
proved several new results for this 2-body problem and revisited some old properties
with the help of modern methods. The study of the quantum analogue of the curved
2-body problem was proposed by Erwin Schrödinger, [33], and continued by Leopold
Infeld, [16], and Alfred Schild, [17].
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Other attempts at extending the Newtonian case to spaces of constant curvature,
such as the efforts of Rudolph Lipschitz in [26], did not survive, mostly because the
proposed potentials lacked the basic physical properties mentioned above. Unlike
Liebmann, who showed that all the fundamental orbits of the Kepler problem have
analogues in curved space, Lipschitz could not obtain explicit solutions; he only
succeeded in expressing the orbits in terms of elliptic integrals.

In the direction of research proposed by Bolyai and Lobachevsky, the generaliza-
tion of the equations of motion to any n ≥ 2 was given in [7], a paper posted in the
arXiv, but submitted for publication as two connected papers, [8] and [9], in which
we obtained a unified framework for approaching the problem for any κ �= 0. We
also proved there the existence of several classes of relative equilibria, including the
Lagrangian orbits, i.e. the case n = 3 of the equilateral triangle. Relative equilibria
are orbits for which the configuration of the system remains congruent with itself
for all time, so the mutual distances between bodies are constant during the motion.

It is worth mentioning that the study of the curved n-body problem, for n ≥ 3,
might help us better understand the nature of the physical space. Gauss allegedly
tried to determine the geometry of the universe by measuring the angles of a tri-
angle formed by the peaks of three mountains. Even if the goal of his topographic
measurements was different from what anecdotal history attributes to him (see
[28]), this method of deciding the nature of space remains valid for astronomical
distances. But since we cannot measure the angles of cosmic triangles, we could
alternatively check whether certain (potentially observable) celestial motions occur
in the universe, and thus decide whether the physical space has negative, zero, or
positive curvature.

Specifically, we showed in [7] and [8] that while Lagrangian orbits of nonequal
masses are known to occur for κ = 0, they must have equal masses for κ �= 0. Since
Lagrangian solutions of nonequal masses exist in our solar system (such as the
triangle formed by the Sun, Jupiter, and the Trojan asteroids), we can conclude
that, if assumed to have constant curvature, the physical space is Euclidean for
distances of the order 101 AU. The discovery of new orbits of the curved n-body
problem might help us better understand the large-scale geometry of the universe.

The most recent papers on the curved n-body problem deal either with singu-
larities, [5], [9], a subject we will not approach here, or with homographic solutions
and, in particular, with homothetic orbits and relative equilibria, [7], [9], [6]. Homo-
graphic solutions are orbits whose configuration remains similar to itself all along
the motion. In particular, when rotation takes place without expansion or con-
traction, the homographic orbits are called relative equilibria, as mentioned earlier.
They behave like rigid bodies, maintaining constant mutual distances. Homothetic
solutions are homographic orbits that experience expansion and/or contraction, but
no rotation.

The homograpic solutions can be put in a broader perspective. They are also
the object of Saari’s conjecture, [30], [10], which we partially solved for the curved
n-body problem, [7], [8], as well as Saari’s homographic conjecture, [30], [11]. Both
have recently generated a lot of interest in classical celestial mechanics (see the
references in [10], [11]) and are still unsolved in general.

In the classical Newtonian case, [34], as well as in more general classical con-
texts, [4], the standard concept for understanding homographic solutions is that of
central configuration. We will not employ it here since most computations appear
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to be simpler without using it. The reason for these complications is connected
to the absence of the integrals of the centre of mass and linear momentum from
the curved n-body problem. These integrals seem to be specific only to Euclidean
space. Indeed, n-body problems derived by discretizing Einstein’s field equations,
as obtained by Tullio Levi-Civita, [21], [22], Albert Einstein, Leopold Infeld, and
Banesh Hoffmann, [12], and Vladimir Fock, [14], also lack such integrals.

In this paper we study polygonal homographic orbits of the 2-dimensional curved
n-body problem. In Section 2, we introduce the notation and the equations of
motion as well as their first integrals. In Section 3, we define polygonal homographic
orbits and their basic particular cases: homothetic orbits and relative equilibria.
We also provide a motivation for our definitions, which are given in the spirit of the
Euclidean case. In Section 4, we state and prove necessary and sufficient conditions
for the existence of polygonal homographic orbits. Section 5 is dedicated to the
study of regular polygons. We show, on the one hand, that if the masses are equal,
the regular n-gon is a solution of the equations of motion for any n ≥ 3. On the
other hand, we prove that regular n-gons can be solutions only when the masses
are equal. These results extend the Perko-Walter-Elmabsout theorem, [29], [13], to
spaces of nonzero constant curvature. In Section 6, we focus on the case n = 3 and
prove that the equations of motion admit no homographic orbits if the triangle is
not equilateral. For κ > 0 this result is true as long as the homographic orbit is not
a relative equilibrium rotating along a great circle of the sphere. In Section 7, we
discuss the orbits omitted in the previous section, namely the relative equilibria that
move along a geodesic of the sphere. We prove the existence of relative equilibria of
nonequal masses in the case of scalene triangles. Such triangular relative equilibria
occur only along fixed geodesics and are generated from fixed points on the sphere.
Finally we show that not any choice of three masses can form a triangular relative
equilibrium by providing a large class of counterexamples in the isosceles case.

2. Equations of motion

In this section we introduce the equations of motion of the curved n-body prob-
lem on 2-dimensional manifolds of constant curvature, namely spheres embedded
in R

3, for κ > 0, and the upper sheets of hyperboloids of two sheets1 embedded in
the Minkowski space R

2,1, for κ < 0.
Consider the point particles (bodies) of masses m1,m2, . . . ,mn > 0 in R

3, for
κ > 0, and in R

2,1, for κ < 0, whose positions are given by the vectors qi =
(xi, yi, zi), i = 1, n. Let q = (q1,q2, . . . ,qn) be the configuration of the system,
and p = (p1,p2, . . . ,pn), with pi = miq̇i, i = 1, n, representing the momentum.
We define the gradient operator with respect to the vector qi as

∇̃qi
= (∂xi

, ∂yi
, σ∂zi),

where σ is the signum function,

(1) σ =

{
+1, for κ > 0,

−1, for κ < 0,

1The upper sheet of the hyperboloid of two sheets corresponds to Weierstrass’s model of hy-
perbolic geometry (see Appendix in [7] or [8]).
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and let ∇̃ = (∇̃q1
, ∇̃q2

, . . . , ∇̃qn
). For the 3-dimensional vectors a = (ax, ay, az)

and b = (bx, by, bz), we define the inner product

(2) a� b := (axbx + ayby + σazbz)

and the cross product

(3) a⊗ b := (aybz − azby, azbx − axbz, σ(axby − aybx)).

The Hamiltonian function of the system describing the motion of the n-body
problem in spaces of constant curvature is

Hκ(q,p) = Tκ(q,p)− Uκ(q),

where

Tκ(q,p) =
1

2

n∑
i=1

m−1
i (pi � pi)(κqi � qi)

defines the kinetic energy and

(4) Uκ(q) =
∑

1≤i<j≤n

mimj |κ|1/2κqi � qj

[σ(κqi � qi)(κqj � qj)− σ(κqi � qj)2]1/2

is the force function, −Uκ representing the potential energy.2 Then the Hamiltonian
form of the equations of motion is given by the system

(5)

{
q̇i = m−1

i pi,

ṗi = ∇̃qi
Uκ(q)−m−1

i κ(pi � pi)qi, i = 1, n, κ �= 0,

where the gradient of the force function has the expression

(6) ∇̃qi
Uκ(q) =

n∑
j=1
j �=i

mimj |κ|3/2(κqj � qj)[(κqi � qi)qj − (κqi � qj)qi]

[σ(κqi � qi)(κqj � qj)− σ(κqi � qj)2]3/2
.

The motion is confined to the surface of nonzero constant curvature κ, i.e. (q,p) ∈
T∗(M2

κ)
n, where T∗(M2

κ)
n is the cotangent bundle of the configuration space

(M2
κ)

n, and

M2
κ = {(x, y, z) ∈ R

3 | κ(x2 + y2 + σz2) = 1}.
In particular, M2

1 = S2 is the 2-dimensional sphere, and M2
−1 = H2 is the 2-

dimensional hyperbolic plane, represented by the upper sheet of the hyperboloid
of two sheets (see the Appendix of [7] or [8] for more details). We will also denote
M2

κ by S2
κ for κ > 0 and by H2

κ for κ < 0.
Notice that the n constraints given by κqi�qi = 1, i = 1, n, imply that qi�pi =

0, so the 6n-dimensional system (5) has 2n constraints. The Hamiltonian function
provides the integral of energy,

Hκ(q,p) = h,

where h is the energy constant. Equations (5) also have the three integrals of the
angular momentum,

(7)

n∑
i=1

qi ⊗ pi = c,

2In [7] and [8], we showed how this expression of Uκ follows from the cotangent potential for
κ �= 0, and that U0 is the Newtonian potential of the Euclidean problem, obtained as κ → 0.
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where c = (α, β, γ) is a constant vector. Unlike in the Euclidean case, there are no
integrals of the center of mass and linear momentum. Their absence complicates
the study of the problem since many of the standard methods don’t apply anymore.

Using the fact that κqi � qi = 1 for i = 1, n, we can write system (5) as

(8) q̈i =

n∑
j=1
j �=i

mj |κ|3/2[qj − (κqi � qj)qi]

[σ − σ(κqi � qj)2]3/2
− (κq̇i � q̇i)qi, i = 1, n,

which is the form of the equations of motion we will use in this paper. The sums on
the right hand side of the above equations represent the gradient of the potential.
When κ → 0, both the sphere (for κ → 0, κ > 0) and the upper sheet of the
hyperboloid of two sheets (for κ → 0, κ < 0) become planes at infinity, relative to
the centre of the frame. The segments through the origin of the frame whose angle
measures the distance between two points on the curved surface become parallel and
infinite, so the distance in the limit plane is the Euclidean distance. Consequently
the potential tends to the Newtonian potential as κ → 0 (see [7] or [8] for more
details). The terms involving the velocities occur because of the constraints imposed
by the curvature. They vanish when κ → 0.

3. Polygonal homographic orbits

In this section we define the polygonal homographic solutions of the curved
n-body problem as well as two remarkable subclasses of solutions: the polygonal
homothetic orbits and the polygonal relative equilibria. Then we justify the content
of these definitions.

Definition 1. A solution of equations (8), which describe the curved n-body prob-
lem, is called polygonal homographic if the bodies of masses m1,m2, . . . ,mn > 0,
with n ≥ 3, form a polygon that is orthogonal to the z-axis and remains similar to
itself for all time t.

According to Definition 1, the size of a polygonal homographic solution can
vary, but its shape remains the same. Notice that we imposed the condition that
the plane of the polygon is always perpendicular to the z-axis. This condition is
equivalent to saying that all masses have the same coordinate z(t), which may vary
in time. This condition is not imposed for mere simplicity but because polygonal
homographic solutions may not exist without it. Though a complete proof of this
conjecture is still eluding us, we will explain later in this section why we think this
property is true.

We can represent a polygonal homographic solution of the curved n-body prob-
lem in the form

q = (q1, . . . ,qn), qi = (xi, yi, zi),

xi = r cos(ω + αi), yi = r sin(ω + αi), zi = z, i = 1, n,
(9)

where 0 ≤ α1 < α2 < · · · < αn < 2π are constants; the function z = z(t) satisfies
z2 = σκ−1 − σr2; σ is the signum function defined in (1); r := r(t) is the size
function; ω := ω(t) is the angular function.

Indeed, for every time t, we have that x2
i (t) + y2i (t) + σz2i (t) = κ−1, i = 1, n,

which means that the bodies move on the surface M2
κ, and the angles between any

two bodies, seen from the centre of the circle containing the polygon, are invariant
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in time. Therefore representation (9) of the polygonal homographic orbits agrees
with Definition 1.

Definition 2. A polygonal homographic solution of equations (8), which describe
the curved n-body problem, is called polygonal homothetic if the polygon having
at its vertices the bodies of masses m1,m2, . . . ,mn > 0, with n ≥ 3, expands or
contracts, but does not rotate around the z-axis.

In terms of the representation (9), a polygonal homographic solution is polygonal
homothetic if ω(t) is constant, but r(t) is not. Such orbits occur, for instance, when
n bodies of equal masses, lying initially at the vertices of a regular polygon inscribed
in a nongeodesic circle of the sphere, are released with zero initial velocities, to end
up in a total collision.

Definition 3. A polygonal homographic solution of equations (8), which describe
the curved n-body problem, is called a polygonal relative equilibrium if the polygon
having at its vertices the bodies of masses m1,m2, . . . , mn > 0, with n ≥ 3, rotates
around the z-axis and maintains fixed mutual distances.

In terms of the representation (9), a polygonal relative equilibrium occurs when
r(t) is constant, but ω(t) is not. These orbits have a rich recent history and have
been extensively studied in the general context of geometric mechanics (see, e.g.,
[1], [27]).

We will further loosely use the terms “dynamical polygon” or “dynamical n-gon”
to describe any of the polygonal homographic, homothetic, or relative equilibrium
orbits that will occur in this paper. These terms will also occur when we check
potential solutions, prior to knowing whether they satisfy the equations of motion.

Using the concept of relative equilibrium, we can now provide a justification
for introducing the orthogonality condition in Definitions 1, 2, and 3. Consider
a polygon formed by the bodies of masses m1,m2, . . . ,mn > 0, which move on
the surface M2

k according to equations (8). Unlike in the representation (9), the
plane of the polygon can have any angle (not only π/2) relative to the z-axis. We
assume this angle to be constant in time. We assign initial velocities such that the
dynamical polygon rotates around the z-axis, which passes at all times through the
same point inside the polygon. The Principal Axis Theorem (see Appendix in [7]
or [8]) guarantees the validity of this scenario without any loss of generality.

Let us now seek necessary conditions for the existence of the above-described
motion. Notice that the projection of the polygon to the (x, y)-plane is, at any time
t, a polygon congruent with the projection obtained at t = 0. We can then describe
the motion of the real polygon in terms of the angles of the projected polygon.
So let us assume that the relative equilibrium is represented by the coordinates
qi(t) = (xi(t), yi(t), zi(t)), i = 1, n, given by

(10) xi(t) = ri cos(Ωt+ αi), yi(t) = ri sin(Ωt+ αi), zi(t) = zi (constant),

where 0 ≤ α1 < α2 < · · · < αn < 2π, Ω �= 0, and ri > 0 are constants, z2i =
σκ−1 − σr2i , and σ is the signum function defined in (1).

For such a solution to exist, it is necessary that the total angular momentum
is the zero vector or a vector parallel with the z-axis. Otherwise the angular-
momentum vector would rotate around the z-axis, in violation of the angular-
momentum integrals (7). This means that at least the first two components of the
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vector
∑n

i=1 miqi ⊗ q̇i are zero, i.e.

n∑
i=1

mi(yiżi − ẏizi) =
n∑

i=1

mi(xiżi − ẋizi) = 0.

Using (10) and the fact that Ω �= 0, these two equations take the form

n∑
i=1

mirizi cos(Ωt+ αi) =
n∑

i=1

mirizi sin(Ωt+ αi) = 0.

In general, the above conditions for the existence of motions described above are
not satisfied for all values of t. But there are exceptions, such as when all zi (and
implicitly all ri) are equal, all mi are equal, and the polygon is regular. So the case
when all zi are equal, which implies orthogonality relative to the z-axis, seems like
a good point to start from. This position is supported by the proof that Lagrangian
solutions must be orthogonal to the z-axis (see [7] or [8]). These remarks justify
our choice of the orthogonality condition in the definitions of this section.

4. Necessary and sufficient conditions

The goal of this section is to state and prove two equivalent criteria that pro-
vide necessary and sufficient conditions for the existence of polygonal homographic
solutions of the curved n-body problem. The first criterion can be expressed as
follows.

Criterion 1. Consider n ≥ 3 bodies of masses m1,m2, . . . ,mn > 0 moving on the
surface M2

κ. The necessary and sufficient conditions that a solution of the form (9)
is a polygonal homographic orbit of equations (8) are given by the equations

(11) δ1 = δ2 = · · · = δn and γ1 = γ2 = · · · = γn,

where

δi =
n∑

j=1,j �=i

mjμji, γi =
n∑

j=1,j �=i

mjνji, i = 1, n,(12)

μji =
1

c
1/2
ji (2− cjiκr2)3/2

, νji =
sji

c
3/2
ji (2− cjiκr2)3/2

,(13)

sji = sin(αj − αi), cji = 1− cos(αj − αi), i, j = 1, n, i �= j,(14)

and 0 ≤ α1 < α2 < . . . < αn < 2π are constants.

Proof. Let us check in equations (8) a solution of the form (9). For this purpose
we first compute that

ẋi = ṙ cos(ω + αi)− rω̇ sin(ω + αi), ẏi = ṙ sin(ω + αi) + rω̇ cos(ω + αi),

żi = −σrṙ(σκ−1 − σr2)−1/2,

ẍi = (r̈ − rω̇2) cos(ω + αi)− (rω̈ + 2ṙω̇) sin(ω + αi),

ÿi = (r̈ − rω̇2) sin(ω + αi) + (rω̈ + 2ṙω̇) cos(ω + αi),

z̈i = −σrr̈(σκ−1 − σr2)−1/2 − κ−1ṙ2(σκ−1 − σr2)−3/2.
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Some long but straightforward computations for the z̈i component lead us to the
equations

(15) r̈ = r(1− κr2)ω̇ − κrṙ2

1− κr2
−Δi, i = 1, n,

where

(16) Δi =
n∑

j=1,j �=i

mj(1− κr2)

c
1/2
ji r2(2− cjiκr2)3/2

, i = 1, n,

and the constants cji are defined in (13). Notice that, as long as the bodies stay
away from collisions, we have cji > 0.

From the equations corresponding to ẍi and ÿi, we further apply the formula for
the cosine of the sum of two angles to cos(ω + αj), viewed as cos[(ω + αi) + (αj −
αi)]. Then, using the fact that the equations must be satisfied for all times t, and
comparing the similar terms, we recover equations (15) as well as obtain some new
equations,

(17) rω̈ + 2ṙω̇ − Γi = 0, i = 1, n,

where

(18) Γi =
n∑

j=1,j �=i

mjsji

c
3/2
ji r2(2− cjiκr2)3/2

, i = 1, n,

and the constants sji, cji, i, j = 1, n, i �= j, are defined in (13). Notice that the sji
can have any sign, with sji = 0 only if αj − αi = ±π/2 or ±3π/2.

Equations (15) and (17) describe the motion of the polygonal homographic orbit
with the help of the size function, r, and the angular function, ω. But this system
of differential equations makes sense only if the conditions

Δ1 = Δ2 = · · · = Δn and Γ1 = Γ2 = · · · = Γn

are satisfied, where the functions Δi,Γi, i = 1, n, are defined in (16) and (18),
respectively. Then, for any initial conditions (r(0), ω(0)) that are not singular (i.e.
are not collisions for any κ �= 0, and are not antipodal for κ > 0; see [7] or [9]),
we are guaranteed the local existence and uniqueness of an analytic solution for
the system given by equations (15) and (17). Since the phase space is a connected
manifold, this solution can be analytically extended to a global solution, defined
either for all time or until the orbit reaches a singular configuration, as may happen,
for instance, in the case of a homothetic orbit that ends in a total collision.

Multiplying equation (15) by r2/(1−κr2) and equation (17) by r2, the conditions
for the existence of polygonal homographic orbits reduce to

δ1 = δ2 = · · · = δn and γ1 = γ2 = · · · = γn,

as defined in the above statement. This remark completes the proof. �

Remark. Notice that, if δ denotes any δi and γ denotes any γi, i = 1, n, the functions
μji and δ are always positive, while νji and γ can be negative, positive, or zero.

We can restate Criterion 14 in terms of linear algebraic systems as follows. The
equivalence between Criterion 14 and Criterion 2 is obvious.
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Criterion 2. Consider n ≥ 3 bodies of masses m1,m2, . . . ,mn > 0 moving on the
surface M2

κ. The necessary and sufficient conditions that a solution of the form
(9) is a polygonal homographic orbit of equations (8) are that there exist δ > 0 and
γ ∈ R such that the linear systems

(19) ΔmT = dT and ΓmT = eT

have the same set of solutions, where

m = (m1,m2, . . . ,mn), d = (δ, δ, . . . , δ︸ ︷︷ ︸
n times

), e = (γ, γ, . . . , γ︸ ︷︷ ︸
n times

),

Δ =

⎡⎢⎢⎢⎢⎢⎣
0 μ21 μ31 . . . μn1

μ12 0 μ32 . . . μn2

μ13 μ23 0 . . . μn3

...
...

...
...

μ1n μ2n μ3n . . . 0

⎤⎥⎥⎥⎥⎥⎦ , Γ =

⎡⎢⎢⎢⎢⎢⎣
0 ν21 ν31 . . . νn1
ν12 0 ν32 . . . νn2
ν13 ν23 0 . . . νn3
...

...
...

...
ν1n ν2n ν3n . . . 0

⎤⎥⎥⎥⎥⎥⎦ ,

μji, νji, i, j = 1, n, i �= j are defined in (12), and the upper index T denotes the
transpose of a vector or matrix.

Remark. Notice that Δ is symmetric, i.e. ΔT = Δ, whereas Γ is skew-symmetric,
i.e. ΓT = −Γ. In the next section we will see that, for regular polygons, both Δ
and Γ are circulant matrices, i.e. each row vector is rotated one element to the right
relative to the previous (upper) row vector.

5. Regular polygons

In this section we will study the case of regular polygons and prove that the
curved n-body problem, with n ≥ 3, admits regular polygonal homographic orbits
if and only if all the masses are equal. This result is valid only for n ≥ 4 in the
Euclidean case, where it is known as the Perko-Walter-Elmabsout theorem. The
classical Lagrangian orbits, given by the dynamic equilateral triangle, allow non-
equal masses, a situation that seems to be specific to the Euclidean space, most
likely because some symmetries are lost if the curvature is not zero (see also [4]).
To emphasize certain details of our result, we will separately consider the direct
and converse components of this theorem.

Theorem 1. Consider the curved n-body problem, n ≥ 3, given by system (8). If n
bodies of equal masses, m := m1 = m2 = · · · = mn, lie initially at the vertices of a
regular n-gon parallel with the (x, y)-plane, then there is a class of initial velocities
for which the corresponding solutions are homographic. These orbits also satisfy
the equalities γ1 = γ2 = · · · = γn = 0.

Proof. Let the dynamical n-gon be regular and, for every time instant, lie in a
plane parallel with the (x, y)-plane. We will show that δ1 = δ2 = · · · = δn and
γ1 = γ2 = · · · = γn, identities which, by Criterion 14, assure the existence of the
desired homographic solution.

Without loss of generality, we assume that αi, i = 1, n, the constants which
provide the representation (9) of the homographic orbits, are

α1 = 0, α2 = 2π/n, α3 = 4π/n, . . . , αn = 2(n− 1)π/n.
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Then the differences αj − αi, i, j = 1, n, with i �= j, can take only the values

±2π/n, ±4π/n, . . . ,±2(n− 1)π/n.

Consequently, these angles fully determine the constants sij and cij defined in (13).
We will first study the matrix Δ. Let s = [n/2] denote the integer part of n/2.

Then, for n odd, the matrix Δ takes the circulant form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1 a2 . . . as−1 as as as−1 . . . a3 a2 a1
a1 0 a1 . . . as−2 as−1 as as . . . a4 a3 a2
a2 a1 0 . . . as−3 as−2 as−1 as . . . a5 a4 a3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
as−1 as−2 as−3 . . . 0 a1 a2 a3 . . . as−1 as as
as as−1 as−2 . . . a1 0 a1 a2 . . . as−2 as−1 as
as as as−1 . . . a2 a1 0 a1 . . . as−3 as−2 as−1

as−1 as as . . . a3 a2 a1 0 . . . as−4 as−3 as−2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
a3 a4 a5 . . . as−1 as−2 as−3 as−4 . . . 0 a1 a2
a2 a3 a4 . . . as as−1 as−2 as−3 . . . a1 0 a1
a1 a2 a3 . . . as as as−1 as−2 . . . a2 a1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

whereas for n even, Δ becomes the circulant matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1 a2 . . . as−1 as as−1 . . . a3 a2 a1
a1 0 a1 . . . as−2 as−1 as . . . a4 a3 a2
a2 a1 0 . . . as−3 as−2 as−1 . . . a5 a4 a3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
as−1 as−2 as−3 . . . 0 a1 a2 . . . as−2 as−1 as
as as−1 as−2 . . . a1 0 a1 . . . as−3 as−2 as−1

as−1 as as−1 . . . a2 a1 0 . . . as−4 as−3 as−2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
a3 a4 a5 . . . as−2 as−3 as−4 . . . 0 a1 a2
a2 a3 a4 . . . as−1 as−2 as−3 . . . a1 0 a1
a1 a2 a3 . . . as as−1 as−2 . . . a2 a1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where a1, a2, . . . , as > 0 represent the μji functions in their corresponding positions.
Notice that in the ith row, the functions μji with |i − j| = s and |i − j| = n − s,

s = 1, [n/2], are equal, and they are independent of i. But in every row of Δ, there

are exactly two functions μji with |i − j| = s or |i − j| = n − s, s = 1, [n/2]. For
n even, the single μji term not captured in the above description corresponds to

αj −αi = π and is of the form as = 1/[4(1−κr2)3/2], so it is also independent of i.
Consequently each row of Δ contains the same elements, only differently ordered.
Since all the masses are equal, we can conclude that δ1 = δ2 = · · · = δn.

For n odd, the matrix Γ is circulant,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b1 b2 . . . bs−1 bs −bs −bs−1 . . . −b3 −b2 −b1
−b1 0 b1 . . . bs−2 bs−1 bs −bs . . . −b4 −b3 −b2
−b2 −b1 0 . . . bs−3 bs−2 bs−1 bs . . . −b5 −b4 −b3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−bs−1 −bs−2 −bs−3 . . . 0 b1 b2 b3 . . . bs−1 bs −bs
−bs −bs−1 −bs−2 . . . −b1 0 b1 b2 . . . bs−2 bs−1 bs
bs −bs −bs−1 . . . −b2 −b1 0 b1 . . . bs−3 bs−2 bs−1

bs−1 bs −bs . . . −b3 −b2 −b1 0 . . . bs−4 bs−3 bs−2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
b3 b4 b5 . . . −bs−1 −bs−2 −bs−3 −bs−4 . . . 0 b1 b2
b2 b3 b4 . . . −bs −bs−1 −bs−2 −bs−3 . . . −b1 0 b1
b1 b2 b3 . . . bs −bs −bs−1 −bs−2 . . . −b2 −b1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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whereas for n even, Γ takes the circulant form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b1 b2 . . . bs−1 0 −bs−1 . . . −b3 −b2 −b1
−b1 0 b1 . . . bs−2 bs−1 0 . . . −b4 −b3 −b2
−b2 −b1 0 . . . bs−3 bs−2 bs−1 . . . −b5 −b4 −b3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−bs−1 −bs−2 −bs−3 . . . 0 b1 b2 . . . bs−2 bs−1 0

0 −bs−1 −bs−2 . . . −b1 0 b1 . . . bs−3 bs−2 bs−1
bs−1 0 −bs−1 . . . −b2 −b1 0 . . . bs−4 bs−3 bs−2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
b3 b4 b5 . . . −bs−2 −bs−3 −bs−4 . . . 0 b1 b2
b2 b3 b4 . . . −bs−1 −bs−2 −bs−3 . . . −b1 0 b1
b1 b2 b3 . . . 0 −bs−1 −bs−2 . . . −b2 −b1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where b1, b2, . . . , bs > 0 represent the corresponding νji functions. Thus, for Γ,
we have to slightly amend the arguments used for Δ: the two functions νji with
|i− j| = s or |i− j| = n− s, which are independent of i and occur in every row, are
equal only in absolute value; they have opposite signs because sji := sin(αj −αi) is
odd. For n even, the extra term corresponding to αj − αi = π is bs = 0. Therefore
γ1 = γ2 = · · · = γn = 0. By Criterion 14, we can now conclude that the dynamical
regular n-gon having equal masses at its vertices is a homographic orbit of the
curved n-body problem. This remark completes the proof. �

We can now state and prove the converse of Theorem 1.

Theorem 2. If the masses m1, . . . ,mn > 0, n ≥ 3, form a polygonal homographic
solution of the curved n-body problem given by equations (8), such that the polygon
is regular, then m1 = m2 = · · · = mn.

Proof. Notice first that, from the form of the matrix Γ represented above (for both
n even and odd), if a dynamical regular n-gon parallel with the (x, y)-plane is a
homographic solution of the curved n-body problem, then the masses must satisfy
the system ΓmT = 0T . By Criterion 2, the masses must also satisfy the system
ΔmT = dT .

Since, in general, the functions μji and νji vary in time, and the solutions
m1,m2, . . . ,mn of the systems ΔmT = dT and ΓmT = 0T depend on μji and νji,
only solutions for which the masses are constant and positive lead to homographic
solutions. Therefore if we fix an arbitrary time t and show that the corresponding
systems with constant coefficients have solutions only when m1 = m2 = · · · = mn,
then no other solutions are possible for those systems when t varies. By Theorem 1,
we can then conclude that m1 = m2 = · · · = mn is the only case when the systems
with variable coefficients have solutions.

So let us assume t fixed and start with the system ΔmT = dT . We already know
from Theorem 1 that this system has infinitely many solutions, namely m1 = m2 =
· · · = mn = α for any α > 0, where α is some function of δ > 0. But if we fix a
value of δ, then α is also fixed.

We will now show that detΔ �= 0. To prove this fact, notice that, except for
the diagonal elements, all the elements of Δ are positive. Therefore Δ is positive
definite. Indeed, a simple computation shows that for any nonzero vector z =
(z1, z2, . . . , zn) ∈ R

n, zΔzT > 0. By Sylvester’s criterion (see, e.g., [15]), positive-
definite matrices have positive determinants.

According to Cramer’s rule, the linear system ΔmT = dT has a unique solution,
which must be none else than m1 = m2 = · · · = mn = α, with α > 0 fixed. By
Theorem 1, this solution also satisfies the system ΓmT = 0T . Since the choice of
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α depends on the choice of δ, and δ > 0 is arbitrarily fixed, we can draw the same
conclusion for any choice of δ. Consequently a dynamical regular n-gon can be a
homographic solution of the curved n-body problem only if all masses are equal.
This remark completes the proof. �

6. Nongeodesic scalene triangles

It is natural to ask whether irregular polygons could form homographic orbits.
The conditions of Criterion 14 for the existence and uniqueness of dynamical n-gons
suggest that, in general, this is not the case. Indeed, system (11) has 2n− 2 linear
equations and n unknowns: m1,m2, . . . ,mn. Even the case n = 3 leads to a linear
system of 4 equations with 3 unknowns, which is still unlikely to have solutions in
general.

We will next prove that homographic orbits of the curved 3-body problem cannot
exist for |z| �= 0 if the triangle is not equilateral. In other words, the symmetries of
the equilateral triangle (and consequently the equality of the masses) are a necessary
condition for the existence of such orbits. The restriction |z| �= 0 is necessary only
for κ > 0 (being automatically satisfied for κ < 0) because equations (15) do
not allow homographic orbits to pass through the equator of the sphere, since the
function 1 − κr2, which appears as a denominator, cancels in that case. However,
as we will see in the next section, nonequilateral relative equilibria moving along
the equator do exist.

We can now state and prove the following result.

Theorem 3. Consider the curved 3-body problem, given by equations (8) with n = 3
and masses m1,m2,m3 > 0. These equations admit no homographic orbits given
by scalene nonequilateral triangles for κ < 0. For κ > 0, they don’t admit such
solutions either if the bodies stay away from the equator z = 0.

Proof. Notice first that any homographic orbit of the 3-body problem must cor-
respond to an acute triangle. Otherwise, at every time instant, there is a plane
containing the z-axis such that all three bodies are on one side of the plane (at
most two of them in the plane). Therefore the total angular momentum vector at
that time instant cannot be zero or parallel with the z-axis. But after rotating
by π radians, the bodies reach a position on the other side of the plane, and the
angular momentum has certainly a different direction, in violation of the angular
momentum integrals (7).

For the masses m1,m2,m3 > 0, the conditions in Criterion 2 can be written as

ΔmT = dT and ΓmT = eT ,

m = (m1,m2,m3), d = (δ, δ, δ), e = (γ, γ, γ),

Δ =

⎡⎣ 0 a b
a 0 c
b c 0

⎤⎦ , Γ =

⎡⎣ 0 u v
−u 0 w
−v −w 0

⎤⎦ ,

a := μ21 = μ12, b := μ31 = μ13, c := μ32 = μ23,

u := ν21 = −ν12, v := ν31 = −ν13, w := ν32 = −ν23,

(20)

and μji, νji, i, j = 1, 2, 3, i �= j, as defined in (12).
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Multiplying the first equation of the system ΓmT = eT by −w, the second by v,
and adding them, we obtain the equation

−uvm1 − uwm2 = γ(v − w).

Multiplying the third equation of that system by −u and adding the above equation
to it, we get the condition γ(v − u− w) = 0. Circular permutations lead us to the
system of conditions

γ(v − u− w) = γ(w − v − u) = γ(u− w − v) = 0.

This system is satisfied either if γ = 0 or when

v − u− w = w − v − u = u− w − v = 0.

But the above equations imply that u = v = w = 0, which is a solution with
no dynamical consequences, so necessarily γ = 0. Consequently the linear system
ΓmT = eT reduces to

um2 + vm3 = −um1 + wm3 = −vm1 − wm2 = 0.

Since m1,m2,m3 > 0, the signs of u, v, and w must be such that

(21) (i) u,w > 0 and v < 0 or (ii) u,w < 0 and v > 0.

Notice that from the first equation of each of the linear systems in (20), as well
as from the third equation of both systems, we can, respectively, conclude that

m2 =
δ
b

a
b − u

v

and m2 =
δ
b

c
b −

w
v

.

Then a−c
b = u−w

v , a condition that is independent of δ > 0. Two similar conditions
follow by circular permutations. Therefore the systems in (20) have the same set
of solutions if

(22)
a− c

b
=

u− w

v
,

b− a

c
=

v − u

w
,

c− b

a
=

w − v

u
.

We will further prove that these conditions are simultaneously satisfied only when
a = b = c and u = −v = w, a set of solutions which corresponds to equilateral
triangles and, as a result, to equal masses.

Let us first assume that the acute triangle is isosceles and not equilateral. Then,
without loss of generality, we can choose a = c �= b and u = w �= v. The first
equation in (22) is satisfied, whereas the other two take the same form, namely
a−b
a = u−v

u , which implies that av = bu. Since a, b > 0, it follows that u and v have
the same sign, a conclusion which contradicts (21).

The last case to consider is that of the scalene acute triangles that are not
isosceles. Without loss of generality, we assume that 0 < a < b < c. Then

a− c

b
< 0,

b− a

c
> 0,

c− b

a
> 0,

inequalities which, via (22), imply that

(23)
u− w

v
< 0,

v − u

w
> 0,

w − v

u
> 0.
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But relations (21) provide only four possible ways to order u, v, and w, namely: (1)
v < 0 < u < w, (2) v < 0 < w < u, (3) u < w < 0 < v, and (4) w < u < 0 < v. It is
easy to see that, in each case, the order and the signs of these constants contradict
at least one of the inequalities given in (23), so scalene nonisosceles triangles cannot
form homographic orbits either. This remark completes the proof. �

7. Geodesic scalene triangles

In this section we restrict our study to the case κ > 0 and consider a situation
that was not captured in the previous section, namely the relative equilibria that
rotate on great circles of a sphere generated from fixed points of the equations of
motion. Such orbits do not exist for κ < 0 because, as shown in [7] and [8], there
are no fixed points when the bodies move in hyperbolic space.

Without loss of generality, we will analyze these orbits when the great circle is
the equator, z = 0, and the rotation takes place around the z-axis. This case is not
captured by the system of differential equations given in equations (15) and (17)
because one denominator cancels when the bodies reach the equator. When r is
constant, i.e. the solution is just a relative equilibrium, instead of a homographic
orbit with both rotation and expansion and/or contraction, the motion on the
equator can be studied separately. In this case, no cancelling denominators show
up when the motion takes place on the great circle z = 0. Nevertheless, no two
bodies can be antipodal because the corresponding configuration is a singularity of
system (8) (see [7] or [9] for more details), and therefore the motion doesn’t exist.
But acute triangles moving on the equator don’t have antipodal bodies at their
vertices, so singularities do not affect them.

We will first focus on fixed points lying on the equator, and show why for every
acute triangle there exist masses that provide a fixed point for the equations of
motion if the bodies are placed at the vertices of the triangle. Then we explain how
relative equilibria can be generated from fixed points. By providing a large class of
counterexamples, we also prove that not any choice of three masses generates fixed
points, and consequently not any choice of three masses can form relative equilibria
that move along the equator.

We can now state and prove the following result.

Theorem 4. For any acute triangle inscribed in a great circle of the sphere S2
κ,

there exist bodies of masses m1,m2,m3 > 0 that can be placed at the vertices of
the triangle such that they form a fixed point of system (8) for n = 3 and κ > 0,
i.e. for the equations of motion of the curved 3-body problem in the case of positive
curvature.

Proof. As mentioned earlier, we can assume that the great circle is the equator
z = 0. To form a fixed point of system (8), the initial conditions of the bodies of
masses m1,m2, and m3 must satisfy, at the initial instant t = 0, the constraints

q̈i(0) = q̇i(0) = 0, i = 1, 2, 3.

Let qi(0) = (xi, yi, 0), i = 1, 2, 3, be the initial position of the body of mass mi, i =
1, 2, 3, on the equator z = 0. Using equations (8), a straightforward computation
shows that the above conditions reduce to solving the linear homogeneous algebraic
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system

(24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

q12m2 + q13m3 = 0

q̄12m2 + q̄13m3 = 0

q21m1 + q23m3 = 0

q̄21m1 + q̄23m3 = 0

q31m1 + q32m2 = 0

q̄31m1 + q̄32m2 = 0,

for m1,m2, and m3, where, for i, j = 1, 2, 3, i �= j,

qij =
xj − aijxi

(1− a2ij)
3/2

, q̄ij =
yj − aijyi
(1− a2ij)

3/2
, aij = κxixj + κyiyj .

But the first and the second equation of the system are linearly dependent. Indeed,
multiplying the first equation by κx1, the second equation by κy1, and adding
the two new equations, we obtain an identity. Similarly we can prove the linear
dependence of the third and fourth equations, as well as of the fifth and sixth
equations. Therefore system (24) can be reduced to the linear homogeneous system

(25)

⎧⎪⎨⎪⎩
q12m2 + q13m3 = 0

q21m1 + q23m3 = 0

q31m1 + q32m2 = 0,

in the unknowns m1,m2, and m3.
We will further show that this system has positive solutions. To achieve this

goal we will first prove that detA = 0, where A is the matrix that defines system
(25), namely

A =

⎡⎣ 0 q12 q13
q21 0 q23
q31 q32 0

⎤⎦ .

Notice first that

detA = q12q23q31 + q13q21q32.

But q12 and q21 have the same denominator, which is never zero. The same is true
for the pair q23 and q32, as well as for the pair q31 and q13. Therefore to prove that
detA = 0, it is enough to compute the numerator E of detA. Notice that E has
the form

E = (x2 − a12x1)(x3 − a23x2)(x1 − a13x3) + (x3 − a13x1)(x1 − a12x2)(x2 − a23x3).

A straightforward computation leads to

E = 2(1− a12a13a23)x1x2x3 + (a12a23 − a13)x
2
1x2 + (a13a23 − a12)x

2
1x3

+(a12a13 − a23)x1x
2
2 + (a13a12 − a23)x1x

2
3

+(a13a23 − a12)x
2
2x3 + (a12a23 − a13)x2x

2
3.

Without loss of generality, we can assume that x1 = 0, i.e. the body of mass m1

is fixed at the point of coordinates (x1, y1, z1) = (0, κ−1/2, 0) on the sphere S2
κ (see

Figure 1). Then E = Sx2x3, where S = −a13x3 + a13a23x2 + a12a23x3 − a12x2.
Since x2, x3 �= 0, to prove that detA = 0 it is enough to show that S = 0. Using
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Figure 1. The fixed point solutions formed by the masses m1,m2,
and m3 on the geodesic (equator) z = 0.

again the fact that x1 = 0, and writing the constants aij explicitly, we obtain

S = −κy1y3x3 + κ2y1y3(x2x3 + y2y3)x2 + κ2y1y2(x2x3 + y2y3)x3 − κy1y2x2

= −κx3y1y3 − κx2y1y2 + κx3y1y3(κx
2
2 + κy22) + κx2y1y2(κx

2
3 + κy23).

But since κx2
2 + κy22 = κx2

3 + κy23 = 1, it follows that S = 0; therefore detA = 0, so
system (25) has other solutions than the trivial one.

We must still prove that among these nontrivial solutions there is a class of
strictly positive solutions. For this purpose, we will analyse the signs of the con-
stants qij , i, j = 1, 2, 3, and see how they determine the signs of m1,m2, and m3.
We already assumed that x1 = 0. Since the triangle is acute, we can further sup-
pose, without loss of generality, that x2 > 0 and x3 < 0, which means that the
body of mass m2 lies in the fourth quadrant on the equatorial circle, while m3

is in the third quadrant (see Figure 1). There are no other possibilities because
the triangle is acute. (In fact we showed in [7] and [8] that bodies lying in the
same hemisphere cannot form fixed points, thus excluding right or obtuse trian-
gles as fixed-point candidates. Right triangles are also excluded because they form
singular configurations.)

Under the above assumptions, we will show that

(26) q12, q21, q32 > 0 and q13, q31, q23 < 0.

For this purpose, notice first that the denominators of qij , i, j = 1, 2, 3, are all
positive, so we have to determine only the signs of their numerators. Also observe
that the angles α12 and α13 from the centre of the circle corresponding to the
arcs m1m2 and m1m3, respectively (see Figure 1), both angles taken to be smaller
than π, are larger than π/2. Since a12 = cosα12 and a13 = cosα13, it means that
a12, a13 < 0. Then, using the fact that x1 = 0, x2 > 0, x3 < 0, we can conclude that
q12 > 0 and q13 < 0. Since a12 = a21 and a31 = a13, it also follows that q21 > 0
and q31 < 0.

To prove the last two inequalities in (26), let β be the angle from the centre
of the circle corresponding to the arc m2m3, α the similar angle corresponding to
the arc m3A (see Figure 1), and γ the similar angle corresponding to the arc m2A,
all taken to be smaller than π. Then, obviously, α = β + γ. Also notice that
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x3 = cosα, x2 = cos γ, and a23 = cosβ. So

x3 − a23x2 = cosα− cosβ cos γ = − sin β sin γ,

which is negative because 0 < β, γ < π. Therefore q23 < 0. Finally,

x2 − a23x3 = cos γ − cosβ cosα = sinα sin β,

which is positive because 0 < α, β < π. So q23 > 0. To see now that system (25)
has positive solutions, it is enough to notice that the two constants qij showing
up in each of its three equations have opposite signs. This remark completes the
proof. �

A direct consequence of the above result is the possibility of generating relative
equilibria from fixed points. This fact stems from the action produced by elements
of the rotation group SO(3) on a fixed point. From the mechanical point of view this
means that we can obtain relative equilibria if we apply initial velocities, of equal
speeds, tangentially to the geodesic, all oriented clockwise or all counterclockwise.
This obvious remark together with Theorem 4 proves the following result.

Theorem 5. Consider the curved 3-body problem on the sphere S2
κ, given by system

(8) for n = 3 and κ > 0. Then for any acute triangle inscribed in a great circle of
the sphere, there exist masses m1,m2,m3 > 0 and initial velocities such that if the
point particles are initially placed at the vertices of the triangle, the corresponding
solution is a relative equilibrium that rotates on the great circle.

The converse of Theorem 4 is false, which means that not any choice of three
point particles of given masses can form a fixed point on a great circle of S2

κ. We
will provide a class of counterexamples in the case of isosceles triangles. In fact,
the following result identifies all masses for which there are no isosceles triangles
that lead to fixed points of the equations of motion of the curved 3-body problem
for κ > 0.

Theorem 6. Consider the curved 3-body problem on the sphere S2
κ, given by system

(8) for n = 3, κ > 0, as well as the masses m1 = m2 =: M > 0 and m3 =: m > 0.
Assume that the initial conditions are such that the triangle having these masses at
its vertices is acute and isosceles, with the equal masses corresponding to the base.
Then, for M ≥ 4m, no isosceles triangle can form a fixed point.

Proof. Let qi(0) = (xi(0), yi(0), 0), i = 1, 2, 3, be the initial position of the masses
with the symmetries of an isosceles triangle as in Figure 2, i.e. such that

x1(0) = x, x2(0) = −x, x3(0) = 0,

y1(0) = y2(0) = y, y3(0) = −κ−1/2,

z1(0) = z2(0) = z3(0) = 0,

with 0 < x, y < κ−1/2. The conditions that the coordinates form a fixed point are

q̈i(0) = q̇i(0) = 0, i = 1, 2, 3.

Using these conditions in system (8), denoting ẍ := ẍ(0), ÿ := ÿ(0) and asking
that ẋ(0) = ẏ(0) = 0, a straightforward computation leads us to the relations

ẍ = −M − 4κmy2

4κ1/2x2y
, ÿ =

M − 4κmy2

4κ1/2xy2
.
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Figure 2. The initial positions of m1,m2, and m3, which form an
isosceles triangle on the geodesic (equator) z = 0.

Consequently 3 bodies lying at the vertices of an isosceles triangle form a fixed
point of the equations of motion if and only if

(27) M = 4κmy2, with 0 < y < κ−1/2.

Then some necessary conditions that an isosceles triangle forms a fixed point are

0 <
M

4κm
<

1

κ
.

Since κ > 0, the first inequality is always satisfied. The second inequality reduces
to M < 4m. The corresponding x > 0 is then obtained from κx2 + κy2 = 1 and
leads to the same condition. So, for M ≥ 4m, there are no isosceles triangles that
form fixed points on a great circle of S2

κ. This remark completes the proof. �

Remark. When the triangle is equilateral, the evaluation of sinϕ, where ϕ is the
angle between the abscissa and the radius of the circle to m2 (see Figure 2), shows
that y = 1/(2κ−1/2), so by (27) we can conclude that M = m, in agreement with
what we know about Lagrangian solutions.
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Königl. Sächsischen Gesell. Wiss., Math. Phys. Klasse 55 (1903), 146-153.

[25] H. Liebmann, Nichteuklidische Geometrie, G. J. Göschen, Leipzig, 1905; 2nd ed. 1912; 3rd
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