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We study collision and ejection orbits of 3-particle systems having the potential
W=U+V, where U and V are homogeneous functions of degree &a and &b,
respectively, with 1�a<b. We show that for b{2, collision and ejection orbits
tend to form asymptotically a central configuration. For the case b=2, which
corresponds to Maneff 's gravitational law, we find a set of collision and ejection
orbits reaching the triple collision manifold without asymptotic phase. This set
contains an uncountable union of manifolds and has positive measure within the set
of all rectilinear solutions. � 1996 Academic Press, Inc.

1. Introduction

In a famous paper published in the second decade of our century, Karl
Sundman [Su, 1912] proved that triple-collision-ejection orbits of the
classical 3-body problem of celestial mechanics, tend to form a central
configuration in the neighborhood of the collision-ejection. This property
was further shown to be true for partial and simultaneous partial collisions-
ejections in the n-body problem [Sp, 1970], [Sa, 1980, 1984], [El, 1990],
[D, 1992a]. It was also proved recently that, for the Mu� cket�Treder
gravitational law with logarithmic correction term, triple-collision-ejection
orbits also tend to a Newtonian central configuration [D, 1992b].

The goal of this paper is to study collision-ejection orbits of 3-particle
systems with potential functions of the form W=U+V, where U and V
are homogeneous functions of degree &a and &b respectively, with
1�a<b. We call a function W of this kind quasihomogeneous. The
McGehee transformation technique [M, 1974] will be used to blow-up the
triple-collision-ejection singularity and to paste instead a collision-ejection
manifold to the phase space. We show that for b{2 the flow on the collision-
ejection manifold is gradient-like. Further we define the notion of central
configuration and see that there exist two triangular and three collinear
central configurations for the 3-particle system. The case when the force is
directly proportional with the product of the masses is the only one for
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which the triangular configurations are equilateral triangles. Using the
gradient-like property we prove that for b{2, collision-ejection orbits tend
to form a central configuration near collision-ejection.

The case b=2 is treated separately and seems to be the most interesting
one. It covers, in particular, the so-called Maneff gravitational model given
by a nonrelativistic, post-Newtonian law. This model is able to explain
with a very good approximation the perihelion advance of the inner
planets as well as that of the moon's perigee [Ma, 1924], [Ma, 1925],
[Ma, 1930a], [Ma, 1930b]. Newton himself considered (in Principia :
Book I, Prop. XLIV, Corollary 2, as well as in the Portsmouth Collection
of��during his lifetime��unpublished manuscripts) the central force
problem given by this law, in an attempt to clarify the apsidal motion of
the moon. This couldn't be satisfactorily explained within the (today
classical) model given by a force proportional with the inverse square of
the distance.

We consider here the rectilinear problem for b=2, and after regularizing
binary collisions we show that the flow on the collision-ejection manifold
(which is topologically equivalent to a sphere minus 4 points) has 2 rest
points, each having two homoclinic orbits. All the other orbits on the colli-
sion-ejection manifold are periodic. Similarly as for b{2, there exist triple
collision-ejection orbits tending to form asymptotically a central configura-
tion, but besides these we put into the evidence a large class of solutions
which tend to the triple collision-ejection after infinitely many binary colli-
sions. They reach the collision-ejection manifold without asymptotic phase,
by tending to the periodic orbits of this manifold. Each periodic orbit
contains a two-dimensional local stable�unstable manifold of such solutions.
(Consequently, the set of initial data leading to rectlinear collisions-ejections
has positive measure within the set of initial data of rectilinear solutions.)
Among quasihomogeneous potential laws, the case b=2 is the only one
having this remarkable property.

2. Equations of Motion and Transformations

Consider 3 particles of masses mi>0 in the Euclidean space R3, having
coordinates qi=(q1

i , q2
i , q3

i ), i=1, 2, 3, in an absolute reference system. Let
q=(q1 , q2 , q3) # R9 be the configuration of the system of particles and
define the quasihomogeneous potential W=U+V, where

U: R9"2 � R+, U(q)= :
1�i< j�3

:(mi , mj) q&a
ij ,

V: R9"2 � R+, V(q)= :
1�i< j�3

;(mi , mj) q&b
ij
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are homogeneous functions of degree &a and &b respectively, with 1�
a�b, qij=|qi&qj | is the Euclidean distance between particles i and j,
2 denotes the collision-ejection set

2= .
1�i< j�3

[q | qi=qj],

and :, ; are symmetric positive functions of the masses, i.e. such that
:(mi , mj)=:(mj , mi)>0 and likewise for ;.

The equations of motion are given by the system

{q* =M &1p
p* ={W(q),

(2.1)

where M=diag(m1 , m1 , m1 , m2 , m2 , m2 , m3 , m3 , m3), {=(�1 , �2 , �3) is
the gradient operator and p=Mq* denotes the momentum of the system. In
case a=b=1 and :(mi , mj)=;(mi , mj)=(G�2) mimj , where G is the
gravitational constant, we are in the classical Newtonian 3-body problem.
We will therefore be interested in values of a and b with 1�a<b.

Analogous to the Newtonian case, there exist 10 uniform first integrals.
Those of the momentum and center of mass imply that the set Q_P is
invariant for the equations (2.1), where

Q={q } : mi qi=0= and P={p } : pi=0= .

From now on we will restrict the equations of motion to the above
invariant set, which physically means that the motion is regarded with
respect to the center of mass of the 3 particles. We will also use the integral
of energy

T(p(t))&W(q(t))=h,

where T : R9 � [0, �), T(p)= 1
2 �3

i=1 m&1
i |pi |

2 is the kinetic energy and h
is the energy constant.

Standard results of the differential equations theory ensure, for given
initial data (q, p)(0) # (R9"2)_R9, the existence and uniqueness of an
analytic solution (q, p) of the Eq. (2.1), defined on a maximal interval
[0, t*), 0<t*��. Analogously one can work with intervals of the form
(t*, 0]. In case t* is finite, the solution is said to experience a singularity.

Since our goal is to understand the behavior of triple-collision-ejection
and near-triple-collision-ejection solutions of the particle system, we will
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use McGehee transformations (for details see [M, 1974]) to blow-up the
triple collision-ejection singularity. Consider transformations of the form

{
r=(qTMq)1�2

s=r&1q
y=pTs
x=p&yMs.

(2.2)

Notice that sTMs=1 and xTs=0. Compose further (2.2) with the trans-
formations

{v=rb�2y
u=rb�2x

(2.3)

and define along a triple-collision-ejection solution the time transformation

d{=r&1&b�2 dt. (2.4)

Under the transformations (2.2), (2.3), (2.4), which are analytic diffeo-
morphisms, the equations of motion (2.1) become

r$=rv

(2.5)

s$=M&1u

v$=
b
2

v2+uTM&1u&rb&aU(s)&bV(s)

u$=\1&
b
2+ uv&(uTM&1u) Ms+rb&a[U(s) Ms+{U(s)]

+bV(s) Ms+{V(s),

where, by abuse, we have maintained the same notations for the new
variables. The prime denotes differentiation with respect to the new
(fictitious) time variable {. The integral of energy takes the form

1
2 (uT M&1u+v2)&rb&aU(s)&V(s)=rbh. (2.6)

Also notice that the sets [(r, s, v, u) | r=0] and [(r, s, v, u) | r>0] are
invariant manifolds for the Eq. (2.6). We call the set

C=[(r, s, v, u) | r=0 and equation (2.6) holds]

the triple-collision-ejection manifold. Notice that C is pasted to the phase
space to replace the triple-collision-ejection singularity and though it is
fictitious, the behavior of the flow on C gives information about near-
triple-collision-ejection solutions.
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3. Central Configurations

Before starting to analyse the new equations of motion, we will deal with
the notion of central configuration. Consider a potential function of the
form

1: R9 � R+, 1(q)= :
1�i< j�3

#(mi , mj) q&d
ij , (3.1)

where #(mi , mj)=#(mj , mi)>0, and for our purpose is enough to take
d�1.

A central configuration for the particles of masses m1 , m2 , m3>0, is a
solution q0 of the equations

{1(q)=_Mq, (3.2)

where _{0 is a constant and M is the matrix defined in the previous
section. Since homothetic transformations and rotations of the geometric
configuration given by q0 are also central configurations, factorize the set
of central configurations to the equivalence relations given by homotheties
and rotations. Thus, by a central configuration we usually understand a
representative of one such class.

Central configurations play an important role in the study of the classi-
cal n-body problem, n�3. It is known that in the Newtonian 3-body case,
there exist exactly five central configurations. Three of them correspond to
collinear configurations (one for each ordering of three particles on a non-
oriented line) and two correspond to equilateral configurations (one for
each possible orientation of a triangle in the plane). We prove here the
following generalization of this fact.

Theorem 1. In case

(#(mi , mj) mk)1�(d+2)<(#(mi , mk) mj)
1�(d+2)+(#(mk , mj) mi)

1�(d+2) (3.3)

for all choices of mutually distinct indices i, j, k # [1, 2, 3], the set of central
configurations corresponding to the potential 1 in (3.1) is formed by three
collinear configurations and two triangular configurations. Otherwise, it is
formed only by the three collinear configurations. Moreover, the case
#(mi , mj)=kmimj , where k>0 is a constant, is the only one giving rise to
equilateral configurations.

Proof. As it can be seen from the above statement, the existence of the
collinear central configurations doesn't depend on the inequalities (3.3).
The proof concerning these configurations is using an idea in [Sa, 1980].
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The planar noncollinear case is treated using a different idea. Notice first
that conditions (3.2) can be written as

{(J1 2�d)(q)=0, (3.4)

where J(q)= 1
2 �3

i=1 mi |q i |
2. However, due to the fact that the config-

urations are restricted to the invariant set Q (see Section 2), we have
J(q)=m&1 �1�i< j�3 mimjq2

ij , where m=m1+m2+m3 . Consider first
the collinear case. Define $: Q � R3 by $(q)=q~ =(q12 , q13 , q23). Taking
J=J� b $ and 1=1� b $ one has

{(J1 2�d)(q)={(J� 1� 2�d)(q~ ) } D$(q),

where D$(q) is the Jacobian matrix. This implies that q is a central config-
uration if and only if

{(J� 1� 2�d)(q~ ) } D$(q)=0. (3.5)

We further treat the case when the ordering of the particles on the line is
m1 , m2 , m3 . The other two cases are treated in the same way by circular
permutations. A simple computation shows that

D$(q)=\
&1
&1

0

1
0

&1

0
1
1+ .

In order to be collinear, a central configuration is also subject to the
constraint

q13=q12+q23 . (3.6)

Since J� 1� 2�d is a homogeneous function of degree 0, one can fix the scale by
setting J� =1. This defines a sphere in R3 on which every class of central
configurations (obtained after factorizing through homotheties and rota-
tions) has a representative. Thus, equations (3.5) can be written as

{(1� 2�d)(q~ ) } D$(q)=0. (3.7)

Observe now that 1� 2�d is concave up and has a unique minimum point if
restricted to the sphere J� =1. Writing Eq. (3.7) explicitly and using (3.6),
one obtains that the only possible solution for (3.7) is at the minimum
of 1� 2�d, i.e. for {1� 2�d=0. This implies that for the given ordering of the
particles we have a unique collinear central configuration.
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Regarding the planar case one can see that conditions (3.4) are now free
of geometrical constraints. Since q12 , q13 , q23 are geometrically independent
(see [W, 1941], pp. 274�277) one can replace conditions (3.4) by

({J� 1� 2�d)(q~ )=0.

Computing each condition separately we get

qd+2
ij =

#(mi , mj)
mimj

K, 1�i< j�3,

where K=mJ� (q~ )�1� (q~ ). For having configurations which do not degenerate
into a segment, the triangle inequalities qij<qik+qkj have to be fulfilled for
all choices of mutually distinct indices i, j, k # [1, 2, 3], thus the necessity of
relations (3.3) follows. Notice that these relations are not automatically
fulfilled. Take, for example, #(mi , mj)=(mi mj)

d+3 and m1=1, m2=2,
m3=7; this choice will not verify one of the inequalities.

Let us now prove that Eq. (3.5) will always have a unique solution in the
noncollinear case. For simplicity change the notations and take x=q12 ,
y=q13 , z=q23 , a=#(m1 , m2), b=#(m1 , m3), c=#(m2 , m3). Eq. (3.5) are
then equivalent to the system

xd+2=
a(m1m3 y2+m2m3 z2)
m1m2(by&d+cz&d)

{yd+2=
b(m1m2x2+m2m3 z2)
m1m3(ax&d+cz&d)

(3.8)

zd+2=
c(m1m2x2+m1m3 y2)
m2m3(ax&d+by&d)

.

Since each equation of this system can be written as F(x, y, z)=1, where
F is a homogeneous function of degree 0, look for solutions of the form
(x, y, z)=(x, +x, &x), +, &>0. This makes system (3.8) equivalent to the
system in the unknowns +, &:

{
`1(+)+`2(&)=0
m1m3+d+2(a+c&&d)=bm2(m1+m3&2)
m2m3&d+2(a+b+&d)=cm1(m2+m3+2),

(3.9)

where `1(+)=&m1m2b+&d+am3m1+2 and `2(&)=&m1m2c&&d+am3m2&2.
This system has the unique solution

+=(ba&1m2m&1
3 )1�(d+2), &=(ca&1m1m&1

3 )1�(d+2).
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In order to prove that it is unique, notice first that `1 and `2 are increasing
functions. From the second equation in (3.9) read that

+(&)=[bm2(m1+m3&2)�m1m3(a+c&&d)]1�(d+2),

so + is an increasing function of &. Therefore, `1 b ++`2 is an increasing
function of &. Since the first equation in (3.9) can now be written as
(`1 b +)(&)+`2(&)=0, it follows that system (3.9) cannot have more
than one solution. Thus, Eqs. (3.8) have the family of solutions (x, y, z)=
(*, *+, *&), *>0. The fact that conditions (3.3) must be fulfilled by the
solution in order to form a triangle, can now be recovered from the above
formulas. In particular, for #(mi , mj)=kmimj , k{0, the system has the
family of solutions x=y=z and this is the only case when the triangular
configurations are equilateral. This completes the proof.

Remark. The shape of both the collinear and triangular configurations
depends on the values of d and on the form of # (and implicitly on the
values of the masses, with the exception of the equilateral case).

4. An Asymptotic Property

We return to the study of the Eqs. (2.5). Notice that restricting them to
the collision-ejection manifold C, the equations become

{
s$=M&1u

(4.1)
v$=

b
2

v2+uTM&1u&bV(s)

u$=\1&
b
2+ uv&(uTM&1u) M s+bV(s) Ms+{V(s).

The manifold C is obviously compact if restricted to the configuration space
(since sTMs=1), but is unbounded in phase space. Orbits on C having the
property that si=s j asymptotically, for some i{j, become unbounded and
will run off the collision-ejection manifold in finite time. Denote the set of
these orbits by B. They are in connection with solutions leading to binary
collisions, and they will not be our object of study in this general setting.
This seems to be a difficult task, so, in the last section of this paper, we will
deal only with the particular case of the one-dimensional universe.

The goal of this section is to study only pure triple-collision-ejection
orbits (i.e. those that do not encounter other singularities than the triple-
collision one). This will make our work easier due to the structure of orbits
on C"B. The solutions of the equations (4.1) on C"B are globally defined.
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Since C"B is an invariant manifold, any solution tending�ejecting to�from
it, needs an infinite amount of time to reach C"B. Thus, for pure triple
collision-ejection solutions, the fictitious time variable { has the property
|{| � � when the triple approach is attained.

Notice further that the energy relation for the Eqs. (4.1) takes the form

v2+uTM&1u=2V(s). (4.2)

Using (4.2) one obtains v$=(1&(b�2)) uTM &1u. Therefore, depending on
the value of b, v$ can be zero or maintain the same sign for all solutions.
This observation and the following definition make us distinguish two
cases.

Definition. Let X be a metric space and .: X_R � X a flow on it. The
flow will be called gradient-like if the following conditions are fulfilled

(i) The rest points are isolated.

(ii) There exists a continuous function g: X � R such that g(.(x, t))<
g(x) for all t>0, unless x is a rest point.

Remark. Gradient-like flows do not have periodic orbits.

Returning to the Eqs. (4.1) observe that for b{2 the flow is gradient-like
(with respect to g(s, v, u)=v if b<2, and with respect to g(s, v, u)=&v if
b>2). We will later see that the flow is not gradient-like for b=2.

In this section we restrict the study to the case b{2. Our aim is to prove
the following result.

Theorem 2. If b{2, any triple-collision-ejection solution tends to form
asymptotically a central configuration.

Theorem 2 states that if b{2, then pure triple-collision orbits tend
always to form a central configuration. It cannot happen, for example, that
the triangle having the particles at its vertices, collapses to a point such that
its sides do not have a limiting position (up to rotations within a central
configuration class) when the collision takes place. In order to perform
the proof of the theorem we need the following result due to McGehee
[M, 1974].

Theorem 3. Let X be a locally compact metric space and . a flow on it.
Take x0 # X such that its |-limit, |(x0)=�t>0 cl[.(x, [t, �))], is a non-
empty compact set. If . restricted to |(x0) is gradient-like, then |(x0) is a
single point.
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Proof of Theorem 2. We perform the proof for the case 1<b<2, the
case b>2 following with obvious changes. Notice first that the restpoints
of the flow associated to the Eqs. (2.5) are characterized by the following
conditions

(i) r=0, (ii) u=0, (iii) v=\(2V(s))1�2, (iv) {V(s)+bV(s) Ms=0.

Using the transformations (2.2), (2.3), (2.4) one can see that equation (iv)
is equivalent to the condition of being a central configuration (see (3.1)).
Condition (i) shows that the rest points belong to the collision-ejection
manifold C.

Therefore, in order to prove Theorem 2, it is enough for us to show that
triple-collision-ejection solutions will reach C"B with asymptotic phase
through the equilibrium solutions of system (2.5). By Theorem 1 and the
fact that the flow on C"B is gradient-like, it is enough to show that the
|-limit set of a triple-collision-ejection orbit is a nonempty compact set.
To prove this we use an idea of McGehee [M, 1974]. Denote first by
. = (r, s, v, u) a solution of the Eqs. (2.5) ending�beginning in a triple
collision-ejection and define the following sets

S=[, | r�=] & [, | (1�2)(uTM&1u+v2)&rb&aU(s)&V(s)=rbh],

G=[, # S | |v|�+], G+=[, # S | v�+], G&=[, # S | v�&+]

#\=[, # G\ | r==], _\=[, # S | v=\+],

where =>0, +>0 are constants. Let [{1 , {2], with {1<{2 , be a closed
interval of the fictitious time variable {. We call ,([{1 , {2]) an orbit
segment. The orbit segment is said to be maximal in a closed set K, if
,([{1 , {2])/K but ,(I )/3 K, for any interval I containing [{1 , {2] but
larger than it.

The following statements are true:

(i) For = suitably chosen, if ,([{1 , {2]) is a maximal orbit segment
in G+, then ,({1) # _+ and ,({2) # #+.

(ii) For the same = in (i), if ,([{1 , {2]) is a maximal orbit segment
in G&, then ,({1) # #& and ,({2) # _&.

Let us prove (i). The proof of (ii) works in a similar way. If ,({) # _+,
then v=+>0 and r�=. Due to the continuity of the solutions with respect
to initial data, since v$>0 on C on nonequilibrium orbits (this happens
because u=0 only at equilibria), it follows that for r sufficiently small,
v$>0 for the Eqs. (2.5), on any compact interval of time. On the other
hand, for the same equations, r$=rv>0 if ,({) # _+. These imply that the
points on _+ are entering G+, so ,({2) # #+. Also, points in #+ are leaving
G+, so ,({1) # _+. Statement (i) is thus proved.
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Recall that for the orbit , leading to a total collapse, r({) � 0 when
{ � �. Note that since v$({)>0 for { finite, we can always choose the value
of + such that , enters G at some finite moment of time. We show further
that for the above choice of =, and for + chosen such that ,({2) # G, it
follows that ,({) # G for all {�{2 . Suppose this is not true, i.e. there exits
a {3�{2 such that ,({3) # G+. Then, since r({)<= and r({) � 0, it follows
that r can not take the value = for { large enough. This means that , can
never reach #+. Thus, by (i), we obtain that ,({) # G+ for all {�{3. But
v>0 in G+, so r$=rv>0 for {�{3 . This contradicts the fact that r({) � 0
for { � � and consequently ,({) can not be in G+ for {�{2 . In the same
way, by (ii), ,({) can not be in G& for {�{2 . Consequently ,({) # G for
{�{2 . Since G is compact and any |-limit set is closed, it follows that
the |-limit set is nonempty and compact. This completes the proof of
Theorem 2.

5. Maneff's Gravitational Law and the Case b=2

Between 1924 and 1930, G. Maneff [Ma, 1924], [Ma, 1925], [Ma, 1930a],
[Ma, 1930b] proposed and analysed a nonrelativistic gravitational law
that can explain very well not only the perihelion advance of the inner
planets but is also in agreement with the observations of the moon's
perigee. Most of the nonrelativistic models (including the Newtonian one)
fail to explain simultaneously these issues [H, 1975, pp. 238�239]. The
potential has the form

:
i<j _

Gmimj

qij \1+
3G(mi+mj)

2c2qij +& ,

where G is the gravitational constant and c is the speed of light. By taking
:(mi , mj)=Gmi mj , ;(mi , mj)=(3G 2�2c2)mimj (mi+mj), a=1, and b=2
in the definition of W in Section 2, we have a practical example of a poten-
tial with b=2.

We further restrict our study to the rectilinear problem and, for simplicity,
we also take a=1. But the results of this section are true for any a,
1�a<2. The Eqs. (2.5) are thus 8-dimensional and the variables are con-
strained by 5 equations: the integral of energy (2.6), the relations sTMs=1
and uTs=0, derived from the way the McGehee's transformations have
been defined, and the relations � misi=0 and � ui=0, obtained through
transformations from the equations defining the invariant set Q_P.
McGehee's technique will further offer us an idea of how to regularize
binary-collision-ejection singularities. For this, take a=(a1 , a2 , a3) and
b = (b1 , b2 , b3) to be points on the sphere S = [s | sTMs = 1 ] with

68 FLORIN N. DIACU



File: 505J 309312 . By:CV . Date:19:06:96 . Time:16:27 LOP8M. V8.0. Page 01:01
Codes: 2460 Signs: 993 . Length: 45 pic 0 pts, 190 mm

a1=a2<a3 and b1<b2=b3 , in the sense of the ordering of particles on the
line (s1�s2�s3). Note that

0<aTMb<1. (5.1)

Choose * to be the smallest positive number such that

cos 2*=aTMb. (5.2)

Consider now the function S(s)=(sin 2*)&1 [a sin(*(1&s))+b sin(*(1+s))]
and define the transformation

{s=S &1(s)
u=sTXTu,

(5.3)

where X: Q � Q, X=X1M�(m1+m2+m3)+(m1m2m3 �m1+m2+m3)1�2

M&1X2 , M=diag(m1 , m2 , m3),

X1=\
1
1
1

1
1
1

1
1
1+ , X2=\

0
&1

1

1
0

&1

&1
1
0+ .

Notice that d�ds S(s)=*XS(s). Take V� =V b S, U� =U b S and compute
d�ds V� (s)=*DV(S(s)) XS(s), (d�ds) U� (s)=*DU(S(s)) XS(s), where DV=
({V)T and DU=({U)T. Also observe that we have X TMX=M,
aTXTMb>0 and for s # Q, sTMXs=0 and X2s=&s. Using the trans-
formations (5.3) and the above relations, Eqs. (2.5) turn into the 4-dimen-
sional system

{
r$=rv

(5.4)

v$=v2+u2&rU� (s)&2V� (s)

s$=*&1u

u$=r*&1 d
ds

U� (s)+*&1 d
ds

V� (s),

having the energy relation

1
2(u

2+v2&V� (s))=r(rh+U� (s)),

where

U� (s)=A sin 2* _ :(m1 , m2)
(b2&b1) sin *(1+s)

+
:(m2 , m3)

(a3&a2) sin *(1&s)

+
:(m1 , m3)

(a3&a2) sin *(1&s)+(b2&b1) sin *(1+s)& ,
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V� (s)=B sin2 2* _ ;(m1 , m2)
(b2&b1)2 sin2 *(1+s)

+
;(m2 , m3)

(a3&a2)2 sin2 *(1&s)

+
;(m1 , m3)

[(a3&a2) sin *(1&s)+(b2&b1) sin *(1+s)]2& .

Also notice that s # (&1, 1). Take R(s)=(1&s2)2 V� (s) and observe that
this function can be analytically extended to the interval [&1, 1]. We
continue to denote this extension by R. Consider the transformation

w~ =(1&s2)2 R&1�2(s)u, (5.5)

which is an analytic diffeomorphism, and compose it with the time trans-
formation

d{=(1&s2)2 R&1�2(s) d!, (5.6)

where ! is the new time variable. Rescaling w~ by w=*w~ and using the
energy relation, the equations of motion (5.4) become

r$=rv
(1&s2)2

R1�2(s)

v$=r(2rh+U� (s))
(1&s2)2

R1�2(s)

s$=*&2w (5.7)

w$=4s _(1&s2)2

R(s)
v2&1&s2&2r(rh+U� (s))

(1&s2)2

R(s) &
+

d�ds R(s)
R(s) _(1&s2)2&

w2

2*2&+r
(1&s2)4

R(s)
}

d
ds

R(s).

Notice that these equations are regular at double collisions-ejections. This
becomes clear by observing that the energy relation takes the form

w2+(1&s2)4 R&1(s) v2&2(1&s2)2=2r(rh+U� (s))(1&s2)4 R&1(s). (5.8)

The collision-ejection manifold (further denoted by C) will also be the
intersection of the invariant set [r=0] with the surface given by the energy
relation (5.8). In order to reach C, one needs |!| � �. This is now obvious
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Fig. 1. The flow on the collision manifold for the case b=2.

since all orbits on C are globally defined. Indeed, the flow on C will be
given by

{
v$=0

(5.9)
s$=*&2w

w$=4s _(1&s2)2

R(s)
v2&1&s2&+

d�ds R(s)
R(s) _(1&s2)2&

w2

*2& ,

and it is regular.
Since the energy relation can be written as

w2

2(1&s2)2+
v2

2R(s)�(1&s2)2=1,

C is topologically equivalent to a sphere minus four points, like the one in
Fig. 1.

Let us see in more detail how the flow on the collision-ejection manifold
looks like. In order to have rest points, one necessarily needs w=0. This
implies that the equation

4s(1&s2)2

R(s)
k&4s(1+s2)+

d�ds R(s)
R(s)

(1&s2)2=0

has to be fulfilled, where k=v2>0. In terms of V� , the above equation
becomes

d
ds

V� (s)=
8s

(1&s2)2 V� (s)&
4s

(1&s2)2 k, (5.10)
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which is affine and has the solution V� (s)=k�2. This implies that the other
condition of having a rest point is

v=\(2V� (s))1�2.

Introducing this back into (5.10) we get that at a rest point d�ds V� (s)=0,
which, by the above inverse transformations, is equivalent to the condition
of being a central configuration. This shows that with respect to the
Eqs. (5.7), the only rest points of the flow are at points (r, v, s, w) with
r=0, w=0, and d�ds V� (s)=0, i.e. the points e+ and e& on the manifold
(see Figure 1). Computing the eigenvalues, one sees that both e+ and e&

are not hyperbolic, e+ has a 2-dimensional unstable manifold and a
1-dimensional stable manifold, while e& has a 2-dimensional stable
manifold and a 1-dimensional unstable manifold. Both e+ and e& have two
homoclinic orbits at the constant level of v corresponding to the \ mini-
mum value of V� . Due to the equation v$=0 and the lack of other restpoints
on C, the remaining orbits on the collision-ejection manifold are cycles.

This shows that the set 4 of collision-ejection orbits contains a 2-dimen-
sional manifold 41 . Orbits in 41 tend�eject to�from the corresponding
collinear central configurations e& and e+, respectively.

The following natural question arises. Is 4=41 as it happens for b{2? We
will see that this is the case for pure triple-collision-ejection solutions of
the one-dimensional universe, but is not true if binary collisions are taken
into consideration. The last assertion is obtained by proving the existence of
a set of orbits tending�ejecting to�from the periodic orbits of C. More
precisely (see Figure 2), there exists a 2-dimensional manifold of solutions
ejecting from every periodic orbit north of the equator E (including E), and

Fig. 2. Orbits ejecting from the equator.
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there exists a 2-dimensional manifold of solutions tending to every periodic
orbit south of the equator E (including E again). Notice that E is defined
as the set [r=0] & [v=0]. So, E will be the only periodic orbit to which
solutions tend and from which solutions eject. Let us now summarize the
results and complete their proofs.

Theorem 4. The set 4 of collision-ejection orbits of the rectilinear
3-body problem with b=2, and in particular for Maneff 's gravitational law,
is of the form 4=41 _ 42 with 41 & 42=<. The set 41 contains a
2-dimensional manifold and is formed by all the orbits tending�ejecting
to�from an equilibrium (which corresponds to a central configuration). On the
other hand 42=�+ # R Z' , where each Z' contains a 2-dimensional manifold
of solutions tending to the periodic orbit [r=0, v='] if '�0, and ejecting
from it if '�0.

Proof. The statement concerning 41 is summarizing the previous
remarks of this section. Let us now prove the part refering to 42 . For this
we use the analyticity of the solutions of (5.7) to describe the first return
(Poincare� ) map associated to every periodic orbit [r=0, v=']. Notice
first that the last equation in (5.7) can be eliminated due to the energy rela-
tion (5.8), and the variable w can be expressed in terms of r, v, and s. Thus,
the autonomous system (5.7) is equivalent to the nonautonomous system

{
dr
ds

=*2rvf (r, v, s)

dv
ds

=*2r(2hr+U� (s)) f (r, v, s),
(5.11)

where f (r, v, s)=[2hr2+2rU� (s)&v2+2R(s)�(1&s2)]&1�2. The vector field
is well defined since the denominator cancels only when r tends to 0 and
v2 tends to 2V� (s), which happens only when a solution tends to one of the
equilibria of the collision-ejection manifold. Excluding this case (which has
been previously discussed) we see that the vector field defining (5.11) is
regular for all s in [&1, 1]. This can be seen by multiplying the numerator
and the denominator of each component of the vector field by 1&s2. The
vector field is also analytic in r, v, s. The solutions of the Eqs. (5.11) are
globally defined and periodic in s. The periodicity follows by the way R, U� ,
and V� are defined, the period being 3=2?�*.

Developing f in a Taylor series in (r, v) around a point (0, ', s), the
Eqs. (5.11) become

{
dr
ds

=A(s) rv+krvF(v&', s)+r2Q1(r, v, s)

dv
ds

=A(s) U� (s)r+*2U� (s) rF(v&', s)+r2Q2(r, v, s),
(5.12)
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where A, B are periodic in s but are constant with respect to r and v, k
is a constant, Q1 , Q2 are bounded in (r, v) and periodic in s, and
F(v&', s)=��

k=1 (1�k!) Dk
v f (0, ', s)(v&')k. Here, F represents the part of

the Taylor expansion free of terms containing r.
Since the Eqs. (5.12) are analytic with respect to the initial data, the first

return map around [r=0, v='], for a Poincare� section fixed at s=s0 ,
with &1<s0<1, is well defined and is given by

9: \r
v+� \ re3Av+rv ��

j=1 :j (v&') j 3 j+r2O(r, v)
v+ABre3Av+r ��

j=1 ;j (v&') j 3 j+r2O(r, v)+ ,

where 3 is the above computed period of the vector field with respect
to s; the quantities :j , ;j , j�1, and A, B>0, are constants. Due to the fact
that the solutions of the Eqs. (5.12) are globally defined and analytic in s,
and analytic in (r, v) around (0, ') for any ', the Poincare� map is well
defined for any choice of s0 as defined above. Notice that the exponential
occurs by summing up the series having r as a factor. Observe that
9(0, ')=(0, ') for all real ', so all (r, v)=(0, ') are fixed points of the first
return map. The linearization of 9 at (0, ') is obtained by computing

D9(0, ')=\ e3A'

ABe3A'

0
1+ .

This shows that for '>0, 9 contains a 1-dimensional unstable manifold,
and for '<0 it contains a 1-dimensional stable manifold. Therefore the
corresponding sets Z' contain 2-dimensional unstable�stable manifolds.

The only completely degenerate case occurs for the fixed point (0, 0),
when both eigenvalues of D9(0, 0) are 1. Here we will apply the following
result due to Casasayas, Fontich, and Nunez [CFN, Thm. 2.1 6 3.1],
which we state in the special case needed here. Let F=(F1 , F2) be an
analytic function defined on some open neighborhood of (0, 0) in R2,
with values in R2, such that: (i) F(0, y)=(0, y); (ii) DF(0, 0)=( 1

1
0
1);

(iii) DxDyF1(0, 0)>0. Then there exist stable and unstable invariant
manifolds which locally are graphs of analytic functions. More precisely,
there exist .s: (&$, 0] � [0, �) and .u: [0, $) � [0, �), defining
Ws

loc($)=[(.s( y), y), y # (&$, 0]] and W u
loc($)=[(.u( y), y), y # [0, $)].

Moreover .s, u( y)t:( y2�2), where :=DxDyF1(0, 0).
This result applies directly to the fixed point (0, 0) of the first return

map, if we notice that for a suitably chosen Poincare� section (i.e. for a
value of s0), the quantity ABe3A' can be made 1. Thus 9 has a local stable
and a local unstable manifold behaving like a parabola in the neighbor-
hood of a triple collision. This shows that the set Z0 corresponding to the
equator of the collision manifold is composed by a 2-dimensional stable
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and a 2-dimensional unstable manifold. This completes the proof of the
theorem.

Corollary 5. Within the set of initial data of rectilinear solutions, the
subset of those leading to triple collisions has positive Lebesgue measure.

Proof. This is obvious by Theorem 4 since 42 is the uncountable union
of sets containing 2-dimensional manifolds. Thus 42 has dimension 3, the
same as the phase space of the rectilinear problem.

This shows a significant difference between the Maneff and the Newtonian
rectilinear 3-body problem (in the classical case the set of regularized solu-
tions leading to triple collisions is a 2-dimensional manifold, so the set of
initial data leading to them has zero measure).

Let us finally give the physical interpretation of triple-collision orbits in
42 . We take first a look at orbits tending to the equator E. Supposing we
have the ordering q1<q2<q3 , the particles m1 and m3 go eventually to the
common center of mass of the system while m2 bounces back and forth
between m1 and m3 . Due to the regularization, every binary collision is
elastic, in the sense that it is analytically continued by a binary ejection.
The 3 particles approach the triple collision-ejection manifold without
asymptotic phase, since m2 collides infinitely often with both m1 and m3 .
For ejection solutions this scenario is reversed. The same interpretation
is given for orbits tending�ejecting to�from periodic orbits in between the
equilibria.

Let us see what happens with a solution tending to a periodic orbit on
the left lower horn of the collision manifold. In this case the particles m1

and m3 also go to the common center of mass, but m2 encounters infinitely
many binary collisions only with m1 and no collisions at all with m3 .
For orbits tending�ejecting to�from periodic orbits of the other horns, the
physical interpretation becomes obvious.

Due to the gradient-like property of the flows on C for b{2, remark the
structurally unstable character of the flow on the collision-ejection
manifold for Maneff 's gravitational law with respect to the parameter b.
This means that the set 42 occurs only for the case b=2 and orbits of this
kind are unlikely to occur for gravitational laws obtained by perturbing the
Newtonian one with homogeneous functions. Small perturbations within
this class break the periodic orbits and make the flow on C increasing or
decreasing with respect to the variable v.

Since the whole dynamics of orbits in 42 depends on the regularization
technique for binary collisions obtained through the Eqs. (5.7), a last
remark is necessary in this sense. In [M, 1981] it is shown that for negative
energy levels, the planar 2-body problem defined by the inverse square
potential law, doesn't admit regularization with respect to the initial data
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for binary collision orbits. This property is also true for Maneff 's 2-body
problem, and it will be proved somewhere else. Binary collisions cannot be
regularized because they also occur for nonzero angular momenta, i.e. the
point masses can spin around each other before the collision.

Nevertheless, the above regularization technique makes sense within
the invariant set of rectilinear solutions. Even from the physical point of
view it is plausible to imagine that particles moving on a line will maintain
a rectilinear motion after a binary collision. Moreover, binary-collision-
ejection orbits can be continuously extended with respect to the initial
data within the invariant set of rectilinear solutions, as we have seen
above. Unfortunately this cannot be done outside this invariant set, due
to the spiraling property mentioned above. This limitation will therefore
not allow an extension of the above technique to the planar or the spatial
case, so the existence of triple-collision-ejection orbits occuring after
infinitely many collisions in the general planar or spatial case looks point-
less.

There is, however, another invariant set where the regularization of
binary collisions-ejections can be done, namely that of planar isosceles
orbits, as it has been shown in [D, 1993]. Let us mention that, due to an
insufficiently detailed analysis of the Poincare� map, the existence of
2-dimensional manifolds contained in the set of orbits leading to each
periodic orbit on the collision-ejection manifold has not been recognized
there. But the method developed in this section also applies to the isosceles
case.
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