
Nonlinear Analysis 65 (2006) 1425–1439
www.elsevier.com/locate/na

Central configurations and total collisions for
quasihomogeneous n-body problems
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Abstract

We consider n-body problems given by potentials of the form α
ra + β

rb with a, b, α, β constants, 0 ≤ a <

b. To analyze the dynamics of the problem, we first prove some properties related to central configurations,
including a generalization of Moulton’s theorem. Then we obtain several qualitative properties for collision
and near-collision orbits in the Manev-type case a = 1. At the end we point out some new relationships
between central configurations, relative equilibria, and homothetic solutions.
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1. Introduction

The n-body problem studied here is given by a potential of the form α
ra + β

rb , where r is
the distance between bodies and a, b, α, β are constants, 0 ≤ a < b (see [4,12]). In the
first part of the paper we treat the general problem, and in the second part we focus on the
case a = 1. The function α

ra + β

rb , called quasihomogeneous because of being the sum of
homogeneous functions of different degrees, generalizes classical potentials, such as those of
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Newton, Coulomb, Birkhoff, Manev, Van der Waals, Libhoff, Schwarzschild, and Lennard-
Jones. Thus, the applicability of the quasihomogeneous n-body problem ranges from celestial
mechanics and atomic physics to chemistry and crystallography.

Although many properties of the Newtonian n-body problem have a correspondent in the
homogeneous case, this is not true for nonhomogeneous potentials. On the one hand, the
transposition of known results is far from trivial; on the other, new properties show up.

An intriguing aspect we will point out in this paper refers to central configurations, which
are crucial for understanding the dynamics of the n-body problem (see [13]). The central
configurations of the quasihomogeneous potential are in a certain relationship with the central
configurations of the homogeneous functions that form this potential. Thus, we will introduce
here the notion of simultaneous central configuration and will investigate its connection with the
classical concept.

In Section 2, we define the quasihomogeneous n-body problem and write down the equations
of motion. In Section 3, we introduce the concepts of central and simultaneous central
configuration, the latter being specific to quasihomogeneous potentials. Section 4 deals with
collinear central configurations. Using critical point theory, we prove a generalization of
Moulton’s theorem by showing that the number of collinear central configurations of n bodies
is n!/2. Starting with Section 5, we restrict our study to Manev-type problems, [5], i.e. those
given by potentials of the form α

r + β

rb , and show that there are exactly two planar central
configurations in the three-body case. Section 6 introduces a framework for the study of collision
and near-collision orbits, which is performed in Sections 7 and 8. We study in detail the network
of collision solutions and determine the relationship between central configurations, on the
one hand, and relative equilibria and homothetic orbits, on the other hand. It is important to
note that if in the homogeneous case the correspondence between central configurations and
homothetic solutions is one-to-one, this fails to be the case in the quasihomogeneous problem.
The relationship between central configurations and relative equilibria remains unchanged, i.e.
one-to-one, in the quasihomogeneous case. For Manev-type potentials, homothetic orbits are less
likely than in the Newtonian case, in the sense that they show up only for simultaneous central
configurations.

2. The quasihomogeneous n-body problem

We will start with defining the planar quasihomogeneous n-body problem. Consider the linear
space

Ω =
{

r = (r1, . . . , rn) ∈ (R2)n
∣∣∣ n∑

i=1

mi ri = 0

}
, (1)

where mi > 0, i = 1, 2, . . . , n, are the masses of the n bodies and ri , i = 1, 2, . . . , n, represent
their coordinates. Notice that

∑n
i=1 mi ri = 0 fixes the centre of mass at the origin of the

coordinate system. Let

Δi j = {(r1, . . . , rn) ∈ Ω | ri = r j }; Δ =
⋃
i, j

Δi j . (2)

We call Δ the collision set. The potential U of the system is a function defined on the
configuration space Ω̃ = Ω \ Δ and is given by

U = W + V ,
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where W is a homogeneous function of degree −a, a ≥ 0,

W (r1, . . . , rn) =
∑
i< j

mi m j

‖ri − r j‖a
, (3)

and V is a homogeneous function of degree −b, b > a,

V (r1, . . . , rn) =
∑
i< j

mi m j

‖ri − r j‖b
. (4)

The equations of motion of the n bodies define a vector field X on the tangent bundle T (Ω̃).
The configuration space of the system is Ω̃ and the cotangent bundle is T ∗(Ω̃). Let p =
M−1ṙ be the linear momentum of the system of particles, where M is the diagonal matrix
M = diag (m1, m1, m2, m2, . . . , mn, mn). Then the equations of motion can be written as a
Hamiltonian system,

ṙ = ∂ H

∂p

ṗ = −∂ H

∂r
,

(5)

where H : T ∗(Ω̃) → R is the Hamiltonian function given by

H (r, p) = 1

2
pt M−1p − U(r). (6)

Here T = 1
2 pt M−1p is the kinetic energy. The total energy H is a first integral for the system

(5); this means that T − U = h (constant) along any orbit. Other integrals are given by the linear
momentum,

∑n
i=1 mi ṙi , and by the angular momentum, J : T → R, defined as

J (r, v) =
n∑

i=1

mi ri × vi . (7)

Notice that the relationships for the centre of mass,
∑n

i=1 mi ri = 0, and linear momentum,∑n
i=1 mi ṙi = 0, together with the energy integral, T − U = h, reduce the dimension of the

Hamiltonian system (5) from 4n to 4n − 5. We also introduce the scalar product,

〈r, r̃〉 = rt M r̃, (8)

which allows us to write the moment of inertia as

I = 〈r, r〉 =
n∑

i=1

mi‖ri‖2. (9)

3. Central configurations

Central configurations play a crucial role for understanding the dynamics of n-body problems
[13]. In particular, they have led to important theoretical investigations, such as Saari’s
conjecture, which has remained open for more than three and a half decades [6], and are
connected to Smale’s 6th problem [15], originally proposed by Wintner in 1941 [16] (see also [9,
11]). In this section we will define central configurations and analyze the particular aspects this
concept encounters in the quasihomogeneous case.
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Definition 1. A configuration r ∈ Ω̃ is called central if there is a constant σ such that

∇U(r) = σ∇ I (r). (10)

Using the fact that the functions W and V are homogeneous of degree −a and −b,
respectively, and applying Euler’s theorem for homogeneous functions, we find that

σ = −aW (r) − bV (r)
2I (r)

. (11)

Definition 2. We call r ∈ Ω̃ a simultaneous central configuration for the potentials W and V if
there are constants σ1 and σ2 such that

∇W (r) = σ1∇ I (r) and ∇V (r) = σ2∇ I (r).

Using the fact that W and V are homogeneous functions of degree −a and −b, respectively,
we find that

σ1 = −aW (r)
2I (r)

and σ2 = −bV (r)
2I (r)

. (12)

Note that if r is a simultaneous central configuration for W and V , then r is also a central
configuration for U = V + W . The converse is not necessarily true.

Let

SI0 = {r ∈ Ω | 〈r, r〉 = I0}
be the sphere relative to the metric given by the scalar product, and denote by

S∗
I0

= SI0 \ Δ = {r ∈ Ω̃ | 〈r, r〉 = I0}
this sphere minus the collision set. Then the central configurations with moment of inertia I0
can also be defined as the critical points of USI , where USI : S∗

I → R is the restriction of
the potential U to S∗

I0
. Denote by Cn the set of central configurations of the quasihomogeneous

n-body problem.

Definition 3. We say that two relative equilibria in S∗
I0

are equivalent (and belong to the same

equivalence class) if they can be made congruent by the induced S1 action on S∗
I0

, that is, if one
is obtained from the other by a rotation.

Let C̃n denote the set of equivalence classes of central configurations. Note that this definition
differs from the one used in the Newtonian case (see [1,14]), where two central configurations
are called equivalent when one can be obtained from the other by a rotation and/or a homothety.
This change is necessary in the quasihomogeneous case because the set Cn is invariant under the
action of the group S1, but not necessarily under the action of homotheties (see Section 7).

Clearly, I and Δ are invariant under the action of S1. Thus, we can conclude that S∗
I0

is

diffeomorphic to the (2n − 3)-dimensional sphere S2n−3 (which is actually an ellipsoid E2n−3)
with all the points Δ removed, that is,

S∗
I0

= E2n−3 \ (E2n−3 ∩ Δ) ≈ S2n−3 \ (S2n−3 ∩ Δ).
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Since USI is invariant under the action of S1, it defines a map ŨSI : S∗
I0

/S1 → R. If we let

πn : S∗
I0

→ S∗
I0
/S1 denote the canonical projection, Δ̃ = π(E2n−3 ∩ Δ), and recalling that

E2n−3/S1 ≈ S2n−3/S1 ≈ CPn−2 (the complex projective space), we are led to investigate the
critical points of ŨSI : CPn−2 \ Δ̃ → R.

Consequently we can show that the set of equivalence classes of central configurations with
fixed moment of inertia I0 is given by the set of critical points of the map ŨSI : CPn−2 \Δ̃ → R.
More precisely, we have proved the following property:

Proposition 1. For any choice of masses in the planar n-body problem with a quasihomogeneous
potential, n ≥ 2, the set of equivalence classes of central configurations with moment of inertia
I0 is diffeomorphic with the set of critical points of the map ŨSI : CPn−2 \ Δ̃ → R.

4. Moulton’s theorem for quasihomogeneous potentials

We will now study collinear central configurations and, using critical point theory, will
calculate the number of classes of such configurations for any number n of bodies. The goal
of this section is to prove the following result, which generalizes a theorem obtained by Forest
Ray Moulton in 1910, [10].

Theorem 1. For any choice of masses in the n-body problem with a quasihomogeneous potential,
U, and any given moment of inertia, I0, there are exactly n!/2 classes of collinear central
configurations. In other words, there are n!/2 classes of central configurations r = (r1, . . . , rn),
where all ri belong to the same straight line through the origin.

In preparation for the proof, choose some line l in R
2. This defines a subset Ωl ⊂ Ω of

r = (r1, . . . , rn) such that each ri is on the line l. Let Sl = SI0 ∩ Ωl and S∗
l = Sl \ ∩(Sl ∩ Δ).

When S1 acts on SI0 , only the rotation by π radians leaves Sl invariant. Thus the group Z2 acts

on Sl , and on the quotient we have RPn−2 \ Δ̃ ⊂ CPn−2 \ Δ̃
ŨSI−→ R, where RPn−2 = Sl \ Z2

is the real projective space, naturally contained in CPn−2. Here ŨSI is induced by the potential
energy. From these considerations we obtain:

Lemma 1. The set of equivalence classes of collinear central configurations with moment of
inertia I0 is diffeomorphic to the set of critical points of ŨSI : CPn−2 \ Δ̃ → R that lie in
RPn−2 \ Δ̃ ⊂ CPn−2 \ Δ̃.

So in order to describe the collinear central configurations, it is sufficient to obtain the critical
points of the potential that lie in the real projective space. In general, a critical point of a function
restricted to a submanifold is not necessarily a critical point of the function on the ambient
manifold. However, we have the following result:

Proposition 2. If r ∈ RPn−2 \ Δ̃ is a critical point of ŨSI : RPn−2 \ Δ̃ → R, then r is also a
critical point of ŨSI : CPn−2 \ Δ̃ → R.

To prove this, we first need to know the derivatives of the potential function, which are given
below.
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Lemma 2. For given masses m1, . . . , mn and U = W + V ,

(1) The first derivative of U : Ω̃ → R is

DU(r)(v) = −a
∑
i �= j

mi m j

‖ri − r j‖a+2 (ri − r j , vi − v j )

− b
∑
i �= j

mi m j

‖ri − r j‖b+2 (ri − r j , vi − v j )

for v ∈ Ω .
(2) The second derivative is

D2U(r)(v, w) = a
∑
i �= j

mi m j

‖ri − r j‖a+2

·
(

a + 2

‖ri − r j‖2
(ri − r j , vi − v j )(ri − r j , wi − w j ) − (vi − v j , wi − w j )

)

+ b
∑
i �= j

mi m j

‖ri − r j‖b+2

·
(

b + 2

‖ri − r j‖2
(ri − r j , vi − v j )(ri − r j , wi − w j ) − (vi − v j , wi − w j )

)
,

where v, w ∈ Ω .
(3) The second derivative of the restriction U : S∗

I0
→ R is:

D2U/(S∗
I0

)(r)(v, w) = D2U(r)(v, w) + aW (r) + bV (r)
I0

〈v, w〉.

Here (·, ·) denotes the usual inner product in R2, ‖ · ‖ the norm in R2, and I the moment of
inertia. The same formulas are valid in R, R

2 and R
3.

Proof. All the equations above can be derived by differentiating in local Cartesian coordinates.
�

Now we can give a proof of Proposition 2. For vi ∈ R2, let vi = (v
‖
i , v⊥

i ) where v
‖
i ∈ l

and v⊥
i ∈ l⊥. Then we can write v = (v‖, v⊥) with v‖ = (v

‖
1, . . . , v

‖
n), v⊥ = (v⊥

1 , . . . , v⊥
n )

for each v ∈ Ω . If r ∈ Sl ⊂ SI0 , r �∈ Δ, we have Tr(SI0 ) = {v ∈ Ω | 〈v, r〉 = 0} and
Tr(Sl) = {w ∈ Ωl | 〈w, r〉 = 0} where, as usual, Ω is endowed with the mass scalar product.
If v ∈ Tr(SI0 ) and v = (v‖, v⊥), then v‖ ∈ Ωl and 〈v, r〉 = 〈v‖, r〉. Thus v‖ ∈ Tr(Sl), because
〈v, r〉 = 0 implies 〈v‖, r〉 = 0.

By Lemma 2 it follows that if r ∈ Sl \ Δ and v ∈ Tr(SI0 ), then DU(r)(v) = DU(r)(v‖). So
DU(r)(v‖) = 0 implies that DU(r)(v) = 0. This completes the proof of Proposition 2.

Lemma 3. RPn−2 has n!/2 components.

Proof. Let r = (r1, . . . , rn) ∈ Sl \ Δ and let r1 < · · · < rn ∈ R (we use the fact that the ri

are all distinct). Let α = (i1, . . . , in) be an arbitrary permutation of the numbers (1, 2, . . . , n).
If we apply the permutation to the initial vector r, we map it to a different component defined
uniquely by the given permutation. Therefore the set Sl \ Δ has n! components and the quotient
space RPn−2 \ Δ has n!/2 components. �
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We can now prove Moulton’s theorem for quasihomogeneous potentials. By applying parts
(2) and (3) of Lemma 2, we see that D2U/(Sl \ Δ) is a positive definite form, and consequently
Ũ is convex. This shows that Ũ has a unique minimum in each component of RPn−2. Thus there
are n!/2 critical points and hence n!/2 central configurations.

Remark 1. We have identified the symmetric central configurations, otherwise the number of
classes of central configurations would be n!.

5. Planar central configurations

In this and subsequent sections, we will restrict our study to Manev-type quasihomogeneous
potentials, namely those U for which a = 1 (see also [5]). They form an important class of
quasihomogeneous potentials, derived from the Manev law, which can explain the perihelion
advance of the planet Mercury within the framework of classical mechanics (for more details
see [4] and [3]). Since for any planar central configuration in the Manev-type three-body problem,
the mutual distances are geometrically independent, we can solve the equations defining the
central configurations in terms of the mutual distances. To be precise, we state here a result
whose proof can be found in [2].

Lemma 4. Let u = f (x) be a function with x = (x1, x2, . . . , xn), x1 = g1(y), x2 =
g2(y), . . . , xn = gn(y), y = (y1, y2, . . . , ym) and m � n.

If rank (A) = n, where

A =

⎛
⎜⎜⎜⎜⎝

∂x1

∂y1
. . .

∂xn

∂y1
...

. . .
...

∂x1

∂ym
. . .

∂xn

∂ym

⎞
⎟⎟⎟⎟⎠ , (13)

then ∇ f (x) = 0 if and only if ∇u(y) = 0.

Let us now consider the three-body case, and for this purpose we will use the notation
ri = (qi1, qi2) for i = 1, 2, 3. From Lemma 4 we have that if rank (A) = 3, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂r12

∂q11

∂r13

∂q11

∂r23

∂q11

∂r12

∂q12

∂r13

∂q12

∂r23

∂q12

∂r12

∂q21

∂r13

∂q21

∂r23

∂q21

∂r12

∂q22

∂r13

∂q22

∂r23

∂q22

∂r12

∂q31

∂r13

∂q31

∂r23

∂q31

∂r12

∂q32

∂r13

∂q32

∂r23

∂q32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q11 − q21

r12

q11 − q31

r13
0

q12 − q22

r12

q12 − q32

r13
0

−q11 − q21

r12
0

q21 − q31

r23

−q12 − q22

r12
0

q22 − q32

r23

0 −q11 − q31

r13
−q21 − q31

r23

0 −q12 − q32

r13
−q22 − q32

r23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then ∇U(r1, r2, r3) = 0 if and only if ∇U(r12, r13, r23) = 0.
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Some straightforward computations show that the rank (A) = 3 if and only if

det

⎛
⎝q11 q12 1

q21 q22 1
q31 q32 1

⎞
⎠ �= 0.

This determinant is twice the oriented area of the triangle formed by the three particles. In short,
if r1, r2 and r3 are not collinear, then ∇U(r12, r13, r23) = 0 if and only if ∇U(r1, r2, r3) = 0.

Using Lemma 4 in order to find the planar central configurations, we first need to solve the
equation

∇U = σ∇ I (14)

in terms of the mutual distances ri j , taking into account the fact that the moment of inertia, I ,
can be written in terms of the mutual distances as I = (1/m̃)

∑n
i=1 mi m jr2

i j , where m̃ is the total
mass. So, for fixed i and j , we have

−mi m j

r2
i j

− b
mim j

rb+1
i j

= 2
σ

m̃
mi m jri j .

Multiplying by rb+1
i j , we obtain

f (ri j ) := 2σrb+2
i j + m̃rb−1

i j + m̃b = 0.

Regarding the above equation as a polynomial in the variable ri j , since σ < 0, f (0) = bm̃ >

0 and the coefficients polynomial have just one change of sign, we can verify easily that the
function f has exactly one positive root. Observe that the function f only depends on the total
mass m̃, and therefore the respective solution for f (ri j ) is the same for all mutual distances. We
have thus proved the following result.

Theorem 2. In the Manev-type three-body problem, for any values of the masses, there are
exactly two equilateral central configurations, which correspond to the two possible orientations
of a triangle in a plane.

6. A framework for the study of collisions

We will further study the dynamics at an near total collision for Manev-type n-body problems.
A convenient framework for this purpose is given by the so-called McGehee coordinates
[8],

ρ = (rt Mr)1/2

s = ρ−1r

v = ρb/2(pt s)

u = ρb/2(p − (pt s)Ms),

(15)

where M = diag(m1, m1, m2, m2, . . . , mn, mn), r = (r1, . . . , rn), and p = (p1, . . . , pn). After
a reparametrization of the time variable,

dτ = r−1−b/2dt, (16)
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the equations of motion (5) become

ρ′ = ρv

v′ = b

2
v2 + ut M−1u − ρb−1W (s) − bV (s)

s′ = M−1u

u′ =
(

b

2
− 1

)
uv − (ut M−1u)Ms + ρb−1[W (s)Ms + ∇W (s)] + bV (s)Ms + ∇V (s).

(17)

Here the prime denotes differentiation with respect to the new (fictitious) time variable τ , and
the old notation is maintained for the new dependent variables, which are now functions of τ .
Furthermore, the new variables fulfil the constraints st Ms = 1 and ut s = 0.

In these coordinates the energy integral (6) turns into the relation

1

2
(ut M−1u + v2) − ρb−1W (s) − V (s) = hρb. (18)

We define the total collision manifold as

C = {(ρ, s, v, u) | ρ = 0, ut M−1u + v2 − 2V (s) = 0}. (19)

Notice that ρ′ = 0 if ρ = 0, so C (which is an analytic submanifold of codimension 1 in the
boundary of the phase space) is invariant under the flow of the system (17). By continuity of the
solutions with respect to initial conditions, the flow on C provides important information about
the orbits close to triple collision (see [8] for more details). The total collision manifold can also
be regarded as an invariant boundary pasted onto each energy surface:

Eh =
{

(ρ, v, s, u)

∣∣∣∣ 1

2
(ut M−1u + v2) − ρb−1W (s) − V (s) = hρb

}
. (20)

These concepts are ideal for understanding the qualitative behaviour of total- and near-total-
collision solutions.

7. Collision and near-collision dynamics

In this section we will study the dynamics of total- and near-total-collision orbits of the
Manev-type n-body problem. An important role in this study is played by central configurations
and by the solutions that can be derived from them.

In the planar Newtonian n-body problem, a rigid rotation of a central configuration is called
a relative equilibrium; in rotating coordinates, relative equilibria are fixed points. A non-rotating
homothetic orbit of a central configuration is called a homothety. The composition of a relative
equilibrium and a homothety is called a homographic solution.

In the Manev-type three-body problem, since the potential only depends of the bodies’ mutual
distances, the central configurations are invariant under rotations, so any central configuration
determines a particular periodic orbit, which in a rotating frame is a fixed point. So in the Manev-
type three-body problem, any central configuration corresponds to a relative equilibrium.

In the Newtonian case, any central configuration also corresponds to a homothetic orbit. But is
this valid for Manev-type potentials too? As we will further prove (see Theorem 5 and Section 8),
this property is not satisfied in general. To show this, and to determine under what circumstances
homothetic solutions still exist, we will prove several preliminary results.
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Notice that the flow on C is given by the equations

v′ = b

2
v2 + ut M−1u − bV (s)

s′ = M−1u

u′ =
(

b

2
− 1

)
uv − (ut M−1u)Ms + bV (s)Ms + ∇V (s).

(21)

The equilibrium points of system (21) are given by u = 0, v = ±√
2V (s), where s must be a

critical point for the function V (s) restricted to the unit sphere corresponding to the mass matrix
M . The masses are involved because the equation bV (s)Ms + ∇V (s) = 0 must be satisfied.
But these are the critical points of the function Ṽ , which is the restriction of the homogeneous
potential V to the unit sphere given by the mass matrix M . Such critical points correspond to the
central configurations of the homogeneous potential V .

Proposition 3. For any value of b > 2, the flow on the total collision manifold C is gradient-like
with respect to the coordinate −v (i.e. the flow increases with respect to −v along nonequilibrium
solutions).

Proof. The energy relation (18), restricted to C , takes the form

ut M−1u + v2 − 2V (s) = 0.

Using the above expression and (21), we get that

v′ =
(

1 − b

2

)
ut M−1u (22)

on C . If u �= 0 then v′ < 0 is increasing with respect to −v. On the other hand if u = 0 then
u′ = bV (s)Ms + ∇V (s), i.e. u′ = 0 only if s is a critical point of Ṽ . Consequently −v is strictly
increasing along nonequilibrium solutions, which means that the vector field is gradient-like with
respect to −v. �

Denote by ind(s0) the index of the critical point s0, i.e. the number of eigenvalues of D2Ṽ (s0)

with negative real part. Then we can prove the following result.

Theorem 3. Let s0 be a nondegenerate central configuration of the planar n-body problem with
potential V and b > 2. Then the dimensions of W u(s+

0 ) and W s (s−
0 ) are the same and equal

to 2n − 2 − ind(s0) in Eh. The dimensions of W s(s+
0 ) and W u(s−

0 ) are the same and equal to
2n − 4 + ind(s0) in Eh. The dimension of Eh is 4n − 5.

Proof. Let s0 be a central configuration, v = ±√
2V (s0), and u = 0, then the equation of motion

restricted to Eh are

ρ′ = ρv

v′ =
(

1 − b

2

)
ut M−1u + (b − 1)ρb−1W (s) + bhρb

s′ = M−1u

u′ =
(

b

2
− 1

)
uv − (ut M−1u)Ms + ρb−1[W (s)Ms + ∇W (s)] + bV (s)Ms + ∇V (s).

(23)
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Taking into account the centre of mass and linear momentum integrals as well as the
restrictions st Ms = 1 and ut s = 0 of the McGehee coordinates, the above system has dimension
4n − 4.

Linearizing the system, the eigenvalues for b > 2 are given by the matrix equation

⎛
⎜⎜⎜⎜⎜⎜⎝

v 0 0 . . . . . . 0
0 0 ∗ . . . . . . ∗
...

... O2n−3 I2n−3
...

... A

(
b

2
− 1

)
v I2n−3

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

− μI4n−4 = O4n−4, (24)

where IN is the N × N identity matrix, ON is the N × N zero matrix, A denotes the Hessian
matrix of Ṽ (i.e. the potential restricted to the sphere of constant moment of inertia) and ∗ denotes
an element without importance in the computation of the eigenvalues.

It is clear that the first two eigenvalues are v �= 0 (since V (s0) �= 0) and 0. To obtain the
remaining eigenvalues of Eq. (24), suppose z is a (2n − 3)-vector satisfying

Az = λi z (25)

for i = 1, . . . , 2n − 3, i fixed, where λ1, . . . , λ2n−3 are the eigenvalues of A. Then(
O2n−3 I2n−3

A (b/2 − 1)v I2n−3

) (
z

μz

)
=

(
μz

{λi + (b/2 − 1)vμ}z
)

.

Consequently μ is a root of Eq. (24) if

μ2 − (b/2 − 1)vμ − λi = 0,

which gives

μ
1,2
i = 1

4

{
(b − 2)v ±

√
(2 − b)2v2 + 16λi

}
for i = 1, . . . , 2n − 3.

Then if v = √
V (s0), the differential matrix of the vector field restricted to Eh has

2n − 2 − ind(s0) eigenvalues with positive real part and 2n − 4 + ind(s0) with negative real
part. The values of the dimensions are switched if v = −√

V (s0). �

Theorem 4. Let s0 be a central configuration of the collinear n-body problem with potential V
and b > 2. Then the dimensions of W u(s+

0 ) and W s (s−
0 ) are the same and equal to n − 1 in Eh.

The dimensions of W s(s+
0 ) and W u(s−

0 ) are the same and equal to n − 2 in Eh. The dimension
of Eh is 2n − 3.

Proof. The proof is similar to the one of the previous theorem. Let s0 be a central configuration,
v = ±√

2V (s0). The equations of motion restricted to Eh are given by Eq. (23), with the obvious
modifications.

Linearizing the system, the eigenvalues in the case b > 2 are given by the following matrix
equation
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⎛
⎜⎜⎜⎜⎜⎜⎝

v 0 0 . . . . . . 0
0 0 ∗ . . . . . . ∗
...

... On−2 In−2
...

... A

(
b

2
− 1

)
v In−2

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

− μI2n−2 = O2n−2, (26)

where IN and ON are defined as before. Again A is the Hessian matrix of Ṽ and ∗ denotes an
element without importance in the computation of the eigenvalues. The first two eigenvalues are
v �= 0 (since V (s0) �= 0) and 0. If λ1, . . . , λn−2 be the eigenvalues of A, then

μ
1,2
i = 1

4

{
(b − 2)v ±

√
(2 − b)2v2 + 16λi

}
for i = 1, . . . , n −2. Note that, in this case, Lemma 4 implies that A is positive definite, and thus
the eigenvalues λ1, . . . , λn−2 are all positive. Consequently, for v > 0, μ1

i is negative and μ2
i pos-

itive. However, for v < 0, μ1
i is positive, whereas μ2

i is negative. This concludes the proof. �

We will further state and prove a result that clarifies under what circumstances homothetic
solutions exist.

Theorem 5. A solution of the Manev-type n-body problem is homothetic if and only if the
particles form, at all times, a simultaneous central configuration for the potentials V and W.

Proof. Assume that the solution is homothetic, then s ≡ s0, where s0 is a constant. Therefore
s′ ≡ 0 and, from the second of Eq. (21), u ≡ 0. Thus the homothetic orbits are confined to the
invariant plane

P = {(ρ, s, v, u) | s = s0, u = 0}. (27)

So u′ = 0 implies that ρb−1[W (s0)Ms0 + ∇W (s0)] + bV (s0)Ms0 + ∇V (s0) = 0. If ρ is not
constant then there are ρ1 �= 0 and ρ2 �= 0 with ρ1 �= ρ2 such that

ρb−1
1 [W (s0)Ms0 + ∇W (s0)] = −[bV (s0)Ms0 + ∇V (s0)]

ρb−1
2 [W (s0)Ms0 + ∇W (s0)] = −[bV (s0)Ms0 + ∇V (s0)].

(28)

This means that [bV (s0)Ms0 + ∇V (s0)] = 0 and [W (s0)Ms0 + ∇W (s0)] = 0, i.e. that s0 is a
simultaneous central configuration for the potentials V and W . If ρ is constant, ρ′ = 0 and either
ρ ≡ 0 or v ≡ 0. The first case is trivial, whereas in the latter case −ρb−1W (s) − bV (s) = 0. But
this is impossible since V > 0 and W > 0.

If s ≡ s0 is, at all times, a simultaneous central configuration for V and W , then the solution
is obviously homothetic. �

The next result proves the existence and uniqueness of heteroclinic homothetic solutions for
b > 1.

Theorem 6. Let s0 be a simultaneous central configuration for the potentials V and W. Then, if
b > 1, every energy surface of negative constant (h < 0), contains a unique homothetic solution
defined on (−∞,∞), satisfying s = s0 for all times and such that ρ(τ) → 0 when τ → ±∞. In
other words the solution begins and ends in a total collapse, maintaining for all times the same
central configuration.
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Proof. Since s0 is a simultaneous central configuration for the potentials V and W , we have that
[bV (s0)Ms0 + ∇V (s0)] = 0 and [W (s0)Ms0 + ∇W (s0)] = 0. Consequently, the set

P = {(ρ, s, v, u) | s = s0, u = 0}
is invariant for the equations of motion. Restricting these equations to P , we get

ρ′ = ρv

v′ = b

2
v2 − ρb−1W (s0) − bV (s0),

(29)

while the energy relation becomes

1

2
v2 − ρb−1W (s0) − V (s0) = hρb.

Eq. (29) become

ρ′ = ρv

v′ = (b − 1)ρb−1W (s0) + bρbh.

This leads to
dv

dρ
= 1

v
[(b − 1)ρb−2W (s0) + bρb−1h],

which yields

v2

2
= ρb−1W (s0) + ρbh + K , (30)

where, if b > 1, we choose K = V (s0). If b > 1 and h ≥ 0, then |v| ≥ ±√
2V (s0) and the

homothetic orbits are not heteroclinic. If h < 0, there is a unique curve connecting the points
(
√

2V (s0), 0) and (−√
2V (s0), 0) on the plane (v, ρ). These facts prove the theorem. �

The following result shows that the above property is also true for the equilateral central
configurations.

Corollary 1. Let s0 be an equilateral central configuration for the potential U. Then, if b > 1,
every energy surface of negative constant (h < 0) contains a unique heteroclinic homothetic
solution.

Proof. Clearly s0 is a simultaneous central configuration for the potentials V and W . The proof
follows from Theorem 6. �

Two submanifolds E1 and E2 of a submanifold E are said to be transverse at a point x if one
of the following situation arises:

(1) E1 ∩ E2 = ∅;
(2) x ∈ E1 ∩ E2 and TxE1 + TxE2 = TxE , where TxE denotes the tangent space to E at the point

x .

We can now prove the following result:

Theorem 7. In the planar Manev-type n-body problem with b > 2, a necessary condition for
having a transversal homothetic solution γh(s0) in Eh with h < 0 is that Ṽ be a nondegenerate
minimum at the point s0 associated with the homothetic solution.
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Proof. Let γh(s0) be a transversal homothetic solution in Eh with h < 0. Then by Theorem 3
both W u(s+

0 ) and W s(s−
0 ) are (2n − 2 − ind(s0))-dimensional and Eh is (4n − 5)-dimensional.

Since γh(s0) ∈ W u(s0) ∩ W s (s0) and γh(s0) is transversal we have that

dim Eh ≤ dim W u(s0) + dim W s (s0) − 1.

That is 4n−5 ≤ 4n−5−2 ind(s0). Therefore ind(s0) = 0 and the function Ṽ has a nondegenerate
minimum at s0. �

8. Simultaneous configurations and relative equilibria

In this closing section, we will show that, for most choices of the masses in the
quasihomogeneous three-body problem, the collinear central configurations of the potential U
are not simultaneous relative equilibria for V and W .

Theorem 8. Let Σ3 be the set of masses (m1, m2, m3) ∈ R
3+ for which the collinear

configurations are simultaneous central configurations for the potentials V and W. Then the
set Σ3 is nonempty and nowhere dense in R

3+.

Proof. Assume the configuration sV (m1, m2, m3) is a collinear central configuration for V and
sW (m1, m2, m3) is a collinear central configuration for W . In [7], Euler found a complicated
formula that expresses the ratio of the distances between the masses for any rectilinear
central configuration in the Newtonian case. Euler’s formula can be directly extended to any
homogeneous potential. Moreover, the fact that Euler’s expression is an analytic function of the
masses remains true in the homogeneous case. Therefore both sV and sW are analytic functions
of m1, m2 and m3, as long as the masses are positive. Consequently the function z = sV − sW is
also an analytic function of the masses.

For the function V , Euler’s formula depends on a, whereas for W it depends on b. So in
general sV �= sW , therefore for every a and b with a �= b there are values of the masses for which
z �= 0. Since z is a nonzero analytic function, its zeroes form a nowhere dense set.

The nonemptiness of the set of simultaneous central configurations follows from noticing that
if m1 = m3 and the mass m2 is located halfway between the other two, then the three masses
form a simultaneous central configuration for V and W . �

A consequence of Theorems 5 and 8 is that, for most values of the masses, there are no
rectilinear homothetic orbits. More precisely:

Corollary 2. If (m1, m2, m3) ∈ R
3+ \ Σ3, then there are no rectilinear homothetic orbits.

This shows that the rectilinear homothetic orbits are characteristic to homogeneous potentials,
but they prove unlikely in the quasihomogeneous case.
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[6] F. Diacu, E. Pérez-Chavela, M. Santoprete, Saari’s conjecture in the collinear case, Transactions of the American
Mathematical society 357 (10) (2005) 4215–4223.

[7] L. Euler, De motu rectilineo trium corporum se mutuo attrahentium, Novi Commentarii Academiae Scientarum
Petropolitanae 11 (1767) 144–151.

[8] R. McGehee, Triple collision in the collinear three-body problem, Inventiones Mathematicae 27 (1974) 191–227.
[9] K. Meyer, G. Hall, Introduction to Hamiltonian Dynamical Systems and the n-Body Problem, in: Applied

Mathematical Science, vol. 90, Springer-Verlag, 1992.
[10] F.R. Moulton, The straight line solutions of the problem of N bodies, Annals of Mathematics 12 (1910) 1–17.
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