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Abstract

We study the global flow of the anisotropic Manev problem, which describes the planar motion of two bodies under the
influence of an anisotropic Newtonian potential with a relativistic correction term. We first find all the heteroclinic orbits
between equilibrium solutions. Then we generalize the Poincaré—Melnikov method and use it to prove the existence of
infinitely many transversal homoclinic orbits. Invoking a variational principle and the symmetries of the system, we finally
detect infinitely many classes of periodic solutions.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The anisotropic Manev problem describes the motion of two point masses in an anisotropic configuration plane
under the influence of a Newtonian force-law with a relativistic correction term. The isotropic case is the classical
Manev problem; its origins lie in the work of Newton, who introduced iPirincipia aiming to understand the
apsidal motion of the moon (sg&1,14]). Manev found in the 1930s that a proper choice of the constants that
show up in the correction term allows the theoretical explanation of the perihelion advance of Mercury and of the
other inner planets. Furthermore the Manev model can also be used to describe the classical (i.e. non-quantistic)
relativistic dynamics of the hydrogen atom.

The first author suggested the study of the anisotropic Manev problem in 1995, hoping to find connections
between classical, quantum, and relativistic mechanics. Indeed the problem under discussion could be consid-
ered as a relativistic version of the anisotropic Kepler problem, that models defects in semiconductors. Further-
more the anisotropic Manev problems can also be used to describe a first order approximation of to general
relativistic models with an anisotropic gravitational constant (&$30] for a discussion of such models).
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However, in this work we will focus on the mathematical aspect of the problem rather than on its physical
interpretation.

Itwas proved irf10] that the rich collision-orbit manifold of the system exhibits classical, guantum, and relativistic
properties. This encouraged further studies, as for exafhpl@5] In [15], using a suitable generalization of the
Poincaré—Melnikov method (sd4,17,22,31]for the classical approach ¢5,6] for a parallel, at least in part,
complementary approach), we proved that chaos occurs on the zero-energy manifold, thus showing the complexity o
the dynamics. Using perturbations techniques and the Poincaré continuation method, the second author investigate
in [25] the classes of periodic solutions that arise from symmetries in the case of small values of the anisotropy
parameter.

In this paper, we gain a better understanding of the complicated global dynamics encountered in this problem. We
first prove that negative-energy solutions are bounded and find the heteroclinic orbits that connect the equilibria of the
collision manifold, which we obtain through McGehee-type transformationg24¢e Physically they correspond
to ejection-collision orbits. Then we employ perturbation techniques to detect possible global chaotic behavior. As
remarked irf25], the perturbation analysis fif5,25]cannot be used to study ejection-collision solutions. However,
we surpass this difficulty with the help of McGehee-type coordinates, which allow us to view the anisotropic Manev
problem as a perturbation of the classical Manev case.

Using an approach inspired Iff,6], which works in some degenerate cases—as for example those of unstable
non-hyperbolic points or critical points located at infinity (§8e9,15), we develop a suitable extension of the
Poincaré—Melnikov method, which we use to prove the existence of transversal homaoclinic orbits to a periodic one.
It is interesting to note that our result extends the one obtaing@-®] for a non-Hamiltonian system that has
negatively and positively asymptotic sets to a non-hyperbolic periodic orbit. In the present context the asymptotic
sets are the stable and the unstable manifolds.

Then we return to the original coordinates and apply a variational principle for detecting periodic orbits. Using
the rotation index, we divide the set of periodic paths into homotopy classes, which are Sobolev spaces. Then
we use the lower-semicontinuity version of Hilbert's direct method (due to Tonellj258kto find a minimizer
of the action in each class. According to the least action principle, the minimizer is a solution of the anisotropic
Manev problem. We prove that the minimizer exists, belongs to the homotopy class, and is a solution in the
classical sense. This generalizes a result obtained by the second[@5fharhere it was shown that such orbits
exist for small values of. > 1. In the end we put into the evidence some new properties of symmetric periodic
orbits.

The idea of using variational principles to obtain periodic orbitsifdrody-type particle systems first appeared
in [24] and has been recently used in connection with symmetry conditions to obtain new periodic orbits in the
classicak-body problem (sef?]). But unlike the Newtonian case, the Manev force is “strong” (as defingdbi,
so the variational method is easier to apply in our situation than in the Newtonian one. This is because in the Manev
case we do not have to deal with the difficulty of avoiding collision orbits, which have infinite action and therefore
cannot be minimizers.

Our paper is organized as follows. Bection 2 we write the equations of motion and transform them to
an equivalent system using a “blow-up” technique devised by McGehee, which allow us to introduce the con-
cept of a collision manifold. IrSection 3 we present two global results: the boundedness of the solutions for
negative energy and the existence of certain symmetric ejection-collision orbiBechion 4 we describe the
anisotropic Manev problem as a perturbation of the Manev cas8etion 5 we develop a suitable general-
ization of the Poincaré—Melnikov method and Section 6we apply it to find infinitely many transverse ho-
moclinic orbits that show that the dynamics of the problem is extremely complex, possibly chaotic. Finally, in
Section 7we use a variational principle to prove the existence of infinitely many classes of symmetric periodic
orbits.
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2. Equations of motion

The (planar) anisotropic Manev problem is described by the Hamiltonian
1, 1 b
H=2p"— T 212
2 pux2 4 y2  pxs+y

@)

whereu > 1 is a constant) a positive constanty = (x, y) the position of one body with respect to the other
considered fixed at the origin of the coordinate systempasad p,, p,) the momentum of the moving particle. The
constanfu measures the strength of the anisotropy and we can very welltakéd ; but to remain consistent with
the choice made in previous papers, we will consjder 1. Foru = 1 we recover the classical Manev problem.
The constanb can be interpreted either as a special relativistic correction term or as a general relativistic correction
term (sed20]). The expression that describiem term of physical constants is different in the two cases [2&p.

The equations of motion are

oH
| = 0= ——. 2
d=p. P % &)
The Hamiltonian provides the first integral
H(p(®), q(n) = h, 3)

whereh is a real constant. Unlike in the classical Manev case, the angular moméftum p(¢) x q(r) does not
yield a first integral. This is because the anisotropy of the plane destroys the rotational invariance.

Since our first goal is to study collision and near-collision solutions, it is helpful to transform sg&}esing a
method developed by McGehg#l]. The idea is to “blow-up” the collision singularity, replace it with a so-called
collision manifold and extend the phase space to it. The collision manifold is fictitious in the sense that it has no
physical meaning. However, studying the flow on it provides useful information about near-collision orbits. Consider
the coordinate transformations

r=1ql, 0= arctan()—yc) , v=Fr = (XPs + YPy), u=r0 = (xp, — yp) (4)
and the rescaling of time

dr = r2dr. (5)
Composing these transformations, which are analytic diffeomorphisms in their respective domains,(8ystem
becomes

r=rv, v = 2r%h +ra"12, 0 =u, u = %(,u — 1A %2+ 26A7 %) sinD (6)
and the energy relatiof8) takes the form

u? + 02— 2rA™Y2 — 2bAY = 277, (7)
whereA = 1 cos?60 + sin2e and the new variables; v, 6, u) € (0, 00) x R x S x R depend on the fictitious

time z. The prime denotes differentiation with respectto
The set

C = {(r, v, 0, u)|r = 0 and the energy relatiai@) holdg (8)

is the collision manifold which replaces the set of singularitig®], p)|g = 0}. This two-dimensional manifold,
embedded ifR® x %, is homeomorphic to a torus and it is given by the equations

r=0 and u?+1>=2pA""1. (9)



78 F. Diacu, M. Santoprete / Physica D 194 (2004) 75-94

+

A T2

\ \%

Y

D

Fig. 1. The flow on the collision manifold, which is formed by periodic orbits, eight equilibria, and eight heteroclinic orbits.

The flow on the collision manifold was studied in detail in [10]. Here we will briefly recall its main features.
Let us consider the restriction of system (6) to C. The solutions of the restriction lie on the level curves v =
constant of the torus C. There are eight equilibrium points. In the variables (r, v, 0, u) the first four equilibria
are Aa—L = (0, £4/2b/11,0,0) and AT = (0, £4/2h/p, 7, 0). The corresponding eigenvalues are real and take
the values +./2b/u1, 0, +4/2b(1 — )/ . The other four equilibria are Aiﬂ/z = (0, £+/2b, £71/2, 0) and the
corresponding eigenvalues are +£+/2b, 0, +4/2b(1 — ), where the last two eigenval ues are purely imaginary since
wu > 1. Moreover, there are eight heteroclinic orbitswhich lieinthelevel setsv = 4./2b/ 1. All the other solutions
are periodic (seeFig. 1).

3. Heteroclinic orbits and bounded solutions

Theflow near the collision manifold was studied in [10], in which most of the results are essentially local. In this
section, we will prove two global results that extend the understanding of the problem under discussion. The first
one concerns the boundedness of solutions on negative-energy levels.

Theorem 1. For any negative value of the energy constank 0, there exists a positive real number M such that
any given solutiorir(t), v(t), 6(1), u(t)) of systen{6) satisfies the relation < M.

Proof. Letusassumethat thereisno M with the above property. Then at least one unbounded solution exists. Since
by the energy relation (7), u? + v2 = 2r2h 4+ 2rA=Y2 + 2bA~1, and since h < 0O, thereis some 7 = r(7) such that
u? + v? is negative—a contradiction. This completes the proof. O

The next result deals with the existence of heteroclinic orbits connecting the equilibria but lying outside the
collision manifold. But before stating and proving it, let us recall some facts that summarize the behavior of the
flow near the collision manifold. Denote by P, the periodic orbit on C having v = 5. The following property was
proved in [10].

Proposition 1. On the collision manifold C the equilibrids and A+ are saddles whereas the equilibr@n/2
are centers. Outside the collision manifold the equilibﬂ'é, Ain/z’ and A} have a one-dimensional unstable
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Fig. 2. The flow can reach the collision manifold at the equilibria or at any of the periodic orbits. There are four heteroclinic orbits y_/2, yo,
Va/2, Y CONNecting, respectively, A* , with A~ ,, Ag with Ay, A7, with A_,, and AT with A7

analytic manifold whereas the equilibria Al and A have a one-dimensional stable analytic manifold.
Each periodic orbitP, on C withv = n > 0 (v = 1 < 0) has a two-dimensional local unstable analytic manifold
while the periodic orbitv = 0 has both a two-dimensional local unstable and a two-dimensional local stable
manifold(seeFig. 2).

The above properties are local, the following one, however, is global. We will now show that the equilibriawith
positive v coordinate have a one-dimensional global unstable manifold while the equilibria with a negative v have
aone-dimensional stable manifold. Moreover, the equilibria are connected by heteroclinic orbits starting from an
equilibrium with positive v and ending in the symmetric one with respect to the (6, u) plane.

Theorem 2. There are four heteroclinic orbits outside the collision manifotdyC/2, yo, y=/2, ¥= COnnecting
respectivelyAfﬂ/2 with A~ ,, Ad with Ag, A;/z with A_», and AT with A7 (seeFig. 2).

Proof. First we show that u = 0 and 6 = O, r, +-7r/2 describe four invariant sets. Consider 6(0) = 6p = 0 and
u(0) = ug = 0, asinitial conditions. Then 6 = 0, u = 0 satisfies system (6), hence (by the uniqueness property for
solutions) u = 0, & = 0 define an invariant set. The same reasoning can be applied if 6 = /2 or 7.

Now let us study the energy relation (7) whenu = 0 and 6 = 0, 7. After simple computations we get

24 <\/2|h| ! )2 2 + 1 (10)
v r— =— 4+ —.
V2 lh| w o 2plhl

The above equation describes an ellipse whose intersections with r = 0 give v = 4-/2b/ 11, which are exactly the
equilibrium points Agt and A?TE. Moreover the maximum value of |v| is

1 1

e = [ <2b + M) (12)
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and the maximum value of r, attained whenv = 0, is
1 1 1—4hb
_ + Vv @/ u)( )_ (12)
2, /ilh| 2|h|

Consequently for u = 0, 6 = 0 (0 = =) there exist heteroclinic orbits yg () €ecting from Aar (Ag) and tending
to Ay (A;) (seeFig. 2).
Similarly when u = 0 and 6 = 47r/2 the energy relation can be reduced to the form

1 \? 1
2
v+ ~/2|h|r——> ) ——
( A/ 2|h] 2|h]

which describes an ellipse. The intersections with » = 0 are v = ++/2b and represent the equilibria Ain/z- Inthis
case

1
= |2b+ — 14
Umax = | + 20| (14)

max

(13)

and
1 JIF2bA|
= 4+ 15
max 20| + 2/ ( )

Thus we found heteroclinic orbits y1,/> € ecting from ALT 2 andtendingto A7 /2 (seeFig. 2). Thiscompletesthe
proof. O

4. A perturbative approach

We will now write the anisotropic Manev problem as a perturbation of the classical Manev case. Consider weak
anisotropies, i.e., choose the parameter n close to 1. Introducing the notation © — 1 = € > O with e <« 1, wecan
expand the equation of motion in powers of ¢ to obtain

/=I', /:Zzh _ ; , 9/2 , /Z;-' 16
d v v rhAr 6(200529) " " 2(r +2b)sin29 (16)

The energy relation becomes
u? + v% — 2r — 2b + €(r + 2b) c0s%0 = 2r°h. (17)

For ¢ = 0, system (16) and Eq. (17) yield the Manev problem. The collision manifold is the set of solutions given
by
r=0, u?+v>=2b (18)

Notice that, from the geometric point of view, the collision manifold is a cylinder in the three-dimensional space
of coordinates (u, 6, v) and, since 6 € [0, 2], it follows that this cylinder can be identified with atorus. The flow
on the collision manifold is formed by periodic orbits p;7 = {v = k(const.),6 € [0, 27),u > O}, p; = {v =
k(const.), 6 € [0, 27), u < 0} for v # ++/2b and by acircle formed entirely by fixed points in each of the cases
v = ++/2b. Thereisonly asingle orhit ejecting from each fixed point of the upper circlev = +v/2b and asingle orbit
tending to the lower circlev = —+/2b (see[13]). Moreover, it can be easily proved (see[13]) that for every periodic
orbit p on the collision manifold with 0 < v < V/2b there exist amanifold of orbits, lying on a cylinder, which
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Fig. 3. A homoclinic orbit to pg lying on the homoclinic manifold. This orbit spirals out of the equator of the collision manifold and then spirals
back to it.

gect from p. Similarly it can be shown that for every orbit p=, with —V2b < v < 0, there exists amanifold of
orbits, lying on a cylinder, which tend to p*.

If v = 0 both types of manifolds exist, so the periodic orbits p§ = (0,0, £+/2b, w(t — 15)) have a homoclinic
manifold. Indeed, the equations that describe the manifold can be found explicitly: they have u = ++/2b. With the
energy relation we get

v=+V2r2h +2r (19)
and using the equation of motion we obtain
¥ = 4rv2r2h + 2r. (20)

By integrating Eq. (20) it is easy to find that

2 , 4(t — 10)
R(t — = R =— 21
(=70 = ST (= 702 @2Jh] + ( — 10)2)? &)
and
B R _ 2(t — 10)
V(t — 1) = R o2 (22
Furthermore
Ur—1t)=+tvV2b=w and 9t — 10,60) = Ot — 10) — b0, (23)

where O(t — 19) = w(t — 10). AS 10 and g vary, Egs. (21)—(23) describe the entire two-dimensional homaoclinic
manifold. An orbit lying on the homoclinic manifold is represented in Fig. 3. Such an orbit is obtained by choosing
0o = O; it gects from the equator of the collision manifold, spiraling around it and moving upwards, then changes
directions, goes downwards and upwards again, spiraling towards the periodic orbit pg.

The homoclinic manifold plays an important role in following sections. Indeed a natural question to ask is what
happens to the homoclinic manifold when a small perturbation is added, i.e. when € > 0. In the next two sections
we answer this question. In the following section, we develop a Melnikov type technique applicable to the problem
at hand. In Section 6, we apply the Melnikov technique and we prove the foll owing theorem.

Theorem 3. Let us consider the anisotropic Manev problem given by the equation of n{6)isvith the energy
relation (7). Then there is an infinite sequence of intersections in the Poincaré section of the negatively and positively
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asymptotic sets of the periodic orbits at the equator of the collision manffadsibly giving rise to a chaotic
dynamic$. Furthermore there exist the homoclinic rRép-symmetric orbits to the periodic orbit described above

This theorem proves the existence of infinitely many transversal homoclinic orbits, to the periodic orbits on the
equator of the collision manifold. Such orbits, in the origina coordinates (i.e. the Cartesian ones), correspond to
spiraling collision-gjection orbits (see [10] for a discussion of the different types of collisions in the anisotropic
Manev problem). This is because the change of time scale has the effect of slowing the collision orbits down so
that they tend asymptotically to the collision manifold. The theorem above focuses on a particular kind of spiraling
collisions-gjection orbits, i.e. the onesfor which lim,_, .7 = 0, or in other words the ones that approach collisions
“dowly”. Theorem 3 shows that, while for ¢ = 0 thereis a continuum of thiskind of spiraling collisions, for € > 0
there are only countably many of them. In other words, for ¢ = 0 all those spiraling collisions are rotated with
respect to each other, while when a small perturbation is added most of them are destroyed and only a countable
number persists.

5. A generalized Melnikov method

In this section, we develop the technical details of the Melnikov-type technique we use in this paper. Let x =
(R(7), V(1), ©(1), U(1)) be the homoclinic orbit selected when we choose tg = 0 and 6y = 0. Consider solutions
of theform

(1, 10) = R(t — 10) + 7 (7, 70), v(z, 10) = V(t — 10) + 0(7, 70),
0(t, 179, 00) = O(t — 10) — 6 + é(l’, 70), u(t, 70) = U(t — 10) + u(z, 170). (249

LetZ = (7,7, 0, it), then the variational equation is

¥ — Az +bE, 1. T 10, 60, ©), (29)
where
\% R 0 O
AGD 1+44Rh 0 0 O (26)
T) =
0 0 0 1
0 0O 0O
and
7(t — 10)v(t — 10)
by
R+7 ~
N b _ 20 —
B . 7. 70. 00, €) = 2 _ € ( > Cos“(® — 6p + 9)) (27)
b3 0
bs € = iN2(6 — J
2((R +7)+2b)SiN2(® — 6y + 6)

The general solution of the variational equation (25) is

Z= CD(‘L’)/ @ L(s)bds (28)
70
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(see[18]), where @ is the fundamental matrix. If welet ¢ = @~ 1b, the previous equation becomes

Zi(0) = Dj / cj(s)ds, (29)

0

where c; = det D;(7)/(det @)(r) and D, the matrix obtained replacing the jth column of @ with b. Furthermore
the following formulafor the trace holds:

detd(r) = Celo A0S, (30)

One solution of the homogeneous part of the variational equation is given by

X' (t —10,600) = (R'(t — 10), V'(r — 10), @' (r — 10), U'(r — 10)), (31)
where
;. Ar-1) V— 2 4t — 10)?
@2+ (1 = 19)2)? 2k 4+ (t—10)2  Q2lhl+ (t — 10)?)?’
@ = +/2b, U =0. (32)

It is easy to check that two other independent solutions are (0, O, 1, 0) and (0, O, 7, 1). Knowing three independent
solutions of alinear system, it is possible to find a fourth independent solution . This is achieved through the
following lemma, which will be used to estimate how fast ¢ diverges.

Lemmal. LetZ = AZ be the homogeneous part(@6). Given the three independent solutions ah@/urth is
defined by

V1= _47,'4 — 47073 4 (12|h| + 6‘[8)[2 + (=12|h|10 — 3{8)-[ — 12|h|? vy vy - Vi
(21h] + (r — 10)?)? ’ R

Y3=1, Y4 =0. (33)

Proof. Observe that the first two and the second two equations of the homogeneous part of (25) are completely
independent. Hence we can analyze the first two equations independently from the others. They can be written asa
system:

F=Vi+Ry, ¥ =(l+4R0F (34)
or as asecond order linear differential equation:

7' =2VF + (V' = V2 + R(1 + 4Rh)F, (35)
where v is

- VF
P

7= (36)

Obviously R’ is a solution of the differential equation. To find another solution we use the so-called reduction of
the orderand we look for solutions to (35) of the form f(7) R’. After standard computations one can show that

B
fl=A+ (t* — 417 + (12h] + 678) 7 + (—12|h|10 — 3t3) T — 12|h ). (37)
T—10
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If we choose A = 0, B = 1 we obtain a solution of (35), independent from the one we aready knew, that has the
form

™ — 47073 + (12|h| + 612)7% + (—12|h|1o — 3T — 12/h|?

— _4 38
i @k + (r — 0)2)2 (39
Furthermore one seesimmediately that
L=V
vo= 1200 (39)

To complete the proof of the Lemma, since the second two differential equations areindependent from thefirst two,
we can set

y3=1 Va4 =0 (40)

This concludes the proof. O

To obtain necessary and sufficient conditions such that the negatively and positively asymptotic sets intersect
transversely, wefirst obtain conditions for the existence of solutions bounded on R for the non-homogeneous linear
variational equation around .

For this, let B(R) = {b: R — R x R x §* x R bounded, continuous} with [|b]| = sup, g |Ib(7)|| for b € B(R).
Then we have thefollowing version of the Fredholm alternative for solutions bounded on R (see[5,6,8] for asimilar
approach).

Lemma2. Letz € R x R x S x R and assume tha& = 0in the expression of the functiém Then the variational
equation

7 = A(WZ+ Dbz, x, 7, 10, b0, €) (41)

has a bounded solution if and only if

+o00 T
f g o TrA®) dSR’(I — 10)b2(x, T, 70, B0, €) dr = 0. (42)

—00

The solution is unique and continuous and has the fare L (b) + w, whereL is a bounded linear operator
w = (0, 0, 6(z0), it(c0)), whenF(tp) R’ (t0) + ¥(z0) V/(70) = 0, and b4 satisfies the relation

—+00
/ ba(x, 7, 10, b0, €) — p(t, 10, 6p) dr = 0. 43)
—00

Proof. Using Lemma 1 it is easy to determine the behavior of ¢ ast — +o0, precisely,

Y1 ~ const.

+ LG 44
= Y3 ~ const. (44)

Y4 ~ const.
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Using (29) and (30), the general solution of the compl ete (non-homogeneous) equation (25) can bewritteninintegral
formas

;

T s T s
R (A - / e S0 AW p — robr) ds> + Y (B + / e Jo A B Yy ds> ,
T T

0 0

T s T s
v/ <A - f e o T A o oby) ds) + 2 (B + / e Jo A prp Vb ds) :
T T

0 0

b= 412 (A _ / eff;é Tr A(p) d”(wlbz — ¥ob1) ds> + 3 (B +/ eff;;) TrA(p) dn(R/bZ — V'by) ds>
T T

0 0

+C— /t e o TTAD Iy S Dbya)by + (R'rs + ~2by)ba], i = D+ /Tb4 ds, (45)

0 0

v

where, for notational convenience, we omitted to mention the dependence on Z, y, 1o, €tc.

Consider now the linearization of the problem (45) around the solution Z(t) = O; in particular this amounts to
deleting the high-order termsin the expression of b (i.e. b1 = 0, etc.). Taking also into account the different behavior
of the different solutions givenin Lemma l, it is easy to see that to have bounded solutions we need to require that

i <A— / e S TTAD Iy by, 5. 70, 60, €) ds) for i=1,...,4, (46)
0
remains bounded as T — +o00. More precisely Z is bounded on [tg, oo) if and only if
00 s
A= / e fo Ay 1o ds (47)
0
and bounded on (—o0, 1¢] if and only if
70 S
A=— f e Jo TTAM 1o ds. (48)
—00

Let us remark that the periodic orbit on the collision manifold of the perturbed system has u’ = €2b sin 20, while
0" = u. Thereforefor that orbit iz’ = 2b sin[2(® (1 —10) —6p)]. Inthefollowing we denote 2b sin[2(® (T — 19) — H0)]
with p(z, 0, 6p).
We can therefore write that
T T
ﬁ—/ p(s)ds:D+f (bg — p) ds, (49
0 70
consequently we require
T T
lim (ﬁ(r) — / p(s) ds) =D+ lim / ba(x, s, 10, 60, €) — p(s, 10, O0) s, (50)
+o0 7 T—>+o0 Jo

5
T 0 )

where, obvioudly,

rILrL]o <12(7:) — /T p(s) ds> = lim <12(r) — /rp(s) ds) . (51)
0 T——00 7

Thelatter condition is not needed for the boundedness of the solution, but itsrole will be clear later when analyzing
some properties of the negatively and positively asymptotic sets. It is easy to see that the above conditions are
simultaneoudly satisfied both at t = —oo and at t = 4-o0 if for some 1 the following Melnikov-type conditions:

Ot Tramd oo
/ e o Ay bo(y, s, 10, B0, €) ds = O, / ba(x, s, 70, 60, €) — p(t, 70, 60) ds = 0 (52)

—00 —00
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arefulfilled. Thuswe can rewrite the general solution (45) using (52) and, by neglecting to mention the dependence
on x, s, €tc., we obtain

T s T -5
F= —R’f e o TrAM Dby ds + Y1 <B +/ g o TTAM By, ds) ,
T

0 0

T s T s
—V’/ e*fsoTrA(ﬂ)dnwlbz ds + ¥ro (B+f efsoTrA(n)an/bzds>,
T

0 0

T s T S
- ﬁZb[ & L TADL 1 4y (B+f e‘fxoTrA(n)an/bzds>
o0 T

0

v

T s
+C—f e ho TTAD I pre 4 2By,
T

0

T T T
u =/ pds+ lim (ﬁ(r) —/ pds) +/ ba — pUs. (53)
- T—00 0 00

To obtain #(zo) R' (70) + ¥(t0) V' (10) = 0 we must have

2 2 T
B= Ilfl(fo)RR’ZZ; i %‘;2((;0))V’(fo) /ooo V1(6)bzls) G 9
Moreover we aso get
C = b(w0) £ V2b / P ho A g (55)
and
Dzrli)r‘go (ﬁ(r)—frp)+/rob4—pds. (56)
0 0

This uniquely defines B, C — 6(1p), and D — lim;_ o0 (@i (1) — frg p) as continuous linear functionals on B(R).
From (53) we observe that the corresponding solution is of the form Z = L (b) + w, where L is a bounded linear
operator. It follows that this operator is continuous and hence the solution Z = L (b) + w is continuous on B(R).
This compl etes the proof. O

To obtain necessary and sufficient conditions that the negatively and positively asymptotic sets intersect, let
us first consider all the solutions of (25) which are bounded as t — —oo and such that their angles remain
close to the ones on the periodic orbit. The solution Z is given by (45) satisfying (48) and (50) with negative
sign. In particular, the solutions of the variational equation that are bounded as t — —oo (i.e. which remain
in a sufficiently small neighborhood of the periodic orbit as t — —oco) and with perturbed angles that do not
drift but remain near the angles on the periodic orbit, must be on the negatively asymptotic set. In the same
way, we obtain the positively invariant set from the solutions that remain bounded as t — oo and whose angles
stay close to the one of the periodic orbit, which was in fact the reason why we required that condition (50) be
satisfied.

Moreover, it isimportant to remark that the solutions we found are not only bounded but also such that 7 — 0,
v - 0ast — oo and thisisimportant since on the collision manifold we have many periodic orbits and this
condition is needed to show that the orbits are actually asymptotic to the equator.

With the preparations above, we can now prove the following result.



F. Diacu, M. Santoprete/Physica D 194 (2004) 75-94 87
Theorem 4. Systen{16) has transversal homoclinic solutions if and only if there exjsand a6 such that
M1 dM> M1 dM>
dtg 6o 00y 910 | TO0 = 7:(")<

#0, (57)

Ma(t§, 08) = Ma(§,65) =0 and

O = 08
where
» +0o0 T
M1 (7o, 60) Zf € fTOTrA(S)dSR/bz(Z*,T, 70, Ao, €) dr,
—00
B0, o) = / ba(®'. 7, 70, 60, €) — p(r, 70, o) dr (58)
—00

andz* is a solution of = L (b(Z, 7, 70, 60, €)) +W. Moreover if the perturbation is periodic we get infinitely many
intersections

Proof. The stable and unstable manifolds intersect if and only if the solution (45) satisfies the Melnikov-like
conditions (42) and (50) of Lemma 2. This was already proved in the case when b did not implicitly depend on z.
But because of this implicit dependence we need to apply the implicit function theorem, which states that given
7=L(b@E 1, 10,60, €) +Wwithz —w = L (0, t, 0, 6o, 0) = 0, there exist a$ and a unique solution #* (e, 1o, 6o)
(that has continuous derivatives up to order 2 in g, g, €) such that ¢ < 0, |Z| < § if the linearized operator
7 = L(b(0, 7, 10, 6o, €)) + W isinvertible. But Lemma 2 proved that such an operator is invertible. Moreover, the
homoclinic solutions are transversal if and only if the integrals (58) have simple zeroes, as functions of g and 6g
(see[5,6]). This concludes the proof. O

Unfortunately the Melnikov integrals of Theorem 3 are difficult to compute explicitly. To overcomethis difficulty
we need to rewrite these integrals to the first order approximation in €. Hence if welet Z* = ey and b = ed with
d = (d1, do, d3, dg), the next result followsimmediately.

Corollary 1. Systen{16) has transversal homoclinic solutions if and only if there exjsand ag; such that

oM OM> oMy oM>
9ty 96 99y 9t | T0=T§

£0, (59)

My(t3, 65) = Ma(t5.6%) =0 and

6o = 98
where

T T TrA)ds

M (o, 6p) = / e T TOYR (¢ — 1)ba(x(t — 10), Ot — 10) — o) i,
—00
400

M> (1o, 60) = / ba(x(t — 10), O(t — 10) — 6o) — p(, 10, Op) dr. (60)
—o0

Moreover if the perturbation is periodic we get infinitely many intersections

Corollary 1 generalizes the Melnikov integrals obtained in[12,19,28,31] to non-hyperbolic whiskered tori (peri-
odic orhits) in non-Hamiltonian systems. Observe that the second integral in (60) converges as the corresponding
integralsin[12,28] do, while some of theintegralsin[19,31] converge only conditionally along a sequence of times.
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6. TheMelnikov integrals

This section is devoted to the proof of Theorem 3, that essentially consistsin computing the Melnikov integrals.

Proof of Theorem 3. Let usapply Corollary 1 to our problem. The Melnikov conditions take the form

+00

Mi(to, o) = / [e” @2 /0" O® R _ 1) R (r — 10) cos?(w(z — 10) — )] dr = O

—00

and

1 [t .
Ma(ro, o) = / (R(z — 10)) SN (2(w(7 — 10) — fp)) dr = 0.

Let o = —0g — wto. With this assumption we can rewrite the first Melnikov condition as
My = cos?0oI§ + sin6o1% — sin20o15,
where
T 2 [T Vs ds O w2 [T Vs ds
[ =/ e o VYRR cos?wrdr, I :/ e o "WERR sinwr dr,
—00 —00

+o0 T
I = f e_(l/Z) Jro V) dsRR Sinwt coswrt dt.

—o0

The second Melnikov condition can be expressed as
Mo = COSZé()IéZ + SiHZéoIS,

where

1 +00 1 +00
5= E/ Rsin2wt dr, Ié’ = 5/ R cos2wr dt.

—0o0 —00

All the integrals above can be computed using the method of residues. Straightforward computations give

1 » —1 [+t (1t — 10) COS20wT 7 Sin (2wtp) e 2@Vl
= — = —_— T =
YU s @A+ (t —10)2)? |hl/2Ih]
and
P -1 /+°° (t — 10) SN WT COSWT 71 COS (2wtg) €20V 2lh]
= — T = —
YU ) @A+ (- 10)2)2 |hI/2IR]
Similarly one can compute 75
o0 1 _ sin (2wtg) €20V 2Ihl
e [ (g ) snzune - TGO 2
—o0o \2|h| + (z — 70) 2|h|
Theintegral was also computed using the method of residues. Moreover, for 12, we have
o0 1 c0s (2wtg) €20V
5 =/ (—2> cos 20t dr = 7008 (20T0)
—oo \2|h| + (t — 70) 2R

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)
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and thus
o _ pe20V2R -
M1 = Mow = 9N (2(wtg + ) ——w.
V2|h|

We therefore have only one independent condition; thisis clearly a consequence of the energy relation.

We can find simple zeroeswhen sin (2(wto+ 6o)) = 0, i.e., for —(wto+6p) = g = +kn/2fork =0,1,2, . ...

Hence, by Corollary 1, we have proved the existence of an infinite sequence of intersections on the Poincaré
section of the negatively and positively asymptotic sets of the periodic orbit and the existence of homoclinic
orhits leaving the equator of the collision manifold and going back to it. This situation is clearly reminiscent
of the chaotic dynamics described by the Poincaré-Birkhoff-Smal e theorem in terms of symbolic dynamics and
the Smale horseshoe. Unfortunately this theorem cannot be directly applied, nor can the theorems proved in [1],
since the Poincaré-Birkhoff—-Smale theorem considers hyperbolic fixed points while the arguments in [1] apply
to area-preserving diffeomorphisms. However, the arguments contained in those theorems strongly suggest the
occurrence of achaotic dynamics.

Moreover it is easy to verify, and interesting to remark, that the orbits we found above are not Sp-symmetric,
where the So-symmetry is defined by So(r, v, 6, u, ©) = (r, —v, —u, —71) (See [10]) and an orbit y(7) is said to be
So-symmetric if So(y(7)) = y(v). Indeed an orbit is So-symmetric if and only if it has a point on the zero velocity
curve, i.e, if thereisat such that v(7) = u(7) = 0 (see [25]). But this cannot happen in our problem because the
unperturbed solution verifiesu = ++/2b. Thus for € small enough the perturbed orbit can never have u = 0. This
concludes the proof of Theorem 3. O

7. Periodic solutions

We now return to the original Cartesian coordinates, which are more convenient for the purpose of finding certain
periodic solutions. Let usfirst notice that Egs. (2) admit the following symmetries:

SO(Xa Y, Px» py, t) = (xa Y, —Px _pY7 _t)a Sl(xa Y, Px» py’ t) = ('xv —Y, —DPx» pyv _t)v
Sz(-xs yv va P)u t) = (_-xs yv va _pyv _t)a SS(X, y, p)ﬁ Pys t) = (_-xa _yv _an _Pys t)a
S4('x’ Y> Px> Py t) = (_-x’ Y, —=Px, Py t)» SS(X» Y> Px> Py, t) = (-x’ =Y, Px» —Py> t)’

S6(-x’ y9 p)ﬁ pys t) = (_-x’ _yv st pyv _t)v

which are the elements of an Abelian group of order 8, isomorphicto Z; x Z2 x Z», that is generated by Sop, S1, S2
(see[25]). (Thesymmetry So isthe onedenoted by Sp in the M cGehee coordinates of the previous section.) To obtain
certain families of periodic solutions, we will use the symmetries Sg, S1 and S> in connection with the variational
principle according to which extremum values of the action integral yield periodic solutions of Egs. (2). To reach
this goal we first need to introduce some notations.

Let C*([0, T], R?) be the space of T-periodic C* cycles f : [0, T] — R2. Define the inner products

T .
(8)p = /0 f0) g0 d, (fghy = (f8)2 + (] 8),2 (72)

andlet | - |2, || - || z2 bethe corresponding norms. Then the completion of C*° ([0, T1, R?) with respect to the norm
|| - ||;2 is denoted by L2 and it is the space of square integrable functions. The completion with respect to || - || ;1
is denoted by H® and is the Sobolev space of all absolutely continuous 7-periodic paths that have L2 derivatives
defined almost everywhere (see [16]).
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Let ;([0, T], R?) denote the subset of H! formed by the S;-symmetric paths, with i € {0, 1, 2, 3, 4, 5, 6}. It is
easy to see that each X; is asubspace of H?; in fact they are Sobolev spaces and have many interesting properties.
In the following we will restrict our attention to the spaces X; withi = 0, 1, 2, 6. Let us now prove the following
result.

Lemma3. Let H! be defined as aboythen the subspaces; of S;-symmetric paths with= 0, 1, 2, 6 are closed
weakly closedand complete with respect to the nofim|| 41, and are therefore Sobolev spaces. Moreover

H'=X1® 3 =3® %6 (73)

Proof. We first show an interesting fact: we can write f = (f1, f2) as the sum of an S; and an S»>-symmetric
path. Indeed it is well known that we can write f1 and f> asthe sum of an even and an odd absolutely continuous
function, i.e. as f1 = f7 + ff and f> = f5 + f3. Using this idea we can write the path f(r) as the sum of an
S1-symmetric function, fs, = (f7, f3), and an Sa-symmetric one, fs, = (f7, f5). Now fix an element f € 1.
Then (f, g) y1 = Ofor every g € X». Thisis because

T L
(f )y = /O (fig1+ fag2) dr + /0 (figh + fehydr,

where the first integrand is an odd function and the second is an odd function almost everywhere. Thus the above
scalar product is zero for every g € Xs.

Let us denote the space orthogonal to X1 by le ={g e X1:(fgy = Oforeveryg € X1}. Itis easy
to see that X7 is closed and that S, C Xj-. Now we need to show that S, > Xi. Assume thereish € Xf
suchthat 1 # 0 and h € X». Then write h = hg, + hs, and consider (hg,, hs, + hs,) g1, Which means that
(hsy, hs))gr = llhs, || = 8 > 0. But this contradicts the hypothesis that 1 € X5-. Therefore ¥, = X3 So X, and
consequently X1 are closed and such that H1 = X1 @ ¥». Moreover, since H! is ametric space, X1 and X, are
complete. Also X1 and X, are weakly closed since they are norm-closed subspaces. The statementsfor Yo and Xg
can be proved in asimilar way. This compl etes the proof. O

L et us now introduce some new definitions. We will say that apathin X; isof classL,,n =0, £1, 2, 43, .. .,
if itswinding number about the origin of the coordinate systemisn (i.e. if it makesn loops around the origin). The
sign of n is positive for a counterclockwise rotation and negative otherwise. Consider the sets X; ([0, 7], R? \ {0}).
Noticethat they are open submanifolds of the spaces X; ([0, T], R?) and that thefamily (L,,),<z providesapartition
of those spaces into homotopy classes, also called components. Two periodic orbits of theisotropic Manev problem
(u = 1), one of class Lg and the other of class L_g, are depicted in Fig. 4.

ThelLagrangian L(q, q) = T(§) + U(q) of the anisotropic Manev problem given by system (2) hasthe expression

1 b
+
Jux2 £y2  px? 4 py?
and the action integral along a path f from time O to time T', whose Euclidean coordinate representation isq =
q(t) = (x(¥), y(1)), takes the form

. 1.5, .
L(-xv Y, X, )’) = E(XZ + yz) + (74)

T
Ar(f) :/o L(a(, a(») dr.

According to Hamilton's principle, the extremals of the functional Ay are solutions of Egs. (2). Hence we want
to obtain periodic solutions of (2) by finding extremals of the functional A. For this we will use a direct method
of the calculus of variation, namely the lower-semicontinuity method (see [26]). In preparation of a satisfactory



F. Diacu, M. Santoprete/Physica D 194 (2004) 75-94 91

A L N %/
-

(2) (b)

3

Fig. 4. Periodic orbits of the Manev problem: (a) S1-symmetric periodic orbit of class Lg, (b) S>-symmetric periodic orbit of class L_g. Note
that none of these two is S3-symmetric.

theory of existence, the notion of admissible function has to be relaxed since the extremals we obtain belong to a
Sobolev space. Therefore the above method provides only “weak” solutions of our problem. To show that the paths
are regular enough to be classical solutions, we need the following result, proved in [16].

Lemma4. The critical points ofA 7|5, ;o 77 r2\ (o)) are T-periodic solutions dEgs. (2).

In particular, it is well known that if f isaminimizer of the action A7 in the space H1([0, 7], R?) and if f has
no collisions, then f is a T-periodic solution to (2). Collision have to be excluded because Egs. (2) break down
at collisions and because the action is not differentiable at paths with collisions. In this paper, we are interested to
restrict ourself to the spaces X; of S;-symmetric paths for i = 0, 1, 2. The paths that are Sg-symmetric have to be
excluded in the study of periodic orbits since Sg-symmetric paths must intersect the origin and therefore encounter
collisions.

Now it isnot obviousthat acollisionlessminimizer in X; isaperiodic solution of system (2). However, according
to the principle of “symmetric criticality” (seefor example[3,23]) thisisactually true. Indeed, it can be proved that
if fisacollision free path with dA;(f)(h) = Ofor every f € X;, thendA7(f)(h) = Oforal f € HY([O, T], R?)
and thus f isacritical point in the bigger loop space H* (see [3]).

Theonly obstacle |eft for applying the direct method isthe “ non-compactness’ of the configuration space. Indeed
we want to exclude the possihility that the minimizer is obtained when the bodies are at infinite distance from each
other or are collision paths. The first problem is solved restricting ourselves to non-simple cycles, i.e., to cycles
that are not homotopic to a point and thus are not in the homotopy class Lg. The second problem is solved by the
following result.

Lemma 5. Any familyI” of non-simple homotopic cycles & ([0, T], R? \ {0}) for i = 0, 1, 2 on whichJ(f) =
f()T(1/2)|q(t)|2 drandE(f) = fOT U(q(n) dr are boundedis bounded away from the origin

The proof of thisresult followsfrom [16] if we remark that the anisotropic Manev potential is*“strong” according
to Gordon’ s definition and that the Lagrangian is positive.
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To apply the direct method we still need to recall some properties of lower-semicontinuous (I.s.c.) functions.
Let F: X — R beareal valued function on atopological space X. Then Fisl.sc. if and only if F1(—o00, d]
is closed for every a € R, in which case F is bounded below and attains its infimum on every compact subset
of X. Moreover when X is Hausdorff then compact sets are necessarily closed and thus we have the following
result.

Proposition 2. SupposeF: X — R is a real valued function on a Hausdorff space X and
F (=00, b] iscompactfor eery realb.

ThenFis l.s.c, bounded belonwand attains its infimum value on X
We can now prove the main result of this section.

Theorem 5. ForanyT > Oand anyn = +1, +£2, £3, ..., there is at least on§;-symmetriqi = 0, 1, 2) periodic
orbit of the anisotropic Manev problem that has period T and winding numfiez.jbelongs to the homotopy class
Ly,).

Proof. Let X be a component of ;([0, T], R? \ {0}) for i = 0, 1, 2, that consist of non-simple cycles. Endow
X with the weak topology it inherits from X;([0, T], R?). Then X is a subset of a Hilbert space and it is weakly
compact if and only if it is weakly closed.

We wish to apply Proposition 2 with 7 = A7 and thus we have to show that X N A}l(—oo, b] isabounded and
weak-closed subset of X;([0, 7], R?).

SinceJ = A7 — Eand U > 0, we have E > 0 and therefore

J <b on Ay (—o0,b] = A7M[0, ], E=Ar—J <b on A7Y0,5]. (75)

Since J < b the elements of X are bounded in arc length, and from Lemma’5 it follows that the elements of X are
bounded away from the origin. Moreover, the elements of X are non-simple and thus bounded in the €% norm and
hencein the L2 norm. This last fact combined with J < b shows that X is bounded in the || - | z2 norm. Thus also
X N A7t (—o00, b] isbounded in the H* norm.

Now suppose that {f,} = {(f1, fnz)} isasequencein X N A;l[O, b] that converges weakly to acycle f €
%;([0, T],R?) for i = 0,1, 2. From genera principles, | f, ||z is bounded and || f,|l;2 — | full;2 because
wesk X;-convergence implies C°-convergence. Since J(f,) = 1/2|| full%, — 1/2|lf |12, it means that J(f,)
is bounded and since E < b on A;l[O, b] it follows that {E(f,)} is bounded. Moreover, Lemma 5 guaran-
tees that the functions f, are bounded away from the origin so that f is homotopic to the f, in R? \ {0}.
Therefore f € X.

To completethe proof we haveto show that f € A;l[O, b]. Weknow that E( f;;) — E(f) sinceweak convergence
in X; implies C%-convergence. For each n let

1 1

n(t) = +
gm0 V(P2 + (F20)2 - n(fi )2 + (f2(0)?
and denote
1 1
g =

T T 202 | M2+ (F2n)2

Each g, isof class L1 since A7(f,) < oo. Thisimplies that the set of all ¢ for which £, (r) = 0 has zero measure,
otherwise the integral of g, () would be unbounded. So g,(r) — g(r) amost everywhere. Also ]OT gn(Hdr <
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Ar(fy) < b. By Fatou’'s lemmaiit follows that g is L and that

T T T
/ g dr = / liminfg,(r)dr < Iiminf/ gn(0) dr.
0 0 0
Now we can use the fact that the norm is weakly sequentially lower-semicontinuous (see [26]), thus

2 2 2 [ 2 2 [ r 2
1712, = 1120 = 1£125 < liminf ] 020 — 1 £125 = limin [ 7,112,

where the last equality holds since { f,,} converges strongly to f in L2. Consequently
1. T 1. T
Ar(pH = é||f||iz —1—/ g de < Iiminf§||fn||i2 + Iiminf/ gn(@® dr < liminfAr(f,) <b. (76)
0 0
Relation (76) now impliesthat f € A;l[o, b]. This completes the proof. O

Recall now that two intersections of every S1-symmetric (S2-symmetric) orbit with the x-axis (y-axis) must
be orthogonal. To distinguish them from accidental orthogonal intersections, which do not follow because of the
symmetry, we will call them essential orthogonal intersectior&rom the proof of Theorem 5 and obvious index
theory considerations, the following result follows (see dso Fig. 4).

Corollary 2. If the essential orthogonal intersections with the x-gyisxig of an S1-symmetriq Sz-symmetrig
periodic orbit lie on the same side of the axis with respect to the origin of the coordinate sifserthe orbit has

an even winding number. If the essential orthogonal intersections are on opposite sides with respect to the origin
then the periodic orbit has an odd winding number

Since the symmetries Sp, S1 and S» generate the entire symmetry group, it is clear that Theorem 5 captures al
periodic orbits with symmetries. This result, however, does not tell if other symmetric periodic orbits exist beyond
the oneswith Sp, S1 and S>-symmetries. Let ustherefore end our paper by proving that S3-periodic orbits do indeed
exist. In fact they form arich set if compared to the one of S3-symmetric orbits of the anisotropic Kepler problem
(given by (1) with » = 0), which contains only circular orbits. We will show that in our case each homotopy
class L,, n = 4k + 1, k integer, contains at least one S3-symmetric periodic orbit. Other homotopy classes may
have S3-symmetric periodic orbits, but our approach proves their existence only for winding numbers of the form
n = 4k + 1, k integer.

We consider the set of al paths with one end on the x-axis and the other on the y-axis of the coordinate system.
Asin the case of periodic cycles discussed in the first part of this section, for agiven T’ = T/4 > 0 this set can be
endowed with a Hilbert space structure, the completion of which is a Sobolev space. We further divide this space
in homotopy classes £,, n = 0, £1, +2, ... according to the winding number .

Using the boundary conditions, it is easy to see that in each class £, the minimizer of the action is a an arc
orthogonal to the x and y axes. Its existence and the fact that it is a solution in the classical sense can be proved in
asimilar way as we did for periodic cycles. Once obtaining such a solution with ends on the x and y axes, we can
use the S3-symmetry and the orthogonality with the axes to complete this solution arc to a periodic orbit of period
T > 0. The symmetry implies that the winding number is of the form n = 4k + 1, k integer. This is because if,
for example, a solution arc with the ends on the x and y axes has aloop around the origin, then the corresponding
periodic orbit has four loops around the origin. We have thus obtained the following result.

Theorem 6. For anyT > 0 and anyn = 4k + 1, k integer there is at least on§3-symmetric periodic orbit of the
anisotropic Manev problem that has period T and winding numh@en belongs to the homotopy class).
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Itisinteresting to notein conclusion that if viewing the anisotropy parameter as a perturbation and the anisotropic
Manev problem as a perturbation of the isotropic case (see Section 4), the S;-symmetric (i = 0, 1, 2) periodic orbits
of the isotropic problem are deformed but not destroyed by introducing the anisotropy, no matter how large its
size. This showsthat the S;-symmetries (i = 0, 1, 2) play an important role in understanding the system and are an
indicator of its robustness relative to perturbations.
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