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MATHEMATICAL PROGRAMS WITH GEOMETRIC
CONSTRAINTS IN BANACH SPACES: ENHANCED OPTIMALITY,

EXACT PENALTY, AND SENSITIVITY∗

LEI GUO† , JANE J. YE‡ , AND JIN ZHANG‡

Abstract. In this paper we study the mathematical program with geometric constraints such
that the image of a mapping from a Banach space is included in a nonempty and closed subset
of a finite dimensional space. We obtain the nonsmooth enhanced Fritz John necessary optimality
conditions in terms of the approximate subdifferential. In the case where the Banach space is a weakly
compactly generated Asplund space, the optimality condition obtained can be expressed in terms
of the limiting subdifferential, while in the general case it can be expressed in terms of the Clarke
subdifferential. One of the technical difficulties in obtaining such a result in an infinite dimensional
space is that no compactness result can be used to show the existence of local minimizers of a
perturbed problem. In this paper we employ the celebrated Ekeland’s variational principle to obtain
the results instead. The enhanced Fritz John condition allows us to obtain the enhanced Karush–
Kuhn–Tucker condition under the pseudo-normality and the quasi-normality conditions which are
weaker than the classical normality conditions. We then prove that the quasi-normality is a sufficient
condition for the existence of local error bounds of the constraint system. Finally we obtain a tighter
upper estimate for the subdifferentials of the value function of the perturbed problem in terms of
the enhanced multipliers.
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1. Introduction. In this paper, unless otherwise stated, we denote by X a
Banach space and by X

∗ its dual space equipped with the weak∗ topology and by Y an
m-dimensional Hilbert space over R together with the inner product 〈· , ·〉 equipped
with the orthogonal basis E = {e1, . . . , em}. We study the following mathematical
program with geometric constraints (MPGC) such that the image of a mapping from
a Banach space is included in a closed subset of a finite dimensional space:

(MPGC) min
x∈Ω

f(x)(1.1)

s.t. F (x) ∈ Λ,

where f : X → R and F : X → Y are Lipschitzian near the point of interest and Ω
and Λ are nonempty and closed subsets of X and Y, respectively. Problem (MPGC)
includes as special cases the conventional nonlinear program, the cone constrained
program, the mathematical program with equilibrium constraints [17, 26], the prob-
lems considered in [28, 10], the semidefinite program, and the mathematical program
with semidefinite cone complementarity constraints [8].
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The classical Fritz John (FJ) necessary optimality condition for (MPGC) with
continuously differentiable functions {f, F}, Ω = X, and convex geometric constraint
Λ takes the following form: There exist r ≥ 0 and μ ∈ Y not all equal to zero such
that

0 = r∇f(x∗) +∇F (x∗)∗μ and μ ∈ NΛ(F (x
∗)),(1.2)

where ∇ϕ(x) is the Fréchet derivative of mapping ϕ at x, A∗ denotes the adjoint of
a linear operator A, and NΛ(y) denotes the normal cone of Λ at y in the sense of
convex analysis [29]:

NΛ(y) =

{
{d ∈ Y | 〈d, z − y〉 ≤ 0 ∀z ∈ Λ} if y ∈ Λ,
∅ if y /∈ Λ.

From the FJ condition, it follows immediately that if x∗ is a locally optimal solution of
(MPGC) and the no nonzero abnormal multiplier constraint qualification (NNAMCQ)
or basic constraint qualification (Basic CQ) [30] holds at x∗, i.e., there is no nonzero
μ such that

0 = ∇F (x∗)∗μ and μ ∈ NΛ(F (x
∗)),

then there exist r > 0 (which can be taken as 1) and μ ∈ Y such that the KKT
condition holds,

0 = ∇f(x∗) +∇F (x∗)∗μ and μ ∈ NΛ(F (x
∗)).

Since Y is assumed to be a finite dimensional space and Λ is a closed convex set, by
virtue of [4, Corollary 2.98], the NNAMCQ is equivalent to the Robinson’s CQ

0 ∈ int{F (x∗) +∇F (x∗)X− Λ},

where int denotes the topological interior of a given set.
When {f, F} are nonsmooth but locally Lipschitzian and Λ is not a convex set,

the FJ condition can be obtained by replacing the usual derivatives and the normal
cone in the sense of convex analysis with the limiting subdifferential and the limiting
normal cone, respectively, if the underlying space X is an Asplund space (an Asplund
space X is a Banach space such that every separable closed subspace of X has a
separable dual; see Mordukhovich [20]) and by the Clarke subdifferential and the
Clarke normal cone, respectively, if X is a general Banach space (see Clarke [5]).

Although the NNAMCQ or the Basic CQ provides an easy way to verify constraint
qualification, it may be fairly strong for some applications, and in particular for certain
classes of optimization problems such as bilevel programs and mathematical programs
with equilibrium constraints [8, 26, 17, 35, 36, 37], they are never satisfied. In the last
two decades, tremendous progress has been made toward developing weaker constraint
qualifications and stronger necessary optimality conditions for the classical nonlinear
program

(NLP) min
x∈Ω

f(x)

s.t. h(x) = 0,

g(x) ≤ 0,

where f : Rn → R, h : Rn → R
p, g : Rn → R

q are continuously differentiable and Ω
is a nonempty closed subset in R

n. For (NLP) with Ω = R
n, the corresponding FJ
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condition asserts that for a locally optimal solution x∗ of problem (NLP), there exist
scalars r, λ1, . . . , λp and μ1, . . . , μq, not all zero, such that r ≥ 0, μj ≥ 0, j = 1, . . . , q,
and

r∇f(x∗) +
p∑

i=1

λi∇hi(x∗) +
q∑

j=1

μj∇gj(x∗) = 0,(1.3)

μjgj(x
∗) = 0 ∀j = 1, . . . , q.(1.4)

It follows immediately that the KKT condition holds under the NNAMCQ: There is
no nonzero vector {λ, μ} such that

p∑
i=1

λi∇hi(x∗) +
q∑

j=1

μj∇gj(x∗) = 0,

μj ≥ 0, μjgj(x
∗) = 0 ∀j = 1, . . . , q.

Using the Motzkin’s transposition theorem, the NNAMCQ for problem (NLP) with
Ω = R

n can be shown to be equivalent to the well-known Mangasarian–Fromovitz
constraint qualification (MFCQ), i.e., the gradient vectors

{∇hi(x∗) | i = 1, . . . , p}

are linearly independent and there exists a vector d ∈ R
n such that

〈∇hi(x∗), d〉 = 0 ∀i = 1, . . . , p, 〈∇gj(x∗), d〉 < 0 ∀j ∈ I(x∗),

where I(x∗) := {j | gj(x∗) = 0} is the set of active inequality constraints at x∗. An
enhanced version of the FJ condition (1.3)–(1.4) was proposed by Bertsekas in [1],
i.e., if x∗ is a locally optimal solution of problem (NLP), then there exist scalars
λ1, . . . , λp, and μ1 ≥ 0, . . . , μq ≥ 0 not all zero satisfying (1.3) and the following
sequential property: If the index set I ∪ J is nonempty, where

I = {i | λi �= 0}, J = {j | μj > 0},

then there exists a sequence {xk} converging to x∗ such that for all k,

f(xk) < f(x∗),
λihi(x

k) > 0 ∀i ∈ I,(1.5)

gj(x
k) > 0 ∀j ∈ J.(1.6)

While there is no sign condition for an equality constraint in the classical FJ condi-
tion, condition (1.5) imposes a sequential sign condition for an equality constraint in
the enhanced version. Condition (1.6), which is called the complementarity violation
(CV) condition by Bertsekas and Ozdaglar [2, 3], is stronger than the complementary
slackness condition (1.4) since taking limits as k goes to infinity in condition CV (1.6)
results in gj(x

∗) ≥ 0, which implies that gj(x
∗) = 0 since x∗ is feasible. The classical

FJ condition is equivalent to the KKT condition under the NNAMCQ. Since the en-
hanced FJ condition is stronger than the classical FJ condition, it results in constraint
qualifications such as quasi-normality that are weaker than the NNAMCQ. Very re-
cently, the enhanced KKT conditions for problem (NLP) with locally Lipschitzian
data based on the limiting subdifferential and limiting normal cone were derived in
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[34] and the sensitivity of the value function was established in terms of the set of the
enhanced KKT multipliers which may be smaller than the set of the classical KKT
multipliers and hence provides sharper results.

The main purpose of this paper is to study the enhanced optimality condition for
(MPGC) when the space X is a Banach space and Y is a finite dimensional space.
Such a result is new even for the classical smooth nonlinear program. There are two
technical difficulties involved when the space X is not finite dimensional. First, un-
like in the finite dimensional case, the quadratic penalization approach in [34] cannot
be employed anymore because the compactness of the closed unit ball is possibly
invalid in a Banach space X, which plays a key role in guaranteeing the existence
of enhanced sequential approximating solution by using the Weierstrass theorem in
[34]. Nevertheless, by virtue of the optimization process, for any ε > 0, a problem in
the form of (MPGC) always possesses an ε-optimal solution (see [4] for a definition),
provided that the optimal value of the problem is finite. Inspired by this fact, we
employ the Ekeland’s variational principle instead to construct a cluster of ε-optimal
solutions, and each of them becomes the minimizer of a certain slightly perturbed
problem. We then employ generalized calculus to obtain necessary optimality con-
ditions for the perturbed problem. The second difficulty lies in applying the basic
calculus rules and passing to the limit as ε tends to zero. When the space X is finite
dimensional, the limiting subdifferential and the limiting normal cone have nice cal-
culus rules and are known to be closed as set-valued maps. The nice calculus rules
and the robust property allow one to obtain the desired result. However, when X is an
infinite dimensional Banach space, the limiting subdifferential for locally Lipschitzian
functions may even be empty, and hence the basic calculus rules may fail and the
robust property may not hold in general. To cope with the second difficulty, we use
the approximate subdifferential developed by Ioffe [13, 14] instead. The approximate
subdifferential seems to be the most natural analytic tool in our situation since it
has fairly rich calculus rule for locally Lipschitzian functions and the approximate
subdifferential and the approximate normal cone are known to be closed as set-valued
maps. Moreover, the approximate subdifferential for locally Lipschitzian functions is
minimal (as a set) among all subdifferentials that have desired properties and is in
general smaller than the Clarke subdifferential. When the underlying space X is a
weakly compactly generated (WCG) Asplund space, the approximate subdifferential
coincides with the limiting subdifferential [20, Theorem 3.59], and hence in this case
we obtain the desired result in terms of limiting subdifferential. Recall that X is WCG
if there is a weakly compact set K ⊂ X such that X is equal to the closure of the span
of K. Canonical examples of WCG Asplund spaces are reflexive Banach spaces; see,
e.g., [20] for further discussions.

In recent years, it has been shown that constraint qualifications have strong con-
nections with the stability of the feasible region under a certain perturbation p:

X (p) := {x ∈ Ω |F (x, p) ∈ Λ},
where p is in a topological space P. For the case of a smooth optimization problem
with convex geometric constraint Λ and X = Ω, it is known that the Robinson’s CQ
at x∗ ∈ X (p∗) implies the stability for the constraint region (see [4, Theorem 2.87]),
i.e., the existence of a neighborhood U of (x∗, p∗) such that for all (x, p) ∈ U ∩(X×P),

distX (p)(x) = O(distΛ(F (x, p))),

and hence the existence of local error bounds, i.e., there exist positive constants {κ, δ0}
such that
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distX (p∗)(x) ≤ κdistΛ(F (x, p
∗)) ∀x ∈ B(x∗, δ0) ∩ X.

In fact, the above stability results still hold in an infinite dimensional space even if
the set Λ is not convex and X is replaced with a closed subset Ω under the NNAMCQ
which can be easily derived by using the error bound result as in [33, Theorem 2.4].

Error bounds have important applications in sensitivity analysis of mathematical
programming and in convergence analysis of some algorithms. In his seminal paper
[11], Hoffman showed that a linear inequality system in a finite dimensional space
has a global error bound. Such a result was generalized to an infinite dimensional
Banach space by Ioffe [12]. For a general constraint system, the existence of error
bounds usually requires some conditions. As we discussed above, the Robinson’s
CQ and the NNAMCQ imply a local error bound for (MPGC). Therefore, the error
bound estimates can be obtained straightforwardly for smooth nonlinear programs
and nonlinear semidefinite programs (NLSDP) with the constraint systems taking
the geometric forms respectively (see [4, Examples 2.92, and 2.93]). Very recently,
for the case of nonsmooth (NLP), it was shown in [34] that either pseudo-normality
or quasi-normality with regularity on the constraints implies the existence of local
error bounds, which extends the result in [19], where all constraints are assumed to
be twice continuously differentiable. In this paper, we show that a local error bound
for nonsmooth (MPGC) exists under quasi-normality, which generalizes and improves
all earlier results since except for the constraint qualification, neither an additional
regularity condition nor a continuous differentiability assumption is required.

The organization of this paper is as follows. We first give some background
material in section 2. In section 3, we derive the enhanced FJ condition for (MPGC)
and specialize the result to the case of conventional (NLP) and (NLSDP). Section 4
introduces some new weaker constraint qualifications for (MPGC) and discusses the
relations between them. As our applications, under the new constraint qualifications,
we show the existence of local error bounds in section 5 and investigate the sensitivity
in section 6.

2. Preliminaries. We first give notation that will be used throughout the paper.
We denote by X the feasible region of (MPGC) and denote by Bδ(x) := {y ∈ X | ‖y−
x‖ < δ} the open ball centered at x with radius δ > 0. As usual, BX and BX∗ stand for
the closed unit balls of the space X and its dual X∗, respectively. For a point x ∈ X

and a set C ⊆ X, we denote by distC(x) the distance from x to C.

We next summarize some preliminary material in variational analysis that will be
needed in this paper. We refer the reader to [5, 20, 31, 13, 14] for more details and
discussions.

For a set-valued map S : X ⇒ X
∗, unless specified, we denote by

Lim sup
x→x∗

S(x) := {v ∈ X
∗|∃ sequences xk → x∗ and vk

w∗
→ v

with vk ∈ S(xk) ∀ k}

the sequential Painlevé–Kuratowski upper limit with respect to the norm topology of
X and the weak∗ topology of X∗.

Given Ω ⊂ X and ε ≥ 0, define the collection of ε-normals to Ω at x∗ ∈ Ω by

N̂ε(x
∗,Ω) :=

{
v ∈ X

∗
∣∣∣∣ lim sup

x
Ω→x∗

〈v, x − x∗〉
‖x− x∗‖ ≤ ε

}
,(2.1)
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where x
Ω→ x∗ means that x → x∗ with x ∈ Ω. When ε = 0, elements of (2.1) are

called Fréchet normals and their collection, denoted by N̂Ω(x
∗), is the prenormal cone

to Ω at x∗. The basic/limiting normal cone NL
Ω (x∗) to Ω at x∗ is defined as

NL
Ω (x∗) := Lim sup

x
Ω→x∗,ε↓0

N̂ε(x,Ω).

If X is an Asplund space, then the limiting normal cone has the following simpler
expression (see [20, Theorem 2.35]):

NL
Ω (x∗) := Lim sup

x
Ω→x∗

N̂Ω(x).

For Ω ⊂ X and x∗ ∈ Ω, the contingent cone TΩ(x∗) to Ω at x∗ is the set defined by

TΩ(x∗) := Lim sup
t→0,t≥0

Ω− x∗

t
,(2.2)

where Lim sup is taken with respect to the norm topology of X. If Lim sup in (2.2) is
taken with respect to the weak topology of X, then the resulting construction, denoted
by T w

Ω (x∗), is called the weak contingent cone to Ω at x∗.
The Clarke tangent cone to Ω at x∗ is defined by

T c
Ω(x

∗) := {v | ∀xk → x∗, ∀tk ↓ 0, ∃vk → v∗ s.t. xk + tkv
k ∈ Ω ∀k},

and the Clarke normal cone to Ω at x∗ is the dual to the Clarke tangent cone to Ω at
x∗, i.e.,

N c
Ω(x

∗) := T c
Ω(x

∗)o,

where Co := {x | 〈x, v〉 ≤ 0 ∀v ∈ C} denotes the polar of set C. In the general
Banach space setting, we have

cl∗convNL
Ω (x∗) ⊆ N c

Ω(x
∗),

where cl∗conv denotes the weak∗ closure of the convex hull and the inclusion relation-
ship above holds with equality when X is an Asplund space.

Let ϕ : X → R be an extended-real-valued function with ϕ(x∗) finite. The set

∂̂εϕ(x
∗) :=

{
v ∈ X

∗
∣∣∣∣ lim inf

x→x∗
ϕ(x)− ϕ(x∗)− 〈v, x − x∗〉

‖x− x∗‖ ≥ −ε
}

is called the (Fréchet-like) ε-subdifferential of ϕ at x∗. When ε = 0, the Fréchet-

like ε-subdifferential reduces to the Fréchet subdifferential, denoted by ∂̂ϕ(x∗). The
basic/limiting subdifferential of ϕ at x∗ is defined by

∂Lϕ(x∗) := Lim sup
x

ϕ→x∗,ε↓0
∂̂εϕ(x),

where x
ϕ→ x∗ means that x→ x∗ and ϕ(x) → ϕ(x∗). The singular subdifferential of

ϕ : X → R at x∗ is defined by

∂∞ϕ(x∗) := Lim sup
x

ϕ→x∗,ε↓0,t↓0
t∂̂εϕ(x).
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If X is an Asplund space, then we have the following simpler form [20, Theorems 2.34
and 2.38]:

∂Lϕ(x∗) := Lim sup
x

ϕ→x∗
∂̂ϕ(x) and ∂∞ϕ(x∗) := Lim sup

x
ϕ→x∗,t↓0

t∂̂ϕ(x).

Next we introduce the approximate subdifferential developed by Ioffe [13, 14].
The lower Dini directional derivative of ϕ at x∗ along the direction d is given by

D−ϕ(x∗, d) := lim inf
d′→d,t↓0

ϕ(x∗ + td′)− ϕ(x∗)
t

,

and the Dini ε-subdifferential of ϕ at x∗ is defined by

∂−ε ϕ(x
∗) := {v ∈ X

∗ | 〈v, d〉 ≤ D−ϕ(x∗, d) + ε‖d‖ ∀d ∈ X}.

As usual, we set ∂−ε ϕ(x
∗) := ∅ if |ϕ(x∗)| = ∞. The approximate subdifferential of ϕ

at x∗ is given by

∂aϕ(x∗) :=
⋂
L∈L

Lim sup
x

ϕ→x∗
∂−0 (ϕ+ δ(·, L))(x) =

⋂
L∈L,ε>0

Lim sup
x

ϕ→x∗
∂−ε (ϕ+ δ(·, L))(x),

where L is the collection of all finite dimensional subspaces of X, δ(·, L) is the indictor
function of L, and Lim sup stands for the topological counterpart of the Painlevé–
Kuratowski upper limit with sequences replaced by nets. The G-normal cone N g and
its nucleus Ñ g to Ω at x∗ are defined by

N g
Ω(x

∗) = cl∗Ñ g
Ω(x

∗) and Ñ g
Ω(x

∗) :=
⋃
λ>0

λ∂adistΩ(x
∗).

The A-normal cone to Ω at x∗ is defined by

N a
Ω(x

∗) := ∂aδ(x∗,Ω).

It follows from [14, Proposition 3.4], [20, section 2.5.2, p. 238], and [14, Proposition
3.3] that

N c
Ω(x

∗) = cl∗convN g
Ω(x

∗), NL
Ω (x∗) ⊆ Ñ g

Ω(x
∗), and N g

Ω(x
∗) ⊆ N a

Ω(x
∗).

Clearly,

NL
Ω (x∗) ⊆ Ñ g

Ω(x
∗) ⊆ N g

Ω(x
∗) ⊆ N c

Ω(x
∗).

If Ω is convex, then NL(x∗) = Ñ g
Ω(x

∗) = N g(x∗) = N c(x∗) is the normal cone of Ω
at x∗ in the sense of convex analysis.

Now we introduce the Clarke subdifferential of locally Lipschitian functions. In
this paragraph we assume that ϕ is Lipschitian near x∗. Recall that the Clarke’s
generalized derivative of ϕ at x∗ along the direction d is defined by

ϕo(x∗, d) := lim sup
x→x∗,t↓0

ϕ(x + td)− ϕ(x)

t
.

The Clarke subdifferential of ϕ at x∗ is defined by

∂cϕ(x∗) := {v ∈ X
∗ | 〈v, d〉 ≤ ϕo(x∗, d) ∀d ∈ X}.
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In the general Banach space setting, we have

cl∗conv∂ϕL(x∗) ⊆ ∂cϕ(x∗),

where the inclusion relationship above holds with equality when X is an Asplund
space. It follows from [20, section 2.5.2, p. 238] and [13, Proposition 3.3] that

∂Lϕ(x∗) ⊆ ∂aϕ(x∗) and ∂aϕ(x∗) ⊆ ∂cϕ(x∗).

If, in addition, ϕ is convex, then ∂aϕ(x) = ∂Lϕ(x) = ∂cϕ(x) is the same as the
subdifferential of ϕ at x∗ in the sense of convex analysis.

The following propositions provide a summary of some of the important properties
of the approximate subdifferential; see [9, 13, 14, 15, 20]. For a set-valued map
S : X ⇒ X

∗, we say S is closed if its graph is closed in the appropriate topology.
Proposition 2.1. Let f : X → R be Lipschitzian near x∗ with positive modulus

Lf . Then the following results hold:
(i) (See [13, Proposition 3.3] and [5, Proposition 2.1.2].) cl∗conv∂af(x∗) =

∂cf(x∗) ⊂ LfBX∗ .
(ii) (See [9, Theorem 1.1].) If x∗ is a local minimizer of f on X, then 0 ∈ ∂af(x∗).
Proposition 2.2 (see [9, Theorem 1.4]). Let f : X → R be Lipschitzian near x∗.

Then the set-valued map

(λ, x) → ∂a(λf)(x)

is closed at (λ∗, x∗), i.e.,

∂a(λ∗f)(x∗) = Lim sup

λ→λ∗,x
f→x∗

∂a(λf)(x) ∀λ∗ ∈ R.

For a locally Lipschitzian function in WCG Asplund spaces, at each point the
limiting subdifferential set coincides with the approximate subdifferential set [20, The-
orem 3.59]. Thus, the limiting subdifferential enjoys the robust property as in Propo-
sition 2.2 in the WCG Asplund setting. Note that even for a locally Lipschitzian
function, the limiting subdifferential might not enjoy the robustness property in a
non-WCG Banach space (see [20, Example 3.61]).

Proposition 2.3 (see [13, Proposition 2.3]). The A-normal cone mapping
N a

Ω(·) = ∂aδ(·,Ω) is closed, i.e.,

N a
Ω(x

∗) = Lim sup
x

Ω→x∗
N a

Ω(x) ∀x∗ ∈ Ω.

Proposition 2.4 (calculus rules).
(i) (See [13, Corollary 4.1.1].) Let f, g : X → R be lower semicontinuous near x∗,

finite at x∗, and at least one of them is Lipschitzian near x∗ ∈ X. Let α, β be
positive scalars. Then

∂a(αf + βg)(x∗) ⊂ α∂af(x∗) + β∂ag(x∗),

where γ · ∅ := ∅ for any nonzero scalar γ.
(ii) (See [15, Theorem 2.5 and Remark (2)].) Let ϕ : X → Y be Lipschitzian near

x∗ and f : Y → R be Lipschitzian near ϕ(x∗). Then f ◦ ϕ is Lipschitzian
near x∗ and

∂a(f ◦ ϕ)(x∗) ⊂ ∪ξ∈∂af(ϕ(x∗))∂
a〈ξ, ϕ〉(x∗).
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(iii) (See [9, Corollary 1.2].) Let fi : X → R (i = 1, . . . , n) be Lipschitzian near x∗

and f(x) := max{fi(x) | i = 1, . . . , n}. Then f(x) is Lipschitzian near x∗ ∈ X

and

∂af(x∗) ⊂ conv{∂afi(x∗) | i ∈ I(x∗)},
where I(x∗) := {i | fi(x∗) = f(x∗)} is the set of active indices.

3. Enhanced FJ condition. For nonsmooth problem (MPGC), the classical
FJ necessary optimality condition is generalized to one where the classical gradient is
replaced by the limiting subdifferential (see Mordukhovich [20]) and the Clarke subdif-
ferential (see Clarke [5]), respectively. The following theorem strengthens the classical
FJ condition (i.e., conditions (i)–(ii) of Theorem 3.1) through a stronger sequential
condition (iii) of Theorem 3.1, and hence their effectiveness has been significantly
enhanced. Taking limits in (3.1) it is easy to see that condition (ii) is included in
condition (iii). In order to emphasize the enhanced properties, however, we keep the
redundant condition (ii) in Theorem 3.1. Note that the following result depends on
the chosen basis E = {e1, . . . , em} and, since Y is assumed to be finite dimensional,
the limiting normal cone of Λ coincides with the nucleus of the G-normal cone of Λ
at any point [20, Theorem 3.59(ii)].

Theorem 3.1. Let x∗ be a local minimizer of problem (MPGC). Then there exist
a scalar r ≥ 0 and a vector η∗ ∈ Y not all zero such that the following conditions
hold:

(i) 0 ∈ r∂af(x∗) +
∑m

i=1 ∂
a〈η∗, ei〉〈F, ei〉(x∗) + Ñ g

Ω(x
∗).

(ii) η∗ ∈ NL
Λ (F (x∗)).

(iii) If the index set I := {i | 〈η∗, ei〉 �= 0} is nonempty, then there exists a sequence
{(xk, yk, ηk)} ⊆ Ω× Λ× Y converging to (x∗, F (x∗), η∗) such that for all k,

f(xk) < f(x∗),
ηk ∈ NL

Λ (yk),(3.1)

〈η∗, ei〉〈F (xk)− yk, ei〉 > 0 ∀i ∈ I.(3.2)

Proof. Without loss of generality we may assume that x∗ is a global minimizer of
problem (MPGC). First, we observe that if x∗ is a local minimizer of the problem

min f(x)(3.3)

s.t. x ∈ Ω,

then by the Clarke exact penalty principle [5, Proposition 2.4.3], there exists κ > 0
such that x∗ is a local minimizer for

min f(x) + κdistΩ(x).

Then by Proposition 2.1(ii) and Proposition 2.4(i), we have

0 ∈ ∂af(x∗) + κ∂distΩ(x
∗) ⊆ ∂af(x∗) + Ñ g

Ω(x
∗).

Hence the proof is complete by letting r = 1 and η∗ = 0. In the following, we assume
that x∗ is not a local minimizer of problem (3.3). By introducing a slack variable
y ∈ Y for the geometric constraint F (x) ∈ Λ, we first reformulate problem (MPGC)
as follows:

(MPGC)′ min f(x)

s.t. F (x) − y = 0,

x ∈ Ω, y ∈ Λ.
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Then (x∗, y∗) with y∗ = F (x∗) is a global minimizer for problem (MPGC)′. For each
k = 1, 2, . . . , we consider the function F k : X× Y → R defined by

F k(x, y) := max

{
f(x)− f(x∗) +

1

2k
, |〈F (x)− y, e1〉|, . . . , |〈F (x) − y, em〉|

}
.

Since (x∗, y∗) is a global minimizer of (MPGC)′, we have

F k(x, y) > 0 ∀(x, y) ∈ Ω× Λ,

which, together with F k(x∗, y∗) = 1
2k , implies

F k(x∗, y∗) < inf
(x,y)∈Ω×Λ

F k(x, y) +
1

k
.(3.4)

Since x∗ is not a local minimizer of problem (3.3), there exists a sequence {x̃k} with
x̃k ∈ Ω such that x̃k → x∗ and

f(x̃k) < f(x∗) ∀k.

Then ‖F (x̃k)− y∗‖ = ‖F (x̃k)− F (x∗)‖ → 0. Thus we can choose the sequence {x̃k}
such that

F k(x̃k, y∗) <
1

2k
= F k(x∗, y∗).(3.5)

This and (3.4) imply

F k(x̃k, y∗) < inf
(x,y)∈Ω×Λ

F k(x, y) +
1

k
.

Clearly, F k is Lipschitzian near (x∗, y∗) and hence, by the Ekeland’s variational
principle (see, e.g., [20, Theorem 2.26], [31, Corollary 8.2.6]), there exists (xk, yk) ∈
Ω× Λ such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

‖(xk, yk)− (x̃k, y∗)‖ ≤ 1√
k
,

F k(xk, yk) ≤ F k(x̃k, y∗),

F k(xk, yk) ≤ F k(x, y) +
1√
k
‖(x, y)− (xk, yk)‖ ∀(x, y) ∈ Ω× Λ.

(3.6)

It follows that (xk, yk) → (x∗, y∗) as k → ∞ and for each k, (x, y) = (xk, yk) is a
global minimizer of the problem

min F̃ k(x, y) := F k(x, y) +
1√
k
‖(x, y)− (xk, yk)‖

s.t. (x, y) ∈ Ω× Λ.

Then by the Clarke exact penalty principle, there exists κ ≥ 0 such that (x, y) =
(xk, yk) is a global minimizer of the problem

min F̃ k(x, y) + κdistΩ×Λ(x, y)

s.t. (x, y) ∈ X× Y.
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Thus, we have by the necessary optimality condition (Proposition 2.1(ii)) and
calculus rule (Proposition 2.4(i)) that

0 ∈ ∂aF̃ k(xk, yk) + κ∂adistΩ(x
k)× κ∂adistΛ(y

k).(3.7)

Applying the calculus rules (Proposition 2.4(iii)), there exist nonnegative scalars
{rk, η̂k1 , . . . , η̂km} such that for each k,

rk +

m∑
i=1

η̂ki = 1(3.8)

and

0 ∈ rk
(
∂af(xk)

0

)
+

m∑
i=1

η̂ki ∂
a|ψi|(xk, yk) +

1√
k

(
BX∗

BY

)
+ κ

(
∂adistΩ(x

k)
∂adistΛ(y

k)

)
,(3.9)

where ψi(x, y) := 〈F (x)−y, ei〉 and η̂ki = 0 if i is not an active index. Since the active
indices only count in the maximum rule and F k(xk, yk) > 0, we may assume that for
each k, ψi(x

k, yk) = 〈F (xk) − yk, ei〉 = 0 implies η̂ki = 0; otherwise we can choose a
subsequence. Define

η̃ki := (sign 〈F (xk)− yk, ei〉)η̂ki ,

where sign 0 = 0. We then obtain by the chain rule (Proposition 2.4(ii)) that

η̂ki ∂
a|ψi|(xk, yk) =

(
∂a〈F, η̃ki ei〉(xk)

−η̃ki ei

)
.

This and (3.9) imply that

0 ∈ rk
(
∂af(xk)

0

)
+

m∑
i=1

(
∂a〈F, η̃ki ei〉(xk)

−η̃ki ei

)
+

1√
k

(
BX∗

BY

)
+ κ

(
∂adistΩ(x

k)
∂adistΛ(y

k)

)
,

that is, ⎧⎪⎪⎨⎪⎪⎩
0 ∈ rk∂af(xk) +

m∑
i=1

∂aη̃ki 〈F, ei〉(xk) +
1√
k
BX∗ + κ∂adistΩ(x

k),

η̃k ∈ 1√
k
BY + κ∂adistΛ(y

k),

(3.10)

where η̃k :=
∑m

i=1 η̃
k
i ei.

Since by construction we have rk+
∑m

i=1 |η̃ki | = 1, the sequence {(rk, η̃k1 , . . . , η̃km)}
is bounded and must contain a subsequence that converges to some limit (r, η̄1, . . . , η̄m),
where r ≥ 0 and (r, η̄1, . . . , η̄m) �= 0. By virtue of the closedness of the subdifferential
(Proposition 2.2), it follows from (3.10) that⎧⎪⎨⎪⎩0 ∈ r∂af(x∗) +

m∑
i=1

∂a〈η∗, ei〉〈F, ei〉(x∗) + κ∂adistΩ(x
∗),

η∗ ∈ κ∂adistΛ(y
∗),

(3.11)
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where η∗ =
∑m

i=1 η̄iei. Thus,⎧⎪⎨⎪⎩0 ∈ r∂af(x∗) +
m∑
i=1

∂a〈η∗, ei〉〈F, ei〉(x∗) + Ñ g
Ω(x

∗),

η∗ ∈ Ñ g
Λ(F (x

∗)).

To show that condition (iii) is satisfied, assume that I �= ∅ (otherwise there is
nothing to prove). Since

η̃k ∈ 1√
k
BY + κ∂adistΛ(y

k) ⊆ 1√
k
BY + Ñ g

Λ(y
k),

there exists ρk ∈ BY such that

ηk := η̃k +
1√
k
ρk ∈ Ñ g

Λ(y
k).

Since η̃k → η∗ as k → ∞, it is easy to see that ηk → η∗. Since η̃ki → η̄i = 〈η∗, ei〉 �= 0
for each i ∈ I, η̃ki has the same sign as 〈η∗, ei〉 for sufficiently large k. Hence we must
have 〈η∗, ei〉η̃ki > 0 for all i ∈ I and sufficiently large k. By the definition, η̃ki have
the same sign as 〈F (xk)− yk, ei〉; therefore we must have 〈η∗, ei〉〈F (xk)− yk, ei〉 > 0
for all i ∈ I and sufficiently large k. Moreover, it follows from the definition of F k

and (3.5)–(3.6) that

f(xk)− f(x∗) +
1

2k
≤ F k(xk, yk)

≤ F k(x̃k, y∗)

<
1

2k

and hence f(xk) < f(x∗). The proof is complete by noting that the limiting normal
cone of Λ coincides with the nucleus of the G-normal cone of Λ at any point in the
finite dimensional setting [20, Theorem 3.59(ii)].

Since for any function ϕ and set S, it must hold that (see, e.g., [14, Proposition
3.4])

∂gϕ(x) ⊆ ∂cϕ(x) and Ñ g
S (x) ⊆ N c

S(x),

the following holds immediately.
Corollary 3.2. Let x∗ be a local minimizer of problem (MPGC). Then there

exist a scalar r ≥ 0 and a vector η∗ ∈ Y not all zero such that conditions (ii)–(iii) of
Theorem 3.1 hold and

0 ∈ r∂cf(x∗) +
m∑
i=1

∂c〈η∗, ei〉〈F, ei〉(x∗) +N c
Ω(x

∗).

Since in the WCG Asplund space setting, the limiting subdifferential and limiting
normal cone coincide with the approximate subdifferential and the nucleus of the G-
normal cone, respectively [20, Theorem 3.59], we have the following result immediately.

Corollary 3.3. Assume that X is a WCG Asplund space. Let x∗ be a local
minimizer of problem (MPGC). Then there exist a scalar r ≥ 0 and a vector η∗ ∈ Y

not all zero such that conditions (ii)–(iii) of Theorem 3.1 hold and

0 ∈ r∂Lf(x∗) +
m∑
i=1

∂L〈η∗, ei〉〈F, ei〉(x∗) +NL
Ω (x∗).
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We now specialize Theorem 3.1 to problem (NLP), where f : X → R, h : X →
R

p, g : X → R
q are Lipschitzian near the optimal solution and Ω is a nonempty closed

subset of X. Let

F (x) := (h(x), g(x)) and Λ := {0}p × R
q
−.(3.12)

By virtue of Theorem 3.1, we are now able to establish the enhanced FJ condition for
the nonsmooth NLP in a Banach space, which improves [34, Theorem 1]. Note that
the set Λ in (3.12) is a convex cone.

Corollary 3.4. Let x∗ be a local minimizer of problem (NLP). Then there exist
r ≥ 0, λ∗ ∈ R

p, μ∗ ∈ R
q not all zero such that

(a) 0 ∈ r∂af(x∗) +
∑p

i=1 ∂
a(λ∗i hi)(x

∗) +
∑q

j=1 μ
∗
j∂

agj(x
∗) + Ñ g

Ω(x
∗);

(b) 0 ≤ −g(x∗) ⊥ μ∗ ≥ 0;
(c) if (λ∗, μ∗) �= 0, then there exists a sequence {xk} ⊂ Ω converging to x∗ such

that for all k, f(xk) < f(x∗) and

λ∗i �= 0 =⇒ λ∗i hi(x
k) > 0, μ∗

j > 0 =⇒ gj(x
k) > 0.

Proof. Letting F and Λ be defined as in (3.12), it is not hard to see from Theo-
rem 3.1 and the explicit expression for the normal cone NL

Λ (F (x∗)) that there exist
r ≥ 0, λ∗ ∈ R

p, μ∗ ∈ R
q not all zero such that conditions (a)–(b) hold, and there

exists a sequence {(xk, ŷk, ỹk, λk, μk)} ∈ Ω × {0}p × R
q
− × R

p × R
q converging to

(x∗, h(x∗), g(x∗), λ∗, η∗) such that for all k, f(xk) < f(x∗),

(3.13) (λk, μk) ∈ N{0}p×R
q
−(ŷ

k, ỹk)

and

〈η∗, ei〉 �= 0 =⇒ 〈η∗, ei〉〈F (xk)− yk, ei〉 > 0,(3.14)

where η∗ := (λ∗, μ∗) and F (xk) := (h(xk), g(xk)). Since ŷk = 0, it is easy to see from
(3.14) that

λ∗i �= 0 =⇒ λ∗i hi(x
k) > 0.

If μ∗
j > 0, then it follows from (3.14) that gj(x

k) > ỹkj . We next show that there

exists a subsequence {ỹkı

j }ı∈N such that ỹkı

j = 0 ∀ı ∈ N. Assume to the contrary that

ỹkj < 0 for all sufficiently large k, and then it follows from (3.13) that μk
j = 0, which

implies that μ∗
j = 0 by taking a limit as k → ∞. This contradicts assumption μ∗

j > 0
and hence we have

μ∗
j > 0 =⇒ gj(x

kı) > 0 ∀ı ∈ N.

Therefore, condition (c) also holds by choosing and resetting this subsequence. The
proof is complete.

Our next task is to specialize our result to the nonlinear semidefinite program:

(NLSDP) min
x∈X

f(x)

s.t. H(x) ∈ Sl
−,

where f : X → R and H : X → Sl, Sl is the linear space of all l × l real symmetric
matrices equipped with the usual Frobenius inner product 〈· , ·〉, and Sl

− is the cone
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of all l× l negative semidefinite matrices in Sl. Note that for simplicity, we omit the
usual equality and inequality constraints since they can be handled as in the usual
nonlinear program. For A ∈ Sl, we denote by λ(A) ∈ R

l the vector of its eigenvalues
ordered in a decreasing order as follows:

λ1(A) ≥ · · · ≥ λl(A).

Clearly, (NLSDP) is equivalent to the problem

min f(x)(3.15)

s.t. λ1(H(x)) ≤ 0.

For A ∈ Sl, the notation diag(λ(A))∈ Sl is used for the diagonal matrix with the
vector λ(A) on the main diagonal. It is known that any A ∈ Sl admits an eigenvalue
decomposition as follows:

A = Udiag(λ(A))UT

with a square orthogonal matrix U = U(A) such that UTU = I whose columns are
eigenvectors of A. Let ui(A) be the ith column of matrix U(A). Note that since λ1
is convex (see, e.g., [18, Proposition 1.1]), the approximate subdifferential coincides
with the subdifferential in the sense of convex analysis.

Lemma 3.5 (see [16, 25]). The subdifferential of λ1(A) : Sl → R in the sense of
convex analysis is given by

∂aλ1(A) = conv{ui(A)ui(A)T | i = 1, . . . , d(A)}

=

{
d(A)∑
i=1

τiui(A)ui(A)
T

∣∣∣∣∣
d(A)∑
i=1

τi = 1, τi ≥ 0 i = 1, . . . , d(A)

}
,

where d(A) is the multiplicity of the largest eigenvalue of the matrix A.
We get the following results immediately by applying Corollary 3.4 to the problem

(3.15). Note that we let Sl
+ = −Sl

−.
Corollary 3.6. Assume that x∗ is a local minimizer of problem (NLSDP). Then

there exist r ≥ 0 and Γ∗ ∈ Sl
+, which are not both zero, such that

(a) 0 ∈ r∂af(x∗) + ∂a〈Γ∗, H〉(x∗);
(b) Γ∗ ∈ Sl

+, 〈Γ∗, H(x∗)〉 = 0;
(c) if Γ∗ �= 0, then there exists a sequence {xk} converging to x∗ such that for all

k, f(xk) < f(x∗) and λ1(H(xk)) > 0.
Proof. Since x∗ is a local minimizer of problem (3.15), it follows from Corollary

3.4 that there exist {r, μ∗} such that (r, μ∗) �= 0 and
(i) 0 ∈ r∂af(x∗) + μ∗∂a(λ1 ◦H)(x∗);
(ii) r ≥ 0, 0 ≤ −λ1(H(x∗)) ⊥ μ∗ ≥ 0;
(iii) if μ∗ �= 0, then there exists a sequence {xk} ⊆ X converging to x∗ such that

for all k, f(xk) < f(x∗) and λ1(H(xk) > 0.
It follows from Proposition 2.4(ii), Lemma 3.5, and (i) above that there exists

Γ∗ = μ∗
d(H(x∗))∑

i=1

τ∗i ui(H(x∗))ui(H(x∗))T

∈ μ∗conv{ui(H(x∗))ui(H(x∗))T | i = 1, . . . , d(H(x∗))}
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such that

0 ∈ r∂af(x∗) + ∂a〈Γ∗, H〉(x∗),(3.16)

where d(H(x∗)) is the multiplicity of the largest eigenvalue of the matrix H(x∗).
It is easy to see that Γ∗ ∈ Sl

+ and from the definition of ∂aλ1(H(x∗)) and (ii)–(iii)
of this proof that

〈Γ∗, H(x∗)〉 =
〈
μ∗

d(H(x∗))∑
i=1

τ∗i ui(H(x∗))ui(H(x∗))T , H(x∗)

〉

= μ∗
d(H(x∗))∑

i=1

τ∗i
〈
ui(H(x∗))ui(H(x∗))T , H(x∗)

〉

= μ∗
d(H(x∗))∑

i=1

τ∗i
〈
1, ui(H(x∗))TH(x∗)ui(H(x∗))

〉

= μ∗λ1(H(x∗))
d(H(x∗))∑

i=1

(
τ∗i ui(H(x∗))Tui(H(x∗))

)
= μ∗λ1(H(x∗))
= 0.

Then, conditions (a) and (b) in this corollary hold. We next show condition (c). From
the definition of Γ∗, we have that

Γ∗ �= 0 ⇐⇒ μ∗ �= 0.

Then from (iii) above we have the desired result. The proof is complete.

4. Enhanced KKT condition and weaker constraint qualification. Based
on the enhanced FJ condition for problem (MPGC) in the previous section, we de-
fine the following enhanced KKT condition for problem (MPGC). We denote by
N e

Λ(F (x
∗)) the set of elements in the normal cone η∗ ∈ NL

Λ (F (x∗)) such that there
exists a sequence {(xk, yk, ηk)} ⊂ Ω× Λ × Y converging to (x∗, F (x∗), η∗) such that
for all k,

ηk ∈ NL
Λ (yk),

〈η∗, ei〉 �= 0 =⇒ 〈η∗, ei〉〈F (xk)− yk, ei〉 > 0.

Note that in this case, if η∗ = 0, then the existence of the approximate sequence is
trivial.

Definition 4.1 (enhanced KKT point). Let x∗ be a feasible point of the problem
(MPGC).

(a) We say that x∗ is an enhanced KKT point if there exists η∗ ∈ NL
Λ (F (x∗))

such that
(i) 0 ∈ ∂af(x∗) +

∑m
i=1 ∂

a〈η∗, ei〉〈F, ei〉(x∗) + Ñ g
Ω(x

∗),
(ii) if 〈η∗, ei〉 �= 0, then there exists a sequence {xk, yk, ηk} ⊆ Ω × Λ × Y

converging to (x∗, F (x∗), η∗) such that for all k,

f(xk) < f(x∗),
ηk ∈ NL

Λ (yk),

〈η∗, ei〉 �= 0 =⇒ 〈η∗, ei〉〈F (xk)− yk, ei〉 > 0.
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(b) We say that x∗ is a weaker enhanced KKT point if there exists η∗ ∈ N e
Λ(F (x

∗))
such that (i) above holds.

It is clear that an enhanced KKT point is a weaker enhanced KKT point.
Definition 4.2. Let x∗ ∈ X .
(a) x∗ is said to satisfy the NNAMCQ if there is no nonzero vector η∗ ∈ NL

Λ (F (x∗))
such that

0 ∈
m∑
i=1

∂a〈η∗, ei〉〈F, ei〉(x∗) + Ñ g
Ω(x

∗).(4.1)

(b) x∗ is said to be pseudo-normal for X if there is no vector η∗ ∈ NL
Λ (F (x∗))

such that (4.1) holds and there exists a sequence {(xk, yk, ηk)} ⊂ Ω × Λ × Y

converging to (x∗, F (x∗), η∗) such that for each k,

ηk ∈ NL
Λ (yk) and 〈η∗, F (xk)− yk〉 > 0.

(c) x∗ is said to be quasi-normal for X if there is no nonzero vector η∗ ∈
N e

Λ(F (x
∗)) such that (4.1) holds.

(d) x∗ is said to satisfy the enhanced Guignard constraint qualification (EGCQ)
if F is Fréchet differentiable at x∗ and

N̂X (x∗) ⊆ ∇F (x∗)∗N e
Λ(F (x

∗)) + Ñ g
Ω(x

∗).

The relationships among the first three constraint qualifications are obvious:

NNAMCQ =⇒ pseudo-normality =⇒ quasi-normality.

The enhanced KKT condition under quasi-normality follows immediately from The-
orem 3.1 and the definition of quasi-normality.

Theorem 4.3. Let x∗ be a local minimizer of problem (MPGC). Suppose that x∗

is quasi-normal. Then x∗ is an enhanced KKT point.
We now make some comments on the EGCQ. It is well known that TX (x∗)o =

N̂X (x∗) in a finite dimensional space. We next consider the case of standard nonlinear
constraints, i.e., X := {x ∈ Ω | F (x) ∈ Λ} with Ω = R

n, F (x), and Λ are defined as
in (3.12). In this case,

LX (x∗)o = ∇F (x∗)∗NΛ(F (x
∗)),

where

LX (x∗) := {d | ∇F (x∗)d ∈ TΛ(F (x∗))}

is the linearized cone of X at x∗. Since the inclusion N e
Λ(F (x

∗)) ⊂ NΛ(F (x
∗)) may

hold strictly, in the case of standard nonlinear constraints, the EGCQ is stronger
than the condition TX (x∗)o ⊆ LX (x∗)o, which is the so-called Guignard constraint
qualification.

Next we show that quasi-normality implies the EGCQ in the case where X admits
a Fréchet smooth renorm [20, p. 35]. To this end, we first show that the EGCQ is the
weakest constraint qualification for weaker enhanced KKT points when the objective
is Fréchet smooth in a Banach space.

Lemma 4.4 (see [20, Theorem 1.30]). Assume that X admits a Fréchet smooth

renorm. Then for every d ∈ N̂S(x
∗), there is a concave Fréchet smooth function
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ϕ : X → R that achieves its global maximum relative to S uniquely at x∗ and such
that ∇ϕ(x∗) = d.

Theorem 4.5. Suppose that x∗ ∈ X is a local minimizer for the optimization
problem minx∈X θ(x), where θ is Fréchet differentiable at x∗, and

N̂X (x∗) ⊆ ∇F (x∗)∗N e
Λ(F (x

∗)) + Ñ g
Ω(x

∗).(4.2)

Then, x∗ must be a weaker enhanced KKT point of minx∈X θ(x). Conversely, assume
that X admits a Fréchet smooth renorm and x∗ ∈ X is a weaker enhanced KKT point
of minx∈X θ(x) for any convex Fréchet smooth function θ at x∗ with x∗ being a local
minimizer; then (4.2) holds.

Proof. Let x∗ be locally optimal for problem minx∈X θ(x). Then it follows from

[20, Proposition 5.1] that −∇θ(x∗) ∈ N̂X (x∗). Thus if (4.2) holds, then

−∇θ(x∗) ∈ ∇F (x∗)∗N e
Λ(F (x

∗)) + Ñ g
Ω(x

∗)

and hence x∗ is an enhanced KKT point of minx∈X θ(x).
Conversely suppose that if x∗ ∈ X is a local minimizer for an optimization

problem minx∈X θ(x) with convex Fréchet smooth objective functions, then x∗ must

be a weaker enhanced KKT point of the problem. Let d ∈ N̂X (x∗). By Lemma
4.4, there exists a convex Fréchet smooth function ϕ such that −∇ϕ(x∗) = d and
argminx∈Xϕ(x) = {x∗}. It follows that x∗ is a weaker enhanced KKT point of
minx∈X ϕ(x), i.e.,

−∇ϕ(x∗) ∈ ∇F (x∗)∗N e
Λ(F (x

∗)) +NΩ(x
∗).

Thus, d = −∇ϕ(x∗) ∈ ∇F (x∗)∗N e
Λ(F (x

∗)) + Ñ g
Ω(x

∗). Therefore, by the arbitrariness

of d ∈ N̂X (x∗), (4.2) holds.
The following result follows from Theorem 4.5.
Corollary 4.6. Assume that {f, F} are Fréchet differentiable at x∗. If x∗ is a

local minimizer of problem (MPGC) and the EGCQ holds at x∗, then x∗ is a weaker
enhanced KKT point.

Corollary 4.7. Assume that X admits a Fréchet smooth renorm and F is
Fréchet differentiable at x∗. Then quasi-normality implies the EGCQ.

Proof. It follows from Theorem 4.3 that for any locally Lipshitzian objective
function f , if a local minimizer satisfies quasi-normality, then it is an enhanced KKT
point. Since a convex Fréchet smooth function is locally Lipschitzian [4, Proposition
2.107], it follows from Theorem 4.5 that the EGCQ holds at this point.

5. Error bound and exact penalty. In this section, we prove that a local
error bound exists under quasi-normality in the general Banach space. Our results
are new even for the finite dimensional space.

For the nonsmooth finite dimensional (NLP) problem, the existence of a local
error bound has been proved under pseudo-normality or under quasi-normality with
extra regularity conditions on the constraint functions in [34], where [32, Theorem 3.1]
plays a significant role. In this section, we show that quasi-normality alone implies
the existence of a local error bound without imposing any regularity conditions. We
first establish the following estimate, which will lead to the possibility of applying [32,
Theorem 3.1].

Lemma 5.1. Let x∗ be feasible for problem (MPGC) and

Φ(x, y) := max
1≤i≤m

{|ψi(x, y)|} with ψi(x, y) := 〈F (x) − y, ei〉.
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If x∗ is quasi-normal, then there exist δ > 0 and c > 0 such that for all (ξ, υ) ∈
∂a(Φ + distΩ×Λ)(x, y) with (x, y) ∈ Bδ(x

∗, F (x∗)) ∩ (Ω× Λ) and x /∈ X ,

‖(ξ, υ)‖ ≥ c.

Proof. Suppose to the contrary that there exists a sequence {(xk, yk)} ⊆ Ω × Λ
converging to (x∗, F (x∗)) with xk /∈ X and (ξk, υk) ∈ ∂a(Φ + distΩ×Λ)(x

k, yk) such
that ‖(ξk, υk)‖ → 0. Since F (xk) /∈ Λ and yk ∈ Λ for all k, we have ‖F (xk)− yk‖ > 0
and hence Φ(xk, yk) > 0. By the sum rule Proposition 2.4(i), we have

(5.1) (ξk, υk) ∈ ∂aΦ(xk, yk) + ∂adistΩ(x
k)× ∂adistΛ(y

k).

Since F is assumed to be locally Lipschitzian, applying the maximum rule (Proposi-
tion 2.4(iii)) in calculating the subdifferential of Φ(x, y) := max1≤i≤m{|ψi(x, y)|} at
(xk, yk) yields the existence of nonnegative scalars {μ̂k

1 , . . . , μ̂
k
m} such that

m∑
i=1

μ̂k
i = 1 and ∂aΦ(xk, yk) ⊂

m∑
i=1

μ̂k
i ∂

a|ψi|(xk, yk),(5.2)

where μ̂k
i = 0 if i is not an active index. Since Φ(xk, yk) > 0, any i ∈ {1, . . . ,m} such

that ψi(x
k, yk) = 0 is not an active index. Hence, for all i = 1, . . . ,m, ψi(x

k, yk) =
〈F (xk)− yk, ei〉 = 0 implies μ̂k

i = 0. Define

μ̃k
i := (sign 〈F (xk)− yk, ei〉)μ̂k

i .

We then obtain by the chain rule that

μ̂k
i ∂

a|ψi|(xk, yk) =
(
∂aμ̃k

i 〈F, ei〉(xk)
−μ̃k

i ei

)
.(5.3)

From (5.1)–(5.3), we obtain(
ξk

υk

)
∈

m∑
i=1

(
∂aμ̃k

i 〈F, ei〉(xk)
−μ̃k

i ei

)
+

(
∂adistΩ(x

k)
∂adistΛ(y

k)

)
,

that is, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξk ∈

m∑
i=1

∂aμ̃k
i 〈F, ei〉(xk) + ∂adistΩ(x

k),

υk ∈
m∑
i=1

μ̃k
i (−ei) + ∂adistΛ(y

k).

(5.4)

Since by the construction
∑m

i=1 |μ̃k
i | = 1, the sequence {(μ̃k

1 , . . . , μ̃
k
m)} is bounded

and must contain a subsequence that converges to some limit (μ̄1, . . . , μ̄m) �= 0. Taking
limits as k → ∞, by virtue of the closedness of the subdifferentials (Proposition 2.2),
it follows from (5.4) that⎧⎪⎨⎪⎩0 ∈

m∑
i=1

∂a〈μ∗, ei〉〈F, ei〉(x∗) + ∂adistΩ(x
∗),

μ∗ ∈ ∂adistΛ(y
∗),
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where μ∗ :=
∑m

i=1 μ̄iei. Then we have⎧⎪⎨⎪⎩0 ∈
m∑
i=1

∂a〈μ∗, ei〉〈F, ei〉(x∗) + Ñ g
Ω(x

∗),

μ∗ ∈ Ñ g
Λ(F (x

∗)).

Since Y is finite dimensional, by [20, Theorem 3.59], we have

μ∗ ∈ Ñ g
Λ(F (x

∗)) = NL
Λ (F (x∗)).

Since μ̃k
i → μ̄i = 〈μ∗, ei〉 �= 0 as k → ∞ for i ∈ J , where J := {i | 〈μ∗, ei〉 �= 0}, μ̃k

i

has the same sign as 〈μ∗, ei〉 for sufficiently large k. Hence we must have 〈μ∗, ei〉μ̃k
i > 0

for all i ∈ J and sufficiently large k. By the definition, μ̃k
i has the same sign as

〈F (xk) − yk, ei〉; thus we must have 〈μ∗, ei〉〈F (xk) − yk, ei〉 > 0 for all i ∈ J and
sufficiently large k. Since υk → 0, μk :=

∑m
i=1 μ̃

k
i ei + υk → μ∗, and then it follows

from (5.4) and the fact that Y is finite dimensional that

μk ∈ Ñ g
Λ(y

k) = NL
Λ (yk).

However, these facts and μ∗ �= 0 imply that quasi-normality is violated at x∗ and
hence a contradiction.

Now we are ready to give the main result of this section about the existence of
local error bounds.

Theorem 5.2. Let x∗ be feasible for problem (MPGC). Suppose that x∗ is quasi-
normal. Then the local error bound holds, i.e., there exist δ0 > 0 and κ > 0 such
that

distX (x) ≤ κdistΛ(F (x)) ∀x ∈ Bδ0(x
∗) ∩ Ω.

Proof. According to Lemma 5.1, there exist constants δ > 0 and κ > 0 such that
for all (ξ, υ) ∈ ∂a(Φ+distΩ×Λ)(x, y) with (x, y) ∈ (Bδ(x

∗)×Bδ(F (x
∗))∩ (Ω×Λ) and

x /∈ X ,

‖(ξ, υ)‖ ≥ 1

κ
,

where Φ(x, y) = max1≤i≤m{|〈F (x) − y, ei〉|}. It follows from [32, Theorem 3.1] that
for all x ∈ B δ

2
(x∗) ∩ Ω and y ∈ B δ

2
(F (x∗)) ∩ Λ,

distS(x, y) ≤ κ‖F (x)− y‖,(5.5)

where S := {(x, y) ∈ Ω × Λ | F (x) − y = 0}. Let distΛ(F (x)) = ‖F (x) − yx‖ with
yx ∈ Λ. It follows from the continuity that there exists δ0 ∈ (0, δ2 ) such that if
x ∈ Bδ0(x

∗) ∩ Ω, then yx ∈ B δ
2
(F (x∗)). Thus, it follows from (5.5) that for each

x ∈ Bδ0(x
∗) ∩ Ω,

distS(x, yx) ≤ κ‖F (x)− yx‖ = κdistΛ(F (x)).(5.6)

It is clear that for each x,

distX (x) ≤ distS(x, yx).
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This and (5.6) imply that

distX (x) ≤ κdistΛ(F (x)) ∀x ∈ Bδ0(x
∗) ∩ Ω.

The proof is complete.
As one of the main results, [19] has proved that quasi-normality implies the ex-

istence of a local error bound for smooth nonlinear programs in R
n. Still in R

n, [34,
Theorem 5] extends [19, Theorem 2.1] to nonlinear programs with nonsmooth objec-
tive and constraints and shows that quasi-normality implies local error bounds under
some regularity conditions. Taking into account the previous results for problem
(MPGC), we can now eliminate the extra regularity conditions and hence complete
the investigation for local error bounds under quasi-normality for nonsmooth (NLP)
problems in an infinite dimensional space. The improvement of our result owes much
to the new approach constructing the enhanced sequential structure.

Corollary 5.3. Let x∗ be feasible for problem (NLP). Suppose that x∗ is quasi-
normal. Then the local error bound holds, i.e., there are δ > 0 and κ > 0 such
that

distF1(x) ≤ κ(‖h(x)‖ + ‖g+(x)‖) ∀x ∈ Bδ(x
∗) ∩ Ω,

where F1 is the feasible region of (NLP).
We can also get the existence of local error bounds for the nonlinear semidefinite

program easily.
Corollary 5.4. Let x∗ be feasible for problem (NLSDP). Suppose that x∗ is

quasi-normal. Then the local error bound holds, i.e., there are δ > 0 and κ > 0 such
that

distF2(x) ≤ κλ1(H(x))+ ∀x ∈ Bδ(x
∗),

where F2 is the feasible region of (NLSDP).
Taking Theorem 5.2 into account, we can now follow the Clarke’s exact penalty

principle [5, Proposition 2.4.3] and then get an exact penalty result for (MPGC)
immediately.

Corollary 5.5. Let x∗ be a local minimizer of problem (MPGC). If quasi-
normality holds at x∗, then x∗ is a local minimizer of the following penalized problem:

min
x∈Ω

f(x) + κLfdistΛ(F (x)),

where Lf is the Lipschitzian constant of f near x∗ and κ is the error bound constant.

6. Sensitivity analysis. Mordukhovich and Nam [22], Mordukhovich, Nam,
and Yen [24], and Mordukhovich, Nam, and Phan [23] studied the limiting subdif-
ferential and singular subdifferential of value functions (or marginal functions) of a
class of general optimization problems with abstract set-valued mapping constraints
in Banach spaces, and Dempe, Mordukhovich, and Zemkoho [6], [7] investigated the
sensitivity of two-level value functions of a pessimistic bilevel program and an opti-
mistic bilevel program in R

n, respectively, in terms of classical KKT multipliers by
making use of the advanced tools of variational analysis [20]. In this section, we will
study the sensitivity of value functions of (MPGC) and give a much tighter upper
estimate in terms of enhanced KKT multipliers. Consider the following parametric
mathematical program with geometric constraints:

(MPGCp) min
x∈Ω

f(x, p)

s.t. F (x, p) ∈ Λ,
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where f : X × P → Y and F : X × P → Y are locally Lipschitzian, and topological
space P is assumed to be a Banach space in this section. Denote by X (p) the feasible
region of problem (MPGCp). We focus on the value function

V(p) := inf{f(x, p) | x ∈ X (p)}
and the solution mapping

O(p) := {x ∈ X (p) | f(x, p) = V(p)}.
To derive the sensitivity result in this section, we need to use the closedness

of the approximal subdifferential and approximate normal cone. Since the nucleus of
G-normal cone Ñ g

Ω(x
∗) as a set-valued map is not necessarily closed in Banach spaces,

we consider the following slightly stronger quasi-normality throughout this section by
noting that the A-normal cone includes the nucleus of G-normal cone as a subset.

Definition 6.1. (x∗, p∗) is said to be strongly quasi-normal for {(x, p) ∈ Ω ×
P | F (x, p) ∈ Λ} if there is no nonzero vector η∗ ∈ Y such that

(1) 0 ∈
∑m

i=1 ∂
a〈η∗, ei〉〈F, ei〉(x∗, p∗) +N a

Ω(x
∗)× {0}, η∗ ∈ NL

Λ (F (x∗, p∗));
(2) there exists a sequence {xk, pk, yk, ηk} ⊆ Ω × P × Λ × Y converging to

(x∗, p∗, F (x∗, p∗), η∗) such that for all k,

ηk ∈ NL
Λ (yk), 〈η∗, ei〉 �= 0 =⇒ 〈η∗, ei〉〈F (xk, pk)− yk, ei〉 > 0.

The set of multipliers η∗ ∈ NL
Λ (F (x∗, p∗)) satisfying (2) above is also denoted by

N e
Λ(F (x

∗, p∗)).
The following shows that the strong quasi-normality is robust. Since the proof is

similar to [34, Lemma 1] and [27, Lemma 2], we omit it here.
Proposition 6.2. If the strong quasi-normality holds at (x∗, p∗) ∈ {(x, p) ∈

Ω× P | F (x, p) ∈ Λ}, then it holds at all feasible points near (x∗, p∗).
It is well known that the MFCQ implies that the multiplier mapping is lo-

cally bounded (i.e., uniformly compact). The following shows that the strong quasi-
normality implies that the ε-quasi-normality multiplier mapping

(ε, x, p) → MQ(ε, x, p)

:=

{
η ∈ N e

Λ(F (x, p)) | ε ∈ ∂af(x, p) +

m∑
i=1

∂a〈η, ei〉〈F, ei〉(x, p) +N a
Ω(x)× {0}

}
is locally bounded. Since its proof is similar to [34, Theorem 3], we also omit it here.

Proposition 6.3. If the strong quasi-normality holds at

(x∗, p∗) ∈ {(x, p) ∈ Ω× P | F (x, p) ∈ Λ},

then the ε-quasi-normality multiplier mapping MQ is locally bounded at (ε∗, x∗, p∗),
where ε∗ is an arbitrary given element in X

∗.
For simplicity, given ε ≥ 0 and r ≥ 0, we denote by Qr

ε(x
∗, p∗) the set of vectors

(η∗, ζ) satisfying the following:
(i) 0 ∈ r∂af(x∗, p∗)+

∑m
i=1 ∂

a〈η∗, ei〉〈F, ei〉(x∗, p∗)− (0, ζ)+N a
Ω(x

∗)× εBP∗ with
r ≥ 0 and η∗ ∈ NL

Λ (F (x∗, p∗)).
(ii) If η∗ �= 0, then there exists a sequence {(xk, pk, yk, ηk)} ⊂ Ω × P × Λ × Y

converging to (x∗, p∗, F (x∗, p∗), η∗) such that for all k,

f(xk) < f(x∗),
ηk ∈ NL

Λ (yk),

〈η∗, ei〉 �= 0 =⇒ 〈η∗, ei〉〈F (xk, pk)− yk, ei〉 > 0.
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Theorem 6.4. Let x∗ ∈ O(p∗). Assume that (x∗, p∗) is strongly quasi-normal
for the region {(x, p) ∈ Ω× Y | F (x, p) ∈ Λ}. Then for any ε > 0, we have

∂̂εV(p∗) ⊆ {ζ | (η∗, ζ) ∈ Q1
ε(x

∗, p∗)}.

Proof. Let ζ ∈ ∂̂εV(p∗). Then by the definition of ε-subdifferential, for each ε̄ > 0,
there exists δε̃ > 0 such that

V(p)− V(p∗) ≥ 〈ζ, p− p∗〉 − (ε+ ε̃)‖p− p∗‖ ∀p ∈ Bδε̃(p
∗).

By the definition of value functions, we have f(x, p) ≥ V(p) for every x ∈ X (p) and
hence

f(x, p)− 〈ζ, p− p∗〉+ (ε + ε̃)‖p− p∗‖ ≥ f(x∗, p∗) ∀x ∈ X (p) ∀p ∈ Bδε̃(p
∗).

Thus, (x∗, p∗) is a locally optimal solution to the optimization problem

min
x∈Ω,p∈P

f(x, p)− 〈ζ, p− p∗〉+ (ε + ε̃)‖p− p∗‖

s.t. F (x, p) ∈ Λ.

Since (x∗, p∗) is strongly quasi-normal for the above problem, it follows from Theorem
4.3 that there exist η∗ ∈ NL

Λ (F (x∗, p∗)) and κ ≥ 0 such that
(i) 0 ∈ ∂af(x∗, p∗)+

∑m
i=1 ∂

a〈η∗, ei〉〈F, ei〉(x∗, p∗)− (0, ζ)+N a
Ω(x

∗)× (ε+ ε̃)BP∗ ;
(ii) if η∗ �= 0, then there exists a sequence {(xk, pk, yk, ηk)} ⊂ Ω × P × Λ × Y

converging to (x∗, p∗, F (x∗, p∗), η∗) such that for all k,

f(xk) < f(x∗),
ηk ∈ NL

Λ (yk),

〈η∗, ei〉 �= 0 =⇒ 〈η∗, ei〉〈F (xk, pk)− yk, ei〉 > 0.

The desired result is obtained since ε̃ is arbitrary.
Definition 6.5. We say that the inf-compactness holds for (MPGCp) with

p = p∗ if there exist a number α and a compact set S such that for each p in some
neighborhood of p∗, the level set

{x ∈ X (p) | f(x, p) ≤ α}

is nonempty and contained in S.
Theorem 6.6. Assume that the inf-compactness holds for problem (MPGC).

Suppose that for each x∗ ∈ O(p∗), (x∗, p∗) is strongly quasi-normal for the constraint
region {(x, p) ∈ Ω × Y | F (x, p) ∈ Λ)}. Then the value function V(p) is lower semi-
continuous around p∗ and

∂LV(p∗) ⊂
⋃

x∗∈O(p∗)

{ζ | (η∗, ζ) ∈ Q1
0(x

∗, p∗)},

∂∞V(p∗) ⊂
⋃

x∗∈O(p∗)

{ζ | (η∗, ζ) ∈ Q0
0(x

∗, p∗)}.

Proof. The lower semicontinuity follows from the proof of [4, Proposition 4.4]
immediately. We complete the proof by considering the following two cases:
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(a) Let ζ ∈ ∂LV(p∗). By the definition, there exist sequences pl
V→ p∗, εl ↓ 0,

and ζl
w∗
→ ζ with ζl ∈ ∂̂εlV(pl). Since the inf-compactness holds, the set

{x ∈ X (pl) | f(x, pl) ≤ α} is nonempty when l is sufficiently large. By the
inf-compactness again, there exists xl ∈ O(pl) and, without loss of generality,
we may assume that xl → x∗. Since V(pl) → V(p∗) and

V(pl) = f(xl, pl) → f(x∗, p∗),

we have f(x∗, p∗) = V(p∗). Thus, x∗ ∈ O(p∗). Since the strong quasi-
normality holds at (x∗, p∗) and (pl, xl) → (p∗, x∗), by Proposition 6.2, the
strong quasi-normality holds at (xl, pl) for each sufficiently large l. Thus, we
have from Theorem 6.4 that for each sufficiently large l, there exist ηl and
κ ≥ 0 such that
(1) (0, ζl) ∈ ∂af(xl, pl)+

∑m
i=1 ∂

a〈ηl, ei〉〈F, ei〉(xl, pl)+N a
Ω(x

l)× εlBP∗ with
ηl ∈ NL

Λ (F (xl, pl));
(2) if ηl �= 0, then there exists a sequence {(xl,k, pl,k, yl,k, ηl,k)} ⊂ X × P×

Λ× Y converging to (xl, pl, F (xl, pl), ηl) such that for all k,

f(xl,k) < f(xl),

ηl,k ∈ NL
Λ (yl,k),

〈ηl, ei〉 �= 0 =⇒ 〈ηl, ei〉〈F (xl,k, pl,k)− yl,k, ei〉 > 0.

By the strong quasi-normality assumption and Proposition 6.3, the sequence
{ηl} is bounded. Thus, without loss of generality, we may assume that {ηl}
converges to η∗. Taking a limit in (1) above, it is not hard to see from the
weak∗ closedness of the approximate subdifferential and normal cone that⎧⎪⎨⎪⎩(0, ζ) ∈ ∂af(x∗, p∗) +

m∑
i=1

∂a〈η∗, ei〉〈F, ei〉(x∗, p∗) +N a
Ω(x

∗)× {0},

η∗ ∈ NL
Λ (F (x∗, p∗)).

Also by the diagonal rule, we can find a sequence {(xl,kl , pl,kl , yl,kl , ηl,kl)}
converging to (x∗, p∗, y∗, η∗) as l → ∞ such that for all l,

f(xl,kl) < f(x∗),
ηl,kl ∈ NL

Λ (yl,kl),

〈η∗, ei〉 �= 0 =⇒ 〈η∗, ei〉〈F (xl,kl , pl,kl)− yl,kl , ei〉 > 0.

Therefore, it follows that (η∗, ζ) ∈ Q1
0(x

∗, p∗).
(b) Let ζ ∈ ∂∞V(p∗). By the definition, there exist sequence pl

V→ p∗, εl ↓ 0,

ζl ∈ ∂̂εlV(pl), and tl ↓ 0 such that tlζ
l → ζ. Similar to (a) in this proof, for

each l sufficiently large l, there exist ηl and κ ≥ 0 such that (1)–(2) in (a) of
the proof hold. It is easy to get from (1) that

⎧⎪⎨⎪⎩(0, tlζ
l) ∈ tl∂

af(xl, pl) +

m∑
i=1

∂a〈tlηl, ei〉〈F, ei〉(xl, pl) +N a
Ω(x

l)× tlεlBP∗ ,

tlη
l ∈ NL

Λ (F (xl, pl)).

(6.1)
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By the strong quasi-normality assumption and Proposition 6.3, the sequence
{tlηl} is bounded. Without loss of generality, assume that {tlηl} converges
to η∗. Taking a limit as k → ∞ in (6.1), we have from the weak∗ closedness
of the approximate subdifferential and normal cone that⎧⎪⎨⎪⎩(0, ζ) ∈

m∑
i=1

∂a〈η∗, ei〉〈F, ei〉(x∗, p∗) +N a
Ω(x

∗)× {0},

η∗ ∈ NL
Λ (F (x∗, p∗)).

The rest of the proof is similar to (a).

The proof is complete.
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