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Abstract

Exact penalty approach aims at replacing a constrained optimization prob-

lem by an equivalent unconstrained optimization problem. Most of results

in the literature of exact penalization are mainly concerned with finding con-

ditions under which a solution of the constrained optimization problem is a

solution of an unconstrained penalized optimization problem and the reverse

property is rarely studied. In this paper we study the reverse property. We

give conditions under which the original constrained (single and/or multiobjec-

tive) optimization problem and the unconstrained exact penalized problem are

exactly equivalent. The main conditions to ensure the exact penalty principle

for optimization problems include the global and local error bound conditions.

By using variational analysis, these conditions may be characterized by using

generalized differentiation.
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1 Introduction

The exact penalization approach toward constrained (single-objective) optimization

problems

(P ) min{f(x)|g(x) ≤ 0, h(x) = 0, x ∈ S}

where f : X → R, g : X → Rm, h : X → Rn and S ⊂ X goes back to Eremin [6] and

Zangwill [21]. It aims at replacing the above constrained optimization problem by an

equivalent unconstrained optimization problem

(Pρ) min
x∈S

f(x) + ρψ(x)

for some ρ > 0, where ψ is a scalar-valued function satisfying

ψ(x) ≥ 0 if x ∈ S,

ψ(x) = 0 if and only if g(x) ≤ 0, h(x) = 0, x ∈ S

and the function ψ is usually referred to as an exact penalty function. Most of the

literature of exact penalty functions is mainly concerned with conditions that ensure

that a local (global) minimum of the problem (P) is a local (global) minimum of

the penalized problem (Pρ) for all sufficiently large but finite values of the penalty

parameter ρ. However, the main motivation for the use of penalty methods is that of

solving the original constrained problem by employing some unconstrained minimiza-

tion algorithm to solve the penalized problem. Hence the reverse properties which

ensure that the local (global) minimizers of the penalized problem are local (global)

solutions of the original problem are very important. In this paper we aim at studying

this property.

Let dC(y) := inf{‖y− c‖ : c ∈ C} denote the distance of y to a set C. Then dC(y)

is a nonsmooth Lipschitz continuous function. In his seminal result [2, Proposition

2.4.3], Clarke shows that the distance function is always an exact penalty function

without any extra condition. Precisely the following exact penalty principle is always

true.

Theorem 1.1 (Clarke’s exact penalty principle) Let S be a subset of a normed

space X and f : X → R be Lipschitz of rank Lf on S. Let x belong to a set C ⊂ S and

suppose that f attains a minimum over C at x. Then for any L ≥ Lf , the function

g(y) = f(y) + LdC(y) attains a minimum over S at x. Conversely suppose that C is

closed, then for any L > Lf , any other point minimizing g over S must also minimize

the function f over C.
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One of the purposes of this paper is to extend Clarke’s exact penalty principle

to the case where f is vector-valued. Our result in the special case where the objec-

tive function f is scalar-valued proved the following improved Clarke Exact Penalty

Principle which is a corollary of Theorem 3.1.

Theorem 1.2 (Improved Clarke’s exact penalty principle) Let X be a normed

space, C ⊂ S ⊂ X and f : X → R be Lipschitz of rank Lf on S. Then for L > Lf ,

f attains a minimum over C at x if and only if the function g(y) = f(y) + LdC(y)

attains a minimum over S at x.

Unfortunately when local optimal solutions are considered, the reverse statement

of Clarke’s exact penalty principle does not hold without additional conditions. In

[17], Scholtes and Stöhr gave some conditions which ensure the reverse statements

hold for the distance function and the error bound function. In this paper we extend

these results to the vector optimization case.

Under the assumption that S is compact and the local (global) optimal solutions of

the problem (P) lies in the interior of the set S, Di Pillo and Grippo [4, 5] showed that

the extended Mangasarian Fromovitz constraint qualification (EMFCQ) can be used

to insure that the local (global) minimizers of the penalized problem with penalty

function ψ(x) := ρ(‖h(x)‖1 + ‖g(x)+‖1), where ‖ · ‖1 denote the L1 norm, for some

large enough ρ > 0 coincide with the local (global) minimizers of the original problem

(P). In this paper we show that the results of Di Pillo and L. Grippo hold under much

weaker conditions. In particular we do not require that the optimal solutions lie in

the interior of the set S and we show the results hold under only the existence of

local error bounds. For any point x̄ in the feasible region of (P), the condition that a

local error bound holds at x̄ is equivalent to the condition that the perturbed feasble

region of the problem (P) as a set-valued mapping defined by

C(p, q) := {x ∈ S : g(x) + p ≤ 0, h(x) = q} (1)

is calm at (0, 0, x̄) and hence will hold if the set-valued mapping C(p, q) is pseudo-

Lipschitz continuous at (0, 0, x̄). Consequently, the pseudo-Lipschitz continuity can

be characterized by using Mordukhovich criteria for pseudo-Lipschitz continuity [13].

Throughout the paper we use standard notation. Unless otherwise stated, all

spaces considered are normed space whose norms are always denoted by ‖ ·‖. For any

Banach space X we consider its dual space X∗ equipped with the weak-star topology

w∗, where 〈·, ·〉 means the canonical pairing. For a set-valued mapping Φ : X ⇒ Y ,
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we denote its graph by gphΦ := {(x, y) : y ∈ Φ(x)}. We denote by B̄ the closed unit

ball centered at the origin, B(x̄, δ) the open ball centered at x̄ with radius δ > 0 and

B̄(x̄, δ) the closed ball centered at x̄ with radius δ > 0.

2 Preliminaries

2.1 Preliminary results for variational analysis

We now recall some of the concepts in variational analysis that will be used in this

paper. For more detailed discussion, the reader is referred to [3, 11, 12, 16].

Let X, Y be Banach spaces. For set-valued mapping Φ : X ⇒ Y , we denote by

lim sup
x→x̄

Φ(x) the sequential Painlevé–Kuratowski upper limit with respect to the norm

topology in X and the weak-star topology in X∗, i.e.,

lim sup
x→x̄

Φ(x) := {x∗ ∈ X∗ : ∃ sequences xk → x̄, x∗k
w∗
→ x∗

with x∗k ∈ Φ(xk) ∀k = 1, 2, . . .}.

Definition 2.1 (Normal cones) Let X be an Asplund space and S ⊂ X. Given

x ∈ clS where clS denotes the closure of S, the cone

NF
S (x) :=

x∗ ∈ X∗ : lim sup
S

u→x

〈x∗, u− x〉
‖u− x‖

≤ 0


is called the Fréchet normal cone (the regular normal cone or the prenormal cone) to

S at x. Let x̄ ∈ clS. The nonempty cone

NL
S (x̄) := lim sup

x→x̄
NF
S (x)

is called the limiting (the basic or Mordukhovich) normal cone to S at x̄.

Definition 2.2 (Subdifferentials) Let X be an Asplund space and S be a subset of

X. Let ϕ : S → R be Lipschitz around x̄ ∈ S. The set

∂Fϕ(x̄) :=
{
x∗ ∈ X∗ : (x∗,−1) ∈ NF

epiϕ(x̄, ϕ(x̄))
}

is called the Fréchet (or the regular) subdifferential of ϕ at x̄ and the set

∂Lϕ(x̄) :=
{
x∗ ∈ X∗ : (x∗,−1) ∈ NL

epiϕ(x̄, ϕ(x̄))
}

is called the limiting (the basic or Mordukhovich) subdifferential of ϕ at x̄, where

epiϕ := {(x, r) : ϕ(x) ≤ r} denotes the epigraph of ϕ.
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Definition 2.3 (Normal compactness condition) Let X be an Asplund space. A

closed subset S of X is said to be normally compact around x̄ ∈ S if there exist positive

numbers γ, σ and a compact subset Ω of X such that

NL
S (x̄) ⊂ Kσ(Ω) :=

{
x∗ ∈ X∗ : σ‖x∗‖ ≤ max

c∈Ω
|〈x∗, c〉|

}
∀x ∈ B(x̄, γ) ∩ S.

In proving the exact penalty principle of optimization problems, we need to discuss

stability of some perturbed feasible regions. Hence we recall the following Lipschitz

properties of a set-valued mapping. The definition of upper Lipschitz continuity was

first studied by Robinson [14] and the concept of pseudo-Lipschitz continuity was

introduced by Aubin in [1] and it is also referred to as “Lipschitz like” (see [11, 12]).

Although the term “calmness” was coined in [16], the concept of the calmness was first

introduced by Ye and Ye in [19] under the term “pseudo upper-Lipschitz continuity”.

Definition 2.4 Let Φ : X ⇒ Y be a set-valued mapping. Φ is said to be (locally)

upper-Lipschitz continuous at x̄ ∈ X if there exist a constant µ ≥ 0 and a neighborhood

U of x̄ such that

Φ(x) ⊂ Φ(x̄) + µ‖x− x̄‖B̄, ∀x ∈ U.

Φ is said to be pseudo-Lipschitz continuous (or Aubin continuous or Lipschitz like)

at (x̄, ȳ) ∈ gphΦ if there exist a constant µ ≥ 0, a neighborhood U of x̄ and a

neighborhood V of ȳ such that

Φ(x) ∩ V ⊂ Φ(x′) + µ‖x− x′‖B̄, ∀x, x′ ∈ U.

Φ is said to be calm (or pseudo upper-Lipschitz continuous [19]) at (x̄, ȳ) ∈ gphΦ if

there exist a constant µ ≥ 0, a neighborhood U of x̄ and a neighborhood V of ȳ such

that

Φ(x) ∩ V ⊂ Φ(x̄) + µ‖x− x̄‖B̄, ∀x ∈ U.

It is obvious from the definitions that both the local upper Lipschitz and the pseudo-

Lipschitz continuity implies the calmness.

2.2 Preliminary results for vector optimization problems

Recall that a subset K of a real topological vector space W is a cone if λy ∈ K for all

y ∈ K and λ ≥ 0, a convex cone is one for which λ1y1 + λ2y2 ∈ K for all λ1, λ2 ≥ 0

and a pointed cone is one for which K∩(−K) = {0} where 0 denotes the zero element

5



in W . Let W be a normed space and K be a cone in W . We consider the preference

relation for two vectors x, y ∈ W introduced by cone K given as follows

x ≺ y ⇐⇒ x− y ∈ K \ {0},

x � y ⇐⇒ x− y ∈ K.

In particular, if W = RN and K = RN
− := {z ∈ RN : z has nonpositive components}

then we have a preference in the Pareto sense and if W = RN and K = intRN
− ∪ {0}

where intC denotes the interior of set C, then we have a preference in the weak Pareto

sense.

Now consider the function f : X → W and assume that f is Lipschitz near x̄ in

the following sense.

Definition 2.5 Let S be a subset of X. Suppose that f : X → W and K is a cone

of W . We say that f is K-Lipschitz on S (of rank Lf) if there is a constant Lf > 0,

an element e ∈ (−K) with ‖e‖ = 1 such that

f(x′) � f(x′′) + Lf‖x′ − x′′‖e ∀x′, x′′ ∈ S.

Let x̄ ∈ X. We say that f is K-Lipschitz near x̄ if there is U(x̄), a neighborhood of

x̄ such that f is K-Lipschitz on U(x̄).

Note that the K-Lipschitz continuity is not the same as the usual Lipschitz continuity.

The following property can be obtained easily from the definition.

Proposition 2.1 Let K1 ⊂ K2. K1−Lipschitz continuity implies K2−Lipschitz con-

tinuity.

When W = Rn, K1 = Rn
+, the K1-Lipschitz continuity is the same as the usual

Lipschitz continuity. Therefore from the above proposition it is immediate that if

K2 ⊃ Rn
+ and f is Lipschitz in the usual sense then f is also K2-Lipschitz continuous.

Definition 2.6 x̄ is said to be a global K-minimizer of f on C provided that there is

no x ∈ C such that

f(x) ≺ f(x̄).

x̄ is a local K-minimizer of f on C provided that it is a global K-minimizer of f on

C ∩ B̄(x̄, ε) for some ε > 0.
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When W = RN and K = RN
− , the concept of a minimizer is the same as an efficient

or a Pareto solution and when K = intRN
− ∪ {0}, it coincides with the concept of a

weakly efficient or a weak Pareto solution.

Lemma 2.1 (i) Let K be a cone and e ∈ −K. If α ≤ β and α, β ∈ R, then

αe � βe;

(ii) Let K be a cone and e ∈ −K. If α < β and ‖e‖ 6= 0 then

αe ≺ βe.

(iii) If K is a convex and pointed cone, then a � b and b ≺ c or a ≺ b, b � c implies

that a ≺ c.

(iv) If K is a convex cone then a � b and b � c imply a � c.

Proof. (i) Since β − α ≥ 0 and −e ∈ K and K is a cone, we have

αe− βe = (β − α)(−e) ∈ K

which implies that αe � βe.

(ii) The assertion follows from (i) and the assumptions that β − α > 0 and e 6= 0.

(iii) Let a � b and b ≺ c. Since a − b ∈ K and b − c ∈ K \ {0}, we have by the

convexity of K that

a− c = (a− b) + (b− c) ∈ K.

We now prove that a 6= c by contradiction. If a = c, then b − a = b − c 6= 0 which

implies that b − a ∈ K ∩ (−K) and b − a 6= 0. This contradicts the pointedness of

the cone K. Hence a = b. The conclusion for a ≺ b, b � c implying a ≺ c is similar.

The following result is an extension of [17, Lemma 2.5] to the case of infinite

dimensional spaces and to the case where C is not necessarily closed.

Lemma 2.2 Let C be a nonempty set and x̄ ∈ C. Then for any ε > δ > 0 and any

y ∈ B̄(x̄, ε−δ
2

),

dC(y) = dC∩B̄(x̄,ε)(y).

Moreover if C is a closed subset of a finite dimensional space, then δ can be chosen

as 0 in the above statement.
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Proof. One always have

dC(y) ≤ dC∩B̄(x̄,ε)(y).

To prove the reverse inequality, let {yi} be a minimizing sequence for the distance

function dC(y), i.e., yi ∈ C and

dC(y) ≤ ‖yi − y‖ ≤ dC(y) +
1

i
.

Then

‖yi − x̄‖ ≤ ‖yi − y‖+ ‖y − x̄‖

= dC(y) +
1

i
+ ‖y − x̄‖

≤ 2‖y − x̄‖+
1

i
since x̄ ∈ C

≤ ε ∀y ∈ B̄(x̄,
ε− δ

2
) and

1

i
≤ δ.

Therefore yi ∈ C ∩ B̄(x̄, ε) for i large enough and hence

‖y − yi‖ ≥ dC∩B̄(x̄,ε)(y).

Taking the limit as i→∞, we have the reverse inequality.

Moreover if X is a finite dimensional space and C is closed, then the projection

exists, that is dC(y) = ‖y − x̄‖ for some x̄ ∈ C. Therefore from the above proof it is

obvious that δ can be chosen as 0 in this case.

3 Exact penalization for distance function

In this section we discuss global and local exact penalization for distance functions.

We first extend Clarke’s exact penalty principle to the vector optimization case.

Theorem 3.1 (Global exact penalization for distance function) Let X,W be

normed spaces, S ⊂ X, C ⊂ S and K ⊂ W be a convex and pointed cone. Let

f : S → W be K-Lispchitz on S of rank Lf . Let e be the element in −K given by the

K-Lipschitz continuity of f .

(i) Assume that K \ {0} is an open set. Then any global K-minimizer of f on C

is a global K-minimizer of the exact penalty function f(x) + LfdC(x)e on S.
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(ii) Assume that either C is closed or K \{0} is an open set. Then for any L > Lf ,

x̄ is a global K-minimizer of f on C if and only if it is a global K-minimizer of

the exact penalty function f(x) + LdC(x)e on S.

Proof. By the K-Lipschitz continuity of f , there is a constant Lf > 0, an element

e ∈ (−K) with ‖e‖ = 1 , such that

f(x∗) � f(x) + Lf‖x− x∗‖e ∀x∗, x ∈ S. (2)

We prove (i) by contradiction. Suppose that x̄ is a K-global minimizer of f on C but

not a global K-minimizer for f(x) + LfdC(x)e on S. Then there exists x ∈ S such

that

f(x) + LfdC(x)e ≺ f(x̄). (3)

Since K \ {0} is open, (3) implies the existence of a small enough ε > 0 such that

f(x) + LfdC(x)e ≺ f(x̄)− Lfεe. (4)

By definition of the distance function, there exists x∗ε ∈ C such that ‖x − x∗ε‖ ≤
dC(x) + ε. Therefore we have

f(x∗ε) � f(x) + Lf‖x− x∗ε‖e, by (2)

� f(x) + Lf (dC(x) + ε)e, by Lemma 2.1 (i)

≺ f(x̄) by (4)

which implies by Lemma 2.1 (iii) that f(x∗ε) ≺ f(x̄). This contradicts the fact that x̄

minimizes f on C and hence the conclusion of (i) holds.

We now prove (ii). Suppose that x̄ is a global minimizer of f on C but not a

global minimizer for f(x) +LdC(x)e on S and L > Lf . Then there exists x ∈ S such

that

f(x) + LdC(x)e ≺ f(x̄). (5)

Observe that x can not lie in the set C since otherwise x̄ would not be a global

minimizer of f on C. Suppose that C is closed. Then x 6∈ C would imply dC(x) > 0.

Therefore since L
Lf
> 1, one can pick x∗ ∈ C such that ‖x−x∗‖ < L

Lf
dC(x). Therefore

one has

f(x∗) � f(x) + Lf‖x− x∗‖e by (2)

≺ f(x) + LdC(x)e by Lemma 2.1 (ii)

≺ f(x̄) by (5)
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which implies by Lemma 2.1 (iii) that f(x∗) ≺ f(x̄). This contradicts the fact that

x̄ minimizes f on C and hence the necessity in (ii) under the assumption that C is

closed is proved. In the case where C is not closed but K \ {0} is open, (5) implies

the existence of a small enough ε > 0 such that

f(x) + LdC(x)e ≺ f(x̄)− Lεe. (6)

Pick x∗ε ∈ C such that ‖x− x∗ε‖ ≤ dC(x) + ε. Then

f(x∗ε) � f(x) + Lf‖x− x∗ε‖e by (2)

� f(x) + Lf (dC(x) + ε)e by Lemma 2.1 (i)

≺ f(x) + L(dC(x) + ε)e by Lemma 2.1 (ii)

≺ f(x̄) by (6)

which implies by Lemma 2.1 (iii) that f(x∗ε) ≺ f(x̄). This contradicts the fact that x̄

minimizes f on C and hence the necessity in (ii) holds.

We now prove the sufficiency in (ii) by contradiction. Let x̄ is a minimizer of

f(x) + LdC(x)e on S with x̄ ∈ C but not a minimizer of f on C and L > Lf . Then

there is x ∈ C such that

f(x) ≺ f(x̄).

Since x ∈ C implies that dC(x) = 0, the above relationship implies that

f(x) + LdC(x)e ≺ f(x̄) + LdC(x̄)e

contradicting the fact that x̄ is a minimizer of f(x) + LdC(x)e on S. Now it remains

to prove that it is not possible to have x̄ 6∈ C and x̄ be a minimizer of f(x) +LdC(x)e

on S. In the case where C is closed, since x̄ 6∈ C and L
Lf

> 1, one can pick x∗ ∈ C
such that ‖x̄− x∗‖ < L

Lf
dC(x̄). Then

f(x∗) � f(x̄) + Lf‖x∗ − x̄‖e by K-Lipschitz continuity of f

≺ f(x̄) + LdC(x̄)e by Lemma 1.1 (i) .

Hence by Lemma 1.1 (iii) the above implies that

f(x∗) + LdC(x∗)e ≺ f(x̄) + LdC(x̄)e.

This contradicts the fact that x̄ is a minimizer of f(x) + LdC(x)e on S. Therefore x̄

must lie in C. Now suppose that C is not closed but K \ {0} is open. Let ε > 0 and
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x∗ε ∈ C be such that ‖x̄− x∗ε‖ ≤ dC(x̄) + ε. Then

f(x∗ε) � f(x̄) + Lf‖x∗ε − x̄‖e by K-Lipschitz continuity of f

� f(x̄) + Lf (dC(x̄) + ε)e by Lemma 1.1 (i)

≺ f(x̄) + L(dC(x̄) + ε)e by Lemma 1.1 (ii).

Hence by Lemma 1.1 (iii) the above implies that

f(x∗ε) + LdC(x∗ε)e ≺ f(x̄) + LdC(x̄)e+ Lεe.

Since ε > 0 is arbitrary and K \ {0} is open, this contradicts the fact that x̄ is a

minimizer of f(x) + LdC(x)e on S. Therefore x̄ must lie in C.

Remark 3.1 In the case of the usual single objective optimization problem, K =

(−∞, 0] and K \{0} is open. Our theorem has recovered and improved Clarke’s exact

penalty principle for global minimium in that C is not required to be a closed set.

The following result is an extension of [17, Corollary 2.6] to the case of infinite

dimensional spaces and to the case where C is not necessarily closed. Note that

although the assumption C ∩ B̄(x̄, ε) 6= ∅ is not explicitly stated in [17, Corollary

2.6], it is clear that it is needed from the proof of the result.

Theorem 3.2 (Local exact penalization for distance functions) Let X,W be

normed spaces, C ⊂ S ⊂ X and K ⊂ W be a convex and pointed cone. Let x̄ ∈ S.

Suppose that there exists a positive constant ε such that f : S → W is K-Lipschitz

on B̄(x̄, ε) of rank Lf . Let e be the element in −K given by the Lipschitz continuity

of f .

(i) Assume that K \ {0} is an open set. Let x̄ be a local minimizer of f on C.

Then for any L ≥ Lf it is a local minimizer of the exact penalty function:

f(x) + LdC(x)e on S. Assume that C is closed then for any L > Lf , if x̄ is

a local minimizer of f on C then it is a local minimizer of the exact penalty

function: f(x) + LdC(x)e on S.

(ii) Assume that either C is closed or K \ {0} is an open set and L > Lf . Suppose

that x̄ is a minimizer of the exact penalty function f(x)+LdC(x)e on S∩B̄(x̄, ε)

and C ∩ B̄(x̄, ε) 6= ∅. Then x̄ is a minimizer of the function f on C ∩ B̄(x̄, ε).
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Proof. Proof of (i) under the assumption that K \ {0} is an open set and L ≥ Lf :

Suppose that x̄ is a local minimizer of f on C but not a local minimizer of the

exact penalty function: f(x) +LdC(x)e on S. Then there exists a closed ball B̄(x̄, ε)

such that x̄ is a global minimizer of f over C ∩ B̄(x̄, ε) and f is K-Lipschitz of

rank Lf on B̄(x̄, ε). Hence Theorem 3.1 (i) implies that x̄ is a global minimizer of

f(x) + LdC∩B̄(x̄,ε)(x)e on B̄(x̄, ε) ∩ S. By Lemma 2.2, x̄ is a global minimizer of

f(x) +LdC(x)e on B̄(x̄, ε/3)∩S. Therefore x̄ is a local minimizer of f +LdC(x)e on

S.

Using Theorem 3.1 (ii) instead of Theorem 3.1 (i) in the above proof one can prove

(i) under the assumption that C is closed and L > Lf .

Proof of (ii): Let x̄ be a minimizer of f(x) + LdC(x)e on S ∩ B̄(x̄, ε) with x̄ ∈ C
but not a local minimizer of f on C ∩ B̄(x̄, ε). Then there is x ∈ C ∩ B̄(x̄, ε) such

that

f(x) ≺ f(x̄)

which implies that

f(x) + LdC(x)e ≺ f(x̄) + LdC(x̄)e

contradicting that x̄ is a minimizer of f(x) +LdC(x)e on S ∩ B̄(x̄, ε). Now it remains

to prove that it is not possible to have x̄ 6∈ C, C ∩ B̄(x̄, ε) 6= ∅ for some ε > 0 and x̄

is a minimizer of f(x) + LdC(x)e on S ∩ B̄(x̄, ε). By assumption f is K-Lipschitz on

B̄(x̄, ε) of rank Lf and C ∩ B̄(x̄, ε) 6= ∅. In the case where C is closed, since x̄ 6∈ C
and L

Lf
> 1, one can pick x∗ ∈ C ∩ B̄(x̄, ε) be such that ‖x̄− x∗‖ < L

Lf
dC(x̄). Then

f(x∗) � f(x̄) + Lf‖x∗ − x̄‖e by K-Lipschitz continuity of f

≺ f(x̄) + LdC(x̄)e by Lemma 1.1 (i) .

Hence by Lemma 1.1 (iii) the above implies that

f(x∗) + LdC(x∗)e ≺ f(x̄) + LdC(x̄)e.

This contradicts the fact that x̄ is a minimizer of f(x) + LdC(x)e on S ∩ B̄(x̄, ε).

Therefore x̄ must lie in C. For the case where K \ {0} is open. Let δ > 0 be small

enough and x∗δ ∈ C be such that ‖x̄− x∗δ‖ ≤ dC(x̄) + δ and x∗δ is included in the ball

B̄(x̄, ε) . Then we have

f(x∗δ) � f(x̄) + Lf‖x∗δ − x̄‖e

� f(x̄) + Lf (dC(x̄) + δ)e

≺ f(x̄) + L(dC(x̄) + δ)e.
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Hence the above implies that

f(x∗δ) + LdC(x∗δ)e ≺ f(x̄) + LdC(x̄)e+ Lδe.

Since δ > 0 is arbitrary and K \ {0} is an open set, this contradicts the fact that x̄

is a minimizer of f(x) + LdC(x)e on S ∩ B̄(x̄, ε). Therefore x̄ must lie in C.

4 Exact penalization for merit function

Although the distance function is always an exact penalty function, it is difficult to

evaluate since it is usually an implicit nonsmooth function of the data in the original

problem. One is therefore interested in finding exact penalty functions which are

easier to evaluate. Let X be a normed space and C ⊂ S ⊂ X. According to [20], we

call a function ψ(y) : S → R a merit function provided that

ψ(y) ≥ 0 ∀y ∈ S and ψ(y) = 0 if and only if y ∈ C.

Although the distance function dC(y) is obviously a merit function, one can usually

find some merit functions that are more trackable than the distance function. It is

obvious that a merit function provides the following equivalent formulation of the

problem of minimizing f over C:

min f(x) s.t. ψ(x) = 0, x ∈ S.

Definition 4.1 (Global error bound function) We say that a merit function ψ :

S → R is a global error bound function if

1. ψ(x) ≥ dC(x) for every x ∈ S,

2. ψ(x) = dC(x) for every x ∈ C.

By definition, an error bound function is a majorant of the distance function. There-

fore the following exact penalty result follows from applying Theorem 3.1.

Theorem 4.1 (Global exact penalty for merit function) Let X,W be normed

spaces, C ⊂ S ⊂ X and K ⊂ W be a convex and pointed cone. Assume that

f : S → W is K-Lispchitz on S and e is the element in −K given by the K-Lipschitz

continuity of f . Suppose that ψ : S → R is a global error bound function.
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(i) Assume that K \ {0} is an open set. Then any global K-minimizer of f on C

is a global K-minimizer of the exact penalty function f(x) + Lfψ(x)e on S.

(ii) Assume that either C is closed or K \ {0} is an open set. Then x̄ is a global

minimizer of f on C if and only if it is a global minimizer of the exact penalty

function f(x) + Lψ(x)e on S for any L > Lf .

Proof. Proof of (i): Suppose that x̄ is a global K-minimizer of f on C and to the

contrary suppose that x̄ is not a global K-minimizer of the exact penalty function:

f(x) + Lfψ(x)e on S. Then by definition of the K optimality, there is x ∈ S such

that

f(x) + Lfψ(x)e ≺ f(x̄) + Lfψ(x̄)e.

But since dC(x) ≤ ψ(x) for every x ∈ S and ψ(x̄) = 0, the above relationship implies

that

f(x) + LfdC(x)e ≺ f(x̄) + LfdC(x̄)e.

But this is a contradiction since by Theorem 3.1, x̄ is a global K-minimizer of f(x) +

LfdC(x)e on S.

Proof of (ii): Let L > Lf and x̄ be a K-minimizer of f(x) + Lψ(x)e on S with

x̄ ∈ C but not a K-minimizer of f on C. Then there is x ∈ C such that

f(x) ≺ f(x̄)

which implies that

f(x) + Lψ(x)e ≺ f(x̄) + Lψ(x̄)e

contradicting that x̄ is a minimizer of f(x) + Lψ(x)e on S. Now it remains to prove

that it is not possible to have x̄ 6∈ C and x̄ is a minimizer of f(x) + Lψ(x)e on S. In

the case where C is closed, since x̄ 6∈ C and L
Lf

> 1, one can pick x∗ ∈ C such that

‖x̄− x∗‖ < L
Lf
dC(x̄). Then

f(x∗) � f(x̄) + Lf‖x∗ − x̄‖e by K-Lipschitz continuity of f

≺ f(x̄) + LdC(x̄)e by Lemma 1.1 (i) .

which implies that

f(x∗) + Lψ(x∗)e ≺ f(x̄) + LdC(x̄)e � f(x̄) + Lψ(x̄)e.
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This contradicts the fact that x̄ is a K-minimizer of f(x) + Lψ(x)e on S. Therefore

x̄ must lie in C. For the case where K \ {0} is open. Let δ > 0 be small enough and

x∗δ ∈ C be such that ‖x̄− x∗δ‖ ≤ dC(x̄) + δ. Then we have

f(x∗δ) � f(x̄) + Lf‖x∗δ − x̄‖e

� f(x̄) + Lf (dC(x̄) + δ)e

≺ f(x̄) + L(dC(x̄) + δ)e.

Hence the above implies that

f(x∗δ) + Lψ(x∗δ)e ≺ f(x̄) + LdC(x̄)e+ Lδe � f(x̄) + Lψ(x̄)e+ Lδe.

Since δ > 0 is arbitrary and K \ {0} is an open set, this contradicts the fact that x̄

is a minimizer of f(x) + Lψ(x)e on S. Therefore x̄ must lie in C.

We can also give the local version of the above results as follows.

Definition 4.2 (Local error bound function) Let x̄ ∈ S and C ⊂ S ⊂ X. We

say that a merit function ψ : S → R is a local error bound function on B̄(x̄, ε) with

ε > 0 if

1. ψ(x) ≥ dC(x) for every x ∈ S ∩ B̄(x̄, ε),

2. ψ(x) = dC(x) for every x ∈ C.

Theorem 4.2 (Local exact penalty for merit function) Let X,W be normed spaces

and C ⊂ S ⊂ X and K ⊂ W be a convex and pointed cone. Let x̄ ∈ S. Suppose

that one can find a positive constant ε > 0 such that f : S → W is K-Lipschitz on

B̄(x̄, ε) of rank Lf and ψ : S → R is an error bound function on B̄(x̄, ε). Let e be the

element in −K given by the Lipschitz continuity of f . Then the following statements

hold.

(i) Assume that K \ {0} is an open set. For any L ≥ Lf if x̄ is a local minimizer

of f on C ⊂ S then it is a local minimizer of the exact penalty function: f(x) +

Lψ(x)e on S. Conversely assume that C is closed then for any L > Lf . If x̄

is a local minimizer of f on C ⊂ S then it is a local minimizer of the exact

penalty function: f(x) + Lψ(x)e on S.
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(ii) Assume that either C is closed or K \ {0} is an open set and L > Lf . Suppose

that x̄ is a minimizer of the exact penalty function f(x)+Lψ(x)e on S∩ B̄(x̄, ε)

and C ∩ B̄(x̄, ε) 6= ∅. Then x̄ is a minimizer of the function f on C ∩ B̄(x̄, ε).

Proof. Proof of (i): Suppose that x̄ is a local minimizer of f on C. By the assumption,

one can find ε small enough so that x̄ is a minimizer of f on C∩B̄(x̄, ε), f is Lipschitz

continuous on B̄(x̄, ε) and ψ is an error bound function on B̄(x̄, ε). Suppose that x̄ is

not a minimizer of the exact penalty function: f(x) + Lψ(x)e on S ∩ B̄(x̄, ε). Then

there is x ∈ S ∩ B̄(x̄, ε) such that

f(x) + Lψ(x)e ≺ f(x̄) + Lψ(x̄)e = f(x̄).

But since dC(x) ≤ ψ(x) for every x ∈ S ∩ B̄(x̄, ε), the above implies

f(x) + LdC(x)e ≺ f(x̄) + LdC(x̄)e.

But this is a contradiction since by Theorem 3.2, x̄ is a local minimizer of f(x) +

LdC(x)e on S.

Proof of (ii): Let x̄ be a minimizer of f(x) + Lψ(x)e on S ∩ B̄(x̄, ε) with x̄ ∈ C
but not a local minimizer of f on C ∩ B̄(x̄, ε). Then there is x ∈ C ∩ B̄(x̄, ε) such

that

f(x) ≺ f(x̄)

which implies that

f(x) + Lψ(x)e ≺ f(x̄) + Lψ(x̄)e

contradicting that x̄ is a minimizer of f(x) +Lψ(x)e on S ∩ B̄(x̄, ε). Now it remains

to prove that it is not possible to have x̄ 6∈ C, C ∩ B̄(x̄, ε) 6= ∅ for some ε > 0 and x̄

is a minimizer of f(x) + Lψ(x)e on S ∩ B̄(x̄, ε). By assumption f is K-Lipschitz on

B̄(x̄, ε) rank Lf and C ∩ B̄(x̄, ε) 6= ∅. In the case where C is closed, since x̄ 6∈ C and
L
Lf
> 1, one can pick x∗ ∈ C ∩ B̄(x̄, ε) such that ‖x̄− x∗‖ < L

Lf
dC(x̄). Then

f(x∗) � f(x̄) + Lf‖x∗ − x̄‖e by K-Lipschitz continuity of f

≺ f(x̄) + LdC(x̄)e by Lemma 1.1 (i) .

which implies that

f(x∗) + Lψ(x∗)e ≺ f(x̄) + LdC(x̄)e � f(x̄) + Lψ(x̄)e.
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This contradicts the fact that x̄ is a minimizer of f(x) + Lψ(x)e on S ∩ B̄(x̄, ε).

Therefore x̄ must lie in C. For the case where K \ {0} is open. Let δ > 0 be small

enough and x∗δ ∈ C be such that ‖x̄− x∗δ‖ ≤ dC(x̄) + δ and x∗δ is included in the ball

B̄(x̄, ε) . Then we have

f(x∗δ) � f(x̄) + Lf‖x∗δ − x̄‖e

� f(x̄) + Lf (dC(x̄) + δ)e

≺ f(x̄) + L(dC(x̄) + δ)e.

Hence the above implies that

f(x∗δ) + Lψ(x∗δ)e ≺ f(x̄) + LdC(x̄)e+ Lδe � f(x̄) + Lψ(x̄)e+ Lδe.

Since δ > 0 is arbitrary and K \ {0} is an open set, this contradicts the fact that x̄

is a minimizer of f(x) + Lψ(x)e on S ∩ B̄(x̄, ε). Therefore x̄ must lie in C.

5 Exact penalty principle for optimization prob-

lems

We first consider the following multiobjective optimization problem with linear in-

equality, equality and a polyhedral convex abstract constraint:

(P̃ ) “ min ” f(x)

s.t. Ax = b,

〈x∗i , x〉 ≤ ci, i = 1, · · · , n,

x ∈ S

where X, Y are Banach spaces, S is a polyhedral convex set of X, W is a normed

space, f : X → W , A : X → Y is a linear continuous mapping such that the range

of A is closed and x∗i ∈ X∗, ci ∈ R and “min” means K-optimality where K is a

convex and pointed cone in W . For the case where X, Y are finite dimensional space,

Hoffman [8] showed that a linear inequality system must have a global error bound.

Ioffe [9] extended Hoffman’s celebrated result to allow the spaces X, Y to be Banach

spaces and hence we have the following global exact penalty result.
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Theorem 5.1 Suppose that f is K−Lipschitz on S of rank Lf and e is the element

in −K given by the Lipschitz continuity of f .

(i) Assume that K \ {0} is an open set. Then there exists a constant µ > 0 such

that for all L ≥ Lf , any global K-minimizer of (P̃ ) is a global K-minimizer of

the penalized problem:

(P̃Lµ) min f(x) + Lµ(‖Ax− b‖+
n∑
i=1

(〈x∗i , x〉 − ci)+)e

s.t. x ∈ S,

where a+ := max{0, a} for a real number a.

(ii) Assume that either S is closed or K\{0} is an open set. Let L > Lf and suppose

that x̄ is a global K-minimizer of (P̃Lµ). Then x̄ is a global K-minimizer of (P̃ ).

Proof. By Ioffe [9, Theorem 3], there exists a constant µ > 0 such that

dC(x) ≤ µ(‖Ax− b‖+
n∑
i=1

(〈x∗i , x〉 − ci)+) x ∈ S.

Since ψ(x) := µ(‖Ax−b‖+
∑n
i=1(〈x∗i , x〉−ci)+) = 0 for any x in C, the feasible region

of (P̃ ), the above implies that ψ(x) is an error bound function. The results follow

from applying Theorem 4.1.

We now consider the exact penalty results for the following multiobjective opti-

mization problem with linear inequality, equality and an abstract constraint:

(P ) “ min ” f(x)

s.t. g(x) ≤ 0,

h(x) = 0,

x ∈ S

where f : X → W, g : X → Rm, h : X → Rn, S ⊂ X and “min” means K-optimality

where K is a convex and pointed cone in W . We denote the feasible region of problem

(P) by C.

Theorem 5.2 Let X be a finite dimensional space, the mappings g, h be affine and

the set S be a union of finitely many polyhedral convex sets. Suppose one can find a
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positive number ε > 0 such that f is K-Lipschitz on B̄(x̄, ε) of rank Lf . Let e be the

element in −K given by the Lipschitz continuity of f . Then the following statements

are true.

(i) Assume that K \ {0} is an open set . Let L ≥ Lf . If x̄ is a local K- minimizer

of (P ) then it is a local K-minimizer of the exact penalized problem:

(PLµ) “ min ” f(x) + Lµ(‖h(x)‖1 + ‖g(x)+‖1)e

s.t. x ∈ S.

(ii) Assume that either S is closed or K \ {0} is an open set and L > Lf . Suppose

that x̄ is a local K-minimizer of (PLµ) on B(x̄, ε) and C ∩B(x̄, ε) 6= ∅. Then x̄

is a local minimizer of the problem (P ) .

Proof. By Robinson [15], under the assumption of the theorem, the perturbed

feasible region as a set-valued mapping C(p, q) defined as in (1) is upper Lipschitz,

i.e., there exists µ ≥ 0 and U , a neighborhood of (0, 0) such that

C(p, q) ⊂ C(0, 0) + µ‖(p, q)‖B̄ ∀(p, q) ∈ U.

It is easy to see that the upper Lipschitz continuity of the set valued mapping C(p, q)

implies the existence of a local error bound i.e., there exist constants µ1 > 0, ε > 0

such that

dC(x) ≤ µ1(‖h(x)‖1 + ‖g(x)+‖1) x ∈ S ∩B(x̄, ε).

Since ψ(x) := Lµ1(‖h(x)‖1 +‖g(x)+‖1) = 0 for x ∈ C, the feasible region of (P ), ψ(x)

is a local error bound function on B(x̄, ε). The results follow from applying Theorem

4.2.

In our global exact penalty results Theorems 4.1 and 5.1, we require the existence

of a global error bound and in our local exact penalty results Theorems 4.2 and 5.2

we require the existence of a local error bound and the Lipschitz continuity of the

objective function on a ball which intersects the feasible region. The global error

bound condition, however, is quite strong for nonlinear functions and the Lipschitz

continuity of the objective function on a ball which intersects the feasible region is

restrictive. In the following result we show that these conditions can be replaced

by the local error bound condition when the set S is compact in the case where the
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problem is a single-objective optimization problem. Our results extend the results of

Di Pillo and Grippo [4, 5] to a more general setting. In particular we do not require

that the local (global) optimal solutions to lie in the interior of the set S.

Theorem 5.3 Suppose that X is a Banach space and S is compact subset of X.

f : X → R is Lipschitz on S, W = R− and the mappings g, h are continuous.

Suppose that the local error bound holds for all x̄ ∈ C, i.e., for each x̄ ∈ C, there

exist positive numbers µx̄ and εx̄ such that the following local error bound holds:

dC(x) ≤ µx̄(‖h(x)‖1 + ‖g(x)+‖1) ∀x ∈ S ∩B(x̄, εx̄),

or equivalently the perturbed set-valued mapping C(p, q) defined by (1) is calm around

(0, 0, x̄) for all x̄ ∈ C. Let Sopt denote the set of optimal solutions of problem (P).

Then there exists a constant ρ̂ such that Sopt coincides with Sρopt, the set of global

minimizers of the penalized problem:

(Pρ) min f(x) + ρ(‖h(x)‖1 + ‖g(x)+‖1)

s.t. x ∈ S,

for all ρ > ρ̂.

Proof. Since S is compact both sets Sopt and Sρopt are not empty. We first prove that

there exists some ρ̂ > 0 such that Sρopt ⊂ Sopt for ρ > ρ̂. Assume for a contradiction

that this is not true. Then for any ρk > 0, there exists xk ∈ Sρkopt but xk 6∈ Sopt. Let

ρk →∞. The compactness of S ensures that we can draw a subsequence if necessary

such that xk → x∗ ∈ S. Let x̄ ∈ Sopt. Since xk ∈ Sρkopt, we have

f(xk) + ρk(‖h(xk)‖1 + ‖g(xk)+‖1) ≤ f(x̄)

which implies that

ρk(‖h(xk)‖1 + ‖g(xk)+‖1) ≤ f(x̄)− f(xk)

Taking limits on both sides of the formula above by the continuity of the functions

f, g, h we obtain

‖h(x∗)‖1 + ‖g(x∗)+‖1 = 0, 0 ≤ f(x̄)− f(x∗).

This means that x∗ is an optimal solution of (P). Under the local error bound as-

sumption, there exists a positive constant ρ̂ such that x∗ is a local minimizer of
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f(x) + ρ(‖h(x)‖1 + ‖g(x)+‖1) on S for all ρ > ρ̂. Since xk → x∗ and xk ∈ Sρkopt,

we may find a neighborhood of x∗, denoted by U(x∗), such that both xk and x∗

are minima of f(x) + ρk(‖h(x)‖1 + ‖g(x)+‖1) over the set S ∩ U(x∗) for all ρk ≥ ρ̂.

Consequently

f(xk) + ρk(‖h(xk)‖1 + ‖g(xk)+‖1) = f(x∗) + ρk(‖h(x∗)‖1 + ‖g(x∗)+‖1)

= f(x∗) +
ρk + ρ̂

2
(‖h(x∗)‖1 + ‖g(x∗)+‖1)

≤ f(xk) +
ρk + ρ̂

2
(‖h(xk)‖1 + ‖g(xk)+‖1)

Since ρk > ρ̂, the above inequality implies that ‖h(xk)‖1 + ‖g(xk)+‖1 = 0 and hence

xk ∈ Sopt which contradicts the fact that xk 6∈ Sopt. This shows that Sρopt ⊆ Sopt for

all ρ > ρ̂.

We are now ready to show that for any ρ ≥ ρ̂, Sρopt = Sopt. Let x̃ ∈ Sopt and

xρ ∈ Sρopt. Then for any ρ > ρ̂, since Sρopt ⊂ Sopt, we have xρ ∈ Sopt. Therefore

f(xρ) + ρ(‖h(xρ)‖1 + ‖g(xρ)+‖1) = f(x̃) + ρ(‖h(x̃)‖1 + ‖g(x̃)+‖1),

which means that x̃ is also in Sρopt. The proof is complete.

Corollary 5.1 Suppose that X is a finite dimensional space, f : X → R is Lipschitz

on S, W = R− and h, g are affine. Furthermore suppose that S is compact and it

is a union of finite number of polyhedral convex sets. Then there exists a constant ρ̂

such that Sopt = Sρopt for all ρ > ρ̂.

Proof. As shown in the proof of Theorem 5.2, by Robinson [15] the local error

bound holds for each x̄ ∈ C. The results follow from applying Theorem 5.3.

Definition 5.1 (NNAMCQ) Let X be an Asplund space, S ⊂ X and x ∈ S.

Assume that g, h are Lipschitz near x and S is a closed set. We say that the no

nonzero abnormal multiplier constraint qualification (NNAMCQ) holds at x if there

is no nonzero vector (λg, λh) ∈ Rm
+ ×Rn such that

0 ∈ ∂L[〈λg, g〉+ 〈λh, h〉](x) +NL
S (x)

λgi gi(x) = 0 ∀i ∈ I(x)

where I(x) := {i : gi(x) = 0} is the index set of active inequality constraints at x.
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Corollary 5.2 Suppose that X is an Asplund space and S is a compact subset of X

which is normally compact around each point of C (which holds automatically if X

is a finite dimensional space). Assume that f : X → R is Lipschitz on S, W = R−

and h, g are locally Lipschitz at each point of S. Furthermore suppose that NNAMCQ

holds at each point of C. Then there exists a constant ρ̂ such that Sopt = Sρopt for all

ρ > ρ̂.

Proof. By Mordukhovich and Shao [13, Corollary 6.2], the condition NNAMCQ

at x̄ ∈ C implies that the perturbed set-valued mapping C(p, q) defined by (1) is

pseudo-Lipschitzian around (0, 0, x̄), i.e., there exist µ ≥ 0, V a neighborhood of x̄

and U , a neighborhood of (0, 0) such that

C(p′, q′) ∩ V ⊂ C(p, q) + µ‖(p′, q′)− (p, q)‖B̄ ∀(p′, q′), (p, q) ∈ U.

It is easy to see that the pseudo-Lipschitz continuity of the set valued mapping C(p, q)

implies the existence of a local error bound i.e., there exist constants µ1 > 0, ε > 0

such that

dC(x) ≤ µ1(‖h(x)‖1 + ‖g(x)+‖1) x ∈ S ∩B(x̄, ε).

Since ψ(x) := Lµ1(‖h(x)‖1 + ‖g(x)+‖1) = 0 for x ∈ C, ψ(x) is a local error bound

function on B(x̄, ε). The results follow from applying Theorem 5.3.

Definition 5.2 (Extended MFCQ) Let X be a finite dimensional space and S ⊂
X. Assume that g, h are continuously differentiable at x̄ and S is a closed set. We say

that the extended MFCQ (EMFCQ) holds at x̄ if the vectors {∇hj(x̄), j = 1, . . . , n}
are linearly independent and there exists a vector d ∈ intTS(x̄) such that

g′i(x̄; d) < 0 i ∈ I+(x̄)

h′j(x̄; d) = 0 j = 1, . . . , n,

where I+(x̄) := {i : gi(x̄) ≥ 0}, φ′(x̄; d) denotes the directional derivative of φ at x̄ in

direction d and and TS(x̄) denotes the Clarke tangent cone to S at x̄.

It is easy to see that for a feasible solution x̄, EMFCQ is reduced to the usual MFCQ

which is equivalent to the NNAMCQ (see e.g. [10]).

The next lemma is a slight generalization of [4, Lemma 3.1] which is a slight

generalization of the “only if” part of [7, Theorem 2.2].
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Lemma 5.1 Let x̄ ∈ X, a finite dimensional space; let I be a given subset of

{1, . . . ,m}; and assume that EMFCQ holds at x̄. Then exists an open neighbor-

hood B(x̄, ρ) and a bounded function d : B(x̄, ρ)→ Rn such that, for all x ∈ B(x̄; ρ),

we have:

d(x) ∈ intTS(x̄), (7)

∇gi(x)Td(x) < −1 i ∈ I+(x̄), (8)

∇hj(x)Td(x) =


−1, if hj(x) > 0

0, if hj(x) = 0

1, if hj(x) < 0

∀j = 1, . . . ,m, (9)

where ∇f(x) denote the gradient of a function f at x.

Theorem 5.4 Let X be a finite dimensional space. Suppose that f : X → R is

Lipschitz on S of rank Lf , W = R− and g, h are continuously differentiable. Assume

that S is compact and EMFCQ holds at each point of S. Then there exists a constant

ρ̂ such that for all ρ ≥ ρ̂, if xρ is a local minimum for the penalized problem:

(Pρ) min fρ(x) := f(x) + ρ(‖h(x)‖1 + ‖g(x)+‖1)

x ∈ S

then xρ is also a local constrained minimizer of Problem (P).

Proof. We first show that xρ must lie in the feasible region C. Reasoning by con-

tracdition, assume that the assertion is false. Then for any integer k, there exist an

µk ≥ k and a point xk ∈ S which is a local minimum of (Pk) such that xk 6∈ C. Since

S is compact, there exists a convergent subsequence [relabel it again {xk}] such that

lim
k→∞

xk = x̄ ∈ S.

By assumption, we have that the hypotheses of Lemma 5.1 are statisfied at x̄ for

I = I+(x̄). Then by Lemma 5.1, there exists B(x̄, ρ(x̄)) and a bounded function

d(x) : B(x̄, ρ(x̄))→ Rn such that for all x ∈ B(x̄; ρ(x̄)), (7)-(9) hold.

By continuity, we can find σ(x̄) ≤ ρ(x̄) such that gi(x) < 0 for x ∈ B(x̄, σ(x̄)) and

i 6∈ I+(x̄), whence I+(x) ⊂ I+(x̄). Therefore we have that for x ∈ B(x̄, σ(x̄)),

ξi(x, d(x)) ≤ 0, i = 1, . . . , n

ζj(x, d(x)) ≤ 0, j = 1, . . . ,m.
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Suppose that x ∈ B(x̄, σ(x̄)) be a point in S which is not in C. Then there must exist

at least an index i ∈ I+(x̄) such that gi(x) > 0 or an index j such that |hj(x)| > 0.

Moreover since

f ′ρ(x; d) = ∇f(x)Td+ ρ(
m∑
i=1

ζj(x, d) +
n∑
i=1

ξi(x, d)),

where

ζj(x, d) =


∇hj(x)Td if hj(x) > 0

|∇hj(x)Td| if hj(x) = 0

−∇hj(x)Td if hj(x) < 0

ξi(x, d) =


∇gi(x)Td if gi(x) > 0

|(∇gi(x)Td| if gi(x) = 0

0 if gi(x) < 0

by (7)-(9), we have

f ′ρ(x; d(x)) ≤ ∇f(x)Td(x)− ρ.

This implies that, for a sufficient large value of k, we have

xk ∈ B(x̃, σ(x̃)) and f ′ρk(xk; d(xk)) < 0, d(xk) ∈ intTS(xk)

which contradicts the assumption that xk is a local optimal minimizer of fρk(x) on S.
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