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1. Introduction

In this paper we study necessary and sufficient optimality conditions for themathemat-
ical program with equilibrium constraints(MPEC):

(MPEC) min f (z)

s.t. g(z) � 0, h(z) = 0,

G(z) � 0, H(z) � 0, G(z)�H(z) = 0,

wheref :Rn → R, G :Rn → Rm, H :Rn → Rm, g :Rn → Rp, h :Rn → Rq and� in-
dicates the transpose. This formulation is equivalent to but more convenient tha
nonsymmetric formulation of theoptimization problem with complementarity constrai
(OPCC):

(OPCC) min f (x, y)

s.t. g(x, y) � 0, h(x, y) = 0,

G(x, y) � 0, y � 0, G(x, y)�y = 0,

which is the most important special case (whereΩ = Rm+ ) of the optimization problem
with variational inequality constraints(OPVIC):

(OPVIC) min f (x, y)

s.t. g(x, y) � 0, h(x, y) = 0,

y ∈ Ω,
〈
G(x,y), y − y′〉 � 0, ∀y′ ∈ Ω,

wheref :Rn+m → R, G :Rn+m → Rm, g :Rn+m → Rp , h :Rn+m → Rq , and Ω is a
closed convex subset ofRm. Sincex, y can be used to model the upper and lower le
variables respectively andy is considered to be a solution of a complementarity or a v
ational inequality constraint parameterized inx and hence a solution of an equilibrium
an optimization problem, (OPCC) and (OPVIC) are also called ageneralized bilevel pro
gramming problem(see, e.g., [24]) or a mathematical program with equilibrium constra
(see, e.g., [7]). The reader is referred to [7,14] for applications and recent developm

For MPEC, it is well known that the usual nonlinear programming constraint qual
tions such as Mangasarian–Fromovitz constraint qualification (MFCQ) does not hol
[24, Proposition 1.1]). Since there are several different approaches to reformulate M
various stationarity concepts arise (see, e.g., [18]). In this paper, we show that t
stationary condition is the most appropriate stationary condition for MPEC in the sens
it is the second strongest stationary condition (with the strongest one being the S-sta
condition) and it holds under almost all analogues of the constraint qualifications fo
linear programming problems such as MPEC linear constraint qualification, MPEC
reverse convex constraint qualification, MPEC Arrow–Hurwicz–Uzawa constraint qu
cation, MPEC MFCQ, MPEC Zangwill constraint qualification, MPEC Kuhn–Tucker
MPEC Abadie constraint qualification. Also analogues to nonlinear programming, th
stationary condition becomes a sufficient condition for global or local optimality u

some MPEC generalized convexity condition.
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In this paper, for simplicity, unless specified we assume that the objective functio
all binding constraints are differentiable, all nonbinding constraints are continuous
results may be extended to include the possibility of nonsmooth or nondifferentiable
tions as in [21].

The following notations are used throughout the paper. For a vectord ∈ Rn and an index
setsI ⊆ {1,2, . . . , n}, di is theith component ofd anddI is the subvector composed fro
the componentsdi , i ∈ I . 〈a, b〉 or a�b is the inner product of vectorsa andb.

2. Stationary points and constraint qualifications

Given a feasible vectorz∗ of MPEC, we define the following index sets:

Ig := {
i: gi

(
z∗) = 0

}
,

α := α
(
z∗) := {

i: Gi

(
z∗) = 0, Hi

(
z∗) > 0

}
,

β := β
(
z∗) := {

i: Gi

(
z∗) = 0, Hi

(
z∗) = 0

}
,

γ := γ
(
z∗) := {

i: Gi

(
z∗) > 0, Hi

(
z∗) = 0

}
.

The setβ is known as thedegenerateset. If β is empty, the vectorz∗ is said to satisfy
thestrict complementaritycondition. This paper focuses on the important case whereβ is
nonempty. We define the set of all partitions ofβ by

P(β) := {
(β1, β2): β1 ∪ β2 = β, β1 ∩ β2 = ∅}

.

Each partition(β1, β2) ∈P(β) is associated with a branch of MPEC:

MPEC(β1, β2) min f (z)

s.t. g(z) � 0, h(z) = 0,

Gi(z) = 0, i ∈ α ∪ β2, Hi(z) = 0, i ∈ γ ∪ β1,

Gi(z) � 0, i ∈ β1, Hi(z) � 0, i ∈ β2.

It is obvious thatz∗ is a local optimal solution of MPEC if and only if it is a local optim
solution to MPEC(β1, β2) for all partition(β1, β2) ∈P(β).

2.1. Primal stationary conditions

In order to define a primal stationary condition for MPEC, we recall the notion
tangent cone.

Definition 2.1 (Tangent cone). LetZ denote the feasible region of MPEC andz∗ ∈ Z . The
tangent cone ofZ at z∗ is the closed cone defined by( ∗) {

n ∗ }

T z := d ∈ R : ∃tn ↓ 0, dn → d s.t. z + tndn ∈ Z ∀n .
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The following notion of primal stationary condition for MPEC was first introduc
in [8], and studied in depth in the monograph [7]. It is different from the B-station
condition in [18] which is defined by

∇f
(
z∗)�

d � 0, ∀d ∈ T lin
MPEC

(
z∗),

whereT lin
MPEC(z∗) is the MPEC linearization cone defined in Definition 3.1.

Definition 2.2 (B-stationary point). A feasible pointz∗ of the MPEC is said to be Bouli
gand stationary (B-stationary) if

∇f
(
z∗)�

d � 0, ∀d ∈ T
(
z∗).

Using the definition of the tangent cone it is easy to see that a local optimal solut
MPEC must be a B-stationary point. Although a B-stationary condition holds at any
optimal solution, the difficulty lies in the characterization of the tangent cone and he
is more useful to consider dual stationary conditions.

2.2. Dual stationary conditions

Unlike the standard nonlinear programming which has only one dual stationary c
tion, i.e., the Karush–Kuhn–Tucker condition, there are various stationarity concep
MPEC. We now summarize them and indicate their connections.

Definition 2.3 (W-stationary point). A feasible pointz∗ of MPEC is called weakly sta
tionary if there existsλ = (λg,λh,λG,λH ) ∈ Rp+q+2m such that the following condition
hold:

0= ∇f
(
z∗) +

∑
i∈Ig

λ
g
i ∇gi

(
z∗) +

q∑
i=1

λh
i ∇hi

(
z∗)

−
m∑

i=1

[
λG

i ∇Gi

(
z∗) + λH

i ∇Hi

(
z∗)], (1)

λ
g
Ig

� 0, λG
γ = 0, λH

α = 0. (2)

It is easy to see that W-stationary condition is the KKT condition for the tighte
MPEC:

(TMPEC) min f (z)

s.t. g(z) � 0, h(z) = 0,

Gi(z) = 0, i ∈ α, Hi(z) = 0, i ∈ γ,
Gi(z) = 0, Hi(z) = 0, i ∈ β.
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Definition 2.4 (C-stationary point). A feasible pointz∗ of MPEC is called Clarke station
ary if there existsλ = (λg,λh,λG,λH ) ∈ Rp+q+2m such that (1)–(2) and the followin
condition hold:

∀i ∈ β, λG
i λH

i � 0.

By [18, Lemma 1] the C-stationary condition is the nonsmooth KKT condition u
the Clarke generalized gradient [4] by reformulating MPEC as a nonsmooth non
programming problem:

min f (z)

s.t. g(z) � 0, h(z) = 0,

Gi(z) = 0, i ∈ α, Hi(z) = 0, i ∈ γ,

min
{
Gi(z),Hi(z)

} = 0, i ∈ β.

Definition 2.5 (A-stationary point). A feasible pointz∗ of MPEC is called alternatively sta
tionary if there existsλ = (λg,λh,λG,λH ) ∈ Rp+q+2m such that (1)–(2) and the followin
condition hold:

∀i ∈ β, λG
i � 0 or λH

i � 0.

The notion of the A-stationary condition was introduced by Flegel and Kanzow
Actually the A-stationary condition is the KKT conditions for MPEC(β1, β2) for a partition
(β1, β2) ∈ P(β).

Definition 2.6 (M-stationary point). A feasible pointz∗ of MPEC is called Mordukhovich
stationary if there existsλ = (λg,λh,λG,λH ) ∈ Rp+q+2m such that (1)–(2) and the fo
lowing condition hold:

∀i ∈ β, either λG
i > 0, λH

i > 0 or λG
i λH

i = 0.

It will become clear in Section 2.3 that the M-stationary condition is the nonsm
KKT condition involving the limiting subgradient for EMPEC, an equivalent formulat
of MPEC.

Definition 2.7 (S-stationary point). A feasible pointz∗ of MPEC is called strong station
ary if there existsλ = (λg,λh,λG,λH ) ∈ Rp+q+2m such that (1)–(2) and the followin
condition hold:

∀i ∈ β, λG
i � 0, λH

i � 0.

The S-stationary condition is the KKT condition for the relaxed MPEC:

(RMPEC) min f (z)

s.t. g(z) � 0, h(z) = 0,

Gi(z) = 0, i ∈ α, Hi(z) = 0, i ∈ γ,
Gi(z) � 0, Hi(z) � 0, i ∈ β.



J.J. Ye / J. Math. Anal. Appl. 307 (2005) 350–369 355

ncepts

ns
aint
EC

alifi-
onary
un-
given
ts of
fact it
for a
this

r-
The following diagram summarizes the relations between the dual stationary co
that we have discussed:

S-stationary point
⇓

M-stationary point
⇓ ⇓

C-stationary point A-stationary point
⇓ ⇓

W-stationary point

Definition 2.8 (MPEC LICQ). Let z∗ be a feasible point of MPEC where all functio
are continuously differentiable atz∗. We say that MPEC linear independence constr
qualification is satisfied atz∗ if the gradient vectors of the binding constraints for RMP
is satisfied, i.e.,

∇gi

(
z∗), ∀i ∈ Ig,

∇hi

(
z∗), ∀i = 1,2, . . . , q,

∇Gi

(
z∗), ∀i ∈ α ∪ β,

∇Hi

(
z∗), ∀i ∈ γ ∪ β

are linearly independent.

MPEC LICQ is a very strong condition. It is the linear independence constraint qu
cation for the relaxed MPEC and hence it is a constraint qualification for the S-stati
condition to hold at a local optimal solution. A condition weaker than MPEC LICQ
der which the B-stationary condition is equivalent to the S-stationary condition was
in [15, Theorem 3]. For a local optimal solution, under the MPEC LICQ, all concep
stationary points discussed above including the B-stationary condition coincide. In
is easy to see from the proof of [19, Theorem 3.2] that all dual stationary conditions
local optimal solution coincide under the following weaker condition. Actually under
condition theβ components of the multiplierλG,λH of TMPEC is unique.

Definition 2.9 (Partial MPEC LICQ). Let z∗ be a feasible point of MPEC. The pa
tial MPEC linear independence constraint qualification holds atz∗ if for any vectors
(λg,λh,λG,λH ) ∈ Rp+q+2m,

0=
∑
i∈Ig

λ
g
i ∇gi

(
z∗) +

q∑
i=1

λh
i ∇hi

(
z∗) −

m∑
i=1

[
λG

i ∇Gi

(
z∗) + λH

i ∇Hi

(
z∗)],

λG
γ = 0, λH

α = 0,

implies that

G H
λβ = 0, λβ = 0.
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2.3. M-stationary conditions

The M-stationary condition was first introduced in Ye and Ye [22, Theorem 3.2
OPVIC by using Mordukhovich coderivative of set-valued maps (see, e.g., [11]), fu
studied by Ye in [20] and Outrata in [13]. The term “M-stationary condition” was first u
in [18]. In [20, Theorem 3.2] a Fritz John type necessary optimality condition invol
Mordukhovich coderivative for OPVIC is given. One may derive the Fritz John type
stationary condition for MPEC by reformulating MPEC as the following OPVIC:

(P) min f (z)

s.t. g(z) � 0, (x, y,w) ∈ Ω,〈(
H(z),G(z) − x,h(z)

)
, (x, y,w) − (x′, y′,w′)

〉
� 0,

∀(x′, y′, z) ∈ Ω,

whereΩ = Rm+ ×Rm ×Rq and applying [20, Theorem 3.2] to the above problem. Note
although the proof of [20, Theorem 3.2] has a gap since the nontriviality of the multip
was not proved it is known that the theorem itself is correct since it can be prov
various other ways. For example, in [23, Theorem 1.3] a more general theorem is
for multiobjective MPEC. We now provide an easy and independent proof. The proo
shows that the M-stationary condition is in fact the generalized multiplier rule in term
limiting subgradients for the equivalent problem EMPEC.

Theorem 2.1 (Fritz John type M-stationary condition). Letz∗ be a local solution of MPEC
where all functions are continuously differentiable atz∗. Then there existsr � 0, λ =
(λg,λh,λG,λH ) ∈ Rp+q+2m not all zero such that

0= r∇f
(
z∗) +

∑
i∈Ig

λ
g
i ∇gi

(
z∗) +

q∑
i=1

λh
i ∇hi

(
z∗)

−
m∑

i=1

[
λG

i ∇Gi

(
z∗) + λH

i ∇Hi

(
z∗)], (3)

λ
g
Ig

� 0, λG
γ = 0, λH

α = 0,

either λG
i > 0, λH

i > 0 or λG
i λH

i = 0, ∀i ∈ β.

Proof. By introducing slack variables, we reformulate MPEC in the following equiva
form:

(EMPEC) min f (z)

s.t. g(z) � 0, h(z) = 0,

G(z) − x = 0, H(z) − y = 0,
(x, y) ∈ Ω,
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whereΩ := {(x, y) ∈ R2m: x � 0, y � 0, x�y = 0}. This is an optimization problem wit
equalities, inequalities and a nonconvex abstract constraint(x, y) ∈ Ω with (x∗, y∗, z∗) =
(G(z∗),H(z∗), z∗) as a local solution. Applying the limiting subgradient version of
generalized Lagrange multiplier rule first obtained by Mordukhovich in [10, Theorem
(see also [17, Corollary 6.15]), we conclude that there existsr � 0, λ not all zero and
(ξ, γ ) ∈ NΩ(x∗, y∗), the limiting normal cone ofΩ at the point(x∗, y∗) such that(0

0
0

)
= r

( 0
0

∇f (z∗)

)
+

∑
i∈Ig

λ
g
i

( 0
0

∇gi(z
∗)

)
+

q∑
i=1

λh
i

( 0
0

∇hi(z
∗)

)

−
m∑

i=1

λG
i

( −ei

0
∇Gi(z

∗)

)
−

m∑
i=1

λH
i

( 0
−ei

∇Hi(z
∗)

)
+

(
ξ

γ

0

)
,

λ
g
Ig

� 0,

whereei denotes the unit vector whoseith component is equal to 1. It follows that

0= λG + ξ, 0= λH + γ,

0= r∇f
(
z∗) +

p∑
i=1

λ
g
i ∇gi

(
z∗) +

∑
i∈Ig

λh
i ∇hi

(
z∗)

−
m∑

i=1

[
λG

i ∇Gi

(
z∗) + λH

i ∇Hi

(
z∗)],

λ
g
Ig

� 0.

Since(ξ, γ ) ∈ NΩ(x∗, y∗) and

NΩ

(
x∗, y∗) =


(ξ, γ ):

ξi = 0 if x∗
i > 0

γi = 0 if y∗
i > 0

eitherξi < 0, γi < 0 or ξiγi = 0 if x∗ = y∗ = 0




(see, e.g., [20, Proposition 3.7]), the assertion of the theorem follows.�
By the Fritz John type M-stationary condition, ifr in the condition is never zero, the

it can be taken as 1. Hence the following KKT type M-stationary condition follows im
diately.

Definition 2.10 (NNAMCQ). Let z∗ be a feasible point of MPEC where all functio
are continuously differentiable atz∗. We say that the No Nonzero Abnormal Mul
plier Constraint Qualification (NNAMCQ) is satisfied atz∗ if there is no nonzero vecto
(λg,λh,λG,λH ) ∈ Rp+q+2m such that

0=
∑
i∈Ig

λ
g
i ∇gi

(
z∗) +

q∑
i=1

λh
i ∇hi

(
z∗) −

m∑
i=1

[
λG

i ∇Gi

(
z∗) + λH

i ∇Hi

(
z∗)],

λ
g
Ig

� 0, λG
γ = 0, λH

α = 0,
either λG
i > 0, λH

i > 0 or λG
i λH

i = 0, ∀i ∈ β.
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Corollary 2.1. Let z∗ be a local solution of MPEC where all functions are continuou
differentiable atz∗. Suppose that NNAMCQ is satisfied atz∗. Thenr in Theorem2.1 can
be taken as1, i.e.,z∗ is M-stationary.

Remark. It is known that for the case of nonlinear programming (i.e., whenm = 0),
NNAMCQ is equivalent to the Mangasarian–Fromovitz constraint qualification. In
Outrata introduced a generalized Mangasarian–Fromovitz constraint qualificatio
OPCC and showed that NNAMCQ is equivalent to the generalized Mangasa
Fromovitz constraint qualification for OPCC under condition (A) in [13, Proposition 3
In [20, Proposition 4.5], Outrata’s result was extended to OPVIC with the condition
removed. We now state the generalized Mangasarian–Fromovitz constraint qualifi
for MPEC as the MPEC GMFCQ. For completeness we include the sketch of the pro
the equivalence of the NNAMCQ and the MPEC GMFCQ in Proposition 2.1. Note tha
MPEC GMFCQ defined in Definition 2.11 is weaker than MPEC MFCQ in [5,18] wh
is defined to be MFCQ for TMPEC, the tightened MPEC.

Definition 2.11 (MPEC GMFCQ). Let z∗ be a feasible point of MPEC where all fun
tions are continuously differentiable atz∗. We say that MPEC generalized Mangasaria
Fromovitz constraint qualification is satisfied atz∗ if

(i) for every partition ofβ into setsP,Q,R with R �= ∅, there existd such that

∇gi

(
z∗)�

d � 0, ∀i ∈ Ig,

∇hi

(
z∗)�

d = 0, ∀i = 1,2, . . . , q,

∇Gi

(
z∗)�

d = 0, ∀i ∈ α ∪ Q,

∇Hi

(
z∗)�

d = 0, ∀i ∈ γ ∪ P,

∇Gi

(
z∗)�

d � 0, ∇Hi

(
z∗)�

d � 0, i ∈ R,

and for somei ∈ R either∇Gi(z
∗)�d > 0 or∇Hi(z

∗)�d > 0;
(ii) for every partition ofβ into setsP,Q, the gradient vectors

∇hi

(
z∗), ∀i = 1,2, . . . , q,

∇Gi

(
z∗), ∀i ∈ α ∪ Q,

∇Hi

(
z∗), ∀i ∈ γ ∪ P,

are linearly independent and there existsd ∈ Rn such that

∇gi

(
z∗)�

d < 0, ∀i ∈ Ig,

∇hi

(
z∗)�

d = 0, ∀i = 1,2, . . . , q,

∇Gi

(
z∗)�

d = 0, ∀i ∈ α ∪ Q

∇Hi

(
z∗)�

d = 0, ∀i ∈ γ ∪ P.
Proposition 2.1. NNAMCQ is equivalent to MPEC GMFCQ.
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Proof. Note thatβ can be split into the sets

P = {
i ∈ β: λG

i = 0
}
, Q = {

i ∈ β: λH
i = 0

}
,

R = {
i ∈ β: λG

i > 0, λH
i > 0

}
and so condition NNAMCQ is equivalent to the following two conditions:

(i) For every partition ofβ into setsP,Q,R with R �= ∅ there are no vectorsλg
Ig

, λh,

λG
α∪Q∪R andλH

γ∪P∪R satisfying the system

0= ∇g
(
z∗)�

λ
g
Ig

+ ∇h
(
z∗)�

λh − ∇G
(
z∗)�

λG
α∪Q∪R − ∇H

(
z∗)�

λH
γ∪P∪R,

λ
g
Ig

� 0, λG
R > 0, λH

R > 0.

(ii) For every partition ofβ into setsP,Q there are no vectorsλg
Ig

, λh, λG
α∪Q andλH

γ∪P

satisfying the system

0= ∇g
(
z∗)�

λ
g
Ig

+ ∇h
(
z∗)�

λh − ∇G
(
z∗)�

λG
α∪Q − ∇H

(
z∗)�

λH
γ∪P ,

λ
g
Ig

� 0.

The results follow from applying Tucker’s and Motzkin’s theorems of alternatives
e.g., [9]) to (i) and (ii) respectively. �

In mathematical programming, it is well known that if all constraint functions are af
then the KKT necessary optimality condition holds without any additional constraint
ification. Since MPEC is a special case of OPVIC, [20, Corollary 4.8] which follows f
[20, Theorems 3.6, 4.3 and Proposition 4.2] indicates that the M-stationary condition
for MPEC under the following MPEC linear CQ.

Definition 2.12 (MPEC linear CQ). We say the MPEC linear constraint qualification
satisfied if all mappingsg,h,G,H are affine.

The following result may be obtained by reformulating MPEC into (P) and appl
the corresponding results for OPVIC in [20, Corollary 4.8]. Alternatively, we may p
the results using the equivalent formulation (EMPEC) and the same proof techniq
in [20]. We sketch the proof here.

Theorem 2.2 (Kuhn–Tucker type necessary M-stationary condition). Let z∗ be a local
optimal solution for MPEC where all functions are continuously differentiable atz∗. If
either MPEC GMFCQ or MPEC linear CQ is satisfied atz∗, thenz∗ is M-stationary.

Proof. The conclusion thatz∗ is M-stationary under MPEC GMFCQ follows from Coro
lary 2.1 and Proposition 2.1.

To prove thatz∗ is M-stationary under MPEC linear CQ, we consider the set of solut

to the perturbed constraint system for EMPEC:
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Σ(p,q, r, s) := {
(x, y, z) ∈ Ω × Rn: g(z) + p � 0, h(z) + q = 0,

G(z) − x + r = 0, H(z) − y + s = 0
}
.

It is easy to see that the graph of the set-valued mapΣ is a union of polyhedral convex se
and henceΣ is a polyhedral multifunction. By [16, Proposition 1],Σ is upper Lipschitz a
each(0,0,0,0) ∈ Rp+q+2m, i.e., there exists a neighborhoodU of (0,0,0,0) andα � 0
such that

Σ(p,q, r, s) ⊆ Σ(0,0,0,0) + α
∥∥(p, q, r, s)

∥∥clB, ∀(p, q, r, s) ∈ U,

where clB denotes the closed unit ball. Equivalently the constraint system of EMPEC
a local error bound, i.e.,

d
(
(x, y, z),Σ(0,0,0,0)

)
� α

∥∥(p, q, r, s)
∥∥,

∀(p, q, r, s) ∈ U, (x, y, z) ∈ Σ(p,q, r, s),

whered(a,C) is the distant from pointa to setC. By Clarke’s principle of exact paneliza
tion [4, Proposition 2.4.3],(x∗, y∗, z∗) is also a local optimal solution to the unconstrain
problem:

min f (z) + µf d
(
(x, y, z),Σ(0,0,0,0)

)
,

whereµf is the Lipschitz constant off . Hence by the local error bound property, it
easy to see that(z,p, q, r, s) = (z∗,0,0,0,0) is a local optimal solution to the followin
problem:

min f (z) + µf α
∥∥(p, q, r, s)

∥∥
s.t. g(z) + p � 0, h(z) + q = 0,

G(z) + r � 0, H(z) + s � 0,
(
G(z) + r

)�(
H(z) + s

) = 0.

It can be easily verified that NNAMCQ is satisfied at(z∗,0,0,0) for the above problem
Note that although the objective function has a nonsmooth term‖(p, q, r, s)‖, using ex-
actly the same technique one can prove that Theorem 2.1 holds with the usual gr
replaced by the limiting subgradients and the equality in (3) replaced by inclusions. A
ing Corollary 2.1 to the above MPEC, it is easy to obtain the M-stationary condition
z component of Eq. (3) for the above problem is exactly the same as Eq. (3) for MPEC�

For nonlinear programming problems, it is known that the KKT necessary cond
becomes sufficient if the problem is (generalized) convex (see, e.g., [3, Theorem 4
Although in some special cases an MPEC may become a convex programming p
such as in Outrata [12, Proposition 2.8], in general MPEC is a nonconvex problem
when all constraint functions are affine and hence the necessary condition is in g
not sufficient for optimality. Moreover, some necessary conditions for MPECs are de
through an approximation of the generalized gradient of certain nonsmooth function
as in the case of the C-stationary conditions and in the case of using the implic
gramming approach (see the remark before [12, Proposition 2.8]) and hence may
loose to be sufficient. In Ye [19, Proposition 3.1], it was shown that the S-stationary

ditions become sufficient or locally sufficient for optimality when the objective function is
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show
uffi-

d

of
pseudoconvex and all constraint functions are affine. In the following theorem, we
that M-stationary condition also turns into a sufficient optimality condition or local s
cient optimality condition under certain MPEC generalized convexity condition.

Theorem 2.3 (Sufficient M-stationary condition). Letz∗ be a feasible point of MPEC an
the M-stationary condition holds atz∗, i.e., there existsλ = (λg,λh,λG,λH ) ∈ Rp+q+2m

such that

0= ∇f
(
z∗) +

∑
i∈Ig

λ
g
i ∇gi

(
z∗) +

q∑
i=1

λh
i ∇hi

(
z∗)

−
m∑

i=1

[
λG

i ∇Gi

(
z∗) + λH

i ∇Hi

(
z∗)], (4)

λ
g
Ig

� 0, λG
γ = 0, λH

α = 0,

∀i ∈ β, either λG
i > 0, λH

i > 0 or λG
i λH

i = 0.

Let

J+ := {
i: λh

i > 0
}
, J− = {

i: λh
i < 0

}
,

β+ := {
i ∈ β: λG

i > 0, λH
i > 0

}
,

β+
G := {

i ∈ β: λG
i = 0, λH

i > 0
}
, β−

G := {
i ∈ β: λG

i = 0, λH
i < 0

}
,

β+
H := {

i ∈ β: λH
i = 0, λG

i > 0
}
, β−

H := {
i ∈ β: λH

i = 0, λG
i < 0

}
,

α+ := {
i ∈ α: λG

i > 0
}
, α− := {

i ∈ α: λG
i < 0

}
,

γ + := {
i ∈ γ : λH

i > 0
}
, γ − := {

i ∈ γ : λH
i < 0

}
.

Further suppose thatf is pseudoconvex atz∗, gi (i ∈ Ig), hi (i ∈ J+), −hi (i ∈ J−), Gi

(i ∈ α− ∪ β−
H ), −Gi (i ∈ α+ ∪ β+

H ∪ β+), Hi (i ∈ γ − ∪ β−
G), −Hi (i ∈ γ + ∪ β+

G ∪ β+)

are quasiconvex. Then in the case whenα− ∪ γ − ∪ β−
G ∪ β−

H = ∅, z∗ is a global optimal
solution of MPEC; in the case whenβ−

G ∪ β−
H = ∅ or whenz∗ is an interior point relative

to the setZ ∩ {z: Gi(z) = 0, Hi(z) = 0, i ∈ β−
G ∪ β−

H }, i.e., for all feasible pointz which
is close toz∗, it holds that

Gi(z) = 0, Hi(z) = 0, ∀i ∈ β−
G ∪ β−

H ,

z∗ is a local optimal solution of MPEC whereZ denotes the set of feasible solutions
MPEC.

Proof. Let z be any feasible point of MPEC. Then for anyi ∈ Ig ,

gi(z) � 0= gi

(
z∗).

By quasiconvexity ofgi at z∗ it follows that( ( )) ( ) ( )

gi z∗ + t z − z∗ = gi tz + (1− t)z∗ � gi z∗
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ity
for all t ∈ (0,1). This implies that〈∇gi

(
z∗), z − z∗〉 � 0, ∀i ∈ Ig. (5)

Similarly, we have〈∇hi

(
z∗), z − z∗〉 � 0, ∀i ∈ J+, (6)

−〈∇hi

(
z∗), z − z∗〉 � 0, ∀i ∈ J−. (7)

Since for any feasible pointz, −G(z) � 0,−H(z) � 0, one also have

−〈∇Gi

(
z∗), z − z∗〉 � 0, ∀i ∈ α+ ∪ β+

H ∪ β+, (8)

−〈∇Hi

(
z∗), z − z∗〉 � 0, ∀i ∈ γ + ∪ β+

G ∪ β+. (9)

In the case whenα−∪γ −∪β−
G ∪β−

H = ∅, multiplying (5)–(9) byλg
i � 0 (i ∈ Ig), λh

i > 0
(i ∈ J+), −λh

i > 0 (i ∈ J−), λG
i > 0 (i ∈ α+ ∪ β+

H ∪ β+), λH
i > 0 (i ∈ γ + ∪ β+

G ∪ β+)

respectively and adding, we get〈∑
i∈Ig

λ
g
i ∇gi

(
z∗) +

q∑
i=1

λh
i ∇hi

(
z∗) −

m∑
i=1

[
λG

i ∇Gi

(
z∗) + λH

i ∇Hi

(
z∗)], z − z∗

〉
� 0.

By virtue of (4), the above inequality implies that〈∇f
(
z∗), z − z∗〉 � 0.

By the pseudoconvexity off atz∗, we must havef (z) � f (z∗) for all feasible pointz and
hencez∗ is a global optimal solution of MPEC ifα− ∪ γ − ∪ β−

G ∪ β−
H = ∅.

Now we discuss the case whenα− ∪ γ − �= ∅ andβ−
G ∪ β−

H = ∅. For anyi ∈ α, since
Hi(z

∗) > 0, Hi(z) > 0 for z sufficiently close toz∗ and hence by the complementar
condition,Gi(z) = 0 for suchz. That is, forz sufficiently close toz∗, one has

Gi(z) = Gi

(
z∗) ∀i ∈ α.

By quasiconvexity ofGi (i ∈ α−) at z∗ it follows that forz sufficiently close toz∗,〈∇Gi

(
z∗), z − z∗〉 � 0, ∀i ∈ α−. (10)

Similarly one has forz sufficiently close toz∗,〈∇Hi

(
z∗), z − z∗〉 � 0, ∀i ∈ γ −. (11)

Multiplying (5)–(11) byλ
g
i � 0 (i ∈ Ig), λh

i > 0 (i ∈ J+), −λh
i > 0 (i ∈ J−), λG

i > 0
(i ∈ α+ ∪ β+

H ∪ β+), λH
i > 0 (i ∈ γ + ∪ β+

G ∪ β+), −λG
i > 0 (i ∈ α−), −λH

i > 0 (i ∈ γ −)

respectively and adding, we have that forz sufficiently close toz∗,〈∑
i∈Ig

λ
g
i ∇gi

(
z∗) +

q∑
i=1

λh
i ∇hi

(
z∗) −

m∑
i=1

[
λG

i ∇Gi

(
z∗) + λH

i ∇Hi

(
z∗)], z − z∗

〉
� 0.

By virtue of (4), the above inequality implies that forz sufficiently close toz∗,〈 ( ) 〉
∇f z∗ , z − z∗ � 0.
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By the pseudoconvexity off at z∗, we must havef (z) � f (z∗) for z sufficiently close
to z∗. That is,z∗ is a local optimal solution of MPEC ifα− ∪ γ − �= ∅ andβ−

G ∪ β−
H = ∅.

Now supposez∗ is an interior point relative to the setZ ∩ {z: Gi(z) = 0, Hi(z) = 0,
i ∈ β−

G ∪ β−
H }. Then for any feasible pointz sufficiently close toz∗, it holds that

Gi(z) = 0, Hi(z) = 0, ∀i ∈ β−
G ∪ β−

H ,

and hence by the quasiconvexity ofGi (i ∈ β−
H ) andHi (i ∈ β−

G),〈∇Gi

(
z∗), z − z∗〉 � 0, ∀i ∈ β−

H , (12)〈∇Hi

(
z∗), z − z∗〉 � 0, ∀i ∈ β−

G. (13)

Multiplying (5)–(13) byλ
g
i � 0 (i ∈ Ig), λh

i > 0 (i ∈ J+), −λh
i > 0 (i ∈ J−), λG

i > 0
(i ∈ α+ ∪ β+

H ∪ β+), λH
i > 0 (i ∈ γ + ∪ β+

G ∪ β+), −λG
i > 0 (i ∈ α− ∪ β−

H ), −λH
i > 0

(i ∈ γ − ∪ β−
G) respectively and adding, we have that forz sufficiently close toz∗,〈∑

i∈Ig

λ
g
i ∇gi

(
z∗) +

q∑
i=1

λh
i ∇hi

(
z∗) −

m∑
i=1

[
λG

i ∇Gi

(
z∗) + λH

i ∇Hi

(
z∗)], z − z∗

〉
� 0.

By virtue of (4), the above inequality implies that forz sufficiently close toz∗,〈∇f
(
z∗), z − z∗〉 � 0.

By the pseudoconvexity off at z∗, we must havef (z) � f (z∗) for z sufficiently close
to z∗. That is,z∗ is a local optimal solution of MPEC ifz∗ is an interior point relative to
the setZ ∩ {z: Gi(z) = 0, Hi(z) = 0, i ∈ β−

G ∪ β−
H } and the proof is complete.�

3. More constraint qualifications for M-stationary condition

In this section we provide more constraint qualifications for M-stationary conditio
hold. We first discuss the Abadie constraint qualification introduced by Abadie [1].
nonlinear programming problem, the Abadie constraint qualification says that the ta
cone is equal to its linearized cone. For example, consider the nonlinear program
problem MPEC(β1, β2) associated with any partition(β1, β2) ∈ P(β). Let T(β1,β2)(z

∗) be
the tangent cone of MPEC(β1, β2) at z∗ andT lin

(β1,β2)
(z∗) the standard linearized cone

MPEC(β1, β2) at z∗, i.e.,

T lin
(β1,β2)

(
z∗) := {

d ∈ Rn: ∇gi

(
z∗)�

d � 0, ∀i ∈ Ig,

∇hi

(
z∗)�

d = 0, ∀i = 1,2, . . . , q,

∇Gi

(
z∗)�

d = 0, ∀i ∈ α ∪ β2,

∇Hi

(
z∗)�

d = 0, ∀i ∈ γ ∪ β1,

∇Gi

(
z∗)�

d � 0, ∀i ∈ β1,( ) }
∇Hi z∗ �
d � 0, ∀i ∈ β2 .
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Then it is well known that the inclusion

T(β1,β2)

(
z∗) ⊆ T lin

(β1,β2)

(
z∗) (14)

always holds and the Abadie constraint qualification for MPEC(β1, β2) demands that th
equality actually holds in (14). It is obvious that the linearized cone is a polyhedral co
set and so the Abadie CQ demands that the tangent cone is also a polyhedral conve

The Abadie constraint qualification for nonlinear programming problem MPEC(β1, β2)

is a very weak condition since the tangent cone for MPEC(β1, β2) is likely to be polyhe-
dral convex, and it is known that it is weaker than the Mangasarian–Fromovitz cons
qualification and the Slater condition.

It is easy to see that the linearized tangent cone of MPEC atz∗ is given by

T lin(
z∗) := {

d ∈ Rn: ∇gi

(
z∗)�

d � 0, ∀i ∈ Ig,

∇hi

(
z∗)�

d = 0, ∀i = 1,2, . . . , q,

∇Gi

(
z∗)�

d = 0, ∀i ∈ α,

∇Hi

(
z∗)�

d = 0, ∀i ∈ γ,

∇Gi

(
z∗)�

d � 0, ∀i ∈ β,

∇Hi

(
z∗)�

d � 0, ∀i ∈ β
}

and hence it is obvious that

T lin(
z∗) =

⋃
(β1,β2)∈P(β)

T lin
(β1,β2)

(
z∗).

Since the feasible set of MPEC is the union of the feasible sets of all branches, one

T
(
z∗) =

⋃
(β1,β2)∈P(β)

T(β1,β2)

(
z∗).

It follows from (14) that

T
(
z∗) =

⋃
(β1,β2)∈P(β)

T(β1,β2)

(
z∗) ⊆

⋃
(β1,β2)∈P(β)

T lin
(β1,β2)

(
z∗) = T lin(

z∗) (15)

always holds and the standard Abadie constraint qualification for nonlinear program
requires equality in (15):

T
(
z∗) = T lin(

z∗).
Since the tangent coneT (z∗) is in general nonconvex if the strict complementarity con
tion fails to hold and the linearized coneT lin(z∗) is polyhedral and hence convex, it is ea
to see that the standard Abadie constraint qualification is unlikely to be satisfied by M
Flegel and Kanzow [5] introduced the following modified Abadie constraint qualifica
for MPEC.

Definition 3.1 (MPEC Abadie CQ). Let z∗ be a feasible point of MPEC. We say that MPE
Abadie constraint qualification holds atz∗ if( ) ( )
T lin
MPEC z∗ = T z∗ ,
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point
local
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where

T lin
MPEC

(
z∗) := {

d ∈ Rn: ∇gi

(
z∗)�

d � 0, ∀i ∈ Ig,

∇hi

(
z∗)�

d = 0, ∀i = 1,2, . . . , q,

∇Gi

(
z∗)�

d = 0, ∀i ∈ α,

∇Hi

(
z∗)�

d = 0, ∀i ∈ γ,

∇Gi

(
z∗)�

d � 0, ∀i ∈ β,

∇Hi

(
z∗)�

d � 0, ∀i ∈ β,(∇Gi

(
z∗)�

d
) · (∇Hi

(
z∗)�

d
) = 0, ∀i ∈ β

}
is the MPEC linearized tangent cone of MPEC.

Note that

T
(
z∗) ⊆ T lin

MPEC

(
z∗)

and so MPEC Abadie CQ is equivalent to

T
(
z∗) ⊇ T lin

MPEC

(
z∗).

Flegel and Kanzow [5] showed that under the MPEC Abadie CQ, a local minimum
of MPEC must be A-stationary. We now prove that under the MPEC Abadie CQ, a
minimum point of MPEC is not just A-stationary. It must be M-stationary.

Theorem 3.1. Let z∗ be a local optimal solution of MPEC. Suppose that MPEC Aba
CQ is satisfied atz∗. Thenz∗ is M-stationary.

Proof. By definition, the local solutionz∗ is B-stationary, i.e.,

∇f
(
z∗)�

d � 0, ∀d ∈ T
(
z∗)

which is equivalent to

∇f
(
z∗)�

d � 0, ∀d ∈ T lin
MPEC

(
z∗)

under MPEC Abadie CQ. Hencez∗ is B-stationary if and only ifd = 0 is a solution to the
following problem which is also a MPEC:

min ∇f
(
z∗)�

d s.t. d ∈ T lin
MPEC

(
z∗).

Since the objective function and all constraint functions are linear, by Theorem 2.2,d = 0
is a solution to the above problem implies that it is M-stationary, i.e., there existsλ =
(λ

g
Ig

, λh,λG
α∪β,λH

γ∪β) such that

0= ∇f
(
z∗) +

∑
i∈Ig

λ
g
i ∇gi

(
z∗) +

q∑
i=1

λh
i ∇hi

(
z∗) −

∑
i∈α

λG
i ∇Gi

(
z∗)

−
∑

λH
i ∇Hi

(
z∗) −

∑[
λG

i ∇Gi

(
z∗) + λH

i ∇Hi

(
z∗)],
i∈γ i∈β
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λ
g
Ig

� 0,

either λG
i > 0, λH

i > 0 or λG
i λH

i = 0, ∀i ∈ β.

DefineλG
γ = 0, λH

α = 0. It is easy to see that the M-stationary condition for the ab
problem is the M-stationary condition for MPEC.�

In the rest of this section, we will try to find sufficient conditions under which the MP
Abadie CQ holds. First we extend the Kuhn–Tucker constraint qualification introduc
Kuhn and Tucker in [6] and the Zangwill CQ [25] to MPEC (see also [9,21]). We
recall the notion of the cone of feasible directions and the cone of attainable directio

Definition 3.2. LetZ denote the feasible region of MPEC andz∗ ∈Z . The cone of feasible
directions ofZ at z∗ is the cone defined by

D
(
z∗) := {

d ∈ Rn: ∃δ > 0 s.t.z∗ + td ∈ Z, ∀t ∈ (0, δ)
}
.

The cone of attainable directions ofZ at z∗ is the cone defined by

A
(
z∗) :=

{
d ∈ Rn: ∃δ > 0 andα :R → Rn s.t.α(τ) ∈ Z, ∀τ ∈ (0, δ),

α(0) = z∗, lim
τ↓0

α(τ) − α(0)

τ
= d

}
.

Definition 3.3 (MPEC Kuhn–Tucker CQ and MPEC Zangwill CQ). Let z∗ be a feasible
point of MPEC. We say that MPEC Kuhn–Tucker constraint qualification or MPEC Z
will constraint qualification is satisfied atz∗ if

T lin
MPEC

(
z∗) ⊆ clA

(
z∗) or T lin

MPEC

(
z∗) ⊆ clD

(
z∗),

respectively.

SinceD(z∗) ⊆ A(z∗) ⊆ T (z∗) and the tangent coneT (z∗) is closed, it is obvious that

MPEC Zangwill CQ ⇒ MPEC Kuhn–Tucker CQ ⇒ MPEC Abadie CQ.

We now extend the Arrow–Hurwicz–Uzawa constraint qualification introduced by
row et al. in [2] to MPEC.

Definition 3.4 (MPEC Arrow–Hurwicz–Uzawa CQ). We say that MPEC Arrow–Hurwicz
Uzawa CQ is satisfied atz∗ if hi (i = 1,2, . . . , q), Gi (i ∈ α ∪ β), Hi (i ∈ γ ∪ β) are
pseudoaffine atz∗ and there existsd ∈ Rn such that

∇gi

(
z∗)�

d < 0, ∀i ∈ W, (16)

∇gi

(
z∗)�

d � 0, ∀i ∈ V, (17)

∇hi

(
z∗)�

d = 0, ∀i = 1,2, . . . , q, (18)( )
∇Gi z∗ �
d = 0, ∀i ∈ α, (19)
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∇Hi

(
z∗)�

d = 0, ∀i ∈ γ, (20)

∇Gi

(
z∗)�

d � 0, ∀i ∈ β, (21)

∇Hi

(
z∗)�

d � 0, ∀i ∈ β, (22)(∇Gi

(
z∗)�

d
) · (∇Hi

(
z∗)�

d
) = 0, ∀i ∈ β, (23)

where

V := {
i ∈ Ig: gi is pseudoconcave atz∗},

W := {
i ∈ Ig: gi is not pseudoconcave atz∗}.

Proposition 3.1. MPEC Arrow–Hurwicz–Uzawa CQ implies MPEC Zangwill CQ.

Proof. Supposed satisfying (16)–(23). For anyi ∈ W by virtue of (16), for allτ ∈ (0,1]
small enough,

gi

(
z∗ + τd

)
< gi

(
z∗) = 0, ∀i ∈ W.

For i ∈ V by virtue of (17), and the definition of pseudoconcavity thatgi(z
∗ +τd) � gi(z

∗)
∀τ � 0 small enough. By the continuity assumptions atz∗ for gi (i /∈ Ig), for all τ ∈ (0,1]
small enough,

gi

(
z∗ + τd

)
< 0, ∀i /∈ Ig.

Hence for allτ > 0 small enough,

gi

(
z∗ + τd

)
� 0, i = 1,2, . . . , p.

Similarly one can prove that

hj

(
z∗ + τd

) = 0, ∀j = 1,2, . . . , q,

Gi

(
z∗ + τd

) = 0, Hi

(
z∗ + τd

)
> 0, ∀i ∈ α,

Hi

(
z∗ + τd

) = 0, Gi

(
z∗ + τd

)
> 0, ∀i ∈ γ,

Hi

(
z∗ + τd

)
� 0, Gi

(
z∗ + τd

)
� 0, Hi

(
z∗ + τd

)
Gi

(
z∗ + τd

) = 0,

∀i ∈ β,

which implies thatd ∈ D(z∗) and the proof of the proposition is complete due to the c
tinuity of all functions ind . �
Definition 3.5 (MPEC weak reverse convex CQ). We say that MPEC weak reverse conv
constraint qualification holds atz∗ if gi (i ∈ Ig) are pseudoconcave atz∗ and hj (j =
1,2, . . . , J ), Gi (i ∈ α ∪ β), Hi(γ ∪ β) are pseudoaffine atz∗.

Since (17)–(23) always has a solutiond = 0, the following relationship between th
MPEC weak reverse convex constraint CQ and MPEC Arrow–Hurwicz–Uzawa CQ

mediate.
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Proposition 3.2. MPEC weak reverse convex constraint CQ implies MPEC Arro
Hurwicz–Uzawa CQ.

Now we consider the piecewise constraint qualifications. By virtue of (15), if the Ab
CQ for all MPEC(β1, β2), (β1, β2) ∈ P(β), holds then the MPEC Abadie CQ holds. It
well known that the Slater condition implies the MFCQ which in turn implies the Ab
CQ for problem MPEC(β1, β2) and hence the following two piecewise constraint qua
cations implies the MPEC Abadie CQ.

Definition 3.6 (Piecewise Slater condition and piecewise MFCQ). We say that piecewis
MPEC Slater condition or piecewise MFCQ is satisfied at a feasible point of MPECz∗ if
the Slater condition or MFCQ holds for each MPEC(β1, β2) ∈P(β), respectively.

It was shown in [5] that MPEC MFCQ (i.e., MFCQ for the TMPEC) implies piecew
MFCQ and hence MPEC Abadie CQ. Hence we conclude that MPEC MFCQ is a
constraint qualification for the M-stationarity. This improves the result of [18] in whic
was shown that MPEC–MFCQ is a constraint qualification for C-stationarity.

The result of this section is summarized in the following theorem.

Theorem 3.2. Letz∗ be a local solution of MPEC. If one of the MPEC constraint qualifi
tions such as MPEC liner CQ, MPEC weak reverse convex CQ, MPEC Arrow–Hurw
Uzawa CQ, piecewise Slater condition, MPEC MFCQ, NNAMCQ, piecewise MF
MPEC GMFCQ, MPEC Zangwill CQ, MPEC Kuhn–Tucker CQ, and MPEC Abadie C
satisfied atz∗, thenz∗ is M-stationary.

The relationships between the various MPEC constraint qualifications are given
following diagram:

MPEC linear CQ
⇓

MPEC weak reverse convex CQ
⇓

MPEC LICQ MPEC Arrow–Hurwicz–Uzawa CQ
⇓ ⇓

MPEC MFCQ Piecewise slater MPEC Zangwill CQ
⇓ ⇓ ⇓

MPEC GMFCQ⇐ Piecewise MFCQ MPEC Kuhn–Tucker CQ
� ⇓ ⇓

NNAMCQ MPEC Abadie CQ

From the above diagram, it is interesting to see that all constraint qualifications e
MPEC GMFCQ are stronger than Abadie CQ but there is no connection between M
GMFCQ and Abadie CQ.

Acknowledgment

The author thanks the anonymous referee for the helpful suggestions.



J.J. Ye / J. Math. Anal. Appl. 307 (2005) 350–369 369

York,

Univ.

d ed.,

ints:

erke-
1951,

Univ.

al pro-

4.
f non-

Math.

994)

Math.

on-

ditions,

d. 14

imality

. Op-

varia-

. Op-

con-

ram-

bilevel
References

[1] J.M. Abadie, On the Kuhn–Tucker theorem, in: J. Abadie (Ed.), Nonlinear Programming, Wiley, New
1967, pp. 21–36.

[2] K.J. Arrow, L. Hurwicz, H. Uzawa (Eds.), Studies in Linear and Nonlinear Programming, Stanford
Press, Stanford, CA, 1958.

[3] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming Theory and Algorithms, secon
Wiley, New York, 1993.

[4] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley–Interscience, New York, 1983.
[5] M.L. Flegel, C. Kanzow, Optimality conditions for mathematical programs with equilibrium constra

Fritz John and Abadie-type approaches, preprint May 6, 2002.
[6] H.W. Kuhn, A.W. Tucker, Nonlinear programming, in: J. Neyman (Ed.), Proceedings of the Second B

ley Symposium on Mathematical Statistics and Probability, Univ. of California Press, Berkeley, CA,
pp. 481–492.

[7] Z.Q. Luo, J.S. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge
Press, Cambridge, UK, 1996.

[8] Z.Q. Luo, J.S. Pang, D. Ralph, S.Q. Wu, Exact penalization and stationary conditions of mathematic
grams with equilibrium constraints, Math. Programming 76 (1996) 19–76.

[9] O.L. Mangasarian, Nonlinear Programming, McGraw–Hill, New York, 1969, SIAM, Philadelphia, 199
[10] B.S. Mordukhovich, Metric approximation and necessary optimality conditions for general classes o

smooth extremal problems, Soviet Math. Dokl. 22 (1980) 526–530.
[11] B.S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings, J.

Anal. Appl. 183 (1994) 250–288.
[12] J.V. Outrata, On optimality problems with variational inequality constraints, Math. SIAM J. Optim. 4 (1

340–357.
[13] J.V. Outrata, Optimality conditions for a class of mathematical programs with equilibrium constraints,

Oper. Res. 24 (1999) 627–644.
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