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Abstract

In this paper we consider a mathematical program with equilibrium constraints (MPEC) formu-
lated as a mathematical program with complementarity constraints. Various stationary conditions for
MPECs exist in literature due to different reformulations. We give a simple proof to the M-stationary
condition and show that it is sufficient for global or local optimality under some MPEC generalized
convexity assumptions. Moreover, we propose new constraint qualifications for M-stationary condi-
tions to hold. These new constraint qualifications include piecewise MFCQ, piecewise Slater condi-
tion, MPEC weak reverse convex constraint qualification, MPEC Arrow—Hurwicz—Uzawa constraint
qualification, MPEC Zangwill constraint qualification, MPEC Kuhn—Tucker constraint qualification,
and MPEC Abadie constraint qualification.
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1. Introduction

In this paper we study necessary and sufficient optimality conditions fon#teemat-
ical program with equilibrium constraint§PEC):
(MPEC) min  f(2)
st. g2 <0, h(z) =0,
Gz)>0, H@=>0, G(k)H@=0,
where f:R" - R, G:R" — R™, H:R" — R™, g:R" — RP, h:R" — R? and " in-
dicates the transpose. This formulation is equivalent to but more convenient than the
nonsymmetric formulation of theptimization problem with complementarity constraints
(OPCCQC):
(OPCC) min f(x,y)
st glx,y)
G(x,y)

which is the most important special case (wh&e= R'!) of the optimization problem
with variational inequality constraint€OPVIC):

0, h(x,y)=0,
0, y=0, G,y y=0,

N\

(OPVIC) min  f(x,y)
st g(x,y) <0, h(x,y)=0,
ye, (Gux,y),y—y)<0, Vyeg,

where f: R"™™™ — R, G:R"™ — R™, g:R"™™ — RP h:R"™™ — RY, and is a
closed convex subset @”. Sincex, y can be used to model the upper and lower level
variables respectively andis considered to be a solution of a complementarity or a vari-
ational inequality constraint parameterizedcimand hence a solution of an equilibrium or
an optimization problem, (OPCC) and (OPVIC) are also callgdreeralized bilevel pro-
gramming problengfsee, e.g., [24]) or a mathematical program with equilibrium constraints
(see, e.g., [7]). The reader is referred to [7,14] for applications and recent developments.
For MPEC, it is well known that the usual nonlinear programming constraint qualifica-
tions such as Mangasarian—Fromovitz constraint qualification (MFCQ) does not hold (see
[24, Proposition 1.1]). Since there are several different approaches to reformulate MPEC,
various stationarity concepts arise (see, e.g., [18]). In this paper, we show that the M-
stationary condition is the most appropriate stationary condition for MPEC in the sense that
it is the second strongest stationary condition (with the strongest one being the S-stationary
condition) and it holds under almost all analogues of the constraint qualifications for non-
linear programming problems such as MPEC linear constraint qualification, MPEC weak
reverse convex constraint qualification, MPEC Arrow—Hurwicz—Uzawa constraint qualifi-
cation, MPEC MFCQ, MPEC Zangwill constraint qualification, MPEC Kuhn-Tucker and
MPEC Abadie constraint qualification. Also analogues to nonlinear programming, the M-
stationary condition becomes a sufficient condition for global or local optimality under
some MPEC generalized convexity condition.
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In this paper, for simplicity, unless specified we assume that the objective function and
all binding constraints are differentiable, all nonbinding constraints are continuous. The
results may be extended to include the possibility of nonsmooth or nondifferentiable func-
tions as in [21].

The following notations are used throughout the paper. For a véetat” and an index
setsl C {1, 2,...,n},d; is theith component ofl andd; is the subvector composed from
the components;, i € I. (a, b) ora' b is the inner product of vectorsandb.

2. Stationary points and constraint qualifications

Given a feasible vectar* of MPEC, we define the following index sets:

= {it (=) =0},

) —a< )= it Gl =0, Hi(=") =]
=p(") = {i: Gi(z") =0, H;(z") =0},
y::y(z ):={i: Gi(z*) > 0, H;(z*) =0}.

The setg is known as thelegenerateset. If 8 is empty, the vectot* is said to satisfy
the strict complementaritgondition. This paper focuses on the important case whése
nonempty. We define the set of all partitionsgoby

P(B) :={(B1. B2): PLUB2=B, 1N P2=0}.
Each partition(81, 82) € P(B) is associated with a branch of MPEC:

MPEC(B1, 2) min  f(2)
s.it. g(2) <0, h(z) =0,
Gi(z)=0, iealUpy, Hi(z)=0, ieyUp,
Gi(2) =20, i€p, Hi(z) 20, i€p2.
It is obvious that* is a local optimal solution of MPEC if and only if it is a local optimal
solution to MPEQS1, B2) for all partition (81, B2) € P(8).

2.1. Primal stationary conditions

In order to define a primal stationary condition for MPEC, we recall the notion of a
tangent cone.

Definition 2.1 (Tangent cong Let Z denote the feasible region of MPEC atide Z. The
tangent cone of atz* is the closed cone defined by

T(*):={deR" 3,10, dy > d s.t. z*+1,d, € ZVn}.
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The following notion of primal stationary condition for MPEC was first introduced
in [8], and studied in depth in the monograph [7]. It is different from the B-stationary
condition in [18] which is defined by

VA() 420, Vde Hibed(=)

WhereT,\',',PEC(z*) is the MPEC linearization cone defined in Definition 3.1.

Definition 2.2 (B-stationary poink A feasible pointz* of the MPEC is said to be Bouli-
gand stationary (B-stationary) if

Vi()'d=0, VdeT().

Using the definition of the tangent cone it is easy to see that a local optimal solution of
MPEC must be a B-stationary point. Although a B-stationary condition holds at any local
optimal solution, the difficulty lies in the characterization of the tangent cone and hence it
is more useful to consider dual stationary conditions.

2.2. Dual stationary conditions

Unlike the standard nonlinear programming which has only one dual stationary condi-
tion, i.e., the Karush—Kuhn—Tucker condition, there are various stationarity concepts for
MPEC. We now summarize them and indicate their connections.

Definition 2.3 (W-stationary point A feasible pointz* of MPEC is called weakly sta-
tionary if there exists. = (A%, A", 16, AH) ¢ RPT4+27 sych that the following condition
hold:

0=Vf(")+ > Aivei(s* +Zx’1w

ielg
=Y DEVGH() +af v H ()], (1)
i=1
A, =0, 1W=o0 =0 (2)

It is easy to see that W-stationary condition is the KKT condition for the tightened
MPEC:
(TMPEC) min f(z)
st g(2) <0, h(z) =0,
Gi(z)=0, iea, Hi(z)=0, iey,
Gi(z) =0, H;(z)=0, iep.
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Definition 2.4 (C-stationary point A feasible point;* of MPEC is called Clarke station-
ary if there exists, = (A8, A", A¢, AH) € RPT9+2" such that (1)—(2) and the following
condition hold:

vieB, rfaf>o.

By [18, Lemma 1] the C-stationary condition is the nonsmooth KKT condition using
the Clarke generalized gradient [4] by reformulating MPEC as a nonsmooth nonlinear
programming problem:

min  f(z)
st g(z) <0, h(z) =0,
Gi(z)=0, i€a, Hi(z)=0, i€y,
min{G;(z), Hi(z)} =0, ie€p.
Definition 2.5 (A-stationary point. A feasible point* of MPEC is called alternatively sta-

tionary if there exists. = (A%, A, A9, AH) € RPT4+2" sych that (1)—(2) and the following
condition hold:

Viep, A%>0 or Af>o0.

The notion of the A-stationary condition was introduced by Flegel and Kanzow [5].
Actually the A-stationary condition is the KKT conditions for MPEAz, 8>) for a partition

(B1, B2) € P(B).

Definition 2.6 (M-stationary poin}. A feasible point;* of MPEC is called Mordukhovich
stationary if there exists = (18, A", AG, AH) € RPT4+2" sych that (1)-(2) and the fol-
lowing condition hold:

VieB, either A7 >0, A7>0 or A%xF =0.

It will become clear in Section 2.3 that the M-stationary condition is the nonsmooth
KKT condition involving the limiting subgradient for EMPEC, an equivalent formulation
of MPEC.

Definition 2.7 (S-stationary point A feasible pointz* of MPEC is called strong station-
ary if there exists. = (A8, A", A¢, 1H) € RPT4+2" such that (1)—(2) and the following
condition hold:

VieB, 19>0, A >o.

1 1

The S-stationary condition is the KKT condition for the relaxed MPEC:
(RMPEC) min f(z)
s.t.  g(2) <0, h(z) =0,
Gi(2)=0, ie€a, Hi(z)=0, iey,
Gi(z) 20, Hi(z) >0, iep.



J.J. Ye/J. Math. Anal. Appl. 307 (2005) 350-369 355

The following diagram summarizes the relations between the dual stationary concepts
that we have discussed:

S-stationary point

U

M-stationary point

{ U
C-stationary point  A-stationary point

4 4

W-stationary point

Definition 2.8 (MPEC LICQ. Let z* be a feasible point of MPEC where all functions
are continuously differentiable at. We say that MPEC linear independence constraint
qualification is satisfied af* if the gradient vectors of the binding constraints for RMPEC
is satisfied, i.e.,

Vgi(z*), Viel,,
Vhi(z"), Vi=12....q
VGi(z*), VieaUSB,
VH;(z*), VieyUp

are linearly independent.

MPEC LICQ is a very strong condition. It is the linear independence constraint qualifi-
cation for the relaxed MPEC and hence it is a constraint qualification for the S-stationary
condition to hold at a local optimal solution. A condition weaker than MPEC LICQ un-
der which the B-stationary condition is equivalent to the S-stationary condition was given
in [15, Theorem 3]. For a local optimal solution, under the MPEC LICQ, all concepts of
stationary points discussed above including the B-stationary condition coincide. In fact it
is easy to see from the proof of [19, Theorem 3.2] that all dual stationary conditions for a
local optimal solution coincide under the following weaker condition. Actually under this
condition theg components of the multipliet®, A# of TMPEC is unique.

Definition 2.9 (Partial MPEC LICQ. Let z* be a feasible point of MPEC. The par-
tial MPEC linear independence constraint qualification holdg*aif for any vectors
(A%, 2,06, 0H) e Rotatam,

0=> 2Vve(:* +Zthh ixcvc )+ AV H; ()],
i=1

ielg
G H
A, =0, A, =0,
implies that

G _ H _
x§=0 =0
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2.3. M-stationary conditions

The M-stationary condition was first introduced in Ye and Ye [22, Theorem 3.2] for
OPVIC by using Mordukhovich coderivative of set-valued maps (see, e.g., [11]), further
studied by Ye in [20] and Outrata in [13]. The term “M-stationary condition” was first used
in [18]. In [20, Theorem 3.2] a Fritz John type necessary optimality condition involving
Mordukhovich coderivative for OPVIC is given. One may derive the Fritz John type M-
stationary condition for MPEC by reformulating MPEC as the following OPVIC:

P min  f(2)
st. g(@<0, (x,y,w)es,
(H2),G() —x,h@)), (x,y, w) — (x',y",w)) <O,
V(x',y',2) € £2,

whereQ2 = R’} x R™ x R? and applying [20, Theorem 3.2] to the above problem. Note that
although the proof of [20, Theorem 3.2] has a gap since the nontriviality of the multipliers
was not proved it is known that the theorem itself is correct since it can be proved in
various other ways. For example, in [23, Theorem 1.3] a more general theorem is given
for multiobjective MPEC. We now provide an easy and independent proof. The proof also

shows that the M-stationary condition is in fact the generalized multiplier rule in terms of
limiting subgradients for the equivalent problem EMPEC.

Theorem 2.1 (Fritz John type M-stationary conditioretz* be a local solution of MPEC
where all functions are continuously differentiable At Then there exists > 0, A =
(A8, A1 AG AH) e RPTI+2m not all zero such that

q
0=rVf(z*)+ Y AVei(z*) + > Al Vhi(z¥)
i=1

i€l

— > [AEVGi(2*) + Af VH; ()], @3)
i=1

8 G _ H _
I R I

o

either 2¢>0, Af>0 or 2907 =0, vVvieg.

Proof. By introducing slack variables, we reformulate MPEC in the following equivalent
form:
(EMPEC) min f(z)
st g(2) <0, h(z) =0,
G(z) —x=0, H(z) —y=0,
(x,y) €42,
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wheres2 :={(x,y) € R¥": x >0, y >0, x "y =0}. This is an optimization problem with
equalities, inequalities and a nonconvex abstract constrajiny € 2 with (x*, y*, z*) =
(G(z%), H(z*), z*) as a local solution. Applying the limiting subgradient version of the
generalized Lagrange multiplier rule first obtained by Mordukhovich in [10, Theorem 1(b)]
(see also [17, Corollary 6.15]), we conclude that there existsO, » not all zero and
(&,y) € No(x*, y*), the limiting normal cone of2 at the point(x*, y*) such that

0 0 0 q 0
<0>=r< 0 )+ZA§( 0 )—i—Zkf’( 0 )
0 V£ (z*) iel, Vgi(z*) i=1 Vhi(z*)
m —e; m 0 é}-
2 () 2 () ()
i=1 VG;(z*) i=1 VH;(z*) 0

8
)“]g 2 07
wheree; denotes the unit vector whostn component is equal to 1. It follows that

0=29 +¢, 0—k”+y,

0=rVf(z*)+ Zkng, )+ D AVh (2

ielg

—Z (A7 VGi(z*) + A VH; (z¥)].

A, 20.
Since(, y) € No(x*, y*) and
£ =0 if x>0
Ne(x*,y") =1 v): v =0 ity >0

eitherg; <0, y; <0or&y; =0 ifx*=y*=0
(see, e.g., [20, Proposition 3.7]), the assertion of the theorem follows.

By the Fritz John type M-stationary conditionrifin the condition is never zero, then
it can be taken as 1. Hence the following KKT type M-stationary condition follows imme-
diately.

Definition 2.10 (NNAMCQ. Let z* be a feasible point of MPEC where all functions
are continuously differentiable at*. We say that the No Nonzero Abnormal Multi-
plier Constraint Qualification (NNAMCQ) is satisfied 4t if there is no nonzero vector

(A8, a1, 16 AH) e Rptatam gych that

m

0=> V(s +thw )= D A VGi(*) + 2 VHi ()],

i€l i=1
8 G _ H _
M =0, af=0, i =0,
either 29>0, 2% >0 or Afa =0 Vvieg.
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Corollary 2.1. Let z* be a local solution of MPEC where all functions are continuously
differentiable atz*. Suppose that NNAMCQ is satisfiedzat Thenr in Theoren2.1 can
be taken a4, i.e.,z* is M-stationary.

Remark. It is known that for the case of nonlinear programming (i.e., wheg: 0),
NNAMCQ is equivalent to the Mangasarian—Fromovitz constraint qualification. In [13],
Outrata introduced a generalized Mangasarian—Fromovitz constraint qualification for
OPCC and showed that NNAMCQ is equivalent to the generalized Mangasarian—
Fromovitz constraint qualification for OPCC under condition (A) in [13, Proposition 3.3].
In [20, Proposition 4.5], Outrata’s result was extended to OPVIC with the condition (A)
removed. We now state the generalized Mangasarian—Fromovitz constraint qualification
for MPEC as the MPEC GMFCQ. For completeness we include the sketch of the proof for
the equivalence of the NNAMCQ and the MPEC GMFCQ in Proposition 2.1. Note that the
MPEC GMFCQ defined in Definition 2.11 is weaker than MPEC MFCQ in [5,18] which
is defined to be MFCQ for TMPEC, the tightened MPEC.

Definition 2.11 (MPEC GMFCQ. Let z* be a feasible point of MPEC where all func-
tions are continuously differentiable gt. We say that MPEC generalized Mangasarian—
Fromovitz constraint qualification is satisfiedz4tif
(i) for every partition ofg into setsP, Q, R with R # (4, there existl such that
Vei()'d<0, Viel,
Vhi(z¥)'d=0, Vi=12 .4,
VGi(*)'d=0, VieaUo,
VH;(*)'d=0, VieyUP,
VGi(*)'d>0,  VH(z*)'d>0, ieR,

and for someé € R eithervVG;(z*)'d >0 0orVH;(z*)'d > 0;
(i) for every partition of8 into setsP, Q, the gradient vectors

Vhi(z*), Vi=12....q,
VGi(z*), VieaUQ,
VH;(z*), VieyuP,
are linearly independent and there exists R such that
Vei(z*)'d <0, Viel,
Vhi(z*)'d=0, Vi=12..,q,
VGi(z¥)'d=0, VieaUuQ
VH;(*)'d=0, VieyUP.

Proposition 2.1. NNAMCQ is equivalent to MPEC GMFCQ.
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Proof. Note thatg can be split into the sets

P={iep:af=0}, Q={iep r'=0},
R={iep:2f>0 1">0]

and so condition NNAMCQ is equivalent to the following two conditions:

0] For every partmon ofg into setsP, Q, R with R # ¢ there are no vectorzsf LAl
UQUR andAyUPUR satisfying the system

0= Vg(Z*)T)‘i + Vh(Z*)T)‘h - VG(Z*)T)‘OS;UQUR - VH(Z*)T)‘)I/—IUPUR7

M >0, Ag>0,  iF>0

(i) For every partition ofg into setsP, Q there are no vectomg A )‘aUQ and)x)’}’U p
satisfying the system

0="Vg(e")'Af, + Vh(z") 2" = VG (") 20 — VH(*) L p,

8
2 =0

The results follow from applying Tucker's and Motzkin's theorems of alternatives (see,
e.g., [9]) to (i) and (ii) respectively. O

In mathematical programming, it is well known that if all constraint functions are affine,
then the KKT necessary optimality condition holds without any additional constraint qual-
ification. Since MPEC is a special case of OPVIC, [20, Corollary 4.8] which follows from
[20, Theorems 3.6, 4.3 and Proposition 4.2] indicates that the M-stationary condition holds
for MPEC under the following MPEC linear CQ.

Definition 2.12 (MPEC linear CQ. We say the MPEC linear constraint qualification is
satisfied if all mappingg, &, G, H are affine.

The following result may be obtained by reformulating MPEC into (P) and applying
the corresponding results for OPVIC in [20, Corollary 4.8]. Alternatively, we may prove
the results using the equivalent formulation (EMPEC) and the same proof techniques as
in [20]. We sketch the proof here.

Theorem 2.2 (Kuhn—Tucker type necessary M-stationary conditidrgt z* be a local
optimal solution for MPEC where all functions are continuously differentiable*atf
either MPEC GMFCQ or MPEC linear CQ is satisfied#t thenz* is M-stationary.

Proof. The conclusion that* is M-stationary under MPEC GMFCQ follows from Corol-
lary 2.1 and Proposition 2.1.

To prove that* is M-stationary under MPEC linear CQ, we consider the set of solutions
to the perturbed constraint system for EMPEC:
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Z(p.q.r.s)={(x.y,20 €2 xR": gx)+p<0, h(z) +¢q=0,
G()—x+r=0, H(z)—y+s=0}.

Itis easy to see that the graph of the set-valued &iapa union of polyhedral convex sets
and henceX is a polyhedral multifunction. By [16, Proposition 2, is upper Lipschitz at
each(0,0,0,0) € RPT9+2n j e, there exists a neighborhoétdof (0, 0,0,0) anda > 0
such that

X(p.q.r,s) € 2(0,0,0,00 +a|(p.q.r.9)|clB, Y(p.q.rs) €U,
where clB denotes the closed unit ball. Equivalently the constraint system of EMPEC has
a local error bound, i.e.,
d((-xa yaz)7 E(O, 0’07 O)) g“”(Pv‘]ar»S) 9
V(p,q,r,s) €U, (x,y,2) € X(p,q,r,s),

whered(a, C) is the distant from poir to setC. By Clarke’s principle of exact paneliza-
tion [4, Proposition 2.4.3Jxx*, y*, z*) is also a local optimal solution to the unconstrained
problem:

min - f(z) +prd((x, y,2), £(0,0,0,0)),

whereu s is the Lipschitz constant of . Hence by the local error bound property, it is
easy to see that, p,q,r,s) = (z%,0,0,0,0) is a local optimal solution to the following
problem:

min @) +praf(p.q.r.s)|
st. g@+p<0, h(z) +q =0,
G@+r>0, H@+s>0, (G@+r) (H@+s)=0.

It can be easily verified that NNAMCQ is satisfied(at, 0, 0, 0) for the above problem.

Note that although the objective function has a nonsmooth tgpmg, r, s)||, using ex-

actly the same technique one can prove that Theorem 2.1 holds with the usual gradients
replaced by the limiting subgradients and the equality in (3) replaced by inclusions. Apply-
ing Corollary 2.1 to the above MPEC, it is easy to obtain the M-stationary condition since

z component of Eq. (3) for the above problem is exactly the same as Eq. (3) for MREC.

For nonlinear programming problems, it is known that the KKT necessary condition
becomes sufficient if the problem is (generalized) convex (see, e.g., [3, Theorem 4.3.8]).
Although in some special cases an MPEC may become a convex programming problem
such as in Outrata [12, Proposition 2.8], in general MPEC is a nonconvex problem even
when all constraint functions are affine and hence the necessary condition is in general
not sufficient for optimality. Moreover, some necessary conditions for MPECs are derived
through an approximation of the generalized gradient of certain nonsmooth function such
as in the case of the C-stationary conditions and in the case of using the implicit pro-
gramming approach (see the remark before [12, Proposition 2.8]) and hence may be too
loose to be sufficient. In Ye [19, Proposition 3.1], it was shown that the S-stationary con-
ditions become sufficient or locally sufficient for optimality when the objective function is
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pseudoconvex and all constraint functions are affine. In the following theorem, we show
that M-stationary condition also turns into a sufficient optimality condition or local suffi-
cient optimality condition under certain MPEC generalized convexity condition.

Theorem 2.3 (Sufficient M-stationary condition).etz* be a feasible point of MPEC and
the M-stationary condition holds at, i.e., there exists = (1%, 1", AC A H) ¢ RpHa+2m
such that

q
0= V(") + YA Va (") + Y M V()
icl, i=1
= 2 DEVGH )+ VH ()], @
i=1
M, 20, af=0, g =0,

Viep, either A°>0, Af>0 or afrf=0.
Let

B ={iep: 2 =0, ¢ >0}, By ={iep: 2 =0 1F <0},
at={ica: A-G>O}, of::{iea: AiG<0},

yti=liey: 2 >0}, y i=liey: 2 <o}

{
{
BE={iep: rf =0, 2" >0}, B =liep: 17 =0 1 <0},
{
{

Further suppose thaf is pseudoconvex at, g; (i € I;), hi (i € J1), —h; (i€ J7), G;
(iea”UBy, —Gi (ieat UByUBH), Hi (icy  UBg), —H; (iey™ UBLUBY)
are quasiconvex. Then in the case whenU y~ U B U B, =, z* is a global optimal
solution of MPEC n the case wheg; U 8, = @ or whenz* is an interior point relative
tothe setZ N {z: Gi(z) =0, Hi(z) =0, i € B; U By}, i.e., for all feasible point which
is close toz*, it holds that

Gi(z) =0, Hi(z)=0, Vieps;UBy,

z* is a local optimal solution of MPEC whetg& denotes the set of feasible solutions of
MPEC.

Proof. Letz be any feasible point of MPEC. Then for ahg I,,
8i(2) <0=gi(z%).
By quasiconvexity of; atz* it follows that

gi(Z"+1(z—2%)) =gi(tz+ A —1z") < gi(z¥)
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forall € (0, 1). This implies that
(Vgi(z").z—2%)<0, Viel,. (5)

Similarly, we have

(Vhi(z*),z—z*)<0, VieJt, (6)
—(Vhi(z*),z—2")<0, VieJ". @)
Since for any feasible point —G(z) <0, —H(z) <0, one also have
—(VGi(z*).z—2*)<0, VieatUB UBT, (8
—(VH;(z*),z—2*)<0, Vieytuptupt. 9)

Inthe case whea™ Uy ~UB; U B, =¥, multiplying (5)—(9) bykg =203 ely), Af’ >0
(eJh),-2>03Ges)rl>0GeatupiuphH, A >0Geytuptuph
respectively and adding, we get

<ZAng, Z/\hw )= > [AVGi(z*) + A VH(z )],z—z*><o.
ielg i=1
By virtue of (4), the above inequality implies that

(Vf(").z—z%)=0.

By the pseudoconvexity of atz*, we must havef (z) > f(z*) for all feasible point and
hencez* is a global optimal solution of MPEC #~ Uy~ U B, U B, =0.

Now we discuss the case whenm Uy~ # @ andg; U B, = @. For anyi € a, since
H;(z*) > 0, H;(z) > 0 for z sufficiently close toz* and hence by the complementarity
condition,G; (z) = 0 for suchz. That is, forz sufficiently close taz*, one has

Gi(z)=G;(z*) Viea.
By quasiconvexity ofG; (i € ™) atz* it follows that forz sufficiently close ta*,
(VGi(z*),z—2")<0, Viea . (10)
Similarly one has fot sufficiently close ta*,
(VH;(z*),z—z*)<0, Viey™. (11)

Multiplying (5)—(11) byAf >0 (i € I,), Al >0 (G e JT), =A" >0 (i e J7), ¢ >0
(ieatUBfupH), A >0Geytupluph), -26>0@Gea), -2H>0Gey™)
respectively and adding, we have that fasufficiently close ta*,

m
<ZAng, —I—Zthh )= > [AEVGi() + A VH(z )],z—z*><0.
i=1

ielg

By virtue of (4), the above inequality implies that fosufficiently close ta*,

(V@) z=2")=0
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By the pseudoconvexity of at z*, we must havef (z) > f(z*) for z sufficiently close
to z*. Thatis,z* is a local optimal solution of MPEC = Uy~ # @ andp; U B, = 0.

Now suppose™* is an interior point relative to the sétN {z: G;(z) =0, H;(z) =0
i € B; U By} Then for any feasible pointsufficiently close ta*, it holds that

Gi(z) =0, Hi(z) =0, Viepf;UpBy,
and hence by the quasiconvexity@f (i € 8) andH; (i € B;),

(VGi(z*),z—z >\0 Vi € By, (12)
(VH,-(z*),z—z )SO Viepg. (13)

Multiplying (5)~(13) byAf >0 (i e I,), A" >0 eJt), -l >0GeJ™), 28>0
(eatUBLUBM), A >0GeytUBLUBT), -2 >0(Geca”UBy), -1 >0
(i ey~ UB) respectively and adding, we have that f@ufficiently close ta*,

m
<Zkng, +Z,\hw )= > [AVGil(z AHVHi(z*)],z—z*><O.
i=1

ielg

By virtue of (4), the above inequality implies that fosufficiently close ta;*,
(Vf(z*).z—2") =0

By the pseudoconvexity of at z*, we must havef (z) > f(z*) for z sufficiently close
to z*. That is,z* is a local optimal solution of MPEC if* is an interior point relative to
the setz N {z: Gi(z) =0, H;(z) =0,i € B; U B} and the proof is complete.O

3. Moreconstraint qualificationsfor M-stationary condition

In this section we provide more constraint qualifications for M-stationary condition to
hold. We first discuss the Abadie constraint qualification introduced by Abadie [1]. For a
nonlinear programming problem, the Abadie constraint qualification says that the tangent
cone is equal to its linearized cone. For example, consider the nonlinear programming
problem MPEGS1, B2) associated with any partitiofBy, 82) € P(B). Let T(g, g, (z*) be
the tangent cone of MPE®B, B2) at z* andT"n 1B )(z*) the standard linearized cone of

MPEC(B81, B2) atz*, i.e.,

’T(II'S'I /32)( *) = {d €R". Vg (Z*

.
)
Vhi(z¥)'d=0, Vi=1,2,.

d <0, Vielg,

VGi(z*) 'd=0, VieaUp,,
VH;(z*)'d =0, Viey Ui,
VGi(z*)'d >0, Viep,
VH;(z*)'d >0, Vi € )
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Then it is well known that the inclusion

Tipr.p0) () S T ) (27) (14)
always holds and the Abadie constraint qualification for MP&CS>) demands that the
equality actually holds in (14). It is obvious that the linearized cone is a polyhedral convex
set and so the Abadie CQ demands that the tangent cone is also a polyhedral convex set.

The Abadie constraint qualification for nonlinear programming problem MIBE®>)
is a very weak condition since the tangent cone for MBRCS>) is likely to be polyhe-
dral convex, and it is known that it is weaker than the Mangasarian—Fromovitz constraint
gualification and the Slater condition.

It is easy to see that the linearized tangent cone of MPEC iatgiven by

TN () :={d e R": Vg(z*)'d <0, Viel,,
Vhi(*)'d=0, ¥i=1,2,.

VGi(*)'d=0, Viea,
VH;(*)'d =0, Viey,
VGi(*)'d >0, Viep,
VH;(z*)'d >0, Vi € B
and hence it is obvious that
(") = U T(lgl,ﬁz)(z*)'
(B1.82)€P(B)

Since the feasible set of MPEC is the union of the feasible sets of all branches, one has
T(Z*) = U T(p1.2) (Z*)
(B1.B2)€P(B)
It follows from (14) that
l l
T() = U Tem@E)c U THnE)=T"@") (15)
(B1,B2)€P(B) (B1,B2)€P(B)

always holds and the standard Abadie constraint qualification for nonlinear programming
requires equality in (15):

T(Z*) — Tlin (Z*)
Since the tangent coriE(z*) is in general nonconvex if the strict complementarity condi-
tion fails to hold and the linearized cofié" (z*) is polyhedral and hence convex, it is easy
to see that the standard Abadie constraint qualification is unlikely to be satisfied by MPEC.
Flegel and Kanzow [5] introduced the following modified Abadie constraint qualification
for MPEC.

Definition 3.1 (MPEC Abadie CQ Let z* be a feasible point of MPEC. We say that MPEC
Abadie constraint qualification holds &t if

Typec(z?) =7 (%),
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where
Timec(z*) = {d e R": Vgi(*)'d <0, Viel,
Vhi(*)'d=0,¥i=12.4
VGi(*)'d=0, Viea,
(z*)Td 0, Vi ey,
VGi(z*)'d >0, Vies,
VH;(*)'d >0, Vi,

(VG,-(z )'d) - (VH;(z*)'d) =0, Vi € B}
is the MPEC linearized tangent cone of MPEC.

Note that

7 (*) < Tupec(c”)
and so MPEC Abadie CQ is equivalent to

T (2*) 2 Tupec(e)-

Flegel and Kanzow [5] showed that under the MPEC Abadie CQ, a local minimum point
of MPEC must be A-stationary. We now prove that under the MPEC Abadie CQ, a local
minimum point of MPEC is not just A-stationary. It must be M-stationary.

Theorem 3.1. Let z* be a local optimal solution of MPEC. Suppose that MPEC Abadie
CQ is satisfied at*. Thenz* is M-stationary.
Proof. By definition, the local solution* is B-stationary, i.e.,
Vi) 'd=0, VdeT ()
which is equivalent to

V() d>0, VdeTied()
under MPEC Abadie CQ. Hencé is B-stationary if and only it/ = 0 is a solution to the
following problem which is also a MPEC:

min V() d st deTiec(z?).

Since the objective function and all constraint functions are linear, by Theorerd 2.2,
is a solution to the above problem implies that it is M-stationary, i.e., there exists
(A A" A5 g ATl such that

0=Vf(")+ > Aivei(s* +thw )= > A8VGi(:*

iel, iea

— S EVH (%) = Y [WEVGi () + AV Hi ()],

iey iep
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2 =0,
8
either 29>0, 2% >0 or 2927 =0 Vieg.
Define A)? =0, A = 0. It is easy to see that the M-stationary condition for the above
problem is the M-stationary condition for MPECO

In the rest of this section, we will try to find sufficient conditions under which the MPEC
Abadie CQ holds. First we extend the Kuhn—Tucker constraint qualification introduced by
Kuhn and Tucker in [6] and the Zangwill CQ [25] to MPEC (see also [9,21]). We first
recall the notion of the cone of feasible directions and the cone of attainable directions.

Definition 3.2. Let Z denote the feasible region of MPEC atide Z. The cone of feasible
directions ofZ at z* is the cone defined by
D(z*):={deR": 3>0s.t.z"+td e Z, V1 €(0,8)}.

The cone of attainable directions Bfat z* is the cone defined by
A(Z) = {d €R": 38>0andx:R — R"s.t.a(r) € Z, V1 € (0, ),
—a(0

a(t) —a(0) _ d}.

a(0) =z*, lim
7,0 T

Definition 3.3 (MPEC Kuhn—Tucker CQ and MPEC Zangwill CQet z* be a feasible
point of MPEC. We say that MPEC Kuhn—Tucker constraint qualification or MPEC Zang-
will constraint qualification is satisfied at if

Tupec(z*) SClA(Z") or Tybec(z*) S cID(z),

respectively.

SinceD(z*) € A(z*) € T (z*) and the tangent corE(z*) is closed, it is obvious that:
MPEC Zangwill CQ = MPEC Kuhn-Tucker CQ = MPEC Abadie CQ
We now extend the Arrow—Hurwicz—Uzawa constraint qualification introduced by Ar-
row et al. in [2] to MPEC.

Definition 3.4 (MPEC Arrow—Hurwicz—Uzawa CQWe say that MPEC Arrow—Hurwicz—
Uzawa CQ is satisfied at* if n; (1 =1,2,...,9), G; (i€eaUPB), H; (i €y UP) are
pseudoaffine at* and there existd € R" such that

Vei(*)'d <0, View, (16)
Vgi(z¥)'d<0, VieV, (17)
Vhi(¥)'d=0, Vi=12...,4q, (18)

VGi(z*) d=0, Viea, (19)
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VH(*)'d=0, Viey, (20)
Gi(z*)'d>0, Viep, (21)
Hi(*)'d >0, Viep, (22)

(VGi(*)'d)- (VHi(z*) 'd) =0, Viep, (23)

where

V:={i eI, g is pseudoconcave at},
W .= {i €I, giisnot pseudoconcavea'[}.

Proposition 3.1. MPEC Arrow—Hurwicz—Uzawa CQ implies MPEC Zangwill CQ.

Proof. Supposel satisfying (16)—(23). For aniye W by virtue of (16), for allt € (0, 1]
small enough,

gi(z"+7d) <gi(z)=0, VieWw.

Fori € V by virtue of (17), and the definition of pseudoconcavity that* +td) < g; (z*)
vz > 0 small enough. By the continuity assumptiong’ator g; (i ¢ I,), for all = € (0, 1]
small enough,

gi(F+1d) <0, Vigl,.
Hence for allz > 0 small enough,

gi(z*+td)<0, i=12..p
Similarly one can prove that

hj(z*+td)=0, Vj=12...,q,

(z —i—rd) 0, H,(z +rd)>0 Vi € «,

(z +1:d):0, G,(z +rd)>0 Vi ey,

Hi(z*+1d) >0,  Gi(z"+td)>0,  Hi(z*+1d)Gi(z"+1d) =0,
Vi € B,

which implies thatl € D(z*) and the proof of the proposition is complete due to the con-
tinuity of all functionsind. O

Definition 3.5 (MPEC weak reverse convex EQVe say that MPEC weak reverse convex
constraint qualification holds af* if g; (i € I;) are pseudoconcave at andh; (j =
1,2,...,0),G; (i eaxUP), Hi(y UpB) are pseudoaffine at.

Since (17)—(23) always has a solutidn= 0, the following relationship between the
MPEC weak reverse convex constraint CQ and MPEC Arrow—Hurwicz—Uzawa CQ is im-
mediate.
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Proposition 3.2. MPEC weak reverse convex constraint CQ implies MPEC Arrow—
Hurwicz—Uzawa CQ.

Now we consider the piecewise constraint qualifications. By virtue of (15), if the Abadie
CQ for all MPEQ 81, B2), (B1, B2) € P(B), holds then the MPEC Abadie CQ holds. Itis
well known that the Slater condition implies the MFCQ which in turn implies the Abadie
CQ for problem MPE81, 82) and hence the following two piecewise constraint qualifi-
cations implies the MPEC Abadie CQ.

Definition 3.6 (Piecewise Slater condition and piecewise MEC@e say that piecewise
MPEC Slater condition or piecewise MFCQ is satisfied at a feasible point of MPHC
the Slater condition or MFCQ holds for each MPEBg, B2) € P(B), respectively.

It was shown in [5] that MPEC MFCQ (i.e., MFCQ for the TMPEC) implies piecewise
MFCQ and hence MPEC Abadie CQ. Hence we conclude that MPEC MFCQ is also a
constraint qualification for the M-stationarity. This improves the result of [18] in which it
was shown that MPEC-MFCQ is a constraint qualification for C-stationarity.

The result of this section is summarized in the following theorem.

Theorem 3.2. Letz* be a local solution of MPEC. If one of the MPEC constraint qualifica-
tions such as MPEC liner CQ, MPEC weak reverse convex CQ, MPEC Arrow—Hurwicz—
Uzawa CQ, piecewise Slater condition, MPEC MFCQ, NNAMCQ, piecewise MFCQ,
MPEC GMFCQ, MPEC Zangwill CQ, MPEC Kuhn-Tucker CQ, and MPEC Abadie CQ is
satisfied at*, thenz* is M-stationary.

The relationships between the various MPEC constraint qualifications are given in the
following diagram

MPEC linear CQ

4
MPEC weak reverse convex CQ
U
MPEC LICQ MPEC Arrow—Hurwicz—Uzawa CQ
U Y
MPEC MFCQ Piecewise slater MPEC Zangwill CQ
4 4 U
MPEC GMFCQ<« Piecewise MFCQ MPEC Kuhn-Tucker CQ
¢ U 4
NNAMCQ MPEC Abadie CQ

From the above diagram, it is interesting to see that all constraint qualifications except
MPEC GMFCQ are stronger than Abadie CQ but there is no connection between MPEC
GMFCQ and Abadie CQ.
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