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Abstract. In this paper, we propose a smoothing augmented Lagrangian method for

finding a stationary point of a nonsmooth and nonconvex optimization problem. We show

that any accumulation point of the iteration sequence generated by the algorithm is a sta-

tionary point provided that the penalty parameters are bounded. Furthermore, we show

that a weak version of the generalized Mangasarian Fromovitz constraint qualification

(GMFCQ) at the accumulation point is a sufficient condition for the boundedness of the

penalty parameters. Since the weak GMFCQ may be strictly weaker than the GMFCQ,

our algorithm is applicable for an optimization problem for which the GMFCQ does not

hold. Numerical experiments show that the algorithm is efficient for finding stationary

points of general nonsmooth and nonconvex optimization problems, including the bilevel

program which will never satisfy the GMFCQ.
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1 Introduction.

In this paper, we consider a constrained optimization problem with inequality and equality

constraints:

(P) min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · , p,

hj(x) = 0, j = p+ 1, · · · , q.

Unless otherwise specified, we assume that the objective function and constraint functions

f, gi(i = 1, · · · , p), hj(j = p+1, · · · , q) : Rn → R are Lipschitz around the point of interest.

The quadratic penalty method for problem (P) when all functions are smooth is an

inexact penalty method which locates stationary points of a sequence of smooth penalized

problems:

min f(x) +
c

2

p∑
i=1

max{0, gi(x)}2 +
c

2

q∑
j=p+1

h2
j(x),

and takes c ↑ ∞ to find the stationary point of the original constrained problem. However,

when c is large, the penalized problems may become ill-conditioned and very difficult to

solve. The augmented Lagrangian method (see e.g. [21]), which is also known as the

method of multipliers, reduces the possibility of ill-conditioning by adding the estimates

of Lagrange multipliers into the penalty function. This method is also the basis for some

high quality software such as ALGENCAN [1] and LANCELOT [35]. The augmented

Lagrangian method was first proposed by Hestenes [29] and Powell [41] for equality con-

strained problems. Bertsekas [6] and Rockafellar [43, 44] extended the method to inequal-

ity constrained convex optimization problems and to nonconvex optimization problems

respectively. The Powell-Hestenes-Rockafellar (PHR) augmented Lagrangian function

[29, 41, 44] (see [8] for a comparison with other augmented Lagrangian functions) takes

the form:

Gc
λ(x) := f(x) +

1

2c

p∑
i=1

(
max{0, λi + cgi(x)}2 − λ2

i

)
+

q∑
j=p+1

(
λjhj(x) +

c

2
(hj(x))2

)
,

which is a sum of the standard Lagrangian function and the quadratic penalty function.

Even when the functions f, g and h are twice continuously differentiable, the PHR aug-

mented Lagrangian function is not twice continuously differentiable. To guarantee twice

continuous differentiability, an exponential-type augmented Lagrangian function was pro-

posed in [34, 40, 48]. The augmented Lagrangian functions were also used as merit func-

tions for the sequential quadratic programming (SQP) methods [10, 11, 13, 26]. Other

related researches for augmented Lagrangian methods may be found in [21, 27, 28, 30].
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The boundedness of the penalty parameters is a basic requirement for the convergence

result in most exact penalty methods for constrained optimization, including the aug-

mented Lagrangian method. Rockafellar [43, 44] showed that the augmented Lagrangian

method is an exact penalty method. However, to ensure the boundedness of the penalty

parameters, it has been common to make assumptions that the Linear Independence Con-

straint Qualification (LICQ) holds at all feasible and infeasible accumulation points of the

iteration sequence (see e.g. [22]). In fact, the MFCQ holding at all feasible and infeasible

accumulation points of the iteration sequence is sufficient to ensure the boundedness of

the penalty parameters (see e.g. [50]). The MFCQ is a strong condition since many prob-

lems such as the mathematical program with equilibrium constraints (MPEC), will never

satisfy the MFCQ. Recently some papers [2, 3, 9] studied the boundedness of the penalty

parameters for the augmented Lagrangian algorithm under the Constant Positive Linear

Dependence (CPLD) constraint qualification, the MFCQ and the LICQ. The CPLD con-

dition was proposed by Qi and Wei [42] and proved to be a constraint qualification by

Andreani, et al. [4]. Although the CPLD condition is weaker than the MFCQ, it is still

not reasonable to expect the CPLD condition to hold for general MPECs [31].

In the case where all functions except one constraint function are smooth, Xu and

Ye [50] used a family of smoothing functions with gradient consistency properties to ap-

proximate the nonsmooth function, applied the augmented Lagrangian method to the

smoothing problems and updated the smoothing parameter. The boundedness of the

penalty parameters and hence the global convergence of the algorithm was shown under

the assumptions that the nonsmooth version of the MFCQ called the generalized MFCQ

(GMFCQ) holds at all feasible and infeasible accumulation points. Unfortunately GM-

FCQ never holds for bilevel programs (see [53]) which was our main motivation to study

an augmented Lagrange algorithm for nonsmooth and nonconvex problems. It was ob-

served that under the calmness condition [50], the sequence of multipliers is very likely

to be bounded and hence the smoothing augmented Lagrangian algorithm is efficient for

searching a stationary point of bilevel program. However up to now, there is no proof

that the calmness condition would guarantee the boundedness of the penalty parameters.

To cope with this difficulty, recently Xu, Ye and Zhang [51] proposed a weaker version of

the GMFCQ called the weak GMFCQ (WGMFCQ). It was shown in [51] that although

the GMFCQ will never hold for the bilevel program, the weaker version of the GMFCQ

may hold for bilevel programs.

In this paper, we extend the smoothing augmented Lagrange algorithm to the gen-

eral nonsmooth and nonconvex problem (P). We show that if either the exact penalty

sequence is bounded or if all feasible or infeasible accumulation points of the iteration

sequence generated by the algorithm satisfy the WGMFCQ, then any accumulation point
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is a stationary point of the original problem (P). We apply the smoothing augmented La-

grangian method to the bilevel program and verify that either the exact penalty sequence

is bounded or the WGMFCQ holds for all bilevel programs in this paper.

The rest of the paper is organized as follows. In Section 2, we present a summary

of constraint qualifications that will guarantee the global convergence of the algorithm.

In Section 3, we propose a smoothing augmented Lagrangian algorithm for locating a

stationary point of a general nonsmooth and nonconvex optimization problem (P) and

establish a convergence result for the algorithm. In Section 4, we report our numerical ex-

periments for some general nonsmooth and nonconvex constrained optimization problems

as well as some bilevel programs.

We adopt the following standard notation in this paper. For any two vectors a and b

in Rn, we denote by aT b their inner product. Given a function G : Rn → Rm, we denote

its Jacobian by ∇G(z) ∈ Rm×n and, if m = 1, the gradient ∇G(z) ∈ Rn is considered as

a column vector. For a matrix A ∈ Rn×m, AT denotes its transpose. In addition, we let

N be the set of nonnegative integers and exp[z] be the exponential function.

2 Constraint qualifications

The focus of this section is on constraint qualifications. Let ϕ : Rn → R be Lipschitz con-

tinuous near x̄. We denote the Clarke generalized gradient of ϕ at x̄ by ∂ϕ(x̄). Definition

of the Clarke generalized gradient and its properties can be found in [19, 20].

From now on for x̄, a feasible solution of problem (P ), we denote by I(x̄) := {i =

1, · · · , p : gi(x̄) = 0} the active set at x̄.

Definition 2.1 (Stationary point) We call a feasible point x̄ of problem (P) a station-

ary point if there exists a (normal) multiplier λ ∈ Rq such that

0 ∈ ∂f(x̄) +

p∑
i=1

λi∂gi(x̄) +

q∑
j=p+1

λj∂hj(x̄),

λi ≥ 0, λigi(x̄) = 0, i = 1, · · · , p.

The above stationary condition is a Karush-Kuhn-Tucker (KKT) type necessary op-

timality condition. It holds at a locally optimal solution only under certain constraint

qualifications. The Fritz John type necessary optimality condition, however, holds with-

out constraint qualification but has a multiplier attached to the objective function. When

the multiplier corresponding to the objective function in the Fritz John type necessary op-

timality condition vanishes, a multiplier is called an abnormal multiplier (see Clarke [19],

page 235). The Fritz John type necessary optimality condition is equivalent to saying that
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at an optimal solution, either there exists a normal multiplier or there is a nonzero abnor-

mal multiplier. Hence the nonexistence of a nonzero abnormal multiplier would imply the

existence of a normal multiplier. Therefore the following commonly used constraint qual-

ification, under which any locally optimal solution of problem (P) is a stationary point,

follows naturally from the Fritz John type necessary optimality condition [19, Theorem

6.1.1].

Definition 2.2 (NNAMCQ) We say that the no nonzero abnormal multiplier con-

straint qualification (NNAMCQ) holds at a feasible point x̄ of problem (P ) if

0 ∈
∑
i∈I(x̄)

λi∂gi(x̄) +

q∑
j=p+1

λj∂hj(x̄) and λi ≥ 0, i ∈ I(x̄) =⇒ λi = 0, λj = 0. (2.1)

When condition (2.1) holds, we say that the vectors

{vi, i ∈ I(x̄), vp+1, · · · , vq}

where vi ∈ ∂gi(x̄)(i ∈ I(x̄)), vj ∈ ∂hj(x̄)(j = p+ 1, · · · , q) are positively linearly indepen-

dent. Jourani [32] showed that the NNAMCQ is equivalent to the GMFCQ to be defined

as follows.

Definition 2.3 (GMFCQ) A feasible point x̄ is said to satisfy the generalized Mangasarian-

Fromovitz constraint qualification (GMFCQ) for problem (P ) if

(i) vp+1, · · · , vq are linearly independent, where vj ∈ ∂hj(x̄), j = p+ 1, · · · , q;
(ii) there exists a direction d ∈ Rn such that

vTi d < 0, ∀vi ∈ ∂gi(x̄), i ∈ I(x̄),

vTj d = 0, ∀vj ∈ ∂hj(x̄), j = p+ 1, · · · , q.

Although the NNAMCQ and the GMFCQ are equivalent, it is some times easier to verify

the NNAMCQ than the GMFCQ since verifying the NNAMCQ amounts to verifying the

positive linear independence of some vectors. In particular when there is no inequality

constraints or there are only two constraints, the positive linear independence is reduced

to the linear independence. We will explain this point using the examples in Section 4.

In order to accommodate infeasible accumulation points in the numerical algorithm,

we now extend the NNAMCQ and the GMFCQ to infeasible points. Note that when x̄ is

feasible, ENNAMCQ and EGMFCQ reduce to NNAMCQ and GMFCQ respectively.

Definition 2.4 (ENNAMCQ) We say that the extended no nonzero abnormal multi-

plier constraint qualification (ENNAMCQ) holds at x̄ ∈ Rn if

0 ∈
p∑
i=1

λi∂gi(x̄) +

q∑
j=p+1

λj∂hj(x̄) and λi ≥ 0, i = 1, · · · , p,
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p∑
i=1

λigi(x̄) +

q∑
j=p+1

λjhj(x̄) ≥ 0.

implies that λi = 0, λj = 0.

Definition 2.5 (EGMFCQ) A point x̄ ∈ Rn is said to satisfy the extended generalized

Mangasarian Fromovitz constraint qualification (EGMFCQ) for problem (P) if

(i) vp+1, · · · , vq are linearly independent, where vj ∈ ∂hj(x̄), j = p+ 1, · · · , q,
(ii) there exists a direction d such that

gi(x̄) + vTi d < 0, ∀vi ∈ ∂gi(x̄), i = 1, · · · , p,

hj(x̄) + vTj d = 0, ∀vj ∈ ∂hj(x̄), j = p+ 1, · · · , q.

Since the ENNAMCQ and the EGMFCQ may be too strong for some problems to hold,

in [51] we have proposed two weaker constraint qualifications. These two new conditions

are defined for the nonsmooth problem (P) relatively with smoothing functions as to be

defined next.

Definition 2.6 Let g : Rn → R be a locally Lipschitz function. Assume that, for a given

ρ > 0, gρ : Rn → R is a continuously differentiable function. We say that {gρ : ρ > 0} is

a family of smoothing functions of g if lim
z→x, ρ↑∞

gρ(z) = g(x) for any fixed x ∈ Rn.

In order to guarantee the convergence to a stationary point, the smoothing function is

required to have the following property.

Definition 2.7 [18] We say that a family of smoothing functions {gρ : ρ > 0} satisfies the

gradient consistency property if lim sup
z→x, ρ↑∞

∇gρ(z) is nonempty and lim sup
z→x, ρ↑∞

∇gρ(z) ⊆ ∂g(x)

for any x ∈ Rn, where lim sup
z→x, ρ↑∞

∇gρ(z) denotes the set of all limiting points

lim sup
z→x, ρ↑∞

∇gρ(z) :=
{

lim
k→∞
∇gρk(zk) : zk → x, ρk ↑ ∞

}
.

Rockafellar and Wets [45, Example 7.19 and Theorem 9.67] showed that for any locally

Lipschitz function g, one can always find a family of smoothing functions of g with the

gradient consistency property by the integral convolution:

gρ(x) :=

∫
Rn

g(x− y)φρ(y)dy =

∫
Rn

g(y)φρ(x− y)dy,

where φρ : Rn → R+ is a sequence of bounded, measurable functions with
∫
Rn φρ(x)dx = 1

such that the sets Bρ = {x : φρ(x) > 0} form a bounded sequence converging to {0} as
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ρ ↑ ∞. What is more, there are many other smoothing functions with the gradient

consistency property which are not generated by the integral-convolution with bounded

supports. The reader is referred to [12, 14, 16, 17] for more details.

Using the smoothing technique, one approximates the locally Lipschitz functions f(x),

gi(x), i = 1, · · · , p and hj(x), j = p+ 1, · · · , q by families of smoothing functions {fρ(x) :

ρ > 0}, {giρ(x) : ρ > 0}, i = 1, · · · , p and {hjρ(x) : ρ > 0}, j = p + 1, · · · , q which satisfy

the gradient consistency property. Based on the sequence of iteration points generated

by the smoothing SQP algorithm, in [51] we defined the new conditions as follows:

Definition 2.8 (WNNAMCQ) Let {xk} be a sequence of iteration points for problem

(P ) and ρk ↑ ∞ as k →∞. Suppose that x̄ is a feasible accumulation point of the sequence

{xk}. We say that the weakly no nonzero abnormal multiplier constraint qualification

(WNNAMCQ) based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, · · · , p, {hjρ(x) :

ρ > 0}, j = p+ 1, · · · , q holds at x̄ provided that

0 =
∑
i∈I(x̄)

λivi +

q∑
j=p+1

λjvj and λi ≥ 0, i ∈ I(x̄) =⇒ λi = 0, λj = 0,

for any K0 ⊆ K ⊆ N such that lim
k→∞,k∈K

xk = x̄ and

vi = lim
k→∞,k∈K0

∇giρk(xk), i ∈ I(x̄),

vj = lim
k→∞,k∈K0

∇hjρk(xk), j = p+ 1, · · · , q.

Definition 2.9 (WGMFCQ) Let {xk} be a sequence of iteration points for problem

(P ) and ρk ↑ ∞ as k → ∞. Let x̄ be a feasible accumulation point of the sequence

{xk}. We say that the weakly generalized Mangasarian Fromovitz constraint qualification

(WGMFCQ) based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, · · · , p, {hjρ(x) :

ρ > 0}, j = p + 1, · · · , q holds at x̄ provided the following conditions hold. For any

K0 ⊆ K ⊆ N such that lim
k→∞,k∈K

xk = x̄ and any

vi = lim
k→∞,k∈K0

∇giρk(xk), i ∈ I(x̄)

vj = lim
k→∞,k∈K0

∇hjρk(xk), j = p+ 1, · · · , q,

(i) vp+1, · · · , vq are linearly independent;

(ii) there exists a direction d such that

vTi d < 0, for all i ∈ I(x̄),

vTj d = 0, for all j = p+ 1, · · · , q.
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The WNNAMCQ and the WGMFCQ can be extended to infeasible points [51].

Definition 2.10 (EWNNAMCQ) Let {xk} be a sequence of iteration points for prob-

lem (P ) and ρk ↑ ∞ as k → ∞. Let x̄ be a accumulation point of the sequence {xk}.
We say that the extended weakly no nonzero abnormal multiplier constraint qualifica-

tion (EWNNAMCQ) based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, · · · , p,

{hjρ(x) : ρ > 0}, j = p+ 1, · · · , q holds at x̄ provided that

0 =

p∑
i=1

λivi +

q∑
j=p+1

λjvj and λi ≥ 0, i = 1, · · · , p, (2.2)

p∑
i=1

λigi(x̄) +

q∑
j=p+1

λjhj(x̄) ≥ 0. (2.3)

implies that λi = 0, λj = 0 for any K0 ⊆ K ⊆ N such that lim
k→∞,k∈K

xk = x̄ and

vi = lim
k→∞,k∈K0

∇giρk(xk), i = 1, · · · , p,

vj = lim
k→∞,k∈K0

∇hjρk(xk), j = p+ 1, · · · , q.

Definition 2.11 (EWGMFCQ) Let {xk} be a sequence of iteration points for problem

(P ) and ρk ↑ ∞ as k → ∞. Let x̄ be a accumulation point of the sequence {xk}. We

say that the extended weakly generalized Mangasarian Fromovitz constraint qualification

(EWGMFCQ) based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, · · · , p, {hjρ(x) :

ρ > 0}, j = p + 1, · · · , q holds at x̄ provided that the following conditions hold. For any

K0 ⊆ K ⊆ N such that lim
k→∞,k∈K

xk = x̄ and any

vi = lim
k→∞,k∈K0

∇giρk(xk), i = 1, · · · , p,

vj = lim
k→∞,k∈K0

∇hiρk(xk), j = p+ 1, · · · , q,

(i) vp+1, · · · , vq are linearly independent;

(ii) there exists a nonzero direction d ∈ Rn such that

gi(x̄) + vTi d < 0, for all i = 1, · · · , p, (2.4)

hj(x̄) + vTj d = 0, for all j = p+ 1, · · · , q. (2.5)

It was showed in [51] that the EWGMFCQ is equivalent to the EWNNAMCQ.

3 Smoothing augmented Lagrangian method

In this section, we propose a smoothing augmented Lagrangian algorithm and show its

convergence.
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For each smoothing parameter ρ > 0, we use the PHR augmented Lagrangian function

to define the smoothing augmented Lagrangian function as follows:

Gλ,c
ρ (x) := fρ(x) +

1

2c

p∑
i=1

(
max{0, λi + cgiρ(x)}2 − λ2

i

)
+

q∑
j=p+1

(
λjh

j
ρ(x) +

c

2
(hjρ(x))2

)
.

For each ρ > 0, c > 0, λ ∈ Rq, we consider the following penalized problem:

(Pλ,c
ρ ) min

x
Gλ,c
ρ (x).

In the algorithm, we denote the residual function measuring the infeasibility and the

complementarity by

σλρ (x) := max
{
|hjρ(x)|, j = p+ 1, · · · , q, |min{λi,−giρ(x)}|, i = 1, · · · , p

}
.

Since (Pλ,c
ρ ) is a smooth unconstrained optimization problem for each fixed ρ > 0, c >

0, λ ∈ Rq, we suggest to use a gradient descent method to find a stationary point of

the problem. Then we increase the smoothing parameter ρ, update the multiplier λ

and increase the penalty parameter c provided that the residual σλρ (x) has sufficiently

decreased.

We will show that any sequence of the iteration points generated by the algorithm

converges to some stationary point of problem (P) when ρ goes to infinity and the penalty

parameter c is bounded. Furthermore, the EWNNAMCQ guarantees the boundedness of

the sequence of the penalty parameters.

We propose the following smoothing augmented Lagrangian algorithm.

Algorithm 3.1 Let {β, σ1} be constants in (0, 1) and {η̂, σ} be constants in (1,∞). Let

{εk} be a positive sequence converging to 0 and σk be a sequence approaching +∞ with

σkεk → ∞ as k → ∞. Choose an initial point x0 = x1 ∈ Rn, an initial smoothing

parameter ρ0 > 0, an initial penalty parameter c0 > 0 and an initial multiplier λ0 ∈ Rq.

Let constants λmin < 0 and λmax > 0 and take λ̄0 as the Euclidean projection of λ0 onto⊗p
i=1[0, λmax]×

⊗q
i=p+1[λmin, λmax]. Set k := 0.

Let λ1
i = max{0, λ̄0

i + c0g
i
ρ0

(x1)}, i = 1, · · · , p;λ1
j = λ̄0

j + c0h
j
ρ0

(x1), j = p + 1, · · · , q
and take λ̄1 as the Euclidean projection of λ1 onto

⊗p
i=1[0, λmax]×

⊗q
i=p+1[λmin, λmax].

1. If ∇Gλ̄k,ck
ρk

(xk+1) = 0 and σλ
k+1

ρk
(xk+1) = 0, terminate. Otherwise, set k = k+1, and

go to Step 2.

2. Compute dk := −∇Gλ̄k,ck
ρk

(xk). Let xk+1 := xk + αkdk, where αk := βlk , lk ∈
{0, 1, 2 · · ·} is the smallest number satisfying

Gλ̄k,ck
ρk

(xk+1)−Gλ̄k,ck
ρk

(xk) ≤ −αkσ1‖∇Gλ̄k,ck
ρk

(xk)‖2. (3.1)
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If

‖∇Gλ̄k,ck
ρk

(xk+1)‖ < η̂ρ−1
k , (3.2)

set ρk+1 := σρk and go to Step 3. Otherwise, set k = k + 1 and repeat Step 2.

3. Set

λk+1
i = max{0, λ̄ki + ckg

i
ρk

(xk+1)}, i = 1, · · · , p; (3.3)

λk+1
j = λ̄kj + ckh

j
ρk

(xk+1), j = p+ 1, · · · , q. (3.4)

Take λ̄k+1 as the Euclidean projection of λk+1 onto
⊗p

i=1[0, λmax]×
⊗q

i=p+1[λmin, λmax],

and go to Step 4.

4. If

σλ
k+1

ρk
(xk+1) < εk, (3.5)

go to Step 1. Otherwise, set ck+1 := σk+1 + ck, k = k + 1 and go to Step 2.

To prove the convergence theorems we need the following lemma.

Lemma 3.1 Suppose that Algorithm 3.1 does not terminate within finite iterations. Let

{xk} be a sequence generated by Algorithm 3.1 which has an accumulation point. Then

there exists an infinite subset K ⊆ N such that condition (3.2) holds for each k ∈ K and

hence lim
k→∞

ρk = +∞.

Proof. Assume for a contradiction that for any large k, the condition (3.2) fails and thus

there exist k̄, ρ̄, λ̄ and c̄ such that when k ≥ k̄, ρk = ρ̄, λ̄k = λ̄ and ck = c̄.

We first show that there exists an infinite subset K1 ⊆ N such that

lim
k→∞,k∈K1

‖∇Gλ̄,c̄
ρ̄ (xk)‖ = 0. (3.6)

To the contrary, suppose that there exists ε > 0 such that for sufficiently large k > k̄,

‖∇Gλ̄,c̄
ρ̄ (xk)‖ > ε.

From (3.1), we have that for all k > k̄

Gλ̄,c̄
ρ̄ (xk+1)−Gλ̄,c̄

ρ̄ (xk) ≤ −αkσ1‖∇Gλ̄,c̄
ρ̄ (xk)‖2 < −αkσ1ε

2. (3.7)

Since the Armijo line search in Step 2 only requires a small number of iterations, αk will

never approach to 0. It follows from (3.7) that Gλ̄,c̄
ρ̄ (xk) → −∞ as k → ∞. But this is

impossible since Gλ̄,c̄
ρ̄ (x) is continuous and {xk} has an accumulation point x∗. Therefore,

there exists an infinite subset K := {k − 1 : k ∈ K1} such that the condition (3.2) holds

for each k ∈ K. By the updating rule in Algorithm 3.1 we must have lim
k→∞

ρk = +∞.
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Theorem 3.1 Suppose Algorithm 3.1 does not terminate within finite iterations. Let x∗

be an accumulation point of the sequence {xk} generated by Algorithm 3.1. If {ck} is

bounded, then x∗ is a stationary point of problem (P).

Proof. Without loss of generality, assume that lim
k→∞

xk = x∗. From the updating rule of

ck in the algorithm, the boundedness of {ck} is equivalent to saying that condition (3.5)

holds for sufficiently large k and thus lim
k→∞

σλ
k+1

ρk
(xk+1) = 0. It follows from the definition

of σλρ (·) that |hjρk(xk+1)| < εk, j = p + 1, · · · , q and giρk(xk+1) < εk, i = 1, · · · , p for

sufficiently large k. Thus {λk} is bounded from the updating rule (3.3) and (3.4).

Since {giρ : ρ > 0}, i = 1, · · · , p, {hjρ : ρ > 0}, j = p+1, · · · , q are families of smoothing

functions of gi, i = 1, · · · , p, hj, j = p + 1, · · · , q, taking limits as k → ∞ we have

hj(x
∗) = 0, j = p+ 1, · · · , q, gi(x∗) ≤ 0, i = 1, · · · , p. Let

µλ,cρ,i (x) := max{0, λi + cgiρ(x)}, i = 1, · · · , p,

µλ,cρ,j(x) := λj + chjρ(x), j = p+ 1, · · · , q.

By calculation, we have

∇Gλ̄k,ck
ρk

(xk+1) = ∇fρk(xk+1) +

p∑
i=1

µλ̄
k,ck
ρk,i

(xk+1)∇giρk(xk+1)

+

q∑
j=p+1

µλ̄
k,ck
ρk,j

(xk+1)∇hjρk(xk+1). (3.8)

From the definition of µλ,cρ (·) and the updating rule (3.3)− (3.4), we have µλ̄
k,ck
ρk,i

(xk+1) =

λk+1
i , i = 1, · · · , p and µλ̄

k,ck
ρk,j

(xk+1) = λk+1
j , j = p + 1, · · · , 1. Note that, by the bound-

edness of {λk}, there is a subsequence K0 ⊆ N such that {λk}K0 is convergent. Let

λ∗ := lim
k→∞, k∈K0

λk.

By the gradient consistency property of fρ(·), giρ(·), i = 1, · · · , p and hjρ(·), j = p +

1, · · · , q, there exists a subsequence K̄0 ⊆ K0 such that

lim
k→∞, k∈K̄0

∇fρk(xk) ∈ ∂f(x∗),

lim
k→∞, k∈K̄0

∇giρk(xk) ∈ ∂gi(x∗), i = 1, · · · , p,

lim
k→∞, k∈K̄0

∇hjρk(xk) ∈ ∂hj(x∗), j = p+ 1, · · · , q.

From Lemma 3.1 and condition (3.2), we know that lim
k→∞
∇Gλ̄k,ck

ρk
(xk+1) = 0. Taking limits

in (3.8) as k →∞, k ∈ K̄0, by the gradient consistency properties, we have

0 ∈ ∂f(x∗) +

p∑
i=1

λ∗i∂gi(x
∗) +

q∑
j=p+1

λ∗j∂hj(x
∗). (3.9)
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The feasibility of x∗ follows from taking the limits in lim
k→∞

σλ
k+1

ρk
(xk+1) = 0. It follows from

(3.3) that λ∗i ≥ 0, i = 1, · · · , p. We now show that the complementary slackness condition

holds. If gi(x
∗) < 0 for certain i ∈ {1, . . . , p}, we have giρk(xk+1) < 0 for sufficiently

large k since {giρ : ρ > 0} are families of smoothing functions of gi, i = 1, · · · , p. Then

λ∗i = lim
k→∞, k∈K̄0

λk+1
i = 0 since lim

k→∞
σλ

k+1

ρk
(xk+1) = 0. Therefore x∗ is a stationary point of

problem (P) and the proof of the theorem is complete.

Theorem 3.2 Suppose Algorithm 3.1 does not terminate within finite iterations and

{xk, ρk, λk, ck} is a sequence generated by Algorithm 3.1. If for every K ⊆ N and x∗

such that lim
k→∞,k∈K

xk = x∗, the EWNNAMCQ holds at x∗, then {ck} is bounded.

Proof. Assume for a contradiction that {ck} is unbounded. Since x∗ is an arbitrary ac-

cumulation point, we assume there exists an infinite index set K̃ ⊆ K such that condition

(3.5) fails for every k ∈ K̃ sufficiently large. Then for sufficiently large k ∈ K̃, at least

one of the following conditions hold:

(a) there exists an index i1 ∈ {1, · · · , p} such that gi1ρk(xk+1) ≥ εk,

(b) there exists an index j1 ∈ {p+ 1, · · · , q} such that |hj1ρk(xk+1)| ≥ εk.

By the gradient consistency property of fρ(·), giρ(·), i = 1, · · · , p and hjρ(·), j = p+1, · · · , q,
there exists a subsequence K̄ ⊆ K̃ such that

v0 := lim
k→∞, k∈K̄

∇fρk(xk) ∈ ∂f(x∗),

vi := lim
k→∞, k∈K̄

∇giρk(xk) ∈ ∂gi(x∗), i = 1, · · · , p,

vj := lim
k→∞, k∈K̄

∇hjρk(xk) ∈ ∂hj(x∗), j = p+ 1, · · · , q.

From the updating rule of ck, we have ckεk → +∞ as k → ∞. Thus by the definition

of µλ,cρ (·), under either case (a) or case (b), we have ‖µλ̄k,ckρk
(xk+1)‖ → ∞. There exists a

subsequence K̄0 ⊆ K̄ and µ ∈ Rq nonzero such that

lim
k→∞,k∈K̄0

µλ̄
k,ck
ρk

(xk+1)

‖µλ̄k,ckρk (xk+1)‖
= µ.

It follows from the definition of µλ,cρ (·) that µi ≥ 0, i = 1, · · · , p.
Similarly as in Theorem 3.1, lim

k→∞
∇Gλ̄k,ck

ρk
(xk+1) = 0. Dividing by ‖µλ̄k,ckρk

(xk+1)‖ in

both sides of (3.8) and letting k →∞ in K̄0, we have

0 =

p∑
i=1

µivi +

q∑
j=p+1

µjvj. (3.10)
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We now show that

p∑
i=1

µigi(x
∗) +

q∑
j=p+1

µjhj(x
∗) ≥ 0 (3.11)

and consequently conditions (3.10) and (3.11) contradict with the assumption that the

EWNNAMCQ holds. We first show that µigi(x
∗) ≥ 0. If gi(x

∗) < 0 for certain i ∈
{1, . . . , p}, giρk(xk+1) < 0 for sufficiently large k since {giρ : ρ > 0} are families of smoothing

functions of gi, i = 1, · · · , p. Thus µi = lim
k→∞, k∈K̄0

µλ̄
k,ck
ρk,i

(xk+1) = 0 by the definitions

µλ,cρ (·) and the unboundedness of {ck}. Consequently we have µi = 0 if gi(x
∗) < 0, for

i ∈ {1, · · · , p}. Next we show that µjhj(x
∗) ≥ 0. Since ck → ∞ as k → ∞, we have for

sufficiently large k ∈ K̄0,

λ̄kjh
j
ρk

(xk+1) + ck(h
j
ρk

(xk+1))2 > 0.

Thus

µjhj(x
∗) = lim

k→∞,k∈K̄0

µλ̄
k,ck
ρk,j

(xk+1)

‖µλ̄k,ckρk (xk+1)‖
hjρk(xk+1) = lim

k→∞,k∈K̄0

λ̄kjh
j
ρk

(xk+1) + ck(h
j
ρk

(xk+1))2

‖µλ̄k,ckρk (xk+1)‖
≥ 0

and hence (3.11) holds. The contradiction shows that {ck} is bounded.

The following corollary follows immediately from Theorems 3.1 and 3.2.

Corollary 3.1 Suppose that Algorithm 3.1 does not terminate within finite iterations.

If the EWNNAMCQ holds at any accumulation point of the sequence {xk} generated by

Algorithm 3.1, then any accumulation point is a stationary point of problem (P).

4 Applications and numerical examples

In this section, we first test our algorithm on two general nonsmooth and nonconvex

constrained optimization problems. Then we apply the algorithm to the bilevel programs.

Before presenting numerical examples, we first give some remarks on choosing the

parameters in the algorithm. In the Armijo line search, a small σ1 gives the step-size too

much flexibility while increasing σ1 makes the search for step-size costly. σ1 = 0.8 is a

good selection from our experience.

Since we would like to increase ρk fast in the beginning of the algorithm and then

let ρk grow slowly to infinity, η̂ should be a large constant. In practice taking different

initial parameter ρ0 usually leads to similar results. According to our experience, if a

relatively large initial parameter ρ0 is chosen, then a smaller σ should be taken to let ρk
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goes to infinity slowly. We suggest to choose a relatively small ρ0 to guarantee a faster

convergence rate.

λmax and λmin are upper and lower bounds for the projected multiplier λ̄ and can be

chosen arbitrarily. In the algorithm, we select λmax = 104 and λmin = −104. There are

different ways for choosing {εk} and {σk}. In our experiments, unless otherwise specified,

we select the sequences as εk := σ′
√
k
, σk := k2 for each k, where σ′ > 0 is a small constant.

In numerical practise, it is impossible to obtain an exact ‘0’, thus we select some small

enough ε > 0, ε1 > 0 and change the update rule of ck to the case when

σλ
k+1

ρk
(xk+1) < max{εk, ε1} (4.1)

and terminate the algorithm when

∇Gλ̄k,ck
ρk

(xk+1) < ε and σλ
k+1

ρk
(xk+1) < ε1.

4.1 Illustrative examples for general problems

In this subsection, we illustrate Algorithm 3.1 by two general nonsmooth and nonconvex

constrained optimization problems.

The first task in designing a smoothing method is to find a family of smoothing func-

tions with the gradient consistency property for nonsmooth functions involved. Many

nonsmooth functions can be considered as a composition of a smooth function with a

plus function (t)+ := max{0, t}. Chen and Mangasarian [16] constructed smooth approx-

imations to the plus function by using the integral convolution with density functions as

follows. Let φ : R → R+ be a piecewise continuous density function with φ(s) = φ(−s)

and

∫ +∞

−∞
|s|φ(s)ds < ∞. Then ψµ(t) :=

∫ +∞

−∞
(t − µs)+φ(s)ds, with µ ↓ 0 is a fam-

ily of smoothing functions of the plus function with the gradient consistency property.

Choosing φ(s) := 2

(s2+4)
3
2

results in the so-called the CHKS (Chen-Harker-Kanzow-Smale)

smoothing function of (t)+ ([15, 33, 47]):

ψ1
µ(t) :=

1

2

(
t+
√
t2 + 4µ2

)
.

Choosing φ(s) :=

{
0, if |s| > 1

2

1, if |s| ≤ 1
2
,

results in the so-called uniform smoothing function

of (t)+:

ψ2
µ(t) :=

{
(t)+, if |t| > µ

2
1

2µ
(t+ µ

2
)2, if |t| ≤ µ

2
.
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Since |t| = (t)+ + (−t)+, approximating (t)+ by ψ2
µ(t) and (−t)+ by ψ2

µ(−t) respectively

results in the following smoothing function of |t| which is used frequently:

ψ3
µ(t) :=

{
|t|, if |t| > µ

2
t2

µ
+ µ

4
, if |t| ≤ µ

2
.

Example 4.1 [23, Example 5.1] Consider the nonsmooth constrained optimization pro-

gram of minimizing a nonsmooth Rosenbrock function subject to an inequality constraint

on a weighted maximum value of the variables:

min f(x, y) := 8|x2 − y|+ (1− x)2

s.t. g(x, y) := max{
√

2x, 2y} − 1 ≤ 0.

The unique optimal solution of the problem is (x̄, ȳ) = (
√

2
2
, 1

2
).

Since the Clarke generalized gradient of the constraint function is

∂g(x, y) =


(
√

2, 0), if
√

2x > 2y

co{(
√

2, 0), (0, 2)}, if
√

2x = 2y

(0, 2), if
√

2x < 2y,

where co denotes the convex hull, we have (0, 0) /∈ ∂g(x, y), ∀(x, y) which implies that the

ENNAMCQ is satisfied at every point in R2. Our convergent theorem guarantees that

any accumulation point of the iteration sequence must be a stationary point.

Rewrite the objective function and the constraint function as

f(x, y) = 8
(
(x2 − y)+ + (−x2 + y)+

)
+ (1− x)2

g(x, y) =
√

2x+ (2y −
√

2x)+ − 1.

Since (x2 − y)+ is a composition of the smooth function x2 − y with the plus function

and ∇(x2 − y) has full rank, by [12, Theorem 4.6], ψ1
µ(x2 − y) is a smoothing function of

(x2−y)+ with the gradient consistency property. Similarly ψ1
µ(−x2 +y) and ψ1

µ(2y−
√

2x)

are smoothing functions of (−x2 + y)+ and (2y −
√

2x)+ with the gradient consistency

property respectively. Taking ρ = 1
4µ2

, it follows that

fρ(x, y) := 8
√

(x2 − y)2 + ρ−1 + (1− x)2,

gρ(x, y) :=
1

2

(√
2x+ 2y +

√
(2y −

√
2x)2 + ρ−1

)
− 1

form the family of smoothing functions for f(x, y) and g(x, y) with the gradient consis-

tency property.
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In our test, we choose the initial point (x0, y0) = (0.5, 0.3) and the parameters β =

0.8, σ1 = 0.7, ρ0 = 100, c0 = 100, η̂ = 103, σ = 10, σ′ = 10−3, λ0 = 100 and ε = 10−5,

ε1 = 10−6. The stopping criteria

∇Gλ̄k,ck
ρk

(xk+1) < ε and σλ
k+1

ρk
(xk+1) < ε1

hold with (xk+1, yk+1) = (0.7071, 0.500), which is a good approximation of the true optimal

solution.

Example 4.2 [7, Example 5.1] Consider the nonsmooth constrained optimization pro-

gram of minimizing a nonsmooth Rosenbrock function subject to one nonsmooth inequal-

ity constraint and one linear equality constraint:

min f(x, y) := 8|x2 − y|+ (1− x)2

s.t. g(x, y) := x2 + |y| − 4 ≤ 0,

h(x, y) := x−
√

2y = 0.

The unique optimal solution of the problem is (x̄, ȳ) = (
√

2
2
, 1

2
).

Note that ∇h(x, y) = (1,−
√

2) and

∂g(x, y) =


(2x, 1), if y > 0

co{(2x, 1), (2x,−1)}, if y = 0

(2x,−1), if y < 0.

For all (x, y) in a sufficiently small neighbourhood of (x̄, ȳ), ∂g(x, y) = {(2x, 1)}. For each

(x, y) in a sufficiently small neighbourhood of (x̄, ȳ), the vectors {(2x, 1), (1,−
√

2)} are

linearly independent, thus the ENNAMCQ holds. Our convergent theorem guarantees

that any accumulation point of the iteration sequence which is in a sufficiently small

neighbourhood of (x̄, ȳ) must be a stationary point.

Since |x2 − y| is a composition of the smooth function x2 − y with the absolute value

function and ∇(x2 − y) has full rank, by [12, Theorem 4.6], ψ3
µ(x2 − y) is a smoothing

function of |x2−y| with the gradient consistency property. Similarly ψ3
µ(y) is a smoothing

function of |y| with the gradient consistency property respectively. Taking µ = 1
ρ
, it follows

that

fρ(x, y) := 8ψ3
ρ(x

2 − y) + (1− x)2,

gρ(x, y) := x2 + ψ3
ρ(y)− 4

form the family of smoothing functions for f(x, y) and g(x, y) with the gradient consis-

tency property respectively.
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In our test, we choose the initial point (x0, y0) = (0.3, 0.2) and the parameters β =

0.8, σ1 = 0.7, ρ0 = 100, c0 = 100, η̂ = 5 × 103, σ = 10, σ′ = 10−3, λ0 = (100, 100) and

ε = 5× 10−4, ε1 = 10−5. The stopping criteria

∇Gλ̄k,ck
ρk

(xk+1) < ε and σλ
k+1

ρk
(xk+1) < ε1

hold with (xk+1, yk+1) = (0.70711, 0.50001), which is a good approximation of the true

optimal solution.

4.2 Applications to the bilevel program

In this subsection, we consider the simple bilevel program

(SBP) min F (x, y)

s.t. gi(x, y) ≤ 0, i = 1, · · · , l,

x ∈ Rn, y ∈ S(x),

where S(x) denotes the set of solutions of the lower level program

(Px) min
y∈Y

f(x, y),

where Y is a compact subset of Rm respectively, f, F, gi, i = 1, · · · , l : Rn × Rm → R are

continuously differentiable functions and f is twice continuously differentiable in variable

y. In the

The principal-agent problem [37] is one of the most important applications of the

simple bilevel program. Applications and recent developments of general bilevel programs

where the constraint set Y may depend on x can be found in [5, 24, 25, 46, 49].

When the lower level program is convex in variable y, it is common to replace the

lower level program by its first order conditions. For a general SBP where the lower level

problem may not be convex, Mirrlees [37] pointed out that the first order approach is not

valid to solve (SBP) since the true optimal solution may not even be a stationary point

of the problem reformulated by the first order approach .

By using the value function of the lower level program defined as V (x) := inf
y∈Y

f(x, y),

Ye and Zhu [53, 54] studied the first order condition for the following equivalent formula-

tion under the partial calmness condition:

(VP) min F (x, y)

s.t. f(x, y)− V (x) = 0, (4.2)

gi(x, y) ≤ 0, i = 1, · · · , l,

x ∈ Rn, y ∈ Y.

17



However, Ye and Zhu [55] illustrated that the partial calmness condition is still too strong

to hold for many bilevel problems (for example, the Mirrlees’ problem) and proposed a

new first order necessary optimality condition by considering the combined program with

both the first order condition of the lower level problem and the value function constraint.

For a general bilevel program, the lower level problem may have equality and/or inequal-

ity constraints and the first order condition is the KKT condition. If the lower level

has inequality constraints, then the resulting combined program is a nonsmooth math-

ematical program with complementarity constraints and necessary conditions of Clarke,

Mordukhovich and Strong (C, M, S) type have been studied in Ye and Zhu [55] and Ye

[52]. For the simple bilevel program we consider in this paper the constraint of the lower

level problem is a fixed set Y independent of x. If Y can be represented by some equal-

ity and/or inequality constraints, then one can use the KKT condition as the first order

condition and the resulting combined program can be studied using the result of previous

section. However to concentrate the main idea and simplify the exposition we assume

that for any accumulation point (x̄, ȳ), ȳ lies in the interior of the set Y . Moreover this

assumption is not too strong since in practice usually one has some idea on where the

optimal solution lies and can enlarge the set Y so that the optimal solution lies in the

interior of Y . Taking this into consideration we should try to find the stationary point of

the following combined program:

(CP) min F (x, y)

s.t. f(x, y)− V (x) ≤ 0,

gi(x, y) ≤ 0, i = 1, · · · , l,

0 = ∇yf(x, y)

x ∈ Rn, y ∈ Y.

Since the value function V (x) is usually nonsmooth, the problems (VP) and (CP) are

both nonsmooth and nonconvex optimization problems. Note that for the stationary

point whose y component lies in the interior of set Y , the constraint y ∈ Y can be ignored

and hence it is a problem of the type we study in this paper. To develop a numerical

algorithm for problem (VP), Lin, Xu and Ye [36] proposed to approximate the value

function by its integral entropy function:

γρ(x) := −ρ−1 ln

(∫
Y

exp[−ρf(x, y)]dy

)
= V (x)− ρ−1 ln

(∫
Y

exp[−ρ(f(x, y)− V (x))]dy

)
and proved that γρ(x) satisfies the gradient consistency property. The advantage of using

the integral entropy function to approximate the value function is that we do not need
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to evaluate V (x) or its Clarke generalized gradient. This means that we do not need to

solve the lower level program during the iteration process of our smoothing algorithms.

Xu and Ye [50] proposed a projected smoothing augmented Lagrangian method to

solve the combined program (CP). They showed that if the sequence of penalty param-

eters is bounded, then any accumulation point is a stationary point of the combined

program. Although it was observed in [50] that the smoothing augmented Lagrangian

method is efficient for the problem (CP), no sufficient conditions were given under which

the sequence of penalty parameters is bounded. From the results in Section 3, we know

that EWNNAMCQ is a sufficient condition under which the sequence of penalty param-

eters for problem (CP) is bounded. In the rest of this subsection, we apply Algorithm

3.1 to the combined program (CP), and verify that the WNNAMCQ holds for all bilevel

programs presented here except one.

Example 4.3 (Mirrlees’ problem) [37] Consider Mirrlees’ problem

min F (x, y) := (x− 2)2 + (y − 1)2

s.t. y ∈ S(x),

where S(x) is the solution set of the lower level program

min f(x, y) := −x exp[−(y + 1)2]− exp[−(y − 1)2]

s.t. y ∈ [−2, 2].

It was shown in [37] that the unique optimal solution is (x̄, ȳ) with x̄ = 1, ȳ ≈ 0.9575 .

In our test, we choose the initial point (x0, y0) = (0.5, 0.6) and the parameters β =

0.8, σ1 = 0.7, ρ0 = 100, c0 = 100, η̂ = 103, σ = 10, σ′ = 10−3, λ0 = (100, 100) and

ε = 10−5, ε1 = 5× 10−4. The stopping criteria

∇Gλ̄k,ck
ρk

(xk+1, yk+1) < ε and σλ
k+1

ρk
(xk+1, yk+1) < ε1

hold with (xk+1, yk+1) = (1.0004, 0.95749). It seems that the sequence converges to (x̄, ȳ).

Since

∇f(xk+1, yk+1)− (∇γρk(xk+1), 0) = (0.9755, 0),

∇(∇yf)(xk+1, yk+1) = (0.08484, 1.7002),

it is easy to see that the vectors ∇f(x̄, ȳ) − ( lim
k→∞
∇γρk(xk+1), 0) and ∇(∇yf)(x̄, ȳ) are

linearly independent. Thus the WNNAMCQ holds at (x̄, ȳ) and our algorithm guarantees

that (x̄, ȳ) is a stationary point of (CP).
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Example 4.4 [39, Example 3.3]

min F (x, y) := x2 − y

s.t. y ∈ argmin
y∈[0,3]

{f(x, y) := ((y − 1− 0.1x)2 − 0.5− 0.5x)2}.

Mitsos et al. [39] found an approximate optimal solution for the problem to be (x̄, ȳ) =

(0.2106, 1.799).

In our test, we choose the initial point (x0, y0) = (0.3, 1.5) and the parameters β =

0.8, σ1 = 0.7, ρ0 = 100, c0 = 100, η̂ = 200, σ = 5, σ′ = 10−2, λ0 = (100, 100) and

ε = 5× 10−5, ε1 = 5× 10−6. We select σk := k for each k. The stopping criteria

∇Gλ̄k,ck
ρk

(xk+1, yk+1) < ε and σλ
k+1

ρk
(xk+1, yk+1) < ε1

hold with (xk+1, yk+1) = (0.2145255, 1.800723).

Table 1: Example 4.4

k (xk, yk) ∇f(xk, yk)− (∇γρk(xk), 0) σλ
k+1

ρk
(xk+1, yk+1) ck

663 (0.2145255,1.800723) (−7.188× 10−5,−1.32× 10−7) 3.426965× 10−6 305

664 (0.2145255,1.800723) (−7.193× 10−5,−7.557× 10−8) 3.426966× 10−6 305

665 (0.2145255,1.800723) (−7.222× 10−5,−9.728× 10−8) 3.426966× 10−6 305

666 (0.2145255,1.800723) (−7.210× 10−5,−7.155× 10−8) 3.426966× 10−6 305

667 (0.2145255,1.800723) (−7.233× 10−5,−8.46× 10−8) 3.426967× 10−6 305

668 (0.2145255,1.800723) (−7.247× 10−5,−7.339× 10−8) 3.426967× 10−6 305

669 (0.2145255,1.800723) (−7.26× 10−5,−7.739× 10−8) 3.426967× 10−6 305
...

...
...

...
...

Table 1 reports results of some iterations. From the table, it seems that (x̄, ȳ) ≈
(0.2145255, 1.800723) is a limit point of the iteration sequence (xk, yk). Since the se-

quence ∇f(xk+1, yk+1)− (∇γρk(xk+1), 0) tends to 0 as k →∞, the WNNAMCQ may not

hold at (x̄, ȳ). However we observe that σλ
k+1

ρk
(xk+1, yk+1) also approaches 0. Therefore

the feasibility and the complementarity follow the gradient consistency property and the

continuity of functions. Moreover from the update rule (4.1), we do not update ck when

σλ
k+1

ρk
(xk+1, yk+1) is sufficiently small and hence ck is likely to be bounded. Therefore, the

limit point should be a stationary point of the bilevel program from Theorem 3.1.
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Example 4.5 [38, Example 3.14] The bilevel program

min F (x, y) := (x− 1

4
)2 + y2

s.t. y ∈ argmin
y∈[−1,1]

{f(x, y) := y3

3
− xy}.

has the optimal solution point (x̄, ȳ) = (1
4
, 1

2
) with an objective value of 1

4
.

In our test, we choose the initial point (x0, y0) = (0.3, 0.7) and the parameters β =

0.8, σ1 = 0.8, ρ0 = 100, c0 = 100, η̂ = 103, σ = 10, σ′ = 10−3, λ0 = (100, 100) and

ε = 10−4, ε1 = 10−5. The stopping criteria

∇Gλ̄k,ck
ρk

(xk+1, yk+1) < ε and σλ
k+1

ρk
(xk+1, yk+1) < ε1

hold with (xk+1, yk+1) = (0.2500, 0.49999). It seems that the sequence converges to (x̄, ȳ).

Since

∇f(xk+1, yk+1)− (∇γρk(xk+1), 0) = (−0.0991,−9.09× 10−6),

∇(∇yf)(xk+1, yk+1) = (−1, 0.9998),

it is easy to see that the vectors ∇f(x̄, ȳ) − ( lim
k→∞
∇γρk(xk+1), 0) and ∇(∇yf)(x̄, ȳ) are

linearly independent. Thus the WNNAMCQ holds at (x̄, ȳ) and our algorithm guarantees

that (x̄, ȳ) is a stationary point of (CP).

Example 4.6 [38, Example 3.20] The bilevel program

min F (x, y) := (x− 0.25)2 + y2

s.t. y ∈ argmin
y∈[−1,1]

{f(x, y) := 1
3
y3 − x2y}.

has the optimal solution point (x̄, ȳ) = (1
2
, 1

2
) with an objective value of 5

16
.

In our test, we choose the initial point (x0, y0) = (0.3, 0.2) and the parameters β =

0.8, σ1 = 0.8, ρ0 = 100, c0 = 100, η̂ = 103, σ = 10, σ′ = 10−3, λ0 = (100, 100) and

ε = 10−5, ε1 = 5× 10−5. The stopping criteria

∇Gλ̄k,ck
ρk

(xk+1, yk+1) < ε and σλ
k+1

ρk
(xk+1, yk+1) < ε1

hold with (xk+1, yk+1) = (0.5000, 0.49997). It seems that the sequence converges to (x̄, ȳ).

Since

∇f(xk+1, yk+1)− (∇γρk(xk+1), 0) = (−1.5,−2.8× 10−5),

∇(∇yf)(xk+1, yk+1) = (−1, 0.9999),

by continuity of the functions and the gradient consistency properties, it seems that the

vectors ∇f(x̄, ȳ)− ( lim
k→∞
∇γρk(xk+1), 0) and ∇(∇yf)(x̄, ȳ) are linearly independent. Thus

the WNNAMCQ holds at (x̄, ȳ). Our algorithm guarantees that (x̄, ȳ) is a stationary

point of (CP).
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