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Abstract. This paper aims at developing effective numerical methods for solving mathematical

programs with equilibrium constraints. Due to the existence of complementarity constraints, the usual

constraint qualifications do not hold at any feasible point, and there are various stationarity concepts such

as Clarke, Mordukhovich, and strong stationarities that are specially defined for mathematical programs

with equilibrium constraints. However, since these stationarity systems contain some unknown index sets,

there has been no numerical method for solving them directly. In this paper, we remove the unknown

index sets from these stationarity systems successfully and reformulate them as smooth equations with box

constraints. We further present a modified Levenberg-Marquardt method for solving these constrained

equations. We show that, under some weak local error bound conditions, the method is locally and

superlinearly convergent. Furthermore, we give some sufficient conditions for local error bounds and show

that these conditions are not very stringent by a number of examples.
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1 Introduction

Mathematical program with equilibrium constraints (MPEC) is a constrained optimization problem, in

which the essential constraints are defined by some parametric variational inequalities or parametric

complementarity systems. MPEC is a class of very important problems since they arise frequently in

applications; see [1, 2] for references. One main source of MPEC comes from bilevel programming

problems, which have numerous applications in practice. The challenge in theoretical and numerical

treatment of MPEC arises from the fact that the Mangasarian-Fromovitz constraint qualification (MFCQ)

is violated at every feasible point; see [3]. Nevertheless, there have been great progresses made on

Lei Guo, Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai 200030, China, and Department of
Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 2Y2 Canada. E-mail: guolayne@gmail.com.

Gui-Hua Lin (corresponding author), School of Management, Shanghai University, Shanghai 200444, China. E-mail:
guihualin@shu.edu.cn.

Jane J. Ye, Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 2Y2 Canada. E-mail:
janeye@uvic.ca

1



theoretical issues including various necessary and sufficient optimality conditions, constraint qualifications,

stability analysis, and sensitivity analysis; see, e.g., [4–8]. In particular, various stationarity concepts such

as Clarke (or C-) stationarity, Mordukhovich (or M-) stationarity, strong (or S-) stationarity, and various

constraint qualifications that ensure a local minimizer of MPEC is C-/M-/S-stationary have been studied;

see [6,7] for more discussions. Moreover, many numerical methods have been proposed to solve MPEC; see,

e.g., [9] and the references therein.

One way to solve a standard nonlinear programming problem is to solve its Karush-Kuhn-Tucker

(KKT) system by using some numerical methods such as Newton-type methods. It is known that solving

an S-stationarity system is equivalent to solving the KKT system for the original MPEC as a nonlinear

programming problem with equality and inequality constraints; see Theorem 3.1 given below. However,

since the MFCQ fails to hold at every feasible point when the MPEC is treated as a standard nonlinear

programming problem, a local minimizer of MPEC may not be a solution of the classical KKT system.

Moreover, to guarantee the quadratic convergence of the Newton-type methods for solving the classical

KKT system, the Jacobian of the classical KKT system is usually required to be nonsingular, which is

implied by the linear independent constraint qualification (LICQ) and the second order sufficient condition;

see, e.g., [10, page 441]. Since the LICQ fails to hold for MPEC, the classical KKT system may be

degenerate, i.e., the Jacobians of the resulting system may be singular, and hence the Newton-type

methods may not be stable. On the other hand, since the C-/M-/S-stationarity systems for MPEC contain

some unknown index sets, they are all uncertain systems, so that we cannot solve them directly.

We present a novel approach in this paper: By removing the unknown index sets from the

C-/M-/S-stationarity systems, we reformulate them as constrained equations. We further propose a

modified Levenber-Marguardt (LM) method to solve the constrained equations, and show that the method

is locally and superlinearly convergent under some local error bound conditions.

2 MPEC Stationarities

We consider the MPEC in the form

min f(x) s.t. g(x) ≤ 0, h(x) = 0, 0 ≤ G(x) ⊥ H(x) ≥ 0, (1)

where f : IRn → IR, g : IRn → IRp, h : IRn → IRq, and G,H : IRn → IRm are all twice differentiable, and their

second order derivatives are locally Lipschitzian, whereas a ⊥ b means that a is perpendicular to b.
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For a nonconvex optimization problem, stationary points are good candidates for local minimizers, and

most existing numerical algorithms aim at finding stationary points. Unlike the classical nonlinear

programming problems, which have only one kind of KKT conditions, there are various kinds of KKT-type

conditions for MPEC. In this section, we first review the definitions of the popular stationarity conditions,

and then we give some examples to show that it is important to study various stationary points. We refer

the reader to [6, 7] for more discussions of these stationarity conditions.

Let F be the feasible region of problem (1). For a given point x∗ ∈ F , let I∗g := { i | gi(x∗) = 0},

I∗ := { i | Gi(x∗) = 0 < Hi(x
∗)}, J ∗ := { i | Gi(x∗) = 0 = Hi(x

∗)}, and K∗ := { i | Gi(x∗) > 0 = Hi(x
∗)}.

Obviously, {I∗,J ∗,K∗} is a partition of {1, 2, · · · ,m}. Given a mapping F : IRn → IRl and a vector x ∈ IRn,

∇F (x) stands for the transposed Jacobian of F at x.

Definition 2.1. (1) We call x∗ ∈ F a weakly stationary point of problem (1) iff there exist multipliers

(λ, µ, u, v) ∈ IRp × IRq × IRm × IRm satisfying

∇f(x∗) +∇g(x∗)λ+∇h(x∗)µ−∇G(x∗)u−∇H(x∗)v = 0, (2)

min(λ,−g(x∗)) = 0, (3)

ui = 0 (i ∈ K∗), vi = 0 (i ∈ I∗). (4)

(2) We call x∗ ∈ F a Clarke stationary point or a C-stationary point of problem (1) iff there exist multipliers

(λ, µ, u, v) ∈ IRp × IRq × IRm × IRm satisfying (2)–(4) and

uivi ≥ 0 for each i ∈ J ∗. (5)

(3) We call x∗ ∈ F a Mordukhovich stationary point or an M-stationary point of problem (1) iff there exist

multipliers (λ, µ, u, v) ∈ IRp × IRq × IRm × IRm satisfying (2)–(4) and

either uivi = 0 or ui > 0, vi > 0 for each i ∈ J ∗. (6)

(4) We call x∗ ∈ F a strongly stationary point or an S-stationary point of problem (1) iff there exist

multipliers (λ, µ, u, v) ∈ IRp × IRq × IRm × IRm satisfying (2)–(4) and

ui ≥ 0, vi ≥ 0 for each i ∈ J ∗. (7)

The relations among the above stationarities can be stated as follows:
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S-stationarity ⇒ M-stationarity ⇒ C-stationarity ⇒ weak stationarity.

In what follows, we use some examples to illustrate the importance of studying these stationarities.

Example 2.1. Consider the problem

min x1 − 2x2 s.t. x1 − x2 ≥ 0, 0 ≤ x1 ⊥ x2 ≥ 0. (8)

Since all constraint functions are affine, any local minimizer must be M-stationary [7]. By solving the weak

stationarity conditions

(
1
−2

)
−
(

1
−1

)
λ− ( 1

0 )u− ( 0
1 ) v = 0, min(λ, x1 − x2) = 0, min(x1, x2) = 0, x1u = x2v = 0,

we know that problem (8) has a unique weakly stationary point x∗ = (0, 0) with multipliers u = 1 − λ,

v = λ− 2, and λ ≥ 0. The only nonempty index set is J ∗. Since u and v cannot be both non-negative, x∗

is not an S-stationary point. By taking λ = 1 or λ = 2, we have uv = 0. Therefore, the unique minimizer

(0, 0) is an M-stationary point, but not an S-stationary point.

Example 2.2. Consider the problem

min x1 + x2 − x3 −
1

2
x4 s.t. − 6x1 + x3 + x4 ≤ 0, −6x2 + x3 ≤ 0, x2

4 ≤ 0, 0 ≤ x1 ⊥ x2 ≥ 0.

Similarly to Example 2.1, by solving the weak stationarity conditions, we can obtain the unique weakly

stationary point x∗ = (0, 0, 0, 0) with multipliers u = v = −2, λ1 = λ2 = 1
2 , and λ3 ≥ 0. The only nonempty

index set is J ∗. Since u < 0 and v < 0, the unique minimizer (0, 0, 0, 0) is a C-stationary point, but not an

M-stationary point.

From the above two examples, one may tend to think that the reason that a minimizer is not an

S-stationary point (or not an M-stationary point) is the nonexistence of an S-stationary point (or an

M-stationary point). The following two examples show that, even S- or M-stationary points exist, the

problem may attain its optimum at M- or C-stationary points.

Example 2.3. Consider the problem

min (x1 − 1)2 + (x2 −
1

2
)2 s.t. x1 ≤ 1, x2 ≥ 0, 0 ≤ 2x1 + x2 ⊥ 2− (x1 − 1)2 − (x2 − 1)2 ≥ 0.
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The weak stationarity conditions are

(
2x1−2
2x2−1

)
+ ( 1

0 )λ1 − ( 0
1 )λ2 − ( 2

1 )u−
(

2−2x1
2−2x2

)
v = 0, min(λ1, 1− x1) = 0, min(λ2, x2) = 0,

min(2x1 + x2, 2− (x1 − 1)2 − (x2 − 1)2) = 0, (2x1 + x2)u = (2− (x1 − 1)2 − (x2 − 1)2)v = 0,

which yield three weakly stationary points: (1,
√

2+1) with multipliers u = 0, v = −1−
√

2
4 , and λ1 = λ2 = 0;

(0, 0) with multipliers u = λ2 − 1, v = −λ2, λ1 = 0, and λ2 ≥ 0; and (− 2
5 ,

4
5 ) with multipliers u = 7

5 , v = −2,

and λ1 = λ2 = 0. At (1,
√

2 + 1), since J ∗ = ∅, it is also S-stationary. At (0, 0), the only nonempty index

set is J ∗, and the point is not S-stationary since u and v cannot be both non-negative. Taking either λ2 = 0

or λ2 = 1, we have uv = 0, and hence (0, 0) is M-stationary but not S-stationary. At (− 2
5 ,

4
5 ), since the

only nonempty index set is J ∗ and u > 0, v < 0, it is only weakly stationary. From graphing, it is easy to

find that the M-stationary point (0, 0) is the unique global minimizer, while the unique S-stationary point

(1,
√

2 + 1) is not a local minimizer (in fact it is the unique global maximizer).

Example 2.3 gives us some hint. If we only solve the S-stationarity system, we might have missed the true

solution. We next give an example whose local minimizers are C-stationary, but not M-stationary. Similarly,

in this example, if we only solve S- or/and M-stationarity system, we might have missed the true solution.

Example 2.4. Consider the problem

min (x1 − 1)2 + (x2 −
1

2
)2 +

1

2
x3(x1 − 1) (9)

s.t. x1 ≤ 1, x2 + x3(x1 − 1) ≥ 0, x2
3 ≤ 0, 0 ≤ 2x1 + x2 ⊥ 2− (x1 − 1)2 − (x2 − 1)2 ≥ 0.

The weak stationarity conditions are

(
2x1−2+ 1

2x3

2x2−1
1
2 (x1−1)

)
+
(

1
0
0

)
λ1 −

( x3
1

x1−1

)
λ2 +

(
0
0

2x3

)
λ3 −

(
2
1
0

)
u−

(
2−2x1
2−2x2

0

)
v = 0,

min(λ1, 1− x1) = 0, min(λ2, x2 + x3(x1 − 1)) = 0, min(λ3,−x2
3) = 0,

min(2x1 + x2, 2− (x1 − 1)2 − (x2 − 1)2) = 0, (2x1 + x2)u = (2− (x1 − 1)2 − (x2 − 1)2)v = 0,

which yield two weakly stationary points: (1,
√

2 + 1, 0) with multipliers u = 0, v = −1−
√

2
4 , λ1 = λ2 = 0,

and λ3 ≥ 0; and (0, 0, 0) with multipliers u = v = − 1
2 , λ1 = 0, λ2 = 1

2 , and λ3 ≥ 0. It is obvious that the

unique minimizer (0, 0, 0) is C-stationary but not M-stationary, and the unique maximizer (1,
√

2 + 1, 0) is

the unique S-stationary point.
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3 Reformulations for Stationarity Conditions

Note that, unlike the KKT systems in the nonlinear programming theory, the C-/M-/S-stationarity systems

contain the conditions (5), (6), and (7), which are all uncertain because the index sets I∗,J ∗, and K∗ are

generally unknown before the solution x∗ is found. There has been no numerical method proposed to solve

the C-/M-/S-stationarity systems directly. In this section, by removing the unknown index sets from the

systems, we reformulate them as equations with simple constraints, which are all certain systems and can

be solved directly.

Theorem 3.1. For any x∗ ∈ F , we have the following statements:

(i) Conditions (4) and (5) are equivalent to the equations

uiGi(x
∗) = viHi(x

∗) = 0, uivi ≥ 0 (i = 1, · · · ,m). (10)

(ii) Conditions (4) and (6) are equivalent to the equations

uiGi(x
∗) = viHi(x

∗) = 0, uivi ≥ 0, max{ui, vi} ≥ 0 (i = 1, · · · ,m). (11)

(iii) Conditions (4) and (7) are equivalent to the equations

αiGi(x
∗) = βiHi(x

∗) = 0, αi ≥ 0, βi ≥ 0, ui = αi − ζHi(x
∗), vi = βi − ζGi(x∗)(i = 1, · · · ,m). (12)

Proof (i) Condition (10) implies (4) and (5) evidently. We next show the converse part. Suppose that (4)

and (5) hold. It follows that uiGi(x
∗) = 0 and viHi(x

∗) = 0 for i = 1, · · · ,m. We next show uivi ≥ 0 for

each i. Without any loss of generality, we may assume i /∈ J ∗. Note that x∗ ∈ F implies either i ∈ I∗ or

i ∈ K∗. This means that either ui = 0 or vi = 0 by (4), and hence we must have uivi = 0.

(ii) Condition (11) implies (4) and (6) evidently. Suppose that (4) and (6) hold. Since (6) implies (5),

we have (10) from (i) immediately. It suffices to show the last inequality in (11) for each i.

• If i /∈ J ∗, as shown in (i), then there must hold uivi = 0 and hence max{ui, vi} ≥ 0.

• If i ∈ J ∗, then it follows from (6) that either ui > 0 and vi > 0, or uivi = 0. In any case, we always

have max{ui, vi} ≥ 0.

(iii) If there exist {α, β, ζ} satisfying (12), conditions (4) and (7) hold obviously. Conversely, suppose
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that u and v satisfy conditions (4) and (7). Define ζ ∈ IR as

ζ :=



0, I∗ = K∗ = ∅,

max{− ui
Hi(x∗) | i ∈ I

∗}, I∗ 6= ∅,K∗ = ∅,

max{− vj
Gj(x∗) | j ∈ K

∗}, I∗ = ∅,K∗ 6= ∅,

max{− ui
Hi(x∗) ,−

vj
Gj(x∗) | i ∈ I

∗, j ∈ K∗}, I∗ 6= ∅,K∗ 6= ∅.

Let α := u+ ζH(x∗) and β := v + ζG(x∗). It is easy to see that (12) hold. This completes the proof of the

theorem.

In Theorem 3.1, the unknown index sets I∗,J ∗, and K∗ have been removed successfully from conditions

(5)–(7). As a result, by introducing some slack and auxiliary variables, the equivalent C-/M-/S-stationarity

systems can be reformulated as constrained equations in the form

F (w) = 0, w ∈W, (13)

where the constraint set W := {w ∈ IRl | wi ≥ 0, i ∈ I} and I is a fixed index set. There may be more than

one kind of equivalent reformulations. In this paper, we suggest the following smooth formulations for the

C-/M-/S-stationarities.

(1) C-stationarity:

F (x, y, z1, z2, z3, λ, µ, u, v) :=



∇f(x)+∇g(x)λ+∇h(x)µ−∇G(x)u−∇H(x)v

λT z1
z1+g(x)
h(x)

zT2 z3
z2−G(x)
z3−H(x)
u◦z2
v◦z3
y−u◦v


, (14)

W :=
{

(x, y, z1, z2, z3, λ, µ, u, v)
∣∣ y ≥ 0; zi ≥ 0(1 ≤ i ≤ 3);λ ≥ 0

}
, (15)

where ◦ means the Hadamard product, i.e., a ◦ b := (a1b1, · · · , anbn) for a, b ∈ IRn.
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(2) M-stationarity:

F (x, y1, y2, y3, y4, z1, z2, z3, λ, µ, u, v) :=



∇f(x)+∇g(x)λ+∇h(x)µ−∇G(x)u−∇H(x)v

λT z1
z1+g(x)
h(x)

zT2 z3
z2−G(x)
z3−H(x)
u◦z2
v◦z3

y1−u◦v
yT3 y4

y2−y3−u
y2−y4−v


, (16)

W :=
{

(x, y1, y2, y3, y4, z1, z2, z3, λ, µ, u, v)
∣∣∣ yi ≥ 0(1 ≤ i ≤ 4); zi ≥ 0(1 ≤ i ≤ 3);λ ≥ 0

}
. (17)

(3) S-stationarity:

F (x, z1, z2, z3, λ, µ, α, β, ζ) :=



∇f(x)+∇g(x)λ+∇h(x)µ−∇G(x)(α−ζH(x))−∇H(x)(β−ζG(x))

λT z1
z1+g(x)
h(x)

zT2 z3
z2−G(x)
z3−H(x)

αT z2
βT z3


, (18)

W :=
{

(x, z1, z2, z3, λ, µ, α, β, ζ)
∣∣∣zi ≥ 0(1 ≤ i ≤ 3);λ ≥ 0;α ≥ 0;β ≥ 0

}
. (19)

Note that, if any function in {gi, 1 ≤ i ≤ p;−Gj ,−Hj , 1 ≤ j ≤ m} is convex, then it is not necessary to

add it in function F by introducing a slack variable, i.e., we may keep it in the abstract set W . Note also that,

if we treat (1) as a standard nonlinear programming problem, the multipliers {α, β, ζ} in (12) or (18)–(19) are

just the usual Lagrange multipliers corresponding to the constraints {G(x) ≥ 0, H(x) ≥ 0, G(x)TH(x) = 0},

respectively. Moreover, we add slack variables in the above systems, so that the constraint sets become a

polyhedron. In fact, if any function in {gi, 1 ≤ i ≤ p;Gj , Hj , 1 ≤ j ≤ m} is affine, then we may move it to

the constraint set W , that is, we may not use a slack variable for it.

4 Modified LM Method for Constrained Equations

Consider the constrained equation (13), in which W is a nonempty, closed and convex subset of IRl and

F : IRl → IRν is a differentiable function. The results given in this section are of independent interest.

Throughout this section, we suppose that the solution set W ∗ of (13) is nonempty. Kanzow et al. [11]

propose an LM-type method for solving constrained equations with a locally quadratic rate of convergence.

Applying their results to (13) directly would require the local error bound condition cdist(w,W ∗) ≤ ‖F (w)‖

for w ∈ Bδ(w∗) ∩W, where dist(w,W ∗) denotes the distance from w to W ∗, c > 0, δ > 0, w∗ ∈ W ∗, and

Bδ(w∗) := {w ∈ IRl | ‖w − w∗‖ < δ}. It is well known that this error bound condition is equivalent to the
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calmness of the perturbed constrained equations as a set-valued mapping S(p) := {w ∈ W | F (w) = p}

around (0, w∗). Hence, the above local error bound condition is weaker than the pseudo-Lipschitz continuity

of the set-valued mapping around (0, w∗), which is equivalent to the classical nondegeneracy condition, i.e.,

the Jacobian of F at w∗ has maximum row rank, and there exists a vector d in the interior of the tangent

cone of W at w∗ such that ∇Fi(w∗)T d = 0, i = 1, . . . , ν; see, e.g., [8] for discussions on this topic.

Instead of using the regularization parameter in terms of ‖F (w)‖2 as in [11], we suggest to use a

regularization parameter in terms of ‖F (w)‖σ with σ ∈ [1, 2], and our superlinear convergence result holds

under the error bound condition

cdist 1/γ(w,W ∗) ≤ ‖F (w)‖, w ∈ Bδ(w∗) ∩W, (20)

where γ is a suitable constant. Since our method reduces to the one in [11] when σ = 2 and γ = 1, and our

assumptions are more general than the ones in [11], our results include the ones in [11] as a special case. In

addition, the formula we derive below for the convergence rate also indicates that the parameter σ may be

used to adjust the convergence rate since the bigger is the parameter σ, the smaller is the number τ .

Obviously, solving (13) is equivalent to solving the optimization problem

min θ(w) :=
1

2
‖F (w)‖2 s.t. w ∈W. (21)

The LM method proposed for solving constrained equations in [11] determines the iterations by solving

min θk(w) :=
1

2
‖F (wk) +∇F (wk)T (w − wk)‖2 +

ηk
2
‖w − wk‖2 s.t. w ∈W, (22)

where wk is the current point, and ηk > 0 is a positive parameter. Since (22) is a strongly convex program,

the iteration is well-defined. We now describe our modified method.

Algorithm 4.1.

Step 1: Choose w0 ∈W , η > 0, σ ∈ [1, 2], and set k := 0.

Step 2: If F (wk) = 0, stop. Otherwise, set ηk := η‖F (wk)‖σ, and solve problem (22) to get wk+1.

Step 3: If dk := wk+1 − wk = 0, stop. Otherwise, let k := k + 1, and go to Step 2.

The regularization parameter ηk plays an important role in convergence analysis. Note that, in [11],

this parameter is defined by η‖F (wk)‖2. However, as pointed out by Fan and Yuan in [12], the choice

ηk := η‖F (wk)‖2 may have some unsatisfactory properties: When wk is close to the solution set of (13), the
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parameter ηk gets very small, and hence it may lose its role in (22). On the contrary, if wk is far from the

solution set of (13), then ηk gets very large, so that the step dk will be very small. In our new algorithm,

the regularization parameter is chosen as ηk := η‖F (wk)‖σ for σ ∈ [1, 2].

We next establish the convergence theory for the modified method. Our proof techniques are inspired by

the recent work of Rehling and Fisher [13], in which an inexact version of a constrained LM method with

similar regularization parameter is analyzed under the classical error bound condition with γ = 1.

Note that every point in W ∗ satisfies the necessary optimality condition 0 ∈ ∇F (w)F (w) + NW (w),

where NW denotes the normal cone to W . Consider the perturbed generalized equation

s ∈ ∇F (w)F (w) +NW (w) (23)

with parameter s ∈ IRl. Denote by W ∗s the solution set of (23). It is obvious that W ∗ ⊆W ∗0 .

In what follows, we assume that Algorithm 4.1 generates an infinite sequence of iterations. In order to

establish the convergence theory of the algorithm, we make the following assumption throughout this section.

Assumption 4.1. There exist w∗ ∈ W ∗ and positive constants {c, δ, γ} with δ ∈]0, 1] and γ ∈ [ 1
2 , 1] such

that (i) (20) holds; (ii) both F and ∇F are Lipschitz continuous in B2δ(w
∗) with Lipschitz constant L.

The following lemma indicates that the set-valued mapping s⇒W ∗s is calm with exponent γ/(2− γ) at

w∗. It extends the recent result of Rehling and Fisher [13, Lemma 1] to the case where γ 6= 1.

Lemma 4.1. There are L̂ > 0 and δ1 > 0 such that W ∗s ∩ Bδ1(w∗) ⊆W ∗ + L̂‖s‖γ/(2−γ)B1(0) for s ∈ IRl.

Proof Let δ1 := min
{
δ,
(

2c2

L2

)γ/(4γ−2)}
and s ∈ IRl. Let W ∗s ∩ Bδ1(w∗) 6= ∅ and ŵ ∈ W ∗s ∩ Bδ1(w∗) be

given. This means that there exists ŷ ∈ NW (ŵ) such that s = ∇F (ŵ)F (ŵ) + ŷ. Since W ∗ is nonempty and

closed, there exists ŵ∗ ∈ W ∗ such that ‖ŵ − ŵ∗‖ = dist(ŵ,W ∗). It is easy to see that ŵ∗ ∈ B2δ(w
∗), and

hence, by the mean-value theorem and Assumption 4.1, we have

‖F (ŵ) +∇F (ŵ)T (ŵ∗ − ŵ)‖ ≤ ‖ŵ∗ − ŵ‖
∫ 1

0

‖∇F (ŵ + t(ŵ∗ − ŵ))−∇F (ŵ)‖ dt ≤ L

2
dist 2(ŵ,W ∗). (24)

Since ŵ∗ ∈W, ŵ ∈ Bδ(w∗) ∩W, and ŷ ∈ NW (ŵ), we have (ŵ∗ − ŵ)T ŷ ≤ 0, and hence, by (20)–(24),

(ŵ∗ − ŵ)T s ≤ (ŵ∗ − ŵ)T∇F (ŵ)F (ŵ) ≤ L2

8
dist 4(ŵ,W ∗)− c2

2
dist 2/γ(ŵ,W ∗). (25)
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Noting that γ ≥ 1
2 , ŵ ∈ Bδ1(w∗), and δ1 ≤

(
2c2

L2

)γ/(4γ−2)
, we have

L2

8
dist 4−2/γ(ŵ,W ∗) ≤ L2

8
‖ŵ − w∗‖4−2/γ ≤ L2

8
δ

4−2/γ
1 ≤ 1

4
c2,

and hence, by (25),

c2

4
dist 2/γ(ŵ,W ∗) ≤ c2

2
dist 2/γ(ŵ,W ∗)− L2

8
dist 4(ŵ,W ∗) ≤ −(ŵ∗ − ŵ)T s ≤ ‖s‖ dist(ŵ,W ∗),

i.e., dist(ŵ,W ∗) ≤
(

4
c2 ‖s‖

)γ/(2−γ)

. This indicates that the conclusion holds with L̂ := ( 4
c2 )γ/(2−γ).

Lemma 4.2. Let wk ∈ Bδ(w∗) ∩W . There exists κ > 0 such that ‖wk+1 − wk‖ ≤ κdist γ1(wk,W ∗), where

γ1 := min{2− σ
2γ , 1}.

Proof Let wk ∈ Bδ(w∗) ∩ W . Since W ∗ is nonempty and closed, there exists ŵk ∈ W ∗ such that

‖wk − ŵk‖ = dist(wk,W ∗). It is easy to see that ŵk ∈ B2δ(w
∗). Thus, by Assumption 4.1, we have

ηcσ‖wk − ŵk‖σ/γ = ηcσ dist σ/γ(wk,W ∗) ≤ ηk = η‖F (wk)‖σ. (26)

Since wk+1 is the unique minimizer of problem (22), we have

ηk
2
‖wk+1 − wk‖2 ≤ θk(wk+1) ≤ θk(ŵk). (27)

As a result, we have from (24) and (26)–(27) that

‖wk+1 − wk‖2 ≤ 2

ηk
θk(ŵk) ≤ 1

ηk
‖F (wk) +∇F (wk)T (ŵk − wk)‖2 + ‖ŵk − wk‖2

≤ L2

4ηk
‖ŵk − wk‖4 + ‖ŵk − wk‖2 ≤ L2

4ηcσ
‖ŵk − wk‖4−σ/γ + ‖ŵk − wk‖2.

Letting κ :=
√

1 + L2

4ηcσ , by ‖wk − ŵk‖ ≤ ‖wk − w∗‖ ≤ δ ≤ 1, we get the conclusion immediately.

Given wk ∈ IRl, we define

Θk(w) := ∇F (w)F (w)−∇F (wk)(F (wk) +∇F (wk)T (w − wk))− ηk(w − wk). (28)

Lemma 4.3. There exist C > 0 and δ2 > 0 such that ‖Θk(wk+1)‖ ≤ C dist γ2(wk,W ∗) when the iteration

wk ∈ Bδ2(w∗) ∩W , where γ2 := min{σ + γ1, 2γ1} = min{ 4γ−σ
γ , 2}.
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Proof Let δ2 := min
{
δ,
(
δ
κ

)1/γ1}
and wk ∈ Bδ2(w∗)∩W . Let ŵk be defined as in the proof of Lemma 4.2.

It is easy to see that ŵk ∈ B2δ(w
∗), and, by Lemma 4.2,

‖wk+1 − w∗‖ ≤ ‖wk+1 − wk‖+ ‖wk − w∗‖ ≤ κdist γ1(wk,W ∗) + δ2 ≤ 2δ,

namely, wk+1 ∈ B2δ(w
∗). We then have from Assumption 4.1 and Lemma 4.2 that

‖F (wk+1)‖ ≤ L‖wk+1 − ŵk‖ ≤ L(‖wk+1 − wk‖+ ‖wk − ŵk‖)

≤ L(κdist γ1(wk,W ∗) + dist(wk,W ∗)) ≤ L(κ+ 1) dist γ1(wk,W ∗), (29)

where the last inequality follows from the fact that dist(wk,W ∗) ≤ ‖wk − w∗‖ ≤ δ2 ≤ δ ≤ 1. Note that

ηk = η‖F (wk) − F (ŵk)‖σ ≤ ηLσ‖wk − ŵk‖σ, and Assumption 4.1 implies the boundedness of ‖∇F‖ on

B2δ(w
∗), i.e., there exists L′ > 0 such that ‖∇F (w)‖ ≤ L′ for w ∈ B2δ(w

∗). It then follows from (28)–(29),

Assumption 4.1, Lemma 4.2, and the mean-value theorem that

‖Θk(wk+1)‖ ≤ ‖∇F (wk+1)−∇F (wk)‖‖F (wk+1)‖

+‖∇F (wk)‖‖F (wk+1)− F (wk)−∇F (wk)T (wk+1 − wk)‖+ ηk‖wk+1 − wk‖

≤ L‖wk+1 − wk‖‖F (wk+1)‖+ L′L‖wk+1 − wk‖2 + ηLσ‖wk − ŵk‖σ‖wk+1 − wk‖

≤ C dist γ2(wk,W ∗),

where γ2 := min{γ1 + σ, 2γ1} and C := L2κ(κ+ 1) + L′Lκ2 + ηLσκ. This completes the proof.

Lemma 4.4. There exist C ′ > 0 and δ3 > 0 such that dist(wk+1,W ∗) ≤ C ′ dist τ (wk,W ∗) when the iteration

wk ∈ Bδ3(w∗) ∩W , where τ := γ2γ
2−γ = min{ 4γ−σ

2−γ ,
2γ

2−γ }.

Proof Let δ3 := min
{
δ2,

δ1
2 ,
(
δ1
2κ

)1/γ1}
and wk ∈ Bδ3(w∗) ∩W . Note that problem (22) is equivalent to

the generalized equation Θk(w) ∈ ∇F (w)F (w) +NW (w). This means that wk+1 is a unique solution of the

perturbed generalized equation (23) with s := Θk(wk+1). Then, we have wk+1 ∈W ∗Θk(wk+1). Since

‖wk+1 − w∗‖ ≤ ‖wk+1 − wk‖+ ‖wk − w∗‖ ≤ κdist γ1(wk,W ∗) + δ3 ≤ δ1

by Lemma 4.2, we have wk+1 ∈W ∗Θk(wk+1) ∩ Bδ1(w∗). It follows from Lemmas 4.1 and 4.3 that

dist(wk+1,W ∗) ≤ L̂‖Θk(wk+1)‖γ/(2−γ) ≤ L̂Cγ/(2−γ) dist γ2γ/(2−γ)(wk,W ∗).
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We obtain the conclusion immediately by letting C ′ := L̂Cγ/(2−γ).

Lemma 4.5. Assume that the number τ given in Lemma 4.4 is larger than one, that is, γ > max{ 2
3 ,

2+σ
5 }.

Assume also that, in Algorithm 4.1, the starting point w0 ∈ Bδ0(w∗), where

δ0 := min
{

1
2C
′1/(1−τ)

, δ32 ,
(
δ3

2aκ

)1/γ1}
, (30)

and a :=
∞∑
i=0

1

2γ1(τi−1)
< +∞. Then, the sequence {wk} generated by Algorithm 4.1 is contained in Bδ3(w∗).

Proof It is obvious that w0 ∈ Bδ3(w∗). Therefore, by mathematical induction, it is sufficient to show that,

for any k, {w0, w1, · · · , wk} ⊂ Bδ3(w∗) implies wk+1 ∈ Bδ3(w∗). In fact,

‖wk+1 − w∗‖ ≤ ‖wk − w∗‖+ ‖dk‖ ≤ ‖wk−1 − w∗‖+ ‖dk−1‖+ ‖dk‖

≤ · · · · · · ≤ ‖w0 − w∗‖+

k∑
i=0

‖di‖ ≤ δ0 + κ

k∑
i=0

dist γ1(wi,W ∗), (31)

where the last inequality follows from Lemma 4.2. Since {w0, w1, · · · , wk} ⊂ Bδ3(w∗), we have from Lemma

4.4 that dist(wi,W ∗) ≤ C ′ dist τ (wi−1,W ∗) for each i. It follows that, for each i = 1, · · · , k,

dist(wi,W ∗) ≤ C ′1+τ
dist τ

2

(wi−2,W ∗) ≤ · · · · · · ≤ C ′1+τ+···+τ i−1

dist τ
i

(w0,W ∗) ≤ C ′
τi−1
τ−1 δτ

i

0 . (32)

From the definition of δ0 and (31)–(32), we have

‖wk+1 − w∗‖ ≤ δ0 + κ

k∑
i=0

dist γ1(wi,W ∗) ≤ δ0 + κ

k∑
i=0

(
C ′

τi−1
τ−1 δτ

i

0

)γ1
≤ δ0 + κδγ10

k∑
i=0

(
C ′

γ1
τ−1 δγ10

)τ i−1

≤ δ0 + κδγ10 a ≤ δ3.

This completes the proof.

Now, we give the first convergence result.

Theorem 4.1. Assume that γ > max{ 2
3 ,

2+σ
5 } and {wk} is a sequence generated by Algorithm 4.1 with

starting point w0 ∈ Bδ0(w∗), where δ0 is defined as in (30). Then, the sequence {dist(wk,W ∗)} converges

superlinearly to zero with order no less than τ = min{ 4γ−σ
2−γ ,

2γ
2−γ }.

Proof It follows from Lemma 4.5 that {wk} is contained in the ball Bδ3(w∗). Noting that δ0 ≤ δ3 ∈ (0, 1)

and τ > 1, we have from (32) that dist(wk,W ∗) → 0 as k → ∞. Furthermore, by Lemma 4.4, there holds

13



lim sup
k→∞

dist(wk+1,W∗)
distτ (wk,W∗)

≤ C ′. In consequence, {dist(wk,W ∗)} converges superlinearly to zero with order no less

than τ > 1. This completes the proof.

We next investigate the convergence of the sequence {wk} generated by Algorithm 4.1.

Theorem 4.2. Assume that γ > max{ 2
3 ,

2+σ
5 } and γ ≥ σ

2 . Let {wk} be a sequence generated by Algorithm

4.1 with starting point w0 ∈ Bδ0(w∗), where δ0 is defined as in (30). Then, {wk} converges superlinearly to

a solution of problem (13) with order no less than τ = min{ 4γ−σ
2−γ ,

2γ
2−γ }.

Proof Note that γ ≥ σ
2 implies γ1 = min{2 − σ

2γ , 1} = 1. It follows from Lemma 4.2 and Theorem 4.1

that, for any k sufficiently large and any i,

‖wk+i − wk‖ ≤ ‖wk+i−1 − wk‖+ ‖dk+i−1‖ ≤ · · · · · · ≤
i∑
ι=1

‖dk+ι−1‖

≤ κ

i∑
ι=1

dist(wk+ι−1,W ∗) ≤ κ

i−1∑
ι=0

1

2ι
dist(wk,W ∗) ≤ 2κdist(wk,W ∗). (33)

This means that {wk} is a Cauchy sequence, and hence {wk} converges to a solution, say w̄, of (13).

It remains to show that the convergence of {wk} is superlinear. In fact, letting i → ∞ in (33), we get

‖wk − w̄‖ ≤ 2κdist(wk,W ∗). Combining this with ‖wk−1 − w̄‖ ≥ dist(wk−1,W ∗), we have from the proof

of Theorem 4.1 that

lim sup
k→∞

‖wk − w̄‖
‖wk−1 − w̄‖τ

≤ lim sup
k→∞

2κdist(wk,W ∗)

distτ (wk−1,W ∗)
≤ 2κC ′.

That is, {wk} converges to w̄ ∈W ∗ superlinearly with order no less than τ > 1.

As shown above, under the assumptions of Theorem 4.1 or 4.2, {dist(wk,W ∗)} or {wk} converges

superlinearly with order no less than τ = min{ 4γ−σ
2−γ ,

2γ
2−γ }. In particular, provided that the local error

bound condition (20) holds with γ = 1, the rate of convergence is at least quadratic for any σ ∈ [1, 2].

As shown in Section 3, the C-/M-/S-stationarity conditions can be reformulated as constrained

equations. Now, we apply the results given above to solve these equations. Note that, since all the

functions {f, g, h,G,H} are assumed to be twice differentiable, and their second order derivatives are

locally Lipschitzian, condition (ii) in Assumption 4.1 is satisfied by the constrained equation (13) with the

mapping F defined by (14), (16), (18), and the set W defined by (15), (17), (19), respectively. As a result,

the convergence of Algorithm 4.1 only needs the local error bound condition (20). We have the following

convergence results from Theorems 4.1 and 4.2 immediately.
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Theorem 4.3. Consider the C-stationarity system, M-stationarity system, and S-stationarity system as

constrained equations defined by (14)–(15), (16)–(17), and (18)–(19), respectively. Suppose that there exist

some w∗ ∈ W ∗ and constants c > 0, δ ∈]0, 1], γ > max{ 2
3 ,

2+σ
5 } such that the error bound condition (20)

holds, and let {wk} be a sequence generated by Algorithm 4.1 with starting point w0 ∈ Bδ0(w∗), where δ0 is

defined as in Section 4. Then, {dist(wk,W ∗)} converges to zero superlinearly, and, if γ ≥ σ
2 holds, {wk}

converges to a solution superlinearly with order no less than τ = min{ 4γ−σ
2−γ ,

2γ
2−γ }.

5 Sufficient Conditions for Error Bounds

Since the success of Algorithm 4.1 depends on the existence of an error bound with exponent greater than

the number max{ 2
3 ,

2+σ
5 }, we devote this section to the study of existence of the error bounds with exponent

greater than max{ 2
3 ,

2+σ
5 }. Since ‖F (w)‖ is close to zero when w is close to the solution w∗, it is obvious

that ‖F (w)‖ ≤ ‖F (w)‖γ when γ ≤ 1 for such w. Therefore, the local error bound condition with exponent

γ = 1 implies the local error bound condition with γ < 1, but not vice versa. In the literature, there are

some sufficient conditions for existence of local error bounds with exponent not equal to 1 (see, e.g., [14]),

but they are usually not easy to verify. We next give an example to show that, for the C-/M-/S-stationarity

systems, it is possible to have an error bound with γ < 1.

Consider the MPEC

min x1 + x2 + x
11
5

3 s.t. x
12
5

3 = 0, 0 ≤ x1 ⊥ x2 ≥ 0.

The S-stationarity system (18)–(19) for the above problem is FS(w) = 0 with w ∈WS , where

FS(x1, x2, x3, µ, α, β, ζ) :=


1−α+ζx2

1−β+ζx1

11
5 x

6/5
3 + 12

5 x
7/5
3 µ

x
12/5
3
x1x2
αx1

βx2


and WS := {w = (x1, x2, x3, µ, α, β, ζ) | x1 ≥ 0, x2 ≥ 0, α ≥ 0, β ≥ 0}. It is easy to see that the set of

S-stationary points is W ∗S := {(0, 0, 0, µ, 1, 1, ζ) | µ ∈]−∞,+∞[, ζ ∈]−∞,+∞[}. We first show that ‖FS(w)‖

cannot provide a local error bound. In fact, for any w∗ ∈W ∗S and any w /∈W ∗S , we have

dist2(w,W ∗S)

‖FS(w)‖2
=

x2
1 + x2

2 + x2
3 + (α− 1)2 + (β − 1)2

(1− α+ ζx2)2 + (1− β + ζx1)2 + x
12
5

3 ( 11
5 + 12

5 x
1
5
3 µ)2 + x

24
5

3 + x2
1x

2
2 + α2x2

1 + β2x2
2

.
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Taking the limit route of x1 = x2 = 0, α = β = 1, µ = µ∗, ζ = ζ∗, and x3 = t with t→ 0+, we can get

lim sup
w→w∗

dist2(w,W ∗S)

‖FS(w)‖2
= +∞,

which indicates that ‖FS(w)‖ cannot provide a local error bound. We next show that ‖FS(w)‖ 5
6 can

provide a local error bound. In fact, noting that (α − 1)2 ≤ 2(1 − α + ζx2)2 + 2ζ2x2
2 and

(β − 1)2 ≤ 2(1− β + ζx1)2 + 2ζ2x2
1, we have

dist2(w,W ∗S)

‖FS(w)‖ 5
3

≤ (1 + 2ζ2)x2
1 + (1 + 2ζ2)x2

2 + x2
3 + 2(1− α+ ζx2)2 + 2(1− β + ζx1)2(

(1− α+ ζx2)2 + (1− β + ζx1)2 + x
12
5

3 ( 11
5 + 12

5 x
1
5
3 µ)2 + x

24
5

3 + x2
1x

2
2 + α2x2

1 + β2x2
2

) 5
6

≤ (1 + 2ζ2)x2
1

|αx1|
5
3

+
(1 + 2ζ2)x2

2

|βx2|
5
3

+
x2

3

x2
3| 11

5 + 12
5 x

1
5
3 µ|

5
3

+
2(1− α+ ζx2)2

|1− α+ ζx2|
5
3

+
2(1− β + ζx1)2

|1− β + ζx1|
5
3

→
( 5

11

) 5
3

as w → w∗.

This means that the error bound condition (20) holds with γ = 5
6 , c = (( 5

11 )
5
3 + 1)−

1
2 , and some appropriate

δ > 0, that is, ‖FS(w)‖ 5
6 can provide a local error bound for the S-stationarity system.

The following three conditions are well-known sufficient conditions for the local error bound with γ = 1:

(C1) F is affine, and W is a polyhedron (by the well-known result of Hoffman’s bound [15]).

(C2) The classical nondegeneracy condition, or equivalently, the MFCQ for the constrained system at w∗,

i.e., the gradients {∇F1(w∗),∇F2(w∗), · · · ,∇Fν(w∗)} are linearly independent, and there exists a

vector d in the interior of the tangent cone TW (w∗) such that ∇Fi(w∗)T d = 0 for each i = 1, · · · , ν,

or equivalently, there is no nonzero vector η ∈ Rν such that 0 ∈
∑ν
i=1∇Fi(w∗)ηi + NW (w∗); see,

e.g., [16, page 546].

(C3) The LICQ for the constrained system holds at w∗, i.e., w∗ is in the interior of W , and the gradient

vectors {∇F1(w∗),∇F2(w∗), · · · ,∇Fν(w∗)} are linearly independent, or equivalently, w∗ is in the

interior of W , and ∇F (w∗) has maximal column rank.

Except the first criterion, the other criteria are based on the point w∗. Moreover, these criteria are actually

much stronger than the existence of local error bounds. Since Hoffman shows in [15] that linear systems

always have global error bounds in 1952, many researchers have tried to find weaker sufficient conditions

for the existence of error bounds. In particular, Minchenko and Stakhovski [17] show the existence of error

bounds under the relax constant regularity condition that is weaker than the criteria (C1) and (C3). Guo

et al. [18] obtain the existence of error bounds under the quasi-normality condition that is weaker than the
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criteria (C1)–(C3). Other criteria for local error bounds with exponent γ 6= 1 can be found in, e.g., [14].

Unfortunately, for the C-/M-/S-stationarity systems, due to the complementarity constraints, the

criterion (C1) never holds, and the point-based criteria (C2)–(C3) and other weaker criteria in the

literature are unlikely to hold. Nevertheless, since the criteria (C1)–(C3) are stronger than the existence of

error bounds with γ = 1, it does not mean that the error bound condition is unlikely to hold with γ = 1. It

turns out that, by eliminating certain components of the mapping F , we could still derive the existence of

error bounds with γ = 1 by making use of the above criteria and other weaker criteria in the literature. For

this purpose, we first introduce a lemma given in [19].

Lemma 5.1. Let δ be a positive constant, and Ω ⊆ IRl be a nonempty and closed set. If w ∈ Ω and

y ∈ Bδ/2(w), then dist(y,Ω) = dist(y,Ω ∩ Bδ(w)).

We now present the error bound results by elimination.

Theorem 5.1. Let W ∗ be the solution set of (13), and w∗ ∈ W ∗. Suppose that F̄ is constituted by some

components of F , and W̄ ∗ := {w | F̄ (w) = 0}. If there exist δ > 0, c > 0, and γ > 0 such that

cdist 1/γ(w, W̄ ∗) ≤ ‖F̄ (w)‖, w ∈ Bδ/2(w∗), (34)

W̄ ∗ ∩ Bδ(w∗) = W ∗ ∩ Bδ(w∗), (35)

then there holds cdist 1/γ(w,W ∗) ≤ ‖F (w)‖ for w ∈ Bδ/2(w∗) ∩W.

Proof By Lemma 5.1, (34) implies cdist 1/γ(w, W̄ ∗ ∩ Bδ(w∗)) ≤ ‖F̄ (w)‖ for w ∈ Bδ/2(w∗). By (35), it

implies that cdist 1/γ(w,W ∗ ∩ Bδ(w∗)) ≤ ‖F̄ (w)‖ ≤ ‖F (w)‖ for w ∈ Bδ/2(w∗) ∩W. Applying Lemma 5.1

again, we obtain the conclusion.

In a similar way, we have the following theorem.

Theorem 5.2. Let w∗ ∈W ∗, F̂ be constituted by some components of F , and Ŵ ∗ := {w ∈W | F̂ (w) = 0}.

If there exist δ > 0, c > 0, and γ > 0 such that cdist 1/γ(w, Ŵ ∗) ≤ ‖F̂ (w)‖ for w ∈ Bδ/2(w∗) ∩W , and

Ŵ ∗ ∩ Bδ(w∗) = W ∗ ∩ Bδ(w∗), then we have cdist 1/γ(w,W ∗) ≤ ‖F (w)‖ for w ∈ Bδ/2(w∗) ∩W.

We now illustrate the applications of Theorem 5.1 by Example 2.1. The C-stationarity system (14) and

(15) are FC(w) = 0 with w ∈WC , where

FC(x1, x2, x3, y, λ, u, v) :=


1−λ−u
−2+λ−v
x1−x2−x3
x1x2

λx3
x1u
x2v
y−uv


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and WC := {(x1, x2, x3, y, λ, u, v) | x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, y ≥ 0, λ ≥ 0}. It is not difficult to see that the

set of C-stationary points is W ∗C := {(0, 0, 0, (1 − λ)(λ − 2), λ, 1 − λ, λ − 2) | 1 ≤ λ ≤ 2}. Let w∗ be the

C-stationary point corresponding to λ = 3
2 . By analyzing the transposed Jacobian ∇FC(w∗), we eliminate

the third and fourth components of FC , and let

F̄C(x1, x2, x3, y, λ, u, v) :=

 1−λ−u
−2+λ−v
λx3
x1u
x2v
y−uv

 ,

whose Jacobian has full row rank at w∗. It follows that (34) holds with exponent γ = 1. Furthermore, when

δ > 0 is small sufficiently, we can get by straightforward calculation that the solution set after elimination

does not change, that is, {w ∈ Bδ(w∗) | F̄C(w) = 0} = W ∗C ∩ Bδ(w∗). Consequently, by Theorem 5.1, the

local error bound with γ = 1 holds for the equivalent C-stationarity system in Example 2.1.

We next consider some examples from the MPEC literature, and try to verify conditions (34)–(35) with

γ = 1 using the elimination method. We omit the verification process, and state the results only.

Example 5.1. [20] Consider the problem

min (x1 + x2) s.t. x2
2 ≥ 1, 0 ≤ x1 ⊥ x2 ≥ 0.

The weak stationarity conditions are

( 1
1 )−

(
0

2x2

)
λ− ( 1

0 )u− ( 0
1 ) v = 0, min(λ, x2

2 − 1) = min(x1, x2) = x1u = x2v = 0,

which yield a unique weakly stationary point (0, 1) with multipliers u = 1, v = 0, and λ = 1
2 . It is obviously

an S-stationary point and the unique global minimizer.

Example 5.2. [6, 20] Consider the problem

min x1 + x2 − x3 s.t. − 4x1 + x3 ≤ 0, −4x2 + x3 ≤ 0, 0 ≤ x1 ⊥ x2 ≥ 0.

The weak stationarity conditions are

(
1
1
−1

)
+
(−4

0
1

)
λ1 +

(
0
−4
1

)
λ2 −

(
1
0
0

)
u−

(
0
1
0

)
v = 0,

min(λ1, 4x1 − x3) = min(λ2, 4x2 − x3) = min(x1, x2) = x1u = x2v = 0,

which yield a unique weakly stationary point (0, 0, 0) with multipliers u = 4λ2− 3, v = 1− 4λ2, λ1 = 1−λ2,
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and λ2 ∈ [0, 1]. It is obvious that (0, 0, 0) is M-stationary, but not S-stationary. Moreover, (0, 0, 0) is the

unique global minimizer.

Example 5.3. [20] Consider the problem

min −x1 −
1

2
x2 s.t. x1 + x2 ≤ 2, 0 ≤ x2

1 − x1 ⊥ x2 ≥ 0.

The weak stationarity conditions are

(
−1
− 1

2

)
+ ( 1

1 )λ−
(

2x1−1
0

)
u− ( 0

1 ) v = 0,min(λ, 2− x1 − x2) = min(x2
1 − x1, x2) = (x2

1 − x1)u = x2v = 0,

which yield five weakly stationary points: (2, 0) with multipliers u = 0, v = 1
2 , and λ = 1; (1, 0) with

multipliers u = −1, v = − 1
2 , and λ = 0; (0, 0) with multipliers u = 1, v = − 1

2 , and λ = 0; (0, 2) with

multipliers u = 1
2 , v = 0, and λ = 1

2 ; (1, 1) with multipliers u = − 1
2 , v = 0, and λ = 1

2 . It is not difficult to

see that {(2, 0), (0, 2), (1, 1)} are S-stationary, and (1, 0) is C-stationary, while (0, 0) is only weakly stationary.

In addition, (0, 2) is a local minimizer, while (2, 0) is the unique global minimizer.

Tab. 1: Verification results for Examples 5.1–5.3a

C-system M-system S-system

Example 5.1 Yes Yes Yes

Example 5.2 Yes No ∅

Example 5.3 Yes No Yes

a“Yes” means that one can find some F̄ such that condition (35) holds, and ∇F̄ (w∗)
has full column rank. “No” means the converse, while ∅ means that the system has no
solution.

The verification results given in Tab. 1 reveal that conditions (34)–(35) with γ = 1 may be satisfied in

many cases. Note that, even in the M-systems for Examples 5.2 and 5.3, conditions (34)–(35) may still hold

since the nonsingularity of Jabobians is only a sufficient condition for the existence of error bounds.

6 Numerical Results

In this section, we compare the performance of Algorithm 4.1 with the methods presented in [21, 22] on

Examples 2.1–2.4 and 5.1–5.3. In our experiments, we chose all the starting points to be (5, 5, · · · , 5), the

parameters in the partial augmented Lagrangian method were the same as in [21], and the parameters in the

`1/2 penalty method were almost the same as in [22], except that the initial penalty parameter was chosen to

be 10 instead of 11. In addition, for Algorithm 4.1, we set the parameter η = 0.1, and terminated the iteration

1In fact, when we chose the initial penalty parameter to be 1, the numerical results obtained are not satisfactory.
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if ‖F (wk)‖ ≤ 10−6 or ‖dk‖ ≤ 10−6. The numerical results were reported in Tabs. 2–4, respectively. In the

tables, the values of variables and multipliers denote the values obtained within 100 iterations, Iter denotes

the number of iterations by solving the corresponding approximation problems, and (uk, vk) is defined by

uk := αk − ζkH(xk), vk := βk − ζkG(xk) for the S-systems. In particular,

• in Examples 2.1 and 5.2, since all constraint functions are affine, all local minimizers must be

M-stationary, and hence, we only solved the M-systems;

• in Example 5.1, since the MPEC-LICQ holds, any local minimizer must be S-stationary, and hence,

we only solved the S-system;

• in Example 2.2, since both S- and M-stationary points do not exist, we only solved the C-system;

• in Examples 2.3–2.4 and 5.3, since we cannot make sure which kinds of stationarity points the

minimizers are, we solved all of the three systems.

The results show that, in some cases, we may not find the minimizers by solving the S-systems only.

Tab. 2: Numerical results for Examples 2.1–2.4 and 5.1–5.3 by Algorithm 4.1 with σ = 1

Systems Iter xk (uk, vk) ‖F (wk)‖ Time

Example 2.1 M 16 (0,0.0000) (0,3.0000) 2.0683e-07 0.4305

Example 2.2 C a 78 (0.0429,0,-0.0000,0) (-0.0051,-3.9966) 0.4204 3.5504

C 11 (0.0000,0) (0.0000,-1.0000) 3.6890e-10 0.3430

Example 2.3 Ma 15 ( -0.0076,0.0157) (-1.0070,-0.0004) 0.0013 1.3910

S 100 (-0.4594,0.7073) (-0.8477,-0.8319) 1.1766 3.1200

Ca 22 (0.0720,-0.0671,-0.0721) (-0.0001,0.0000) 0.0052 1.0187

Example 2.4 Ma 18 (-0.0768,0.1526,0.1188) (-1.0691,-0.0005) 0.0166 1.1543

S 100 (0.3736,2.2679,0.0067) (9.2337,-7.5256) 13.4476 11.0329

Example 5.1 S 6 (0,1.0000) (1.0000,0.0000) 1.2986e-06 0.1134

Example 5.2 M 12 (0.0000,0.0000,0.0000) (0.0000,-2.0000) 8.9677e-08 0.4540

C 21 (2.0000,0.0000) (0.0000,0.5000) 1.4344e-07 0.3893

Example 5.3 M 26 (2.0000,0.0000) (0.0000,0.5000) 5.4236e-06 0.7313

S 100 ( 0.8857,1.1333) (0.1045,0.5728) 0.1037 2.2114

aThe algorithm stopped since the magnitude of search direction became too small.
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Tab. 3: Numerical results for Examples 2.1–2.4 and 5.1–5.3 by the method in [21]

xk Iter f(xk) G(xk)TH(xk) Time

Example 2.1 (0.7937,0.7937) 100 -0.7937 0.6300 3.7640e-04

Example 2.2 (0.0001,0.0015,-0.0016,-0.0000) 1 0.0032 1.8072e-07 1.2074e-06

Example 2.3 (0.4061,0.0000) 100 0.4061 0.5257 0.0015

Example 2.4 (-0.0000,0.0000,0.0000) 1 -2.4982e-08 4.0747e-19 1.5092e-06

Example 5.1 (0.0000,1.0000) 1 1.0000 8.0066e-08 9.0553e-07

Example 5.2 (1.0000,1.0000,4.0000) 100 -2.0000 1.0000 0.0010

Example 5.3 (2.0000,0.0000) 1 -2.0000 3.2470e-07 1.2074e-06

Tab. 4: Numerical results for Examples 2.1–2.4 and 5.1–5.3 by the `1/2 penalty algorithm in [22]

xk Iter f(xk) min(G(xk), H(xk)) Time

Example 2.1 (-0.0000,-0.0000) 16 1.9158e-07 -1.8035e-07 0.2974

Example 2.2 1.0e+19*(-4.7764,-4.7359,2.9522,-0.1547) 100 -1.2387e+20 -4.7764e+19 1.1181

Example 2.3 (0.0000, 0.0000) 18 1.2500 5.4404e-11 0.3184

Example 2.4 ( -0.0003, 0.0008, 0.0003) 24 1.2502 4.4384e-07 0.4752

Example 5.1 (-0.0000, 1.0000) 28 1.0000 -1.4205e-07 0.6031

Example 5.2 (0.0000,0.0000,0.0000) 13 -2.3305e-05 1.3595e-10 0.1985

Example 5.3 ( 2.0000,-0.0000) 14 -2.0000 2.0874e-05 0.2465

The results shown in Tab. 2 reveal that Algorithm 4.1 was able to obtain global minimizers by solving the

stationarity systems for all examples except Examples 2.2 and 2.4. Even for Examples 2.2 and 2.4, although

the algorithm stopped at only approximate solutions, one can expect that the solutions will be closer and

closer to the true solutions by increasing the tolerance.

From Tab. 3, we see that the partial augmented Lagrangian method in [21] found global minimizers for

Examples 2.2, 2.4, 5.1, and 5.3. However, for Examples 2.1, 2.3, and 5.2, the algorithm stopped at infeasible

points, and thus failed to find the solutions. But this is not unexpected since an accumulation point of an

augmented Lagrangian method is generally not guaranteed to be feasible. From Tab. 4, we can see that the

`1/2 penalty method found global minimizers for all examples except Examples 2.2 and 2.4. In particular,

for Example 2.2, the iteration sequence moves away from the feasible region.

7 Conclusions

We have reformulated the popular stationarity conditions for MPEC as systems of equations with box

constraints, and presented a modified LM algorithm for solving these constrained equations. Since the

success of proposed algorithm depends greatly on the existence of local error bounds, we have developed
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some sufficient conditions for local error bounds. Note that, since Algorithm 4.1 is only locally convergent,

how to choose starting points is very important. As in [11], in order to achieve global convergence, some

kinds of line search techniques may need to be used. We leave this issue as a future work.
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