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Abstract. In this paper, we consider a simple bilevel program where the lower level

program is a nonconvex minimization problem with a convex set constraint and the upper

level program has a convex set constraint. By using the value function of the lower level

program, we reformulate the bilevel program as a single level optimization problem with

a nonsmooth inequality constraint and a convex set constraint. To deal with such a non-

smooth and nonconvex optimization problem, we design a smoothing projected gradient

algorithm for a general optimization problem with a nonsmooth inequality constraint and

a convex set constraint. We show that, if the sequence of penalty parameters is bounded

then any accumulation point is a stationary point of the nonsmooth optimization problem

and, if the generalized sequence is convergent and the extended Mangasarian-Fromovitz

constraint qualification holds at the limit then the limit point is a stationary point of the

nonsmooth optimization problem. We apply the smoothing projected gradient algorithm

to the bilevel program if a calmness condition holds and to an approximate bilevel pro-

gram otherwise. Preliminary numerical experiments show that the algorithm is efficient

for solving the simple bilevel program.
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1 Introduction.

Consider the simple bilevel program

(SBP) min
x∈X,y∈S(x)

F (x, y),

where S(x) denotes the set of solutions of the lower level program

(Px) min
y∈Y

f(x, y),

X and Y are closed convex subsets of Rn and R
m respectively, and F, f : Rn × R

m → R

are continuously differentiable functions. To concentrate on main ideas, we omit possible

constraints on the upper level variable since the analysis can be carried over to the case

where there are such constraints without much difficulty. The simple bilevel program is a

special case of a general bievel program where the constraint set Y may depend on x. The

reader is referred to [1, 8, 9, 20, 22] for applications and recent developments of general

bilevel program.

Let x and y denote the decision variables of the leader and the follower respectively.

Problem (SBP) represents the so-called optimistic approach to the leader and follower’s

game in which the follower is assumed to be co-operative and is willing to use any optimal

solution from S(x). Another approach called pessimistic approach is to assume that the

follower may not be co-operative and hence the leader will have to prepare for the worst

and try to solve the following pessimistic bilevel program:

min
x∈X

max
y∈S(x)

F (x, y).

Although a simple bilevel program is simpler than the general bilevel program in that

the constraint region of the lower level problem is independent of the upper level decision

variable x, it has many applications including a very important model in economics called

the moral hazard model of the principal-agent problem [15]. The moral hazard model

studies the relationship between a principal (leader) and an agent (follower) in situations

in which the principal can only observe the outcome of the agent’s action but not the

action itself. In this situation, it is a challenge for the principal to design an optimal

incentive scheme as a function of the outcome of the agent’s action.

In the case where the lower level program is a convex program in variable y, the

general practice to solve a bilevel program is to replace the lower level program by its

Karush-Kuhn-Tucker (KKT) condition and solve a mathematical program with equilib-

rium constraints (MPEC). Although the globally optimal solutions for the original bilevel

program and its KKT reformulation coincide, the locally optimal solutions for the original
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bilevel program and its KKT reformulation may not be the same in the case where the

lower level program has multiple multipliers (see [10]). Hence, it is not guaranteed that

the solutions by solving the KKT reformulation solves the original bilevel program.

For the simple bilevel program, the so-called first order approach replaces the solution

set S(x) of the lower level program by the set of stationary points of the lower level

program. For the case where f(x, y) is convex in y, (SBP) and its first order reformulation

are equivalent in terms of both globally and locally optimal solutions. In the nonconvex

case, it is tempting to believe a locally optimal solution of the original bilevel program

must be a stationary point of its first order reformulation. However, Mirrlees [15] gave a

very convincing example (see Example 4.1 below) to show that this belief is wrong. Since

the first order approach may not be valid for (SBP) in general, (SBP) remains a very

difficult problem to solve theoretically and numerically. In recent years, many numerical

algorithms have been suggested for bilevel programs. However, most of the works assume

that the lower level program is convex with few exceptions [16, 18]. In this paper, we will

try to attack this difficult problem and, in particular, we do not assume that the lower

level program is convex.

Taking the value function approach, we define the value function of the lower level

program as

V (x) := inf
y∈Y

f(x, y)

and reformulate (SBP) as the following single level optimization problem:

(VP) min F (x, y)

s.t. f(x, y)− V (x) ≤ 0, (1.1)

(x, y) ∈ X × Y.

This reformulation was first proposed by Outrata [18] for a numerical purpose and sub-

sequently used by Ye and Zhu [24] for the purpose of obtaining necessary optimality

conditions. One may think that reformulating the bilevel program (SBP) as an equiva-

lent single level program (VP) would solve the problem. This is not true since there are

two issues to be resolved. First, is a local solution of (VP) a stationary point of (VP)?

Second, is there an iterative algorithm that generates a sequence converging to a station-

ary point of (VP)? Problem (VP) is a nonsmooth problem since the value function V (x)

is generally nonsmooth even when the function f(x, y) is smooth. If Y is compact, by the

Danskin’s theorem (see Proposition 2.1 below), the value function is Lipschitz continuous

and its Clarke generalized gradients may be computed. To answer the first question, in

general one needs to have some constraint qualification or calmness condition. Since the

constraint (1.1) is actually an equality constraint and hence the nonsmooth Mangasarian
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Fromovitz constraint qualification (MFCQ) for the single level problem (VP) will never

be satisfied; see [24, Proposition 3.2]. Nevertheless, using the value function formulation,

Ye and Zhu [24, 25] introduced the partial calmness condition, under which a necessary

optimality condition for the general bilevel program was developed. For (SBP), the par-

tial calmness condition reduces to the calmness condition [4] that is a sufficient condition

under which a local solution of (VP) is a stationary point. To address the second issue, we

propose to approximate the value function by a smooth function and design a smoothing

projected gradient algorithm to solve the problem. We show that any accumulation point

of the sequence generated by the algorithm is a stationary point of problem (VP) pro-

vided that the sequence of the penalization parameters is bounded. Under the calmness

condition, it is known that there exists a constant λ > 0 such that any locally optimal

solution of (VP) is also a locally optimal solution of the exact penalty problem

min
(x,y)∈X×Y

F (x, y) + λ(f(x, y)− V (x)).

Due to the exactness of the penalization, the sequence of penalization parameters gener-

ated from our smoothing projected gradient algorithm is likely to be bounded and hence

the algorithm would converge to a stationary point of (VP). Note that the calmness condi-

tion for (VP) is a very strong condition so that it does not hold for many bilevel programs.

In [26], a new first order necessary optimality condition was derived by a combination of

the first order condition and the value function. The resulting necessary optimality con-

dition is much more likely to hold since it contains the ones derived by using the first

order condition or the value function approach as special cases.

If the calmness condition does not hold, an optimal solution of (SBP) (or equivalently

an optimal solution of (VP)) is not guaranteed to be a stationary point of the problem

(VP). In this case, we consider the following approximate bilevel program, where the

solution set for the lower level program is replaced by the set of ε-solutions for a given

ε > 0:

(VP)ε min F (x, y)

s.t. f(x, y)− V (x)− ε ≤ 0,

(x, y) ∈ X × Y.

There are three incentives to consider the above approximate bilevel program. First, in

practice, it is usually too much to ask for exact optimal solutions. The follower may

be satisfied with an almost optimal solution. Second, as we will show in Theorem 4.1,

the solutions of (VP)ε approximate a solution of the original bilevel program (VP) as ε

approaches zero. Third, although the nonsmooth MFCQ does not hold for (VP), it may
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hold for (VP)ε if ε > 0 and hence (VP)ε is much easier to solve than (VP). In particular,

(VP)ε is calm under the nonsmooth MFCQ and, consequently, the smoothing projected

gradient algorithm would converge. Here, we would like to point out that the strategy

of studying the approximate bilevel program has been used to study the existence and

stability of bilevel programs (see [14]).

One of the main contributions of this paper is the designing of a smoothing projected

gradient algorithm for solving a general nonsmooth and nonconvex constrained optimiza-

tion problem. Our smoothing projected gradient algorithm has the advantage over other

algorithms such as the sampling gradient algorithm [6] for solving nonsmooth and non-

convex problems in that we do not need to evaluate the constraint function value or its

gradient. Such an algorithm turns out to be useful for solving bilevel programs since one

does not need to solve the lower level program at each iteration.

The rest of the paper is organized as follows. In Section 2, we present basic definitions

as well as some preliminaries which will be used in this paper. In Section 3, we propose

a smoothing projected gradient algorithm for a nonsmooth and nonconvex constrained

optimization problem and establish convergence for the algorithm. Section 4 is mainly

devoted to the study of approximate bilevel programming problems and sufficient con-

ditions for calmness. In Section 5, we propose to use the entropy integral function as

a smoothing function of the value function and show that the entropy integral function

satisfies the gradient consistent property, which is required for the convergence of the al-

gorithm presented in Section 3. We also report our numerical experiments for two simple

examples. The final section contains some concluding remarks.

We adopt the following standard notation in this paper. For any two vectors a and b

in Rn, we denote by aT b their inner product. Given a function G : Rn → R
m, we denote

its Jacobian by ∇G(z) ∈ R
m×n and, if m = 1, the gradient ∇G(z) ∈ R

n is considered as

a column vector. For a set Ω ⊆ R
n, we denote by intΩ, coΩ, and dist(x,Ω) the interior,

the convex hull, and the distance from x to Ω respectively. For a matrix A ∈ R
n×m, AT

denotes its transpose. In addition, we let N be the set of nonnegative integers and exp[z]

be the exponential function.

2 Preliminaries

In this section, we present some background materials which will be used later on. Detailed

discussions on these subjects can be found in [4, 5, 17, 19, 21].

For a convex set C ⊆ R
m and a point z ∈ C, the normal cone of C at z is given by

NC(z) := {ζ ∈ R
m : ζT (z′ − z) ≤ 0, ∀z′ ∈ C}
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and the tangent cone of C at z is given by

TC(z) := {d ∈ R
m : (zν − z)/τν → d for some zν ∈ C, zν→z, τν ց 0},

respectively. Let ϕ : Rn → R be Lipschitz continuous near x̄. The Clarke generalized

directional derivative of ϕ at x̄ in direction d is defined by

ϕ◦(x̄; d) := lim sup
x→x̄, tց0

ϕ(x+ td)− ϕ(x)

t
.

The Clarke generalized gradient of ϕ at x̄ is a convex and compact subset of Rn defined

by

∂ϕ(x̄) := {ξ ∈ R
n : ξTd ≤ ϕ◦(x̄; d), ∀d ∈ R

n}.

Note that, when ϕ is convex, the Clarke generalized gradient coincides with the subdif-

ferential in the sense of convex analysis, i.e.,

∂ϕ(x̄) = {ξ ∈ R
n : ξT (x− x̄) ≤ ϕ(x)− ϕ(x̄), ∀x ∈ R

n}

and, when ϕ is continuously differentiable at x̄, we have ∂ϕ(x̄) = {∇ϕ(x̄)}.

Proposition 2.1 (Danskin’s Theorem) ([5, Page 99] or [7]) Let Y ⊆ Rm be a compact

set and f(x, y) be a function defined on R
n × R

m that is continuously differentiable at x̄.

Then the value function

V (x) := min{f(x, y) : y ∈ Y }

is Lipschitz continuous near x̄ and its Clarke generalized gradient at x̄ is

∂V (x̄) = co{∇xf(x̄, y) : y ∈ S(x̄)}, (2.1)

where S(x̄) is the set of all minimizers of f(x̄, y) over y ∈ Y .

Consider the constrained optimization problem

(P) min G(x)

s.t. g(x) ≤ 0,

x ∈ Ω,

where Ω ⊆ R
n is a nonempty closed and convex set, G : Rn → R is continuously differen-

tiable, and g : Rn → R is locally Lipschitzian but not necessarily differentiable.

Definition 2.1 (Nonsmooth MFCQ) Let x̄ be a feasible point of problem (P). We say

that the nonsmooth MFCQ holds at x̄ if either g(x̄) < 0 or g(x̄) = 0 but there exists a

direction d ∈ int TΩ(x̄) such that

vTd < 0, ∀v ∈ ∂g(x̄).
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Following from the Fritz John type necessary optimality condition [4, Theorem 6.1.1],

we define the following constraint qualification, which is weaker than the nonsmooth

MFCQ but equivalent to the nonsmooth MFCQ if int TΩ(x̄) 6= ∅ [13, 23].

Definition 2.2 (NNAMCQ) Let x̄ be a feasible point of problem (P). We say that the

no nonzero abonormal multiplier constraint qualification (NNAMCQ) holds at x̄ if either

g(x̄) < 0 or g(x̄) = 0 but

0 6∈ ∂g(x̄) +NΩ(x̄). (2.2)

Note that the above condition is equivalent to saying that there is no µ > 0 such that

0 ∈ µ∂g(x̄) +NΩ(x̄),

µg(x̄) = 0.

In order to accommodate infeasible accumulation points in the numerical algorithm, we

now extend the definition of NNAMCQ to allow infeasible points.

Definition 2.3 (ENNAMCQ) Let x̄ ∈ Ω. We say that the extended no nonzero abnor-

mal multiplier constraint qualification (ENNAMCQ) holds at x̄ for problem (P) if either

g(x̄) < 0 or g(x̄) ≥ 0 but

0 6∈ ∂g(x̄) +NΩ(x̄).

The following is equivalent to the calmness given in [4].

Definition 2.4 (Calmness) Let x̄ be a locally optimal solution of problem (P). We say

that (P) is calm at x̄ if x̄ is also a locally optimal solution of the exact penalty problem

(Pλ) min G(x) + λmax{g(x), 0}

s.t. x ∈ Ω

for some λ > 0.

Definition 2.5 (Stationary point) We call a feasible point x̄ a stationary point of

problem (P) if there exists µ ≥ 0 such that

0 ∈ ∇G(x̄) + µ∂g(x̄) +NΩ(x̄),

µg(x̄) = 0.
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It is not difficult to see from the above definitions that a feasible point x̄ is a stationary

point of (P) if and only if there is some µ ≥ 0 such that µg(x̄) = 0 and

‖PΩ[x̄−∇G(x̄)− µξ]− x̄‖ = 0 for some ξ ∈ ∂g(x̄),

where PΩ denotes the projection operator onto Ω, that is,

PΩ[x] := argmin{‖z − x‖ : z ∈ Ω}.

The following property is well known.

Lemma 2.1 [27] For any x ∈ R
n and z ∈ Ω, we have (PΩ[x]− x)T (z − PΩ[x]) ≥ 0.

We now review some results from measure theory and integration [21].

Definition 2.6 (Exterior measure) If E ⊆ R
n, the exterior measure of E is

m∗(E) := inf

∞
∑

j=1

|Qj|,

where |Q| denotes the volume of a closed cube Q and the infimum is taken over all count-

able closed cubes {Qj}
∞
j=1 such that ∪∞

j=1Qj ⊇ E.

Definition 2.7 (Lebesgue measurability) A set E ⊆ R
n is Lebesgue measurable if,

for any ǫ > 0, there exists an open set O with E ⊆ O and

m∗(O − E) ≤ ǫ.

For a measurable set E, m∗(E) is called the Lebesgue measure of E.

Proposition 2.2 [21, Property 1.3.4] All closed sets are Lebesgue measurable.

Lemma 2.2 (Leibniz’s rule) Let f : X × Y → R be a function such that both f and

∇xf are continuous and Y be a compact set. Then, for any x ∈ X,

∇x

∫

Y

f(x, y)dy =

∫

Y

∇xf(x, y)dy.

3 Smoothing projected gradient algorithm for (P)

In this section, we propose a smoothing projected gradient algorithm, which combines

a smoothing technique with a classical projected gradient algorithm to solve the con-

strained optimization problem (P) given in Section 2. Our algorithm can be regarded as

a generalization of the one proposed in [28] for unconstrained nonsmooth optimization

problems. We suppose that the function g in (P) is eventually not differentiable at some

points. Our method can be easily extended to the case where the objective function is

locally Lipschitz and the case where there are more than one nonsmooth constraint.
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Definition 3.1 Assume that, for a given ρ > 0, gρ : Rn → R is a continuously differ-

entiable function. We say that {gρ : ρ > 0} is a family of smoothing functions of g if

lim
z→x, ρ↑∞

gρ(z) = g(x) for any fixed x ∈ R
n.

Definition 3.2 [3] We say that a family of smoothing functions {gρ : ρ > 0} satisfies the

gradient consistent property if lim sup
z→x, ρ↑∞

∇gρ(z) is nonempty and lim sup
z→x, ρ↑∞

∇gρ(z) ⊆ ∂g(x)

for any x ∈ R
n, where lim sup

z→x, ρ↑∞
∇gρ(z) denotes the set of all limiting points

lim sup
z→x, ρ↑∞

∇gρ(z) :=
{

lim
k→∞

∇gρk(zk) : zk → x, ρk ↑ ∞
}

.

Note that our definition of smoothing functions in Definition 3.1 is different from the

one originally defined in [28] in that we do not assume that the set lim sup
z→x, ρ↑∞

∇gρ(z) is

bounded for any given x ∈ R
n. Nevertheless, since the Clarke generalized gradient of a

locally Lipschitz function is nonempty and compact, it is easy to see that, a family of

smooth functions {gρ : ρ > 0} satisfies the gradient consistent property in our sense if

and only if it satisfies the gradient consistent property in the sense of [28].

In what follows, we approximate the function max{x, 0} by 1
2
(
√

x2 + ρ−1 + x) and

the nonsmooth function g(x) by its family of smoothing function {gρ(x) : ρ > 0} which

satisfies the gradient consistent property and get the following approximation problem of

(Pλ):

(Pρ
λ) min Gλ

ρ(x) := G(x) +
λ

2

(√

g2ρ(x) + ρ−1 + gρ(x)
)

s.t. x ∈ Ω.

Since (Pρ
λ) is a smooth optimization problem with a convex constraint set for any fixed

ρ > 0 and λ > 0, we will suggest a projected gradient algorithm to find a stationary point

of problem (Pρ
λ). Our strategy is to update the iterations by increasing ρ and λ. We

will show that any convergent subsequence of iteration points generated by the algorithm

converges to a stationary point of problem (P) when ρ goes to infinity and the penalty

parameter λ is bounded. We will also show that, under the ENNAMCQ, the penalty

parameter must be bounded.

Algorithm 3.1 1. Let {β, γ, σ1, σ2} be constants in (0, 1) with σ1 ≤ σ2, {η̂, ρ0, λ0}

be positive constants, and {σ, σ′} be constants in (1,∞). Choose an initial point

x0 ∈ Ω and set k := 0.

2. Compute the stepsize βlk , where lk ∈ {0, 1, 2 · · ·} is the smallest number satisfying

Gλk

ρk
(PΩ[x

k − βlk∇Gλk

ρk
(xk)])−Gλk

ρk
(xk) (3.1)

≤ σ1∇Gλk

ρk
(xk)T

(

PΩ[x
k − βlk∇Gλk

ρk
(xk)]− xk

)
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and βlk ≥ γ, or

Gλk

ρk
(PΩ[x

k − βlk−1∇Gλk

ρk
(xk)])−Gλk

ρk
(xk) (3.2)

> σ2∇Gλk

ρk
(xk)T

(

PΩ[x
k − βlk−1∇Gλk

ρk
(xk)]− xk

)

.

Go to Step 3.

3. If

‖PΩ[x
k − βlk∇Gλk

ρk
(xk)]− xk‖

βlk
< η̂ρ−1

k , (3.3)

set xk+1 := PΩ[x
k − βlk∇Gλk

ρk
(xk)] and go to Step 4. Otherwise, set xk+1 := PΩ[x

k −

βlk∇Gλk

ρk
(xk)], k := k + 1, and go to Step 2.

4. If

gρk(x
k+1) ≤ 0 (3.4)

and

‖PΩ[x
k+1 −∇Gλk

ρk
(xk+1)]− xk+1‖ = 0, (3.5)

go to Step 6. Else if (3.4) holds while (3.5) fails, go to Step 5. Otherwise, if (3.4)

fails, set λk+1 := σ′λk and go to Step 5.

5. Set ρk+1 := σρk, k := k + 1, and go to Step 2.

6. If a stopping criterion leading to the stationary condition for (P) holds at xk+1,

terminate. Otherwise, go to Step 5.

We make some remarks on Algorithm 3.1. First of all, it is easy to see that Step 2 of

the algorithm is the Armijo line search. In practice, only a small number of iterations are

required to compute the Armijo stepsize. Note, in particular, that the Armijo procedure

(3.1) − (3.2) satisfies the conditions in [28] with γ2 = β. The search for a stepsize is a

finite process under the continuous differentiability of Gλ
ρ , which can be seen from [28].

Moreover, for a given tolerance ǫ > 0, we suggest the condition

|Gλk

ρk
(xk+1)−G(xk+1)| ≤ ǫ (3.6)

as a stopping criterion of the above algorithm. To justify the stopping criterion (3.6), we

assume without loss of generality that xk → x∗ as k → ∞ and denote

µλ
ρ(x) :=

λ

2





gρ(x)
√

g2ρ(x) + ρ−1
+ 1



 . (3.7)
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Then ∇Gλk

ρk
(xk+1) is equal to ∇G(xk+1) + µλk

ρk
(xk+1)∇gρk(x

k+1). Consider the stopping

criterion (3.6). If

Gλk

ρk
(xk+1)−G(xk+1) =

λk

2

(
√

g2ρk(x
k+1) + ρ−1

k + gρk(x
k+1)

)

→ 0 as k → ∞,

it follows that

µλk

ρk
(xk+1)gρk(x

k+1) =
λk

2

(
√

g2ρk(x
k+1) + ρ−1

k + gρk(x
k+1)

) gρk(x
k+1)

√

g2ρk(x
k+1) + ρ−1

k

→ 0 as k → ∞. (3.8)

Therefore, letting µ∗ be an accumulation point of {µλk

ρk
(xk+1)}, we have from (3.4) and

(3.7)− (3.8) that

µ∗ ≥ 0, g(x∗) ≤ 0, µ∗g(x∗) = 0. (3.9)

Since any limit of {∇gρk(x
k+1)} must be an element of ∂g(x∗) by Definition 3.2, we have

from (3.5) and the definition of ∇Gλk

ρk
(xk+1) that any limit d∗ of {∇Gλk

ρk
(xk+1)} must

satisfy

d∗ ∈ ∇G(x∗) + µ∗∂g(x∗), ‖PΩ[x
∗ − d∗]− x∗‖ = 0,

which means

0 ∈ ∇G(x∗) + µ∗∂g(x∗) +NΩ(x
∗).

This, together with (3.9), indicates that x∗ is a stationary point of (P). Therefore, (3.6)

is a reasonable stopping criterion.

In addition, if Algorithm 3.1 does not terminate at Step 6, the assumption given below

guarantees that ρk → +∞ as k → ∞, which is shown in the next lemma.

Assumption 3.1 For any ρ > 0 and λ > 0, Gλ
ρ(·) is bounded below and ∇Gλ

ρ(·) is

uniformly continuous on the nonempty closed convex set Ω, that is, for any ǫ > 0, there

exists δ > 0 such that

x ∈ Ω, y ∈ Ω, ‖x− y‖ < δ =⇒ ‖∇Gλ
ρ(x)−∇Gλ

ρ(y)‖ < ǫ.

Lemma 3.1 Under Assumption 3.1, if Algorithm 3.1 does not terminate at Step 6, we

have lim
k→∞

ρk = +∞.

11



Proof. Note that, for any ρ > 0 and λ > 0, Gλ
ρ is continuously differentiable and the

Armijo procedure (3.1)− (3.2) satisfies conditions (2.1)− (2.3) in [2] with γ2 = β. Then,

following the proof of [2, Theorem 2.3], we have

lim
k→∞

‖PΩ[x
k − βlk∇Gλk

ρk
(xk)]− xk‖

βlk
= 0,

which means that, for any ρk > 0, we can find some xk such that condition (3.3) holds.

Then lim
k→∞

ρk = +∞ by Algorithm 3.1.

We now introduce an inequality which was proposed by Dunn [11] in his analysis for

projected gradient methods.

Lemma 3.2 Suppose that {xk} is a sequence generated by Algorithm 3.1. Then, for each

k, we have

∇Gλk−1

ρk−1
(xk−1)T (xk − xk−1) ≤ −

‖xk − xk−1‖2

βlk−1

. (3.10)

Proof. By setting x := xk−1 − βlk−1∇G
λk−1

ρk−1
(xk−1) and z := xk−1 in Lemma 2.1, the

following inequality can be obtained immediately:

∇Gλk−1

ρk−1
(xk−1)T

(

PΩ[x
k−1 − βlk−1∇Gλk−1

ρk−1
(xk−1)]− xk−1

)

≤ −
‖PΩ[x

k−1 − βlk−1∇G
λk−1

ρk−1
(xk−1)]− xk−1‖2

βlk−1

.

This implies the required inequality since xk = PΩ[x
k−1 − βlk−1∇G

λk−1

ρk−1
(xk−1)].

Lemma 3.3 Suppose that Algorithm 3.1 does not terminate at Step 6 and {xk} is a

sequence generated by the algorithm such that condition (3.5) fails for each k. Then,

under Assumption 3.1, for each x ∈ Ω, we have

∇Gλk−1

ρk−1
(xk−1)T (xk−1 − x)

≤ ∇Gλk−1

ρk−1
(xk−1)T (xk−1 − xk) +

1

βlk−1

‖xk − xk−1‖‖xk−1 − x‖ (3.11)

and

lim sup
k→∞

∇Gλk−1

ρk−1
(xk−1)T (xk−1 − x) ≤ 0. (3.12)

Proof. Note that condition (3.3) implies

lim
k→∞

‖xk − xk−1‖

βlk−1

≤ lim
k→∞

η̂
1

ρk−1

= 0, (3.13)

12



while condition (3.10) together with (3.1) implies

Gλk−1

ρk−1
(xk)−Gλk−1

ρk−1
(xk−1) ≤ σ1∇Gλk−1

ρk−1
(xk−1)T (xk − xk−1) (3.14)

≤ −σ1
‖xk − xk−1‖2

βlk−1

for each k. Since G
λk−1

ρk−1
is smooth, we have limk→∞G

λk−1

ρk−1
(xk) − G

λk−1

ρk−1
(xk−1) = 0. This

together with (3.14) yields

lim
k→∞

∇Gλk−1

ρk−1
(xk−1)T (xk − xk−1) = 0. (3.15)

For any z ∈ Ω, by setting x := xk−1−βlk−1∇G
λk−1

ρk−1
(xk−1) in Lemma 2.1, we have that, for

each k,

βlk−1∇Gλk−1

ρk−1
(xk−1)T (xk − z) ≤ (xk − xk−1)T (z − xk)

≤ (xk − xk−1)T (z − xk−1)

≤ ‖xk − xk−1‖‖xk−1 − z‖.

Thus, we obtain (3.11) by setting z := x ∈ Ω in the above inequality. Furthermore, we

have (3.12) from (3.13) and (3.15).

Suppose that Algorithm 3.1 does not terminate within finite iterations. The next

theorem shows the global convergence of Algorithm 3.1.

Theorem 3.1 Let Assumption 3.1 hold and x∗ be an accumulation point of the sequence

{xk} generated by Algorithm 3.1. If {λk} is bounded, then x∗ is a stationary point of (P).

Proof. Since {λk} is bounded, there exist k̄ and λ̂ such that λk = λ̂ and condition (3.4)

hold for all k ≥ k̄. Let µλ
ρ(x) be defined as (3.7). We consider the following two cases.

(i) Consider the case where there is a sequence K0 ⊆ N such that both (3.4) and (3.5)

hold for all k ∈ K0. It is easy to see that, for each k ∈ K0, by the discussions in Section

2, xk is a stationary point of min
x∈Ω

G
λk−1

ρk−1
(x), that is,

0 ∈ ∇Gλk−1

ρk−1
(xk) +NΩ(x

k) = ∇G(xk) + µλk−1

ρk−1
(xk)∇gρk−1

(xk) +NΩ(x
k). (3.16)

By the gradient consistent property of gρ, there exists a subsequence K̂0 ⊆ K0 such that

lim
k→∞, k∈K̂0

∇gρk−1
(xk) ∈ ∂g(x∗).

Note that, by (3.7), {µ
λk−1

ρk−1
(xk)} is bounded. Hence, there is a subsequence K̄0 ⊆ K̂0 such

that {µ
λk−1

ρk−1
(xk)}k∈K̄0

is convergent. Let µ̄ := lim
k→∞, k∈K̄0

µλk−1

ρk−1
(xk). It follows from (3.7)

that µ̄ ≥ 0 and, by letting k → ∞ with k ∈ K̄0 in (3.16),

0 ∈ ∇G(x∗) + µ̄∂g(x∗) +NΩ(x
∗). (3.17)

13



On the other hand, note that g(x∗) = lim
k→∞

gρk−1
(xk) ≤ 0 by (3.4). Therefore, if g(x∗) < 0,

there holds µ̄ = 0 from (3.7) and Lemma 3.1. As a result, we always have µ̄g(x∗) = 0.

From the above discussion, we know that x∗ is a stationary point of (P).

(ii) Consider the case where there is a sequence K1 ⊆ N such that (3.4) holds

while (3.5) fails for all k ∈ K1. We have from condition (3.3) and Lemma 3.1 that

lim
k→∞, k∈K1

xk−1 = x∗. By the gradient consistent property of gρ, there exists a subsequence

K̂1 ⊆ K1 such that

lim
k→∞, k∈K̂1

∇gρk−1
(xk−1) ∈ ∂g(x∗).

Note that, by (3.7), {µ
λk−1

ρk−1
(xk−1)} is bounded. Hence, there is a subsequence K̄1 ⊆ K̂1

such that {µ
λk−1

ρk−1
(xk−1)}k∈K̄1

is convergent. Let µ̄ := lim
k→∞, k∈K̄1

µλk−1

ρk−1
(xk−1). It follows

from (3.7) that µ̄ ≥ 0. Note also that g(x∗) = lim
k→∞

gρk−1
(xk) ≤ 0 by (3.4). Therefore, if

g(x∗) < 0, we have gρk−1
(xk−1) < 0 by Definition 3.1. Hence, there holds µ̄ = 0 from (3.7)

and Lemma 3.1. As a result, we always have µ̄g(x∗) = 0. On the other hand, let

Vk−1 := ∇Gλk−1

ρk−1
(xk−1) = ∇G(xk−1) + µλk−1

ρk−1
(xk−1)∇gρk−1

(xk−1),

V := lim
k→∞, k∈K̄1

Vk−1 ∈ ∇G(x∗) + µ̄∂g(x∗).

It follows from Lemma 3.3 that

V T (x∗ − x) ≤ 0, x ∈ Ω.

This means −V ∈ NΩ(x
∗) and hence (3.17) holds. From the above discussion, we know

that x∗ is a stationary point of (P). This completes the proof.

The next theorem gives a sufficient condition for the boundedness of {λk}.

Theorem 3.2 Let Assumption 3.1 hold and {xk} be a sequence generated by Algorithm

3.1. Suppose that limk→∞ xk = x∗ and the ENNAMCQ holds at x∗ for (P), then {λk} is

bounded.

Proof. Assume for a contradiction that the conclusion is not true. This means that there

is a sequence K1 ⊆ N such that condition (3.4) fails for all k ∈ K1. Let µ
λ
ρ(x) be defined

as (3.7).

First consider the case where there is a subsequence K2 ⊆ K1 such that condition

(3.5) holds for every k ∈ K2. Similarly to Part (i) of the proof of Theorem 3.1, we know

that condition (3.16) holds for every k ∈ K2 and, since gρk−1
(xk) > 0 for all k ∈ K2,

µλk−1

ρk−1
(xk) → +∞ as K2 ∋ k → ∞. (3.18)

14



By the gradient consistent property of gρ, there exists a subsequence K̂2 ⊆ K2 such that

lim
k→∞,k∈K̂2

∇gρk−1
(xk) ∈ ∂g(x∗).

Dividing by µ
λk−1

ρk−1
(xk) in both sides of (3.16), we have

0 ∈
1

µ
λk−1

ρk−1
(xk)

∇G(xk) +∇gρk−1
(xk) +NΩ(x

k). (3.19)

Letting k → ∞ with k ∈ K̂2 in (3.19), we have from (3.18) that

0 ∈ ∂g(x∗) +NΩ(x
∗), (3.20)

which contradicts the ENNAMCQ assumption.

Now we consider the case where condition (3.5) fails for every k ∈ K1 sufficiently large.

By the gradient consistent property of gρ, there exists a subsequence K̂1 ⊆ K1 such that

v := lim
k→∞,k∈K̂1

∇gρk−1
(xk−1) ∈ ∂g(x∗).

On the other hand, we have from (3.3) that, for each k,

‖xk − xk−1‖ ≤ η̂ρ−1
k−1.

Moreover, it follows from the gradient consistent property and the fact that the Clarke

generalized gradient is nonempty and compact that the set lim sup
z→x∗, ρ↑∞

∇gρ(z) is nonempty

and bounded. Thus, from the mean-value theorem, there exist a constant c > 0 and a

positive integer k0 such that

|gρk−1
(xk)− gρk−1

(xk−1)| ≤ cρ−1
k−1

holds for each k ∈ K̂1 with k ≥ k0. For each k ∈ K̂1 with k ≥ k0, since gρk−1
(xk) > 0, we

have

gρk−1
(xk−1) ≥ gρk−1

(xk)− cρ−1
k−1 > −cρ−1

k−1

and hence

gρk−1
(xk−1)

√

g2ρk−1
(xk−1) + ρ−1

k−1

>
−cρ−1

k−1
√

g2ρk−1
(xk−1) + ρ−1

k−1

=
−c

√

ρ2k−1g
2
ρk−1

(xk−1) + ρk−1

→ 0

as k → ∞. This implies

µλk−1

ρk−1
(xk−1) =

λk−1

2





gρk−1
(xk−1)

√

g2ρk−1
(xk−1) + ρ−1

k−1

+ 1



→ +∞
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as k → ∞. Then, for any x ∈ Ω and k ∈ K̂1, dividing by µ
λk−1

ρk−1
(xk−1) in both sides of

(3.11), we have

(

1

µ
λk−1

ρk−1
(xk−1)

∇G(xk−1) +∇gρk−1
(xk−1)

)T

(xk−1 − x)

≤
1

µ
λk−1

ρk−1
(xk−1)

∇Gλk−1

ρk−1
(xk−1)T (xk−1 − xk) +

1

βlk−1µ
λk−1

ρk−1
(xk−1)

‖xk − xk−1‖‖xk−1 − x‖.

Taking a limit within K̂1, we have from (3.13) and (3.15) that, for any x ∈ Ω,

vT (x∗ − x) ≤ lim
k→∞,k∈K̂1

1

µ
λk−1

ρk−1
(xk−1)

∇Gλk−1

ρk−1
(xk−1)T (xk−1 − xk)

+ lim
k→∞,k∈K̂1

‖xk−1 − x‖

µ
λk−1

ρk−1
(xk−1)

‖xk − xk−1‖

βlk−1

= 0,

which means

0 ∈ v +NΩ(x
∗) ⊆ ∂g(x∗) +NΩ(x

∗).

This contradicts the ENNAMCQ assumption.

From the above discussion, we know that {λk} is bounded.

The next corollary follows immediately from Theorems 3.1 and 3.2.

Corollary 3.1 Let Assumption 3.1 hold. Suppose that {xk} is a sequence generated by

Algorithm 3.1 and lim
k→∞

xk = x∗. If the ENNAMCQ holds at x∗, then x∗ is a stationary

point of (P).

Notice that, in Theorem 3.2 and Corollary 3.1, x∗ must be a limit point of the sequence

generated by the algorithm. It is not enough to just assume that x∗ is an accumulation

point of the sequence generated by the algorithm. The reason is that the subsequence

K1 in the proof of Theorem 3.2 may not be included in any subsequence converging to

the accumulation point and hence the contradiction to the NNAMCQ in the proof may

not be true. To derive the convergence result for any accumulation point, one needs to

assume the ENNAMCQ holds for every infeasible point x ∈ Ω as shown in the following

theorem.

Theorem 3.3 Let Assumption 3.1 hold and {xk} be a sequence generated by Algorithm

3.1. Assume that the ENNAMCQ holds for (P) at any point x satisfying g(x) ≥ 0. If

{xk} is bounded, then {λk} is bounded and hence any accumulation point of {xk} is a

stationary point of (P).
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Proof. Suppose to the contrary that the sequence {λk} is unbounded. Then there is a

sequence K ⊆ N such that condition (3.4) fails for all k ∈ K. Let x∗ be an accumulation

point of {xk}k∈K . Then we must have g(x∗) ≥ 0 and hence, by the assumption, the

ENNAMCQ holds at x∗ for (P). On the other hand, similarly as in the proof of Theorem

3.2, we can show that the ENNAMCQ fails at x∗. As a contradition, we have shown that

{λk} is bounded.

The second assertion follows from the boundedness of {λk} and Theorem 3.1 immedi-

ately.

We now discuss the situations when the NNAMCQ does not hold but problem (P) is

calm at a local optimal solution. Let x∗ be a locally optimal solution of (P) and (P) be

calm at x∗. Without loss of generality, we assume g(x∗) = 0. Since there exists λ∗ > 0

sufficiently large such that x∗ is also a local solution to the exact penalty problem (Pλ∗),

we have

0 ∈ ∇G(x∗) + λ∗µ∂g(x∗) +NΩ(x
∗), µ ∈ [0, 1].

Fix λ > 0. For any ρ > 0, let xρ be a stationary point of problem (Pρ
λ). If xρ → x∗ as

ρ → ∞, we can derive

0 ∈ ∇G(x∗) + λµ∂g(x∗) +NΩ(x
∗), µ ∈ [0, 1]

by the gradient consistent property of gρ. Hence, it is easy to see that, if (P) is calm at

all locally optimal solutions, then the sequence of penalty parameters of any convergent

sequence generated by the algorithm will be likely to be bounded.

4 Approximate bilevel programs

Consider the approximate bilevel program (VP)ε introduced in Section 1. We first inves-

tigate its limiting behavior.

Theorem 4.1 Let F be continuous, both f and ∇xf be continuously differentiable and

X, Y be closed sets. For each ε > 0, suppose that (xε
δ, y

ε
δ) is a δ-solution of problem (VP)ε,

i.e., for any feasible point (x, y) of (VP)ε, F (x, y) is not less than F (xε
δ, y

ε
δ)−δ. Then any

accumulation point of the net {(xε
δ, y

ε
δ)} as ε and δ approach zero is an optimal solution

of the bilevel program (SBP).

Proof. Without loss of generality, suppose that lim
ε↓0,δ↓0

(xε
δ, y

ε
δ) = (x∗, y∗). By the continuity

of the functions f and V (see Proposition 2.1), it is easy to verify that (x∗, y∗) is a feasible
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point of problem (SBP). Suppose that (x∗, y∗) is not an optimal solution of (SBP). Then

there must exist a feasible point (x̄, ȳ) 6= (x∗, y∗) such that

F (x̄, ȳ) < F (x∗, y∗). (4.1)

Since (xε
δ, y

ε
δ) is a δ-solution of (VP)ε and (x̄, ȳ) is a feasible point of (VP)ε, we have

F (x̄, ȳ) ≥ F (xε
δ, y

ε
δ)− δ.

Letting ε and δ tend to zero, we have

F (x̄, ȳ) ≥ F (x∗, y∗).

This contradicts (4.1) and hence (x∗, y∗) is an optimal solution of the bilevel program

(SBP).

For any ε > 0, the approximate bilevel program (VP)ε is relatively easy to solve since,

unlike the original bilevel program, it is possible to satisfy the NNAMCQ. Indeed, if

(xε, yε) is a feasible point of (VP)ε with f(xε, yε) − V (xε) = ε, then yε is not a solution

of the lower level program (Pxε) and hence it is possible to satisfy condition (2.2).

Proposition 4.1 Let f(x, y) be continuously differentiable and X, Y be closed sets. Prob-

lem (VP)ε satisfies the ENNAMCQ at (xε, yε) if one of the following conditions holds:

(1) f(xε, yε)− V (xε) < ε.

(2) f(xε, yε)− V (xε) ≥ ε, (xε, yε) is an interior point of X × Y , and ∇yf(x
ε, yε) 6= 0.

(3) f(xε, yε) − V (xε) ≥ ε, (xε, yε) is an interior point of X × Y , and ∇xf(x
ε, yε) 6∈

∂V (xε).

Furthermore, if (xε, yε) is a locally optimal solution of (VP)ε, then (VP)ε is calm at

(xε, yε).

Proof. Since (xε, yε) is an interior point of the feasible set X×Y , we have NX×Y (x
ε, yε) =

{(0, 0)}. Then condition (2.2) for (VP)ε reduces to either ∇xf(x
ε, yε) 6∈ ∂V (xε) or

∇yf(x
ε, yε) 6= 0. Hence, the ENNAMCQ holds at (xε, yε) by the assumptions. Fur-

thermore, if (xε, yε) is a locally optimal solution of (VP)ε, then (xε, yε) is feasible for

(VP)ε and the NNAMCQ holds at it. Since it is well known that the NNAMCQ is a

sufficient condition for calmness, problem (VP)ε is calm at (xε, yε).

We next use some examples to illustrate the above result.
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Example 4.1 (Mirrlees’ problem) Consider

min F (x, y) := (x− 2)2 + (y − 1)2

s.t. y ∈ S(x) := argmin
y

f(x, y) := −x exp[−(y + 1)2]− exp[−(y − 1)2].

The first order optimality condition for the lower level program is

x(y + 1) exp[−(y + 1)2] + (y − 1) exp[−(y − 1)2] = 0.

Hence, the relation between x and any stationary point y of the lower level program is

given by

(1 + y)x = (1− y) exp[4y], (4.2)

which is a smooth and connected curve as shown in Figure 1. Since the objective of the

lower level program is not convex in y, for each fixed x, not all corresponding y′s lying

on the curve are globally optimal solutions of the lower level program. The true globally

optimal solutions for the lower level program run as a disconnected curve with a jump

at x̄ = 1 (see the darker curve in Figure 1), which represents the feasible region of the

bilevel program.

Figure 1:

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5
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 Mirrlees′ problem

(0.9575,1)

(0.895,1.99)

(0.42,2.19)

(−0.98,1.98)

By the value function approach, Mirrlees’ problem is equivalent to the single level

optimization problem

min F (x, y) (4.3)

s.t. f(x, y)− V (x) ≤ 0.
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As shown by Mirrlees [15], at x̄ = 1, both ȳ1 ≈ 0.9575 and ȳ2 ≈ −0.9575 are optimal

solutions of the lower level program (Px̄). By Danskin’s theorem, we have

∂V (x̄) = co{∇xf(x̄, ȳ1),∇xf(x̄, ȳ2)}.

As shown in [26], problem (4.3) is not calm at the solution (x̄, ȳ) ≈ (1, 0.9575) and the

optimal solution (x̄, ȳ) is not a stationary point of problem (4.3). We now consider the

approximate bilevel program

min F (x, y) (4.4)

s.t. f(x, y)− V (x) ≤ ε.

Let ε be a positive number that is not equal to f(1, 0)−V (1). If f(xε, yε)−V (xε) < ε then

ENNAMCQ (equivalently NNAMCQ) holds at (xε, yε). Otherwise suppose f(xε, yε) −

V (xε) ≥ ε. Then yε 6∈ S(xε) and hence (xε, yε) does not lie on the darker curve. If

(xε, yε) does not lie on the lighter curve as well, then fy(x
ε, yε) 6= 0. If (xε, yε) lies

on the lighter curve and xε 6= 1, then S(xε) is a singleton, say {y(xε)}, and hence by

Danskin’s theorem the value function is differentiable at xε with V ′(xε) = f ′
x(x

ε, y(xε))

and so f ′
x(x

ε, yε) 6∈ ∂V (xε). Note the choice of ε has ruled out the possibility that xε = 1

and (xε, yε) lies on the lighter curve which means that (xε, yε) = (0, 1). By Proposition

4.1, the ENNAMCQ holds at all points (xε, yε). Furthermore, suppose that (xε, yε) is

a local solution of problem (4.4). Then, by Proposition 4.1, (xε, yε) is a locally optimal

solution of the exact penalty problem

min
x,y

F (x, y) + λmax{f(x, y)− V (x)− ε, 0}

for some λ > 0 sufficiently large.

5 Smoothing projected gradient algorithm for bilevel

programs

In this section, we first present a smoothing approximation for the value function V (x) and

then apply the smoothing projected algorithm presented in Section 3 to the approximate

bilevel program (VP)ε with ε ≥ 0.

Throughout this section, we suppose that the set Y is a nonempty and compact set

with m∗(Y ) 6= 0. For given ρ > 0 and an integrable function f(x, y), we define the integral

entropy function as

γρ(x) := −ρ−1 ln

(
∫

Y

exp[−ρf(x, y)]dy

)

≡ V (x)− ρ−1 ln

(
∫

Y

exp[−ρ(f(x, y)− V (x))]dy

)

.
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As shown in the next theorem, the above function is a smoothing approximation of the

value function of the lower level program.

Theorem 5.1 Let f(x, y) be continuous in (x, y) and continuously differentiable in x.

The family of entropy integral functions {γρ(x) : ρ > 0} is a family of smoothing functions

for the value function V (x).

Proof. The continuous differentiability of γρ(x) is obvious by its definition. From the

proof of [12, Theorem 1], it is easy to get that, for any ǫ > 0, there exist l ∈ (exp[−ǫ], 1)

and ρ̃ > 0 such that, for any ρ > ρ̃ and (x, y) ∈ X × Y , there holds

l
(

ρ−1m∗(Y )
)1/ρ

max
y∈Y

exp[−f(x, y)] ≤

(
∫

Y

exp[−ρf(x, y)]dy

)1/ρ

≤ m∗(Y )1/ρ max
y∈Y

exp[−f(x, y)].

By the monotonicity of the logarithmic function, we have

V (x)− ρ−1 lnm∗(Y ) ≤ γρ(x) ≤ V (x)− ρ−1 ln(ρ−1m∗(Y )) + ǫ

for any x, where ρ is sufficiently large. From the Squeeze law, we have

lim
z→x, ρ→∞

γρ(z) = V (x)

for any x. This completes the proof.

To show the gradient consistent property of the family of entropy integral functions, we

first derive some preliminary results. The next theorem gives an integral representation

for the gradient of the integral entropy function.

Theorem 5.2 Let f(x, y) be a continuous function which is continuously differentiable

in variable x. For fixed ρ > 0, γρ(x) is differentiable and

∇γρ(x) =

∫

Y

µρ(x, y)∇xf(x, y)dy,

where

µρ(x, y) :=
exp[−ρf(x, y)]

∫

Y
exp[−ρf(x, z)]dz

.

Proof. By the definition of γρ, we have

∇γρ(x) = −ρ−1∇x

∫

Y
exp[−ρf(x, y)]dy

∫

Y
exp[−ρf(x, y)]dy

.
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Form the continuous differentiability of f , we know that exp[−ρf(x, y)] is continuously

differentiable in x. Thus, from the Leibniz’s rule for differentiating an integral, we have

∇x

∫

Y

exp[−ρf(x, y)]dy =

∫

Y

∇x exp[−ρf(x, y)]dy

=

∫

Y

−ρ exp[−ρf(x, y)]∇xf(x, y)dy.

We obtain the conclusion from the above two equations immediately.

Note that µρ(x, y) is positive-valued and
∫

y∈Y
µρ(x, y)dy = 1. Thus, for each x, µρ(x, y)

and ∇γρ(x) can be regarded as the probability density function and the expected value

of ∇xf(x, y) over Y , respectively. The next theorem gives the expression for the limits

lim
ρ→∞

µρ(x, y).

Theorem 5.3 Assume that f is a continuously differentiable function and Y is compact.

For any x ∈ X, the solution set S(x) of min
y∈Y

f(x, y) is Lebesgue measurable. Furthermore,

we have

lim
ρ→∞

µρ(x, y) =

{

m∗(S(x))−1, y ∈ S(x),

0, y ∈ Y \ S(x).

Here, m∗(S(x))−1 := +∞ if m∗(S(x)) = 0.

Proof. Since S(x) is nonempty and closed, it is Lebesgue measurable by Proposition 2.2.

From the definition of V (x), we have

exp[−ρ(f(x, y)− V (x))] = 1 (5.1)

for any y ∈ S(x) and f(x, y) > V (x) for any y ∈ Y \S(x). Hence, exp[−ρ(f(x, y)−V (x))]

is never greater than 1 and approaches 0 as ρ tends to infinity for any y ∈ Y \S(x). This,

together with the Lebesgue dominated convergence theorem, implies

lim
ρ→∞

∫

Y \S(x)

exp[−ρ(f(x, z)− V (x))] dz

=

∫

Y \S(x)

lim
ρ→∞

exp[−ρ(f(x, z)− V (x))] dz (5.2)

= 0.

From the definition of µρ(x, y), we get

µρ(x, y) =
exp[−ρ(f(x, y)− V (x))]

∫

Y
exp[−ρ(f(x, z) − V (x))]dz

(5.3)

=
exp[−ρ(f(x, y)− V (x))]

∫

S(x)
exp[−ρ(f(x, z)− V (x))] dz +

∫

Y \S(x)
exp[−ρ(f(x, z)− V (x))] dz

.
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(i) If m∗(S(x)) 6= 0, it follows from (5.1)–(5.3) that

lim
ρ→∞

µρ(x, y) =

{

m∗(S(x))−1, y ∈ S(x),

0, y ∈ Y \ S(x).

(ii) If m∗(S(x)) = 0, from the above proof process, we can get µρ(x, y) → ∞ for any

y ∈ S(x). When y ∈ Y \ S(x), let

Y1 := {z ∈ Y : f(x, z) > f(x, y)},

Y2 := {z ∈ Y : f(x, z) = f(x, y)},

Y3 := {z ∈ Y : f(x, z) < f(x, y)}.

It is easy to get that S(x) ⊆ Y3. By the continuity of f(x, ·), we have m∗(Y3) 6= 0 and

µρ(x, y) =
1

∫

Y1+Y2+Y3
exp[−ρ(f(x, z)− f(x, y))]dz

.

Therefore, we have

lim
ρ→∞

∫

Y1

exp[−ρ(f(x, z)− f(x, y))]dz = 0,

lim
ρ→∞

∫

Y2

exp[−ρ(f(x, z)− f(x, y))]dz = m∗(Y2),

lim
ρ→∞

∫

Y3

exp[−ρ(f(x, z)− f(x, y))]dz = ∞.

It follows that limρ→∞ µρ(x, y) = 0 when y ∈ Y \ S(x). This completes the proof.

It follows from Danskin’s theorem and the continuity of ∇xf(x, y) that ∂V (x) is a

bounded set for any x. The following theorem shows that the distance between ∇γρ(z)

and ∂V (x) approaches 0 when ρ → ∞ and z → x.

Theorem 5.4 Assume that f is a continuously differentiable function, X and Y are

compact sets. For any x ∈ X, we have

lim
ρ→∞, z→x

dist(∇γρ(z), ∂V (x)) = 0.

Proof. Since bothX and Y are compact and ∇xf(x, y) is continuous on X×Y , ∇xf(x, y)

is uniformly continuous on X × Y . Thus, for any ǫ > 0, there exists δ > 0 such that, for

any (z1, y1) and (z2, y2) satisfying ‖(z1, y1)− (z2, y2)‖ ≤ 3δ,

‖∇xf(z1, y1)−∇xf(z2, y2)‖ ≤ ǫ. (5.4)
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Due to the fact that S(x) is compact and
⋃

y∈S(x)(B(y, δ)∩Y ) ⊇ S(x), by letting B̂(y, δ) =

B(y, δ) ∩ Y , we get from the Heine-Borel covering theorem that there exist N > 0 and

yi ∈ S(x) such that

N
⋃

i=1

B̂(yi, δ) ⊇ S(x).

Let Ω1 := B̂(y1, δ), Ωi := B̂(yi, δ) \ B̂(yi, δ)∩ (∪i−1
j=1B̂(yj, δ)) for i = 2, . . . , N and ΩN+1 :=

Y \ ∪N
i=1Ωi. It is obvious that Ω1 ∩ · · · ∩ ΩN+1 = ∅ and ∪N+1

i=1 Ωi = Y .

For any z ∈ B(x, δ), let λz
i :=

∫

Ωi

µρ(z, y) dy for 1 ≤ i ≤ N − 1 and λz
N :=

∫

Y \∪N−1

i=1
Ωi
µρ(z, y) dy. It follows that λz

i ≥ 0 for 1 ≤ i ≤ N and
∑N

i=1 λ
z
i = 1. Since

f(z, y) is continuously differentiable on compact set X × ΩN+1,

sup
(z,y)∈X×ΩN+1

|f(z, y)− V (z)|

is bounded and hence, by Theorem 5.3,

lim
ρ→∞

sup
(z,y)∈X×ΩN+1

µρ(z, y) = 0.

It is easy to see that µρ(z, y) is uniformly convergent to 0 on X × ΩN+1. Thus, there

exists ρ0 > 0 such that, for any (z, y) ∈ X × ΩN+1 and ρ > ρ0,

‖µρ(z, y)(∇xf(z, y)−∇xf(x, yN))‖ ≤ ǫm∗(Y )−1. (5.5)

Therefore, it follows from (5.4) and (5.5) that, for ρ > ρ0 and z ∈ B(x, δ),

∥

∥

∥
∇γρ(z)−

N
∑

i=1

λz
i∇xf(x, yi)

∥

∥

∥

=
∥

∥

∥

∫

Y

µρ(z, y)∇xf(z, y)dy −
N
∑

i=1

∫

Ωi

µρ(z, y)∇xf(x, yi) dy

−

∫

ΩN+1

µρ(z, y)∇xf(x, yN) dy
∥

∥

∥

≤
N
∑

i=1

∫

Ωi

‖µρ(z, y)(∇xf(z, y)−∇xf(x, yi))‖ dy

+
∥

∥

∥

∫

ΩN+1

µρ(z, y)(∇xf(z, y)−∇xf(x, yN)) dy
∥

∥

∥

≤ Nǫ

∫

Y

‖µρ(z, y)‖ dy +

∫

ΩN+1

ǫm∗(Y )−1 dy

≤ (N + 1)ǫ,
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from which and (2.1) we have

dist(∇γρ(z), ∂V (x)) ≤ (N + 1)ǫ, ∀ρ > ρ0, ∀z ∈ B(x, δ).

Since ǫ > 0 is arbitrary, the conclusion follows from the above inequality.

The next result reveals the fact that the family of entropy integral functions possesses

the gradient consistent property.

Theorem 5.5 Assume that f is a continuously differentiable function, X and Y are

compact sets. Then the family of entropy integral functions satisfies the gradient consistent

property. That is, for any x∗ ∈ X, we have

∅ 6= lim sup
ρ→∞,z→x∗

∇γρ(z) ⊆ ∂V (x∗).

Proof. By Theorem 5.4, for any ǫ > 0, there exist ρ0 > 0 and δ > 0 such that

dist(∇γρ(z), ∂V (x∗)) < ǫ, ∀ρ > ρ0, ∀z ∈ B(x∗, δ).

It follows that ∇γρ(z) ∈ ∂V (x∗) + ǫB(0, 1) for ρ > ρ0 and z ∈ B(x∗, δ). By the integral

representation in Theorem 5.2 and the Lebesgue dominated convergence theorem, we have

limρ→∞ ∇γρ(x
∗) exists. The compactness of ∂V (x∗) yields

lim sup
ρ→∞,z→x∗

∇γρ(z) ⊆ ∂V (x∗).

This completes the proof.

Now we apply the smoothing projected gradient algorithm presented in Section 3 to

solve (VP)ε. To this end, for given ρ > 0 and λ > 0, let

Gλ
ρ(x, y) := F (x, y) +

λ

2

(

√

(f(x, y)− γρ(x)− ε)2 + ρ−1 + (f(x, y)− γρ(x)− ε)

)

. (5.6)

The algorithm can be stated as follows:

Algorithm 5.1 1. Let {β, γ, σ1, σ2} be constants in (0, 1) with σ1 ≤ σ2, {η̂, ρ0, λ0}

be positive constants, and {σ, σ′} be constants in (1,∞). Choose an initial point

(x0, y0) ∈ X × Y and set k := 0.

2. Compute the stepsize βlk , where lk ∈ {0, 1, 2 · · ·} is the smallest number satisfying

Gλk

ρk
(PX×Y [(x

k, yk)− βlk∇Gλk

ρk
(xk, yk)])−Gλk

ρk
(xk, yk) (5.7)

≤ σ1∇Gλk

ρk
(xk, yk)T

(

PX×Y [(x
k, yk)− βlk∇Gλk

ρk
(xk, yk)]− (xk, yk)

)
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and βlk ≥ γ, or

Gλk

ρk
(PX×Y [(x

k, yk)− βl−1∇Gλk

ρk
(xk, yk)])−Gλk

ρk
(xk, yk) (5.8)

> σ2∇Gλk

ρk
(xk, yk)T

(

PX×Y [(x
k, yk)− βl−1∇Gλk

ρk
(xk, yk)]− (xk, yk)

)

.

Go to Step 3.

3. If

‖PX×Y [(x
k, yk)− βlk∇Gλk

ρk
(xk, yk)]− (xk, yk)‖

βlk
< η̂ρ−1

k , (5.9)

set (xk+1, yk+1) := PX×Y [(x
k, yk) − βlk∇Gλk

ρk
(xk, yk)] and go to Step 4. Otherwise,

set (xk+1, yk+1) := PX×Y [(x
k, yk)− βlk∇Gλk

ρk
(xk, yk)], k := k + 1, and go to Step 2.

4. If

f(xk+1, yk+1)− γρk(x
k+1)− ε ≤ 0 (5.10)

and

‖PX×Y [(x
k+1, yk+1)−∇Gλk

ρk
(xk+1, yk+1)]− (xk+1, yk+1)‖ = 0, (5.11)

go to Step 6. Else if (5.10) holds while (5.11) fails, go to Step 5. Otherwise, if (5.10)

fails, set λk+1 := σ′λk and go to Step 5.

5. Set ρk+1 := σρk, k = k + 1, and go to Step 2.

6. If a stopping criterion is satisfied, terminate. Otherwise, go to Step 5.

A stopping criterion for Algorithm 5.1 can be taken as

∣

∣

∣

∣

λk

2

(

√

(f(xk+1, yk+1)− γρk(x
k+1)− ε)2 + ρ−1

k + (f(xk+1, yk+1)− γρk(x
k+1)− ε)

)∣

∣

∣

∣

< ǫ,

where ǫ > 0 is a given tolerance. Moreover, note that Assumption 3.1 must hold by the

compactness of X × Y .

Suppose that Algorithm 5.1 does not terminate within finite iterations. Then, from

Theorem 3.1, Corollary 3.1 and Theorem 3.3, we have the following convergence results

immediately.

Theorem 5.6 Assume that F and f are continuously differentiable functions, X and Y

are compact and convex sets. Let {(xk, yk)} be a sequence generated by Algorithm 5.1.

26



(1) If (xε, yε) is an accumulation point of {(xk, yk)} and the sequence {λk} is bounded,

then (xε, yε) is a stationary point of (VP)ε.

(2) If lim
k→∞

(xk, yk) = (xε, yε) and the ENNAMCQ holds at (xε, yε), then (xε, yε) is a

stationary point of (VP)ε.

(3) If the ENNAMCQ holds for (VP)ε at any point (x, y) ∈ X × Y satisfying f(x, y)−

V (x) − ε ≥ 0, then any accumulation point of {(xk, yk)} is a stationary point of

(VP)ε.

We have tested Algorithm 5.1 on the following two examples.

Example 5.1 Consider the Mirrlees’ problem. Note that the solution of Mirrlees’ prob-

lem does not change if we add the constraint x, y ∈ [−2, 2] into the problem. Hence,

(x̄, ȳ) = (1, 0.9575) is the optimal solution to the bilevel programming program

min (x− 2)2 + (y − 1)2

s.t. x ∈ [−2, 2], y ∈ S(x),

where S(x) is the solution set of the lower level program

min −x exp[−(y + 1)2]− exp[−(y − 1)2]

s.t. y ∈ [−2, 2].

In our test, we chose the initial point (x0, y0) = (−0.8,−0.8) and the parameters β =

0.9, γ = 0.5, σ1 = 0.9, σ2 = 0.95, ρ0 = 10, λ0 = 10, η̂ = 200, σ = σ′ = 10.

• We first considered the case where ε = 0. The numerical results show that, af-

ter finite iterations, the iteration point (xk, yk) does not change and equals to

(0.99756, 0.95788). Actually, at this point, condition (5.10) can not be satisfied

and so the sequence {λk} is unbounded. Hence, Theorem 5.6 can not be used to

guarantee the convergence of the algorithm.

• We next considered the case where ε > 0. The results are reported in Table 1, in

which d(xε, yε) means the distance between (xε, yε) and the optimal point (1, 0.9575)

defined by

d(xε, yε) := |xε − 1|+ |yε − 0.9575| .
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Table 1: Mirrlees’ problem

ε (xε, yε) d(xε, yε)

10−2 (1.00818,0.95647) 9.21e-003

10−3 (1.00055,0.95972) 2.78e-003

10−4 (0.99757,0.95779) 2.71e-003

10−5 (0.99756,0.95787) 2.80e-003

For this example, we observe that the smoothing projected gradient algorithm fails when

ε = 0 but succeeds in finding the ε solutions when ε > 0. The numerical results are

consistent with the fact that the calmness condition fails for (4.3) (see [26]) but the

ENNAMCQ holds for (VP)ε at any point (x, y) ∈ X×Y satisfying f(x, y)−V (x)−ε ≥ 0

(see Section 4).

Example 5.2 [16] Consider

min F (x, y) := x+ y

s.t. x ∈ [−1, 1],

y ∈ S(x) := argmin
y∈[−1,1]

f(x, y) := xy2

2
− y3

3
.

The value function of the lower level program can be easily formulated as

V (x) =

{

0 if x ∈ [2
3
, 1],

x
2
− 1

3
if x ∈ [−1, 2

3
),

and the solution set is

S(x) =











{0} if x ∈ (2
3
, 1],

{0, 1} if x = 2
3
,

{1} if x ∈ [−1, 2
3
).

It is easy to see that the unique optimal solution of the bilevel program is (x̄, ȳ) = (−1, 1).

In addition, setting λ = 3, we can verify that (x̄, ȳ) is a local minimizer of the following

problem:

min F (x, y) + λ(f(x, y)− V (x))

s.t. x ∈ [−1, 1], y ∈ [−1, 1].

This means that the original bilevel program is calm at (x̄, ȳ).

Thus, in our test for this example, we set ε = 0, the initial point (x0, y0) = (−0.7, 0.7)

and the parameters β = 0.9, γ = 0.5, σ1 = 0.9, σ2 = 0.95, σ = 10, σ′ = 10, η̂ =

3 ∗ 108, ρ0 = 100, λ0 = 200 and the given tolerance ǫ = 2.50e − 005. Fortunately, the

algorithm terminated at (xk, yk) = (−1, 1) within finite iterations.
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6 Conclusions

We have presented an implementable algorithm for constrained optimization problems

with a convex set and a nonsmooth constraint. The key idea of the algorithm is to use

a smoothing approximation function. We have applied the algorithm to solve the simple

bilevel program and its approximate problems. Our algorithm has advantage over other

nonsmooth algorithms such as gradient sampling algorithms in that there is no need to

solve the lower level program at each iteration. Theoretical and numerical results show

that the algorithm may perform well.
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