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1. Introduction. In this paper, we study the following stochastic mathematical program with complemen-
tarity constraints (SMPCC):

min
x1 y

Ɛ6f 4x1 y1 �4�557

s0t0 4x1 y5 ∈D1

0 ≤ Ɛ6F 4x1 y1 �4�557⊥ y ≥ 01

(1)

where D is a nonempty closed subset of �n+m, f 2 �n ×�m ×�d →�, F 2 �n ×�m ×�d →�m are continuously
differentiable, �2 ì→æ⊂�d is a vector of random variables defined on the probability space 4ì1F1 P5, Ɛ6·7
denotes the expected value with respect to the probability distribution of �, and a ⊥ b means that vector a is
perpendicular to vector b. For the simplicity of discussion, we assume that the expected values of the underly-
ing random functions are well defined for every 4x1 y5 ∈ D. SMPCC is also known as stochastic mathematical
program with equilibrium constraints (SMPEC) in that the complementarity constraint often represents an equi-
librium in practical applications. As far as we are concerned, there are essentially two classes of SMPECs being
investigated up to date: one-stage SMPECs where both upper- and lower-level decision variables must be chosen
before realization of uncertainties and two-stage SMPECs where lower-level decision variables must be chosen
after upper-level decision is made and the uncertainties are realized (Patriksson and Wynter [24]). Obviously, our
model is a one-stage SMPEC. Like deterministic mathematical program with equilibrium constraints (MPECs),
SMPEC models have many applications in economics, engineering, networks and management sciences, see, for
instances, Christiansen et al. [5], Werner [35], Werner and Wang [36], Tomasgard et al. [34], and the references
therein.

In this paper, we are concerned with numerical methods for solving SMPCC (1). Observe that if we know the
distribution of � and can obtain a closed form of Ɛ6f 4x1 y1 �57 and Ɛ6F 4x1 y1 �57, then SMPCC (1) reduces to a
deterministic mathematical program with complementarity constraints (MPCC) and subsequently we can solve it
by an existing numerical method for deterministic MPECs. In practice, the distribution of � is often unknown or
it is numerically too expensive to calculate the expected values. Instead it might be possible to obtain a sample
of the random vector � from past data. This motivates one to find an approximate optimal solution to (1) on the
basis of the sampling information.
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A well-known approximation method in stochastic programming based on sampling is sample average approx-
imation (SAA). That is, if we have an independent identically distributed (iid) sample �11 : : : 1 �N of random
vector �, then we may use the sample average 41/N5

∑N
k=1 f 4x1 y1 �

k5 and 41/N5
∑N

k=1 F 4x1 y1 �
k5 to approxi-

mate Ɛ6f 4x1 y1 �57 and Ɛ6F 4x1 y1 �57. This kind of statistical approximation is guaranteed by the classical law
of large numbers in statistics. Consequently, we may consider the following approximate SMPCC problem:

min
x1 y

1
N

N
∑

k=1

f 4x1 y1 �k5

s0t0 4x1 y5 ∈D1

0 ≤
1
N

N
∑

k=1

F 4x1 y1 �k5⊥ y ≥ 00

(2)

We call SMPCC (1) the true problem and (2) the SAA problem. SAA method is a popular method in stochastic
programming and it has been applied to solve SMPECs over the past few years although most of the applications
are focused on two-stage SMPECs, see, for instance, Shapiro [32], Shapiro and Xu [33], Xu and Meng [38],
and the references therein.

The SMPCC model (1) and its SAA (2) are not new either. Indeed, Birbil et al. [2] studied the model and
applied the sample-path optimization (SPO) method (Robinson [27]) to obtain some approximation results. SPO
is essentially SAA although the former is slightly more general. More recently, Meng and Xu [18] discussed
the SAA problem (2) and obtained exponential convergence of weak stationary points of SAA problem (2); that
is, for any � > 0, there exist constants c4�5 > 0 and k4�5 > 0 and positive integer N4�5≥ 0 such that

Prob4�xN
− x∗

� ≥ �5≤ c4�5e−k4�5N

for N ≥ N4�5, where x∗ and xN denote the weak stationary points to the true problem (1) and the SAA
problem (2), respectively.

The results obtained in Birbil et al. [2] and Meng and Xu [18] are mainly for weak stationary points and they
are obtained under very strong assumptions such as upper-level strict complementarity condition, lower-level
strict complementarity condition, or strong regularity condition. It is well known in the MPEC literature that the
weak stationary condition is usually too weak and most of numerical algorithms aim at finding at least Clarke [6]
stationary points (see Definition 2.14 for definition and relationships of various stationary points of MPEC).
Moreover most algorithms for solving MPECs require a very strong constraint qualification called MPEC-linear
independence constraint, qualification (LICQ); see Liu et al. [14] for a discussion on this issue. For stochastic
MPECs, it is difficult to prove the convergence by SAA to a MPEC stationary point that are stronger than
the weak stationary point since the degenerate index set 8i2 41/N5

∑N
k=1 F 4x1 y1 �

k5= 01 yi = 09 changes as the
sample size N changes, and all MPEC stationary points, except the weak stationary point, depend on this index
set. In this paper, we resolve these issues by using partial exact penalty method, a technique recently proposed
by Liu et al. [14] for deterministic MPCCs under MPEC metric regularity (see Definition 2.11), which is a much
weaker constraint qualification than MPEC-LICQ.

Specifically, we introduce a new decision vector z and reformulate the true problem (1) as

min
x1 y1 z

Ɛ6f 4x1 y1 �4�557

s0t0 4x1 y1 z5 ∈D×�m1

Ɛ6F 4x1 y1 �4�557− z= 01

0 ≤ z⊥ y ≥ 0

(3)

and the SAA problem (2) as

min
x1 y1 z

1
N

N
∑

k=1

f 4x1 y1 �k5

s0t0 4x1 y1 z5 ∈D×�m1

1
N

N
∑

k=1

F 4x1 y1 �k5− z= 01

0 ≤ z⊥ y ≥ 00

(4)
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We then consider a partial exact penalization of the reformulated true problem (3):

min
x1 y1 z

�4x1 y1 z1�5 2= Ɛ6f 4x1 y1 �4�557+��Ɛ6F 4x1 y1 �4�57− z�1

s0t0 4x1 y1 z5 ∈D×�m1

0 ≤ z⊥ y ≥ 01

(5)

where � is a positive constant, and a partial exact penalization of the reformulated SAA problem (4):

min
x1 y1 z

�N 4x1 y1 z1�N 5 2=
1
N

N
∑

k=1

f 4x1 y1 �k5+�N

∥

∥

∥

∥

1
N

N
∑

k=1

F 4x1 y1 �k5− z

∥

∥

∥

∥

1

1

s0t0 4x1 y1 z5 ∈D×�m1

0 ≤ z⊥ y ≥ 01

(6)

where �N is a positive number. Here and later on �·�1 denotes the 1-norm of a vector. The following are three
main benefits to consider the partial penalization:

(a) Since the original problem (1) does not satisfy usual Mangasarian-Fromovitz constraint qualification
(MFCQ), we cannot establish a full exact penalization of all constraints.1 Partial exact penalization is, however,
feasible under MPEC-generalized Mangasarian-Fromovitz constraint qualification (GMFCQ) (Outrata [22], Ye
[40]) or even weaker constraint qualification such as MPEC-metric regularity or equivalently MPEC-no nonzero
abnormal multiplier constraint qualification (NNAMCQ) to be defined in §2, as we keep the complementarity
constraint in (5).

(b) For the convergence result although we only require MPEC metric regularity for the original problem (1),
and hence MPEC-LICQ may fail for the original problem (1), the MPEC-LICQ is satisfied at every feasible
point of the penalized problem regardless of structure of the original problem. From a numerical perspective,
this is very important as the stability of many existing numerical methods such as the nonlinear program (NLP)
regularization method (Scholtes [30]) depend on MPEC-LICQ. Indeed, this is a key motivation for Liu et al.
[14] to consider the partial exact penalization in Liu et al. [14].

(c) The constraints of both problems (5) and (6) are independent of sampling and this will significantly
simplify our convergence analysis.
In this paper, we analyze the convergence analysis of optimal solutions and stationary points of (6) as sample
size increases, assuming (6) can be solved by a deterministic MPCC solver, which can effectively deal with the
nonsmoothness in the objective. We do so by showing the existence of bounded penalty parameters in both (5)
and (6) and this is indeed another departure from the existing research in the literature of SMPECs (Lin et al.
[12, 13]). Moreover, we consider a smoothing method proposed by Liu et al. [14] to tackle the nonsmoothness.
That is, we consider a smooth partial penalty problem of (4):

min
x1 y1 z

�̂N 4x1 y1 z1�N 1 �N 5

s0t0 4x1 y1 z5 ∈D×�m1

0 ≤ z⊥ y ≥ 01

(7)

where

�̂N 4x1 y1 z1�N 1 �N 5 2=
1
N

N
∑

k=1

f 4x1 y1 �k5+�N

m
∑

i=1

√

√

√

(

1
N

N
∑

k=1

Fi4x1 y1 �
k5− zi

)2

+ �N

and �N ↓ 0 is a smoothing parameter. Since the problem is smooth and the MPEC-LICQ holds, existing MPEC
solvers can be used to solve the problem or at least to find some stationary points.

The rest of the paper is organized as follows. In §2, we review some definitions and preliminary results
in variational analysis and MPECs. In §3, we discuss the relationship between the problems (1) and (5) and
boundedness of penalty parameters of (6). In §4, we investigate the uniform convergence of the objective function
and its subdifferential of the penalty problem (6). In §5, we use the uniform convergence results established
in §4 to analyze the convergence of optimal solutions and stationary points obtained from solving the SAA
penalty problem (6). Finally, in §6, we provide some numerical tests on the smoothed SAA penalty problem (7)
along with some convergence analysis.

1 Here, full penalization means the whole complementarity constraint in (1) is penalized in the form of �Ɛ6F 4x1 y1 �4�557T y� + �y−�1 +

�Ɛ6F 4x1 y1 �4�557−�1 or the complementarity constraint 0 ≤ z⊥ y ≥ 0 in (5) is also penalized to the objective in the form of �yT z�+�y−�1 +

�z−�1, where a− = min401 a5 for a real number a and the minimum is taken componentwise when a is a vector.
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2. Preliminaries. Throughout this paper, we use the following notation. �·� denotes the Euclidean norm of
a vector, a matrix and a compact set of vectors/matricies in a finite-dimensional space. When M is a compact set,

�M� 2= max
M∈M

�M�0

�·�1 denotes the 1-norm of a vector. We use d4x1D5 2= infx′∈D �x − x′� to denote the distance from a point x
to a set D. For two compact sets C and D,

�4C1D5 2= sup
x∈C

d4x1D5

denotes the deviation of C from D. Equivalently,

�4C1D5= inf8t ≥ 02 C⊆D+ tB91

where B denotes the closed unit ball in the corresponding finite-dimensional space here and throughout the
paper. We use C+D to denote the Minkowski addition of the two sets; that is, 8C+D2 C ∈C1 D ∈D9; B4x1�5
the closed ball with center x and radius �; aT b the scalar product of vectors a and b, where aT denotes the
transpose of vector a. If A is a matrix, AT b denotes matrix vector multiplication. When f is real-valued function,
ïf 4x5 denotes the gradient of f at x (which is a column vector) and when f is a vector-valued function, ïf 4x5
represents the classical Jacobian of f at x, where the transpose of the gradient of the j-th component of f forms
the j-th row of the Jacobian.

2.1. Variational analysis. Let X be a finite-dimensional space and â2 X ⇒ �n be a set-valued mapping.
We say that â is upper semicontinuous at a point x ∈ X if for any � > 0, there exists a number � > 0 (which
may depend on x) such that

â4x′5⊆ â4x5+ �B1 ∀x′
∈ x+ �B0

Definition 2.1 (Uniform Upper Semicontinuity). Let X be a finite-dimensional space and â2 X ⇒ �n

be a set-valued mapping. We say â is uniformly upper semicontinuous over a set X⊆X if for any given � > 0,
there exists a number �> 0 such that

sup
x∈X

�4â4x′51 â4x55≤ �1 ∀x′
∈ 4x+ �B5∩X0

Note that the uniform upper semicontinuity depends on set X. Consider function f 4x11 x25= �x1 −x2� defined
on �2. The function is continuously differentiable in �2 except at line x1 = x2. It is easy to see that the (usual
convex) subdifferential mapping ¡f 4x11 x25 is uniformly upper semicontinuous on line x1 = x2 but not in any
neighborhood of this line. When X consists of a finite number of points, the uniform upper semicontinuity is
equivalent to pointwise upper semicontinuity. We need the concept in Lemma 4.1.

Definition 2.2 (Normal Cone; See Chapter 1 in Mordukhovich [21]). Let D be a nonempty closed
subset of �n. Given z ∈ D, the convex cone

N �
D 4z5 2= 8� ∈�n2 ∃� > 0 such that �T 4z′

− z5≤ ��z′
− z�21 ∀ z′

∈D9

is called the proximal normal cone to set D at point z. By convention, for z 6∈D, N�
D4z5= �. The closed cone

ND4z5 2= lim sup
z′→z

N�
D4z

′5

is called the limiting normal cone (also known as Mordukhovich [21] normal cone or basic normal cone) to D
at point z.

Note that the limiting normal cone is, in general, smaller than the Clarke [6] normal cone, which is defined
as the polar cone of the Clarke tangent cone Tc

D4z5; that is,

Nc
D4z5= 8� ∈�n2 �T� ≤ 01 ∀� ∈Tc

D4z591

where T c
D4z5 2= lim inf t→01D3z′→z41/t54D− z′5. In the case when D is convex, the proximal normal cone, the

limiting normal cone and the Clarke [6] normal cone coincide, see Chapter 1 in Mordukhovich [21] and part B
of Chapter 6 in Rockafellar and Wets [28].

The following expressions for the limiting normal cone can be easily derived, see e.g., Ye [39, Proposition 3.7].
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Proposition 2.3. Let W = 84y1 z5 ∈ �m ×�m2 0 ≤ z ⊥ y ≥ 09. The limiting normal cone of W at 4y1 z5 ∈

W is

NW4y1 z5=











ui = 01 if yi > 01

4u1 v5 ∈�m ×�m 2 vi = 01 if zi > 01

either uivi = 01 or ui < 01 vi < 01 if yi = zi = 00











Definition 2.4 (Subdifferentials). Let f 2 �n →� be a lower semicontinuous function and finite valued
at x ∈�n. The proximal subdifferential of f at x is the set

¡�f 4x5 2= 8� ∈�n2 ∃� > 01 � > 0 such that f 4y5≥ f 4x5+ �T 4y− x5−��y− x�2
∀y ∈ B4x1�59

and the limiting (Mordukhovich or basic Mordukhovich [21]) subdifferential of f at x is the set

¡f 4x5 2= lim sup
x′

f
→x

¡�f 4x′51

where x′
f

→ x signifies that x′ and f 4x′5 converge to x and f 4x5, respectively. When f is Lipschitz continuous
near x, the convex hull of ¡f 4x5 coincides with the Clarke subdifferential (Clarke calls it generalized gradient,
see p. 27 in Clarke [6]), denoted by ¡cf 4x5; that is, conv ¡f 4x5= ¡cf 4x5.

The definition of limiting normal cone leads to the definition of coderivative of a set-valued mapping.
Definition 2.5. Let X1Y be finite-dimensional spaces and â2 X ⇒ Y a set-valued mapping with a closed

graph. Let 4x̄1 ȳ5 ∈ gph â 2= 84x1 y5 � y ∈ â4x59. The set-valued mapping D∗â4x̄ � ȳ5 from Y to X defined by

D∗â4x̄ � ȳ54�5= 8� ∈X2 4�1−�5 ∈Ngph â 44x̄1 ȳ559

is called the coderivative of â at point 4x̄1 ȳ5. The symbol D∗â4x̄5 is used when â is single valued at x̄ and
ȳ = â4x̄5. See §1.2 in Mordukhovich [21] for a detailed discussion of the notion.

In a special case when a set-valued mapping is single valued, the coderivative is related to the limiting
subdifferential in the following way.

Proposition 2.6 (Mordukhovich [20, Proposition 2.11]). Let X1Y be finite-dimensional spaces and
â2 X → Y be a single valued and Lipschitz continuous near x̄. Then D∗â4x̄54�5= ¡��1â�4x̄5 for all � ∈ Y .

The following sum rule will be useful.

Proposition 2.7 (See Mordukhovich [20, Corollary 4.4]). Let X1Y be finite-dimensional spaces and
�2 X → Y be strictly differentiable near x̄ and ì is closed. Let â4x5 2= −�4x5+ì and 0 ∈ â4x̄5. Then

D∗â4x̄ � 054�5= −ï�4x̄5T� for −� ∈Nì4�4x̄550

Definition 2.8 (Metric Regularity). Let X, Y be finite-dimensional spaces and â2 X ⇒ Y be a set-
valued mapping. Let 4x̄1 ȳ5 ∈ gph â . â is said to be metrically regular at x̄ for ȳ if there exist constants � > 0,
�> 0 such that

d4x1â−14y55≤ �d4y1â4x551 ∀ 4x1 y5 ∈ 4x̄1 ȳ5+ �B0 (8)

The regularity modulus of â at x̄ for ȳ is the value

reg â4x̄ � ȳ5 2= inf8� ∈ 401�5 � (8) holds9 ∈ 601�70 (9)

Proposition 2.9 ((Estimate for Lipschitz Perturbations) Dontchev et al. [7]). Consider any set-
valued mapping â2 X ⇒ Y and any 4x̄1 ȳ5 ∈ gph â at which gph â is locally closed. Consider also a mapping
G2 X → Y . If reg â4x̄ � ȳ5 < �<� and lipG4x̄5 < �< �−1, then

reg4â +G54x̄ � ȳ+G4x̄55 <
�

1 −��
1 (10)

where lipG4x̄5 denotes the Lipschitz modulus of a single-valued mapping G at x̄, i.e.,

lipG4x̄5 2= lim sup
x1x′→x̄1 x1 x′ 6=x̄

�G4x′5−G4x5�

�x′ − x�
0 (11)

Proposition 2.10 ((Mordukhovich’s Criteria for Metric Regularity) Mordukhovich [19, Corol-
lary 5.4]). Let â be a set-valued mapping with closed graph and 4x̄1 ȳ5 ∈ gph â . Then â is metrically regular
at x̄ for ȳ if and only if

D∗â4x̄ � ȳ54�5= 809 =⇒ � = 00
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2.2. MPEC constraint qualification and stationarity. Consider now the following deterministic MPCC:

min f 4x5

s.t. x ∈X1

0 ≤G4x5⊥H4x5≥ 01

(12)

where X is a closed subset of �n, f 2 �n →�, G2 �n →�m, and H2 �n →�m are continuously differentiable.
When X is represented by a system of smooth equalities and inequalities, it is well known that the classical
MFCQ fails at any feasible solution, see Ye et al. [41, Proposition 1.1]. Since the classical MFCQ when X is a
system of smooth equalities and inequalities is equivalent to the metric regularity of the set-valued mapping

â4x5 2=











G4x5

H4x5

G4x5TH4x5

−x











+











�m
−

�m
−

809

X











1

the above set-valued mapping is not metrically regular at any feasible point of MPCC. However, the following
weaker metric regularity may hold.

Definition 2.11. (MPEC-Metric Regularity). Let x be a feasible point of problem (12) and

â4x5 2= −4G4x51H4x51 x5+W×X1

where W 2= 84y1 z52 0 ≤ z⊥ y ≥ 09. Problem (12) is said to satisfy MPEC-metric regularity at x if the set-valued
mapping â4x5 is metrically regular at x for 0.

In §3 (Theorem 3.4), we will consider MPEC metric regularity of (1), which is in the sense of the metric
regularity of the set-valued mapping

â4x1 y5 2= −4Ɛ6F 4x1 y1 �571 y1 4x1 y55+W×D1 (13)

where W 2= 84u1 v5 ∈�m ×�m2 0 ≤ u⊥ v ≥ 09.
The metric regularity is, however, not easy to verify by definition. By using Mordukhovich’s criteria [19] for

metric regularity (Proposition 2.10), the sum rule for coderivatives (Proposition 2.7) and the expression for the
normal cone of W (Proposition 2.3), one can show that MPEC-metric regularity is indeed equivalent to a much
easier to verify condition called MPEC-NNAMCQ in the case where the functions involved are smooth (and is
weaker when the functions involved are nonsmooth but Lipschitz continuous).

Definition 2.12 (MPEC-NNAMCQ). Let x be a feasible point of problem (12). We say that MPEC-
NNAMCQ holds at x if there exist no nonzero vectors 4�1�5 ∈�m ×�m such that

0 ∈ ïG4x5T�+ïH4x5T�+NX4x51

�i = 01 if Gi4x5 > 03 �i = 01 if Hi4x5 > 01

�i < 01 �i < 01 or �i�i = 01 if Gi4x5=Hi4x5= 01

where subscript i denotes the i-th component of a vector.
Note that MPEC-NNAMCQ is weaker than the generalized MPEC-MFCQ (MPEC-GMFCQ) in the literature

of deterministic MPECs. In the case when x falls into the interior of set X, the two conditions are equivalent,
see Ye [39, 40] for the definition of MPEC-GMFCQ and the proof of the equivalence.

To accommodate a nonfeasible point obtained from a numerical algorithm, we also need the following
extended MPEC-NNAMCQ, which was introduced in Liu et al. [14]. The extended MPEC-NNAMCQ coincides
with MPEC-NNAMCQ at a feasible point.

Definition 2.13 (Extended MPEC-NNAMCQ). Consider the reformulation of the problem (12):

min f 4x5

s.t. x ∈X1

z=G4x51

y =H4x51

0 ≤ z⊥ y ≥ 00

(14)
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A point 4x1 y1 z5 is said to be a weak feasible point of problem (14) if x ∈X and 0 ≤ z⊥ y ≥ 0. We say problem
(12) satisfies the extended MPEC-NNAMCQ at 4x1 y1 z5 if 4x1 y1 z5 is a weak feasible point to (14) and there
exist no nonzero vectors 4�1�5 ∈�m ×�m such that

0 ∈ ïG4x5T�+ïH4x5T�+NX4x51

�i = 01 if yi > 03 �i = 01 if zi > 01

�i < 01 �i < 01 or �i�i = 01 if yi = zi = 00

For the convenience of reference, we state briefly MPEC stationarity in the following definition.
Definition 2.14 (MPEC W-, C-, M-, S- Stationary Conditions). Let x be a feasible point of problem

(12). We say that x is a weak (W-) stationary point of (12) if there exist no nonzero vectors 4�1�5 ∈�m ×�m

such that

0 ∈ ïf 4x5+ïG4x5T�+ïH4x5T�+NX4x51 (15)

�i = 01 if Gi4x5 > 03 �i = 01 if Hi4x5 > 00 (16)

We say that x is a Clarke (C-), Mordukhovich (M-), Strong (S-) stationary point of (12) if there exist no nonzero
vectors 4�1�5 ∈�m ×�m such that (15)–(16) hold and

�i�i ≥ 0 if Gi4x5=Hi4x5= 01

�i < 01 �i < 01 or �i�i = 01 if Gi4x5=Hi4x5= 01

�i ≤ 01 �i ≤ 0 if Gi4x5=Hi4x5= 01

respectively.
The following relationship between MPEC stationary points is well known:

S-stationary =⇒ M-stationary =⇒ C-stationary =⇒ W-stationary0

3. Exact penalization of the true problem. In this section, we investigate the exact penalty parameter �
for problem (5) and the relationships between (5) and (1) in terms of optimal solutions and stationary points.
This is to pave the way for our discussion on the existence of exact penalty parameter �N of SAA problem (6)
and convergence analysis of optimal solutions and stationary points of the problem.

3.1. Exact penalty parameters. We start by discussing sufficient conditions for the existence of a bounded
penalty parameter for problem (5). To this end, we derive error bound for a general system of equalities and
inequality and its perturbation.

Let gN 2 �n →�l and hN 2 �n →�m, N = 112131 : : : , be two sequences of continuously differentiable map-
pings and C be a closed subset of �n. Assume that gN 4x5, hN 4x5, ïgN 4x5, and ïhN 4x5 converge, respectively,
to g4x5, h4x5, ïg4x5, and ïh4x5 uniformly over set C as N → �. Denote by

S 2= 8x ∈�n2 g4x5≤ 01 h4x5= 01 x ∈C91

SN 2= 8x ∈�n2 gN 4x5≤ 01 hN 4x5= 01 x ∈C90

Let

â4x5 2=







−g4x5

−h4x5

−x







+







�m
−

809

C







1

and

âN 4x5 2=







−gN 4x5

−hN 4x5

−x







+







�m
−

809

C







0

The system 8g4x5≤ 01 h4x5= 01 x ∈C9 is said to be metrically regular at a feasible point x̄ ∈ S if the set-valued
mapping â4x5 is metrically regular at x̄ for ȳ = 0.
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Proposition 3.1. Suppose that the system 8g4x5≤ 01 h4x5= 01 x ∈C9 satisfies metric regularity at a feasible
point x̄ ∈ S with regularity modulus �. Then, there exists a neighborhood of x̄, denoted by Ux̄ such that

(i) the system 8g4x5≤ 01 h4x5= 01 x ∈C9 satisfies metric regularity at every point x ∈Ux̄ ∩ S for 0;
(ii) there exists N0 such that for N ≥N0, the system 8gN 4x5≤ 01 hN 4x5= 01 x ∈C9 satisfies metric regularity

at x̄ for 0, i.e., there exist positive constants � and � such that

d4x1 4âN 5−14y55≤ 2�d4y1âN 4x551 ∀ 4x1 y5 ∈Ux̄ × �B3 (17)

(iii) the statements in parts (i) and (ii) hold when the metric regularity is replaced by NNAMCQ; that is,
there exists no nonzero vectors � ∈�l

+
and � ∈�m such that

{

0 ∈ ïg4x̄5T�+ïh4x̄5T�+NC4x̄51

0 ≤ �⊥ −g4x̄5≥ 00

Proof. Part (i). By the definition of metric regularity, there exists an open neighborhood of x̄ and a positive
constant � such that

d4x1â−14y55≤ �d4y1â4x551 ∀ 4x1 y5 ∈Ux̄ × �B0

Let x̃ ∈Ux̄ ∩ S. Then, there is a neighborhood of x̃, denoted by Ux̃ such that

Ux̃ × �B⊂Ux̄ × �B0

Therefore
d4x1â−14y55≤ �d4y1â4x551 ∀ 4x1 y5 ∈Ux̃ × �B1

which means that â4x5 is metrically regular at x̃ for 0. This shows part (i).
We now prove part (ii). For each fixed N , let

GN 4x5 2=







g4x5− gN 4x5

h4x5−hN 4x5

0







0

It is easy to derive the Lipschitz modulus of GN at x:

lipGN 4x5=
√

�ïg4x5−ïgN 4x5� +�ïh4x5−ïhN 4x5�0

By assumption, ïgN 4x5 and ïhN 4x5 converge to ïg4x5 and ïh4x5, respectively, uniformly over set C as N → �.
This implies lipGN 4x5→ 0 as N → �. By Proposition 2.9,

reg4â +GN 54x̄ �GN 4x̄55≤ 2�1

and hence (17) holds for N sufficiently large.
Part (iii) follows from Mordukhovich’s criteria [19] for metric regularity (Proposition 2.10) and the sum rule for

coderivatives (Proposition 2.7). It is also covered by a recent result by Ioffe and Outrata [9, Proposition 3.5]. �
Using Proposition 3.1, we are able to derive a local error bound for the feasible set of the systems defined in

the proposition.

Proposition 3.2. Let S and SN be defined as in Proposition 3.1, xN ∈ SN , and xN → x̄. Then x̄ ∈ S.
Moreover, if the system 8g4x5 ≤ 01 h4x5 = 01 x ∈ C9 satisfies metric regularity at point x̄ for 0 with regularity
modulus �, then

(i) there exist positive constants � and � such that

d4x1S5≤ �4�g4x5+�1 + �h4x5�151 ∀x ∈C∩B4x̄1 �53

(ii) there exists a constant �> 0 such that for N sufficiently large

d4x1SN 5≤ 2�4�gN 4x5+�1 + �hN 4x5�151 ∀x ∈C∩B4x̄1 �53 (18)

(iii) statements (i) and (ii) hold when the metric regularity is replaced by NNAMCQ.
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Proof. The statement that x̄ ∈ S follows from the uniform convergence of 8gN 4x59, 8hN 4x59 on set C. The
metric regularity of the set-valued mapping â at x̄ for 0 means that there exist positive constants � and �
such that

d4x1â−14y55≤ �d4y1â4x551 ∀ 4y1 x5 ∈ 401 x̄5+ �B0

Taking y = 0 in the above, we have

d4x1â−14055≤ �d401 â4x55= �d













g4x5

h4x5

x







1







�m
−

809

C













≤ �4�g4x5+�1 + �h4x5�15

for all x ∈ 4x̄+ �B5∩C. This shows part (i).
Part (ii). In the same manner, we can derive from (17) that

d4x1 4âN 5−14055≤ 2�d401 âN 4x55= 2�d













gN 4x5

hN 4x5

x







1







�m
−

809

C













≤ 2�4�gN 4x5+�1 + �hN 4x5�15

for all x ∈ 4x̄+ �B5∩C.
Part (iii) follows from the equivalence of the metric regularity and NNAMCQ as shown in the proof of

Proposition 3.1(iii). The proof is complete. �
The technical result in part (i) of Proposition 3.2 is needed for establishing a relationship between optimal

solutions to the true problem (1) and its penalization (5), which will be detailed in Theorem 3.4. Part (ii) of the
proposition will be needed to address issues of the SAA problems (2) and (6) to be detailed in Theorem 3.5.

It is often easier to show that a solution to an original optimization problem is a solution of its exactly
penalized counterpart than the reverse. However, the reverse argument is equally important if not more since
one often hopes to solve the original problem by solving its penalized counterpart. In what follows, we derive
the equivalence between problems (3) and (5) under some moderate conditions.

Assumption 3.3. Let f 4x1 y1 �5 and F 4x1 y1 �5 be defined as in (1).
(a) The Lipschitz modulus of f and F w.r.t. 4x1 y5 are bounded by an integrable function �14�5≥ 0.
(b) ï4x1 y5f 4x1 y1 �5 and ï4x1 y5F 4x1 y1 �5 are Lipschitz continuous w.r.t. 4x1 y5 and their Lipschitz modulus are

bounded by an integrable function �24�5≥ 0.

Theorem 3.4. Let 4x̄1 ȳ5 be a local optimal solution to problem (1). Suppose that the MPEC-NNAMCQ
(or equivalently MPEC-metric regularity) holds at 4x̄1 ȳ5. Under Assumption 3.3(a),

(i) there exists a constant �∗ > 0 such that 4x̄1 ȳ1 z̄5, where z̄ = Ɛ6F 4x̄1 ȳ1 �57 is a local optimal solution
of (5) if �≥ �∗;

(ii) if, in addition, D is a compact set and MPEC-NNAMCQ (or equivalently MPEC-metric regularity) holds
at every optimal solution of problem (1), then there exists �̄ such that for any �> �̄, the sets of optimal solutions
of problems (3) and (5), denoted by Sopt and S

�
opt, respectively, coincide.

Proof. Part (i). Let â4x1 y5 be defined by (13). The MPEC-metric regularity of (1) at 4x̄1 ȳ5 means that
â4x1 y5 is metric regular at 4x̄1 ȳ5 for 0. However, we will not use the metric regularity argument in the proof,
instead, we use the equivalent argument MPEC-NNAMCQ, which is relatively easy to handle. By Definition 2.12,
MPEC-NNAMCQ for problem (1) at 4x̄1 ȳ5 states that there are no nonzero vectors 4�1�5 ∈�m ×�m such that

0 ∈ ïƐ6F 4x̄1 ȳ1 �57T�+ 401�5+ND4x̄1 ȳ51

�i = 01 if Ɛ6Fi4x̄1 ȳ1 �57 > 03 �i = 0 if ȳi > 01

�i < 01 �i < 01 or �i�i = 0 if Ɛ6Fi4x̄1 ȳ1 �57= ȳi = 00

It is easy to see that this condition is equivalent to the nonexistence of nonzero vectors 4�1�y1�z5 ∈ �m ×

�m ×�m such that

0 ∈ ïƐ6F 4x̄1 ȳ1 �57T�× 8−�9+ 401�y1�z5+ND4x̄1 ȳ5× 8091

�z
i = 0 if Ɛ6Fi4x̄1 ȳ1 �57 > 03 �

y
i = 0 if ȳi > 01

�z
i < 01 �

y
i < 01 or �z

i�
y
i = 0 if Ɛ6Fi4x̄1 ȳ1 �57= ȳi = 01
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which happens to be the MEPC-NNAMCQ for problem (3) at 4x̄1 ȳ1 z̄5 with z̄= Ɛ6F 4x̄1 ȳ1 �570 By the expression
of the limiting normal cone in Proposition 2.3, it is easy to check that the above condition is equivalent to

6809×NW4ȳ1 z̄57∩ 6−ND4x̄1 ȳ5× 8097= 809 (19)

and there is no nonzero vector � ∈�m such that

0 ∈ ïƐ6F 4x̄1 ȳ1 �57T�× 8−�9+ 809×NW4ȳ1 z̄5+ND4x̄1 ȳ5× 8091

where W= 84y1 z5 ∈�m ×�m2 0 ≤ z⊥ y ≥ 09. By virtue of Mordukhovich [21, Theorem 3.4] and (19), we have

N4�n×W5∩ 4D×�m54x̄1 ȳ1 z̄5⊂ 809×NW4ȳ1 z̄5+ND4x̄1 ȳ5× 8090

Hence MPEC-NNAMCQ for problem (1) at 4x̄1 ȳ5 implies that there is no nonzero vectors � ∈�m such that

0 ∈ ïƐ6F 4x̄1 ȳ1 �57T�× 8−�9+N4�n×W5∩ 4D×�m54x̄1 ȳ1 z̄50

We now use Proposition 3.2(i) to prove the first claim. Let h4x1 y1 z5 = Ɛ6F 4x1 y1 �57 − z, C 2= 4�n × W5 ∩

4D × �m5 and S 2= 84x1 y1 z52 h4x1 y1 z5 = 01 4x1 y1 z5 ∈ C9. We have just shown that MPEC-NNAMCQ for
problem (1) at 4x̄1 ȳ5 implies that the NNAMCQ of the system 8h4x1 y1 z5 = 01 4x1 y1 z5 ∈ C9 holds at 4x̄1 ȳ1 z̄5
with z̄ = Ɛ6F 4x̄1 ȳ1 �57. By Proposition 3.2(i) and (iii), there exist a constant �̃ > 0 and a neighborhood of
4x̄1 ȳ1 z̄5, denoted by U4x̄1 ȳ1 z̄5 such that

d44x1 y1 z51 S5≤ �̃4�h4x1 y1 z5�11 ∀ 4x1 y1 z5 ∈C∩U4x̄1 ȳ1 z̄50

In terms of the terminology of Liu et al. [14], �h4x1 y1 z5�1 is a partial error function on set C around 4x̄1 ȳ1 z̄5
with modulus �̃. Since 4x̄1 ȳ1 z̄5 is a local minimizer of (3), by the principle of partial exact penalization (Liu
et al. [14, Theorem 3.3]), 4x̄1 ȳ1 z̄5 is also a local minimizer of (5) for �≥ �̃�, where � is the Lipschitz modulus
of function Ɛ6f 4x1 y1 �57. Note that under Assumption 3.3, such a � exists. This shows the existence of a positive
constant �∗ = �̃� such that for any �≥ �∗, 4x̄1 ȳ1 z̄5 with z̄= Ɛ6F 4x̄1 ȳ1 �57, is a local optimal solution of (5).

Part (ii). Since D is a compact set and Ɛ6f 4x1 y1 �57 is continuous, then both optimal solution sets Sopt

and S
�
opt are nonempty. We first show the existence of a constant �̄ > 0 such that for any � ≥ �̄, S�

opt ⊆ Sopt.
Assume for a contradiction that this is not true. Then, for any �k > 0, there exists 4x4�k51 y4�k51 z4�k55 ∈

S
�k
opt such that 4x4�k51 y4�k51 z4�k55 6∈ Sopt. Let �k → �. The compactness of D implies that the sequence

84x4�k51 y4�k51 z4�k559 is bounded where the boundedness of zk follows from the equality constraint z =

Ɛ6F 4x1 y1 �57. By drawing a subsequence if necessary, we assume for the simplicity of notation that
44x4�k51 y4�k51 z4�k55→ 4x∗1 y∗1 z∗5. Let 4x̄1 ȳ1 z̄5 ∈ Sopt. Since 4x4�k51 y4�k51 z4�k55 ∈ S

�k
opt, we have

�4x4�k51 y4�k51 z4�k51�k5≤ �4x̄1 ȳ1 z̄1 �k5= Ɛ6f 4x̄1 ȳ1 �571

which implies that

�k�Ɛ6F 4x4�k51 y4�k51 �57− z4�k5�1 ≤ Ɛ6f 4x̄1 ȳ1 �57− Ɛ6f 4x4�k51 y4�k51 �570

Taking a limit on both sides of the formula above, we obtain

0 ≤ Ɛ6f 4x̄1 ȳ1 �57− Ɛ6f 4x∗1 y∗1 �57

and �Ɛ6F 4x∗1 y∗1 �57−z∗�1 = 0, which means 4x∗1 y∗1 z∗5 is an optimal solution of (3) and 4x∗1 y∗5 is an optimal
solution of (1). Under the assumption that problem (1) satisfies MPEC-NNAMCQ at an optimal solution point
4x∗1 y∗5, it follows from the proof of part (i), there exists a positive constant �̂ such that 4x∗1 y∗1 z∗5 is a local
minimizer of �4x1 y1 z1�5 for all � ≥ �̂�, where � is the Lipschitz modulus of function Ɛ6f 4x1 y1 �57. Since
44x4�k51 y4�k51 z4�k55→ 4x∗1 y∗1 z∗5 and 4x4�k51 y4�k51 z4�k55 ∈ S

�k
opt, we may find a neighborhood of 4x∗1 y∗1 z∗5,

denoted by U such that both 44x4�k51 y4�k51 z4�k55 and 4x∗1 y∗1 z∗5 are minima of �4x1 y1 z1�k5 over the set
U ∩F�, where F� denotes the feasible region of the penalized problem (5) for all �k ≥ �̂�. Consequently,

�44x4�k51 y4�k51 z4�k51�k5 = �4x∗1 y∗1 z∗1 �k5= Ɛ6f 4x∗1 y∗1 �57

= �4x∗1 y∗1 z∗1 4�k + �̂�5/25

≤ Ɛ6f 4x4�k51 y4�k51 �57+
�k + �̂�

2
�Ɛ6F 4x4�k51 y4�k51 �57− z4�k5�11
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which implies that

�k�Ɛ6F 4x4�k51 y4�k51 �57− z4�k5�1 ≤
�k + �̂�

2
�Ɛ6F 4x4�k51 y4�k51 �57− z4�k5�10

For �k > �̂�, the above inequality implies that Ɛ6F 4x4�k51 y4�k51 �57= z4�k5, and hence

4x4�k51 y4�k51 z4�k55 ∈ Sopt1

which contradicts the fact that 4x4�k51 y4�k51 z4�k55 6∈ Sopt. This shows S
�
opt ⊆ Sopt for all �> �̄ 2= �̂�.

We are now ready to show that for any � ≥ �̄, Sopt = S
�
opt. Let 4x̃1 ỹ1 z̃5 ∈ Sopt and 4x4�51 y4�51 z4�55 ∈ S

�
opt.

Then, for any � > �̄, since S
�
opt ⊆ Sopt, we have 4x4�51 y4�51 z4�55 ∈ Sopt. Therefore �4x4�51 y4�51 z4�51�5 =

�4x̃1 ỹ1 z̃1 �5, which means 4x̃1 ỹ1 z̃5 is also an optimal solution of problem (5). The proof is complete. �
We make a few comments on Theorem 3.4.
First, we implicitly assume that the true problem (1) has an optimal solution. It might be interesting to discuss

conditions under which such an optimal solution exists. Observe that both Ɛ6f 4x1 y1 �57 and Ɛ6F 4x1 y1 �57 are
deterministic functions and (1) is essentially a deterministic MPEC. Outrata et al. [23] presented a detailed
discussion about conditions for a deterministic MPEC to have an optimal solution, see discussions in §§1.3
and 4.2 in Outrata et al. [23] for details. In this context, if there exists a point 4x01 y05 ∈D such that

4Ɛ6F 4x01 y1 �57− Ɛ6F 4x01 y01 �575
T 4y− y05/�y− y0� → � for 4x01 y5 ∈D1 �y� → �1 (20)

then (1) has a feasible solution. Moreover, if there exists a feasible solution and the lower-level set of
Ɛ6f 4x1 y1 �57 at this feasible solution is bounded, then the optimal solution of (1) exists. Sufficient conditions
for (20): D is compact or there exists a nonnegative integrable function �4�5 with Ɛ6�4�57 > 0 such that

4F 4x01 y1 �5− F 4x01 y01 �55
T 4y− y05/�y− y0� ≥ �4�5�y− y0�

20

From this (taking expectation on both sides of the inequality), we immediately obtain

4Ɛ6F 4x01 y1 �57− Ɛ6F 4x01 y01 �575
T 4y− y05/�y− y0� ≥ Ɛ6�4�57�y− y0�

21

which implies the strong monotonicity of Ɛ6F 4x01 ·1 �57. It is also possible to derive some weaker conditions
using Outrata et al. [23, Proposition 1.1], but this is beyond the focus of this paper.

Let us now make a few comments on the second part of Theorem 3.4. The compactness of D and the continuity
of Ɛ6F 4x1 y1 �57 imply that the feasible set of (3), denoted by F, is bounded. Moreover, for any fixed � > 0, it
is easy to see that �4x1 y1 z1�5→ � as �z� → �, which means that there exists a compact K⊆�n ×�m ×�m

such that S�
opt ⊆ K. We can choose K sufficiently large such that S�

opt ⊂ intK, where “int” denotes the interior
of a set. Theorem 3.4(ii) states that S�

opt = Sopt for a sufficiently large �. Following the terminology of Pillo and
Grippo [25, Definition 1], such a problem (5) is a weak exact penalty problem of (3) for large enough �.

It might be interesting to ask whether there exists a penalty parameter �̌ such that for � ≥ �̌, a local mini-
mizer of problem (5) is a local optimal solution of problem (3) (in the terminology of Pillo and Grippo [25],
problem (5) is an exact penalty problem of (3)). Unfortunately, we are unable to show the existence of such
a parameter because of the complication resulting from partial penalization and nonexistence of the interior
of the set of feasible solutions to problem (3), nor can we find a counterexample. We leave this to interested
readers to explore. The issue seems to be relatively easier to address when a full penalization (including all
constraints) is considered. For instance, Burke [3] derived an exact penalization scheme for a general nonlinear
constrained minimization problem under some regularity conditions (of the constraint system) and derived a
relationship between local optimal solutions of the penalized problem and their original counterparts, see Burke
[3, Corollary 2.3.1].

Let us now use part (ii) of Proposition 3.2 and Liu et al. [14, Theorem 3.3] to derive a relationship between
the set of local minimizers of the SAA problem (4) and its penalization (6). The following result states that under
some moderate conditions, there exists a bounded sequence of penalty parameters such that a local minimizer
of (4) is also a local minimizer of the penalty problem (6).

Theorem 3.5. Let 4xN 1 yN 1 zN 5 be a local optimal solution to problem (4) and 4x∗1 y∗1 z∗5 be a limit point
of sequence 84xN 1 yN 1 zN 59. Under Assumption 3.3(a) 4x∗1 y∗5 is a feasible point of problem (1). If, in addi-
tion, MPEC-NNAMCQ (or equivalently MPEC-metric regularity) holds at 4x∗1 y∗5, then there exists a bounded
sequence of penalty parameters 8�N 9 such that 4xN 1 yN 1 zN 5 is a local optimal solution of (6).
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Proof. We give a sketch of the proof although it is similar to that of Theorem 3.4(i). The feasibil-
ity of 4x∗1 y∗5 can be easily verified using Assumption 3.3, which ensures the uniform convergence of the
underlying functions. In the proof of Theorem 3.4, we have shown that the MPEC-NNAMCQ at 4x∗1 y∗5
implies the NNAMCQ of the system 8h4x1 y1 z5 = 01 4x1 y1 z5 ∈ C9 at 4x∗1 y∗1 z∗5 with z∗ = Ɛ6F 4x∗1 y∗1 �57,
where h4x1 y1 z5 2= Ɛ6F 4x1 y1 �57 − z and C is defined as in the proof of Theorem 3.4(i). Let hN 4x1 y1 z5 2=
41/N5

∑N
k=1 F 4x1 y1 �

k5− z and SN 2= 84x1 y1 z52 hN 4x1 y1 z5= 01 4x1 y1 z5 ∈C9. By Proposition 3.2(ii) (without
gN 4x5 here), there exist a bounded sequence of positive numbers 8�N 9 and a neighborhood of 4xN 1 yN 1 zN 5,
denoted by U4xN 1 yN 1 zN 5 such that

d44x1 y1 z51 SN 5≤ �N
�hN 4x1 y1 z5�11 ∀ 4x1 y1 z5 ∈C∩U4xN 1 yN 1 zN 50

Applying the principle of partial exact penalization (Liu et al. [14, Theorem 3.3]), the inequality above implies
4xN 1 yN 1 zN 5 is also a local minimizer of (6) for � ≥ �N�N , where �N converges to the Lipschitz modulus of
function Ɛ6f 4x1 y1 �57 under Assumption 3.3. �

From numerical perspective, Theorem 3.5 is more useful than part (i) of Theorem 3.4 in that for a given
problem, since the distribution � is usually unknown in practice, it is often difficult to estimate �∗. Through the
proof of Proposition 3.2, Theorem 3.5 provides a practical way to set/estimate the penalty parameter �N . Note
also that we are short of claiming in Theorem 3.5 that a local optimal solution 4xN 1 yN 1 zN 5 to the penalized
SAA problem (6) is a local optimal solution to problem (4), although this is obvious if the former has a unique
local optimal solution or the local optimal solution to the former falls into the feasible set of the latter.

3.2. Stationary points. It is well known that MPEC problems are notoriously nonconvex because of their
combinatorial nature of constraints, which means that we may often obtain a local optimal solution or even
a stationary point rather than a global optimal solution in numerical computation. This motivates us to study
stationary points of problems (5) and (1) and their relationships. Here, we focus on M-stationary points although
our discussion can be extended to Clarke [6] stationary points.

The proposition below states the relationship between M-stationary points of (3) and (1).

Proposition 3.6. If 4x1 y1 z5 is an M-stationary point of problem (3), then 4x1 y5 is an M-stationary of
problem (1). Conversely, if 4x1 y5 is an M-stationary point of problem (1), then 4x1 y1 z5 is an M-stationary
point of problem (3) with z= Ɛ6F 4x1 y1 �57.

Proof. Let 4x1 y5 be an M-stationary point of problem (1). Then, there exist multipliers 4�1�5 ∈ �m ×�m

such that
{

0 ∈ ïƐ6f 4x1 y1 �57+ïƐ6F 4x1 y1 �57T�+ND4x1 y5+ 8401�591

4�1�5 ∈NW4y1Ɛ6F 4x1 y1 �5751

where W = 84y1 z5 ∈ �m ×�m2 0 ≤ z ⊥ y ≥ 09 and the limiting normal cone NW4y1 z5 is defined as in Propo-
sition 2.3. Let 4x1 y1 z5 be an M-stationary point of the reformulated problem (3). Then, there exist multipliers
4�1�y1�z5 ∈�m ×�m ×�m such that















0 ∈ ïƐ6f 4x1 y1 �57+ïƐ6F 4x1 y1 �57T�+ND4x1 y5+ 8401�y591

0 = −�+�z1

4�y1�z5 ∈NW4y1 z50

(21)

The equivalence of the two set of stationary points is straightforward. �
The next proposition describes the relationship between the M-stationary points of (3) and the penalization

problem (5).

Proposition 3.7. If 4x1 y1 z3�y1�z5 is an M-stationary pair of problem (5) and � > ��z�1, then 4x1 y1 z5
is an M-stationary point of (3). Conversely, let 4x1 y1 z3�1�y1�z5 be an M-stationary pair of problem (3). If
�≥ ���1, then 4x1 y1 z5 is an M-stationary point of problem (5).

Proof. Problem (5) ⇒ Problem (3). By definition, 4x1 y1 z3�y1�z5 satisfies

0 ∈ ¡4x1 y1 z5�4x1 y1 z1�5+ND4x1 y5× 809+ 8401�y1�z590 (22)
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Observe first that norm �·�1 is a convex function and Ɛ6f 4x1 y1 �57 and Ɛ6F 4x1 y1 �57 − z are continuously
differentiable functions. By the sum rule (Mordukhovich [21, Proposition 1.107]) and the chain rule (Rockafellar
and Wets [28, Theorem 10.6]) or (Clarke [6, Theorem 2.3.10]), we have

¡4x1 y1 z5�4x1 y1 z1�5= ï4x1 y1 z5Ɛ6f 4x1 y1 �57+�ï4x1 y1 z54Ɛ6F 4x1 y1 �57− z5TG4x1 y1 z51

where G4x1 y1 z5 is the set of vectors b = 4b11 : : : 1 bi1 : : : 1 bm5
T with

bi =















1 if Ɛ6Fi4x1 y1 �57− zi > 01

6− 1117 if Ɛ6Fi4x1 y1 �57− zi = 01

−1 if Ɛ6Fi4x1 y1 �57− zi < 00

(23)

Consequently, (22) can be equivalently written as














0 ∈ ïƐ6f 4x1 y1 �57+�ïƐ6F 4x1 y1 �57TG4x1 y1 z5+ND4x1 y5+ 8401�y591

0 ∈ −�G4x1 y1 z5+�z1

4�y1�z5 ∈NW4y1 z50

(24)

In what follows, we show that an M-stationary point 4x1 y1 z5 satisfying (24) is an M-stationary point of (3)
defined by (21). Let b∗ ∈G4x1 y1 z5 be such that















0 ∈ ïƐ6f 4x1 y1 �57+�ïƐ6F 4x1 y1 �57T b∗ +ND4x1 y5+ 8401�y591

0 = −�b∗ +�z1

4�y1�z5 ∈NW4y1 z50

(25)

Then 4x1 y1 z3�b∗1�y1�z5 satisfies (21). To show that it is an M-stationary pair of problem (3), it suffices to
prove that 4x1 y1 z5 is a feasible point of problem (3) for �> ��z�1. Assume for a contradiction that there exists
an index 1 ≤ i0 ≤m such that Ɛ6Fi04x1 y1 �57− zi0 6= 0. Then we must have �b∗

i0
� = 1. By (25), 0 = −�b∗

i0
+ 6�z7i0 .

Then �= ��b∗
i0
� = �6�z7i0 � ≤ ��z�1, which contradicts the fact that �> ��z�1.

Problem (3) ⇒ Problem (5). Let 4x1 y1 z3�1�y1�z5 be an M-stationary pair of problem (3). Then

0 ∈ ¡4x1 y1 z5�4x1 y1 z1�5+ND4x1 y5× 809+ 809×NW4y1 z50

Let � ≥ ���1 and b∗ = �/�. Then b∗
i ∈ 6−1117 for each i = 11 : : : 1m, and hence b∗ ∈ G4x1 y1 z5 since

Ɛ6F 4x1 y1 �57− z= 0. Subsequently, 4x1 y1 z3�y1�z5 satisfies (24). The proof is complete. �

4. Uniform convergence. To facilitate the convergence analysis of statistical estimators of optimal solutions
and stationary points obtained from solving (6) in the following section, we investigate, in this section, the
uniform convergence of the function �N 4x1 y1 z1�N 5 and its limiting subdifferential to their true counterpart. To
this end, we need some technical results related to SAA of the limiting subdifferential of the composition of a
locally Lipschitz continuous function and the expected value of a random vector-valued function.

Let Q4w52 �m →� be a locally Lipschitz continuous function and H4v1�52 �n ×�d →�m be a continuous
function, which is continuously differentiable with respect to v for almost every � ∈æ. Let � be a random vector
with support set æ⊂�d. We consider the following composite function of Q and the expected value of H :

G4v5 2=Q4Ɛ6H4v1 �5750

Let �11 : : : 1 �N be an iid sampling of �. Denote by

HN 4v5 2=
1
N

N
∑

k=1

H4v1�k5 and GN 4v5 2=Q4HN 4v550

Under some moderate conditions, it is well known that the classical law of large numbers of random function
guarantees that HN 4v5 converges to Ɛ6H4v1 �57 uniformly over any compact subset of �n. This implies the same
convergence for GN 4v5 to G4v5, see, for instance, Xu [37, §3]. What is less known is the uniform convergence
of their (approximate) subdifferentials as a set-valued mapping. The lemma below addresses this.
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Lemma 4.1. Let W ⊆ �m and V ⊆ �n be compact sets. Let Q2 �m → � be a locally Lipschitz continuous
function and AQ an abstract subdifferential operator of Q that is compact set valued and uniformly upper
semicontinuous on W . Let AGN 4v5 2= ïHN 4v5

TAQ4HN 4v55 and AG4v5 2= Ɛ6ïvH4v1�57TAQ4Ɛ6H4v1 �575 and

V 2= 8v ∈ V 2 Ɛ6H4v1 �57 ∈W90

Suppose: (a) HN 4v5 and ïHN 4v5 converge to Ɛ6H4v1 �57 and Ɛ6ïvH4v1�57 uniformly over V, respectively,
(b) H4v1�5 and ïH4v1�5 are integrable bounded. Then

lim
N→�

sup
v∈V

�4AGN 4v51AG4v55= 00

The proof is rather standard, we move it to the appendix.
Remark 4.2. It might be helpful to make some comments on the uniform upper semicontinuity of the

abstract subdifferential operator in Lemma 4.1. There are two cases. One is that AQ is the limiting or Clarke [6]
subdifferential, whereas W is a discrete set, which consists of a finite number of points. In this case, the uniform
upper semicontinuity comes from the usual pointwise upper semicontinuity of the subdifferential operators. The
other case is when Q is convex and AQ is the �-convex subdifferential defined as follows:

¡�Q4w5= 8� ∈�m2 Q4w′5≥Q4w5+ �T 4w−w′5− �91

where � is a fixed positive number, see Hiriart-Urruty and Lemaréchal [8]. It is well known that ¡�Q4 · 5 is
convex, compact set-valued and Hausdorff continuous, see Hiriart-Urruty and Lemaréchal [8, Theorem 4.1.3].
In this paper, we consider the case that Q = �·�1, which is a convex function.

Let F denote the feasible set of (3); that is,

F 2= 84x1 y1 z52 Ɛ6F 4x1 y1 �57− z= 03 0 ≤ z⊥ y ≥ 01 4x1 y1 z5 ∈D×�m90

The proposition below presents the uniform convergence of ¡4x1 y1 z5�N 4x1 y1 z1�N 5 to ¡4x1 y1 z5�4x1 y1 z1�5 over F
under Assumption 3.3 as simple size N increases.

Proposition 4.3 (Uniform Almost Sure Convergence). Under Assumption 3.3,
(i) w.p.1 41/N5

∑N
k=1 f 4x1 y1 �

k5 and 41/N5
∑N

k=1 F 4x1 y1 �
k5 converge to Ɛ6f 4x1 y1 �57 and Ɛ6F 4x1 y1 �57

uniformly over any compact set in �n × �m as N → �, respectively; 41/N5
∑N

k=1 ï4x1 y5f 4x1 y1 �
k5 and

41/N5
∑N

k=1 ï4x1 y5F 4x1 y1 �
k5 converge to Ɛ6ï4x1 y5f 4x1 y1 �57 and Ɛ6ï4x1 y5F 4x1 y1 �57, respectively, w.p.1 uniformly

over any compact set in �n ×�m as N → �;
(ii) if �N → � as N → �, then �N 4x1 y1 z1�N 5 converges to �4x1 y1 z1�5 w.p.1 uniformly over any compact

subset of �n ×�m ×�m;
(iii) if D is a compact set and �N → � as N → �, then

lim
N→�

sup
4x1 y1 z5∈F

�
(

¡4x1 y1 z5�N 4x1 y1 z1�N 51 ¡4x1 y1 z5�4x1 y1 z1�5
)

= 0 w.p.10

Proof. Part (i) can be easily proved by virtue of Ruszczynski and Shapiro [29, §6, Proposition 7]. Part (ii)
follows from part (i), the Lipschitz continuity of �·�1 and the fact that �N → �. Our focus is on part (iii) and
we use Lemma 4.1 to prove it. To this end, we verify the conditions of the lemma. Let v 2= 4x1 y1 z5 and
Q4 · 5 2= �·�1. Define

H4v1�5 2= F 4x1 y1 �5− z1 HN 4v5 2=
1
N

N
∑

k=1

H4v1�k51

G4v5 2=Q4Ɛ6H4v1 �5751 GN 4v5 2=Q4HN 4v550

(26)

Since Q is a convex function and its domain is the whole space �m, it is locally Lipschitz, which implies that
the only horizon subgradient of Q is zero, i.e., ¡�Q4v5 = 809 for any v ∈ �m. Moreover, the convexity of Q
implies that it is Clarke [6] regular. Hence, by the chain rule (Rockafellar and Wets [28, Theorem 10.6]), or
(Clarke [6, Theorem 2.3.10]) G and GN are Clarke regular and

¡G4v5= Ɛ6ïvH4v1�57T ¡Q4Ɛ6H4v1 �575
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and

¡GN 4v5= ïHN 4v5
T ¡Q4HN 4v550

Note that in this case, the limiting subdifferential coincides with Clarke [6] subdifferential. Let W 2= 809,
AQ 2= ¡Q, and V 2= F. Since W is a singleton, the uniform upper semicontinuity of AQ over W reduces
trivially to (pointwise) upper semicontinuity of the set-valued mapping at point 0. On the other hand, since the
feasible set F is a compact set under the compactness of D, the uniform convergence of HN 4v5 and ïHN 4v5

to Ɛ6H4v1 �57 and Ɛ6ïvH4v1�57 over V follows from part (i). This verifies all of the conditions in Lemma 4.1,
and, consequently, yields

lim
N→�

sup
v∈V

�4¡GN 4v51 ¡G4v55= 00

The rest follows straightforwardly from the fact that

�4¡4x1 y1 z5�N 4x1 y1 z1�N 51 ¡4x1 y1 z5�4x1 y1 z1�55

≤ c

∥

∥

∥

∥

1
N

N
∑

k=1

ï4x1 y1 z5f 4x1 y1 �
k5− Ɛ6ï4x1 y1 z5f 4x1 y1 �57

∥

∥

∥

∥

+�4�N ¡GN 4v51�¡G4v55

and the uniform convergence of 41/N5
∑N

k=1 ï4x1 y1 z5f 4x1 y1 �
k5 to Ɛ6ï4x1 y1 z5f 4x1 y1 �57 over F. �

It is important to note that in part (iii) of Proposition 4.3, the uniform convergence is established
only on a compact feasible set F: we need compactness for the uniform convergence of 41/N5 ·
∑N

k=1 ï4x1 y1 z5f 4x1 y1 �
k5 and 41/N5

∑N
k=1 F 4x1 y1 �

k5, and the feasibility to secure the uniform convergence of
¡4x1 y1 z54�41/N5

∑N
k=1 F 4x1 y1 �

k5− z�15 because 41/N5
∑N

k=1 F 4x1 y1 �
k5− z uniformly converges to 0 under the

feasibility condition. In general, ¡�·�1 is not uniformly upper semicontinuous on a set containing a point where
the 1-norm is not differentiable.

We move on to investigate the uniform exponential convergence rate of �N 4x1 y1 z1�N 5 to �4x1 y1 z1�5 as
well as its subdifferentials.

Assumption 4.4. Let S be a compact set of �n ×�m and �2 S×æ→� denote an element (component in
the case of a vector-valued function or a matrix-valued function) in the set of functions 8f 4x1 y1 �51 F 4x1 y1 �5,
ï4x1 y5f 4x1 y1 �51ï4x1 y5F 4x1 y1 �59. �4w1�5 possesses the following properties:

(a) for every w ∈S, the moment-generating function

M4t5 2= Ɛ6et4�4w1�5−Ɛ6�4w1�5757

of random variable �4w1�5− Ɛ6�4w1�57 is finite valued for all t in a neighborhood of zero;
(b) there exist a (measurable) function �2 �d →�+ and constant � > 0 such that

��4w′1 �5−�4w1�5� ≤ �4�5�w′
−w�

�

for all � ∈æ and all w′1w ∈S;
(c) the moment-generating function M�4t5 of �4�5 is finite valued for all t in a neighborhood of zero.

Assumption 4.4(a) means that the random variable �4w1�5 does not have a heavy-tail distribution. In par-
ticular, it holds if this random variable has a distribution supported on a bounded subset. Assumption 4.4(b)
requires �4w1�5 to be globally Hölder continuous with respect to w. Note that this assumption is weaker than
Assumption 3.3. Assumption 4.4(c) is satisfied if Ɛ6�4�57 is finite.

Theorem 4.5 (Uniform Exponential Convergence). Let K be a compact subset of �n ×�m ×�m and
Assumption 4.4 hold on the orthogonal projection of K on 4x1 y5 plane. Suppose �N → � as N → �. Then,

(i) for any �> 0, there exist positive constants c24�5 and k24�5, independent of N such that

Prob
{

sup
4x1 y1 z5∈K

��N 4x1 y1 z1�N 5−�4x1 y1 z1�5� ≥ �

}

≤ c24�5e
−Nk24�5
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for N sufficiently large;
(ii) let � be a positive number and ¡��·�1 denote the �-convex subdifferential of �·�1, let

A�4x1 y1 z1�5= Ɛ6ï4x1 y1 z5f 4x1 y1 �57+A�4x1 y1 z1�5 (27)

and

AN
� 4x1 y1 z1�N 5=

1
N

N
∑

k=1

ï4x1 y1 z5f 4x1 y1 �
k5+AN

� 4x1 y1 z1�N 51 (28)

where
A�4x1 y1 z1�5= �Ɛ6ï4x1 y1 z5H4x1 y1 z1 �57T ¡��Ɛ6H4x1 y1 z1 �57�1

and
AN

� 4x1 y1 z1�N 5= �Nï4x1 y1 z5HN 4x1 y1 z5¡��HN 4x1 y1 z5�11

H and HN are defined by (26). Then, for any �> 0, there exist positive constants c34�5 and k34�5 independent
of N such that

Prob
{

sup
4x1 y1 z5∈K

�4AN
� 4x1 y1 z1�N 51A�4x1 y1 z1�55≥ �

}

≤ c34�5e
−Nk34�5

for N sufficiently large.

Proof. Part (i). The claim follows straightforwardly from Shapiro and Xu [33, Theorem 5.1] under Assump-
tion 4.4 and �N → �. We omit the details.

Part (ii). Observe first that for any compact sets A1B1C1D ⊆�m,

�4A+C1B+D5≤�4A1B5+�4C1D50 (29)

Using the inequality, we have

Prob
{

sup
4x1 y1 z5∈K

�4AN
� 4x1 y1 z1�N 51A�4x1 y1 z1�55≥ �

}

≤ Prob
{

sup
4x1 y1 z5∈K

�

(

1
N

N
∑

k=1

ï4x1 y1 z5f 4x1 y1 �
k51 Ɛ6ï4x1 y1 z5f 4x1 y1 �57

)

≥
�

2

}

+ Prob
{

sup
4x1 y1 z5∈K

�4AN
� 4x1 y1 z1�N 51A�4x1 y1 z1�55≥

�

2

}

0

By Shapiro and Xu [33, Theorem 5.1], the first term at the right-hand side of the formula above converges
to zero at an exponential rate. It suffices to show the second term at the right-hand side of the formula above
converges to zero at an exponential rate. By (44),

Prob
{

sup
4x1 y1 z5∈K

�4AN
� 4x1 y1 z1�N 51A�4x1 y1 z1�55≥

�

2

}

≤ Prob
{

sup
4x1 y1 z5∈K

��NïHN 4x1 y1 z5−�ïƐ6H4x1 y1 z1 �57� ≥
�

sup4x1 y1 z5∈K 4�¡��HN 4x1 y1 z5�1�

}

+ Prob
{

sup
4x1 y1 z5∈K

�4¡��HN 4x1 y1 z5�11 ¡��Ɛ6H4x1 y1 z1 �57�15≥
�

sup4x1 y1 z5∈K 4��ïƐ6H4x1 y1 z1 �57�

}

1

where �M� = supM∈M �M� for a compact set M. Note first that �¡��HN 4x1 y1 z5�1� is bounded by integer m
(problem dimension) for any 4x1 y1 z5 ∈ K. The exponential rate of convergence of the first term, at the right-
hand side of the formula above, follows from the fact that ïHN 4x1 y1 y5 converges to ïƐ6H4x1 y1 z1 �57 over K
at an exponential rate and �N → �. We omit the details. Let us look at the second term on the right-hand side
of the formula. Under Assumption 4.4, �ïƐ6H4x1 y1 z1 �57� is bounded on compact set K. On the other hand,
¡��·�1 is Hausdorff continuous on �n and HN converges to Ɛ6H7 uniformly over K at the exponential rate, which
implies that ¡��HN 4x1 y1 z5�1 converges to ¡��Ɛ6H4x1 y1 z1 �57�1 uniformly over K at the exponential rate. The
rest is straightforward. �

Note that the exponential rate of convergence stated in Theorem 4.5 relies on the Hausdorff continuity of
the �-convex subdifferential ¡��·�. This is indeed one of the main reasons that we consider the approximate
first-order optimality condition in §5.2. See also the comments at the end of §5.
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5. Asymptotic convergence analysis. In the preceding section, we have investigated the uniform conver-
gence of sample average random functions. We are now ready to use them to study the convergence of the
statistical estimators obtained from solving (6).

5.1. Optimal solutions. Observe that the penalized SAA problem (6) and the penalized true problem (5)
have the same feasible set, and in Proposition 4.3, we have proved that the objective function of (6),
�N 4x1 y1 z1�N 5, converges uniformly to the objective function of (5), �4x1 y1 z1�5, on any compact subset of
�n ×�m ×�m. This paves the way for investigating the convergence of optimal solutions through the standard
perturbation analysis. Note that a point 4x1 y5 is an optimal solution of problem (1) if and only if 4x1 y1 z5 is an
optimal solution of problem (3) with z= Ɛ6F 4x1 y1 �57.

Theorem 5.1. Let 84xN 1 yN 1 zN 59 be a sequence of optimal solutions of problem (6) and Assumption 3.3
hold. Let �N → �. Then,

(i) w.p.1 any accumulation point of the sequence 84xN 1 yN 1 zN 59, denoted by 4x∗1 y∗1 z∗5, is an optimal solu-
tion of the true penalty problem (5) with penalty parameter equal to �;

(ii) if, in addition, (a) D is a compact set, (b) MPEC-NNAMCQ holds at every optimal solution of problem (1),
(c) Assumption 4.4 holds, (d) � > �̄, where �̄ is given in Theorem 3.4, then for any � > 0, there exist positive
constants c4�5 and k4�5 independent of N such that

Prob8d44xN 1 yN 1 zN 51 Sopt5≥ �9≤ c4�5e−Nk4�5

for N sufficiently large, where Sopt denotes the set of optimal solutions to (3).

Proof. Part (i). The conclusion follows by an application of the uniform convergence of �N 4x1 y1 z1�N 5 to
�4x1 y1 z1�5 as stated in Proposition 4.3(ii) and Xu [37, Lemma 4.1].

Part (ii). The exponential rate of convergence of 4xN 1 yN 1 zN 5 to S
�
opt follows from Theorem 4.5(i) and Xu [37,

Lemma 4.1]. Moreover, by Theorem 3.4(ii), Sopt = S
�
opt for �> �̄. The conclusion follows. �

Note that, in general, it is unrealistic to aim at finding conditions such that

lim
N→�

4arg min�N 5= arg min�1

except in cases where arg min� consists of a single point, see comments in Rockafellar and Wets [28, p. 263].

5.2. Stationary points. We now move on to analyze the convergence of statistical estimators of the station-
ary points, denoted by 4xN 1 yN 1 zN 5, obtained from solving the penalized SAA problem (6). Recall that a feasible
point 4xN 1 yN 1 zN 5 is said to be an M-stationary point of problem (6) if it satisfies the following first-order
optimality condition:

0 ∈ ¡4x1 y1 z5�N 4x1 y1 z1�N 5+ND4x1 y5× 809+ 809×NW4y1 z50 (30)

From a numerical perspective, it might be difficult to obtain an exact stationary point. This motivates us to
consider the following approximate first-order optimality condition:

0 ∈AN
� 4x1 y1 z1�N 5+ND4x1 y5× 809+ 809×NW4y1 z51 (31)

where AN
� 4x1 y1 z1�N 5 is defined by (28) and � is a small positive number. Observe that

¡4x1 y1 z5�N 4x1 y1 z1�N 5 =
1
N

N
∑

k=1

ïx1 y1 zf 4x1 y1 �
k5+�ïx1 y1 zHN 4x1 y1 z5

T ¡�HN 4x1 y1 z5�1

⊆ AN
� 4x1 y1 z1�N 5

and
lim
�↓0

AN
� 4x1 y1 z1�N 5= ¡4x1 y1 z5�N 4x1 y1 z1�N 50

By virtue of a perturbation result of generalized equations (Xu [37, Lemma 4.2]), this means a stationary point
defined by (31) converges to an M-stationary point of SAA problem (6) when � is driven to zero and this gives
theoretical justification of the “approximation.” Likewise, since

¡4x1 y1 z5�4x1 y1 z1�5⊂ Ɛ6ï4x1 y1 z5f 4x1 y1 �57+�Ɛ6ï4x1 y1 z5H4x1 y1 z1 �57T ¡�Ɛ6H4x1 y1 z1 �57�1 ⊂A�4x1 y1 z1�51
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where A�4x1 y1 z1�5 is defined by (27), we may consider approximate first-order optimality condition for the
penalized true problem (5):

0 ∈A�4x1 y1 z1�5+ND4x1 y5× 809+ 809×NW4y1 z50 (32)

The theorem below states the convergence of an approximate stationary point satisfying (31) as N increases.

Theorem 5.2. Let 84xN
� 1 y

N
� 1 z

N
� 59 be a sequence of �-stationary points defined by (31) and 4x∗

� 1 y
∗
� 1 z

∗
�5 be

a cluster point w.p.1, let Assumptions 3.3 and 4.4 hold and �N → �. Then w.p.1 4x∗
� 1 y

∗
� 1 z

∗
�5 satisfies (32).

Moreover, the convergence rate is exponential.

Proof. By taking a subsequence if necessarily, we assume for the simplicity of notation that
84xN

� 1 y
N
� 1 z

N
� 59→ 4x∗

� 1 y
∗
� 1 z

∗
�5 w.p.1. The first part of the claim follows from Theorem 4.5(ii) in that the uniform

exponential convergence implies the uniform a.s. convergence, which further implies that

lim sup
N→�

AN
� 4x

N
� 1 y

N
� 1 z

N
� 1 �N 5⊆A��4x

∗

� 1 y
∗

� 1 z
∗

�1 �50

The second part of the claim follows from Theorem 4.5(ii) and the perturbation theorem of generalized equations
(Xu [37, Lemma 4.2]). We omit the details. �

Note that we are short of claiming that a stationary point satisfying (32) is an �-M-stationary point in that the
�-convex subdifferential is different from the �-limiting subdifferential, see a discussion by Mordukhovich [21,
p. 96]. However, when � is driven to zero, we have

A�4x1 y1 z1�5→ ¡�4x1 y1 z1�51

which means the �-stationary point approximates the M-stationary point of (22) and, through Propositions 3.6
and 3.7, approximates the M-stationary point of true problem (1).

Note also that we are unable to establish the exponential rate of convergence for the M-stationary points
of the penalized SAA problem (6) and this is indeed another underlying reason that we consider approximate
stationary points in Theorem 5.2.

6. Preliminary numerical test results. In this paper, we proposed essentially two numerical schemes: a
partially penalized SAA scheme (6) and a smoothed SAA scheme (7). For a given sample, the former is a
deterministic MPEC with a nonsmooth objective function, whereas the latter is a specific smoothing of the
former. We have carried out some numerical experiments on (7) and present a report of the test results in this
section.

6.1. Convergence analysis of the smoothing scheme. The convergence analysis carried out in the preceding
section is based on the assumption that an optimal solution or a stationary point is obtained from solving
the partially penalized SAA problem (6). In doing so, we allow the SAA problem (6) to be solved by any
deterministic MPEC solver, which can effectively deal with the nonsmoothness in the objective function. The
convergence results, however, do not cover (7) as the smoothing parameter �N is positive. To fill out the gap,
we start this section with a brief convergence analysis of (7).

Proposition 6.1. Let 84xN 1 yN 1 zN 59 be a sequence of optimal solutions of problem (7) and Assumption 3.3
hold. Let �N → �. Then,

(i) w.p.1 any accumulation point of the sequence 84xN 1 yN 1 zN 59, denoted by 4x∗1 y∗1 z∗5, is an optimal solu-
tion of the true penalty problem (5) with the penalty parameter equal to �;

(ii) if, in addition, conditions (a)–(d) in Theorem 5.1 hold, then for any �> 0, there exist positive constants
c4�5 and k4�5, independent of N such that

Prob8d44xN 1 yN 1 zN 51 Sopt5≥ �9≤ c4�5e−Nk4�5

for N sufficiently large, where Sopt denotes the set of optimal solutions to (3).

The proof is essentially similar to Theorem 5.1 in that

m
∑

i=1

√

√

√

(

1
N

N
∑

k=1

Fi4x1 y1 �
k5− zi

)2

+ �N −→ �Ɛ6F 4x1 y1 �57− z�1

uniformly on any compact set of �n ×�m ×�m at an exponential rate as the smoothing parameter �N → 0 as
N → �. Likewise, we can establish the convergence of stationary points generated by the scheme.
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Proposition 6.2. Let 84xN 1 yN 1 zN 3�N
y 1�

N
z 59 be a sequence of Karush-Kuhn-Tucker (KKT) pair of prob-

lem (7) and 4x∗1 y∗1 z∗3�∗
y1�

∗
z5 be an accumulation point. Suppose Assumption 3.3 holds. If �N → �, �N → 0

and �> ��∗
z�1, then w.p.1 4x∗1 y∗5 is an M-stationary point of the true problem (1).

Proof. Taking a subsequence if necessary, we may assume that

lim
N→�

4xN 1 yN 1 zN 3�N
y 1�

N
z 5= 4x∗1 y∗1 z∗3�∗

y1�
∗

z50

By definition, the M-stationary pair 4xN 1 yN 1 zN 3�N
y 1�

N
z 5 satisfies 4�N

y 1�
N
z 5 ∈NW4yN 1 zN 5 and

0 ∈ ï4x1 y1 z5�̂N 4x
N 1 yN 1 zN 1 �N 1 �N 5+ND4x

N 1 yN 5× 809+ 8401�N
y 1�

N
z 591 (33)

where

ï4x1 y1 z5�̂N 4x1 y1 z1�N 1 �N 5=
1
N

N
∑

k=1

ï4x1 y1 z5f 4x1 y1 �
k5+�N

m
∑

i=1

�N
i 4x1 y1 z5�

N
i 4x1 y1 z5

and

�N
i 4x1 y1 z5=

41/N5
∑N

k=1 Fi4x1 y1 �
k5− zi

√

441/N5
∑N

k=1 Fi4x1 y1 �
k5− zi5

2 + �N

(34)

�N
i 4x1 y1 z5= ï4x1 y1 z5

(

1
N

N
∑

k=1

Fi4x1 y1 �
k5− zi

)

0

By Proposition 4.3(i), 41/N5
∑N

k=1 Fi4x1 y1 �
k5− zi,

√

441/N5
∑N

k=1 Fi4x1 y1 �
k5− zi5

2 + �N , and �N
i 4x1 y1 z5 con-

verge to Ɛ6Fi4x1 y1 �57− zi, �Ɛ6Fi4x1 y1 �57− zi�, and ï4x1 y1 z54Ɛ6Fi4x1 y1 �57− zi5 uniformly on any compact set in
�n ×�m ×�m, respectively, for i = 11 : : : 1m. Let

AN 4x1 y1 z5 2= 6�N
1 4x1 y1 z51 : : : 1�

N
m 4x1 y1 z570

Since ��N
i 4x1 y1 z5� ≤ 1 for any 4x1 y1 z5 ∈�n ×�m ×�m and w.p.1,

lim
N→�

�N
i 4x

N 1 yN 1 zN 5 ∈















8191 Ɛ6Fi4x
∗1 y∗1 �57− z∗

i > 01

6−11171 Ɛ6Fi4x
∗1 y∗1 �57− z∗

i = 01

8−191 Ɛ6Fi4x
∗1 y∗1 �57− z∗

i < 01

then the limit of the sequence 8AN 4xN 1 yN 1 zN 59 is contained in the set G4x∗1 y∗1 z∗5 w.p.1, where G4x1 y1 z5 is
defined by (23). Consequently, we have

lim
N→�

d4ï4x1 y1 z5�̂N 4x
N 1 yN 1 zN 1 �N 1 �N 51 ¡4x1 y1 z5�4x

∗1 y∗1 z∗1 �55= 00 (35)

By (33) and the property of �,

d401 ¡4x1 y1 z5�4x
∗1 y∗1 z∗1 �5+ND4x

∗1 y∗5× 809+ 8401�∗

y1�
∗

z595

≤�4ï4x1 y1 z5�̂N 4x
N 1 yN 1 zN 1 �N 1 �N 5+ND4x

N 1 yN 5× 809+ 8401�N
y 1�

N
z 591

¡4x1 y1 z5�4x
∗1 y∗1 z∗1 �5+ND4x

∗1 y∗5× 809+ 8401�∗

y1�
∗

z595

≤ d4ï4x1 y1 z5�N 4x
N 1 yN 1 zN 1 �N 1 �N 51 ¡4x1 y1 z5�4x

∗1 y∗1 z∗1 �55

+�4ND4x
N 1 yN 5× 809+ 8401�N

y 1�
N
z 591ND4x

∗1 y∗5× 809+ 8401�∗

y1�
∗

z5951

where the first inequality follows from the definition of � and the second inequality follows from (29). The
first term at the right-hand side of the second inequality of the formula above tends to zero by (35); the second
term tends to zero by the upper semicontinuity of the limiting normal cone mapping ND4 · 5 and 4�N

y 1�
N
z 5 →

4�∗
y1�

∗
z5. This shows w.p.1 4x∗1 y∗1 z∗5 is an M-stationary point of the true penalty problem (5). The rest follows

straightforwardly from Propositions 3.6 and 3.7. �
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From a practical point of view, it might be interesting to estimate the penalty parameter �N in problem (7).
The proposition below provides some insights about how this could be possibly achieved through the Lagrange
multipliers of the problem.

Proposition 6.3. Let 84xN 1 yN 1 zN 3�N
y 1�

N
z 59 be a sequence of KKT pair of problem (7) and the penalty

parameter �N satisfies �N ≥ ��N
z �1 + 1. Let 4x∗1 y∗1 z∗5 be a limiting point of 84xN 1 yN 1 zN 59. Suppose Assump-

tion 3.3 holds. If the extended MPEC-NNAMCQ holds at 4x∗1 y∗1 z∗5, then w.p.1 4�N
y 1�

N
z 5 is bounded and

4x∗1 y∗5 is an M-stationary point of the true problem (1).

Proof. We first show the boundedness of 4�N
y 1�

N
z 5. Assume for a contradiction that this is not the case.

Let tN = �4�N
y 1�

N
z 5�. Then tN → �. Dividing (33) by tN , we have

0 ∈ ï4x1 y1 z5�̂N 4x
N 1 yN 1 zN 1 �N 1 �N 5/tN +ND4x

N 1 yN 5× 809+ 8401�N
y /tN 1�

N
z /tN 590

Under Assumption 3.3, Ɛ6ï4x1 y1 z5f 4x
N 1 yN 1 �57 is bounded. Taking a limit on both sides of the formula above,

we have

0 ∈

m
∑

i=1

�iï4x1 y1 z54Ɛ6Fi4x
∗1 y∗1 �57− z∗

i 5+ND4x
∗1 y∗5× 809+ 8401�y1�z591

where
�i = lim

N→�
�N�

N
i 4x

N 1 yN 1 zN 5/tN 1 �y = lim
N→�

�N
y /tN 1 �z = lim

N→�
�N
z /tN 1

and �N
i 4·1 ·1 ·5 is defined by (34). Note that �4�y1�z5� = 1, which contradicts the extended MPEC-NNAMCQ

holds at point 4x∗1 y∗1 z∗5. Then shows the boundedness of 4�N
y 1�

N
z 5 as desired.

The boundedness of 4�N
y 1�

N
z 5 implies the boundedness of ��N

z �1, which means that we can choose a bounded
sequence 8�N 9 such that �N ≥ ��N

z �1 + 1. Let

4x∗1 y∗1 z∗3�∗

y1�
∗

z3�
∗5= lim

N→�
4xN 1 yN 1 zN 3�N

y 1�
N
z 3�N 51

and note that �∗ ≥ ��∗
z�1 +1. By Propositions 3.6 and 3.71 4x∗1 y∗5 is an M-stationary point of problem (1). The

proof is complete. �

6.2. Numerical implementation. We carried out a number of numerical experiments on (7) in Matlab
R2009a installed in a PC with Windows XP operating system. In the tests, we employed the random number
generator rand in Matlab R2009a to generate the samples and solver fmincon to solve problem (7). To deal
with the complementary constraint 0 ≤ y ⊥ z≥ 0, we use the well-known regularization method (Scholtes [30])
in the literature of MPEC to approximate it with a parameterized system of inequalities

y ≥ 01 z≥ 01 y � z≤ te1

where t ↓ 0 is a small positive parameter, e ∈�m is a vector with components 1 and “�” denotes the Hadamard
product. The approximation is theoretically guaranteed as the complementarity constraints satisfy the MPEC-
LICQ at any feasible point.

We have constructed five academic problems for the tests. The first problem is a one-stage SMPCC with two
decision variables and one random parameter:

min Ɛ64x2 + y25− �7

s.t. x ≥ 11

0 ≤ y ⊥ Ɛ6−x+ y+ 2 + �27≥ 01

(36)

where � satisfies the uniform distribution on Burke [3] and Castaing and Valadier [4]. The example is varied
from a deterministic MPEC example in Luo et al. [17, p. 12]. Through some elementary calculations, we can
easily obtain a closed form; that is, the expected values of the underlying functions, and hence the SMPCC can
be transformed into a deterministic MPCC. The problem has a unique optimal solution 4

√
305105 with optimal

value 0. We consider this example purely for testing the performance of our proposed numerical scheme.
The second test problem is also a one-stage SMPCC with two decision variables and one random parameter:

min Ɛ6cos4y�57+ x2 + y2

s.t. x ≥ 01

0 ≤ y ⊥ Ɛ63 sin4x�5+ y− 17≥ 01

(37)
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where the random variable � satisfies uniform distribution on 40117. Different from (36), it is difficult to obtain a
closed form of the expected values of the underlying random functions and true optimal solution to the problem.

The third test problem is a combination of (36) and (37):

min Ɛ6cos4y1�57+ x1 + x2 + y2

s.t. x1 ≥ 41 x2 ≥ 01

0 ≤ y1 ⊥ Ɛ6y1� + x1 − y27≥ 01

0 ≤ y2 ⊥ Ɛ

[

cos4x2�5+ y1 + y2 +
�2

4
−�

]

≥ 01

(38)

where the random variable � satisfies uniform distribution over 40117. Different from (37), we know the true
optimal solution 4x∗1 y∗5= 4441051 401� − 13/1255 with optimal value � + 47/12.

The fourth test problem is:

min Ɛ6424x− 152 + y2
1 + 4y2 − 152 + 4y3 − 152 + y4x5�7

s0t0 x ≥ 11

Ɛ60 ≤ y1� + y2
2 + y2

3 + x27⊥ y1 ≥ 01

0 ≤ Ɛ6−y2 − � + 2x� + y47⊥ y2 ≥ 01

0 ≤ Ɛ6x� + y4 − 2y2y3�7⊥ y3 ≥ 01

0 ≤ Ɛ6xy1 + 2y4 − 4� + y17⊥ y4 ≥ 01

(39)

where the random variable � satisfies uniform distribution over 40117. In what follows, we analyze the feasible
solution of the problem. For any fixed x ≥ 1, to ensure the first and fourth complementarity constraints hold,
we must have y1 = 0 and y4 = 1. Substituting y1 = 0 and y4 = 1 into the second and third complementarity
constraints, we obtain the following: (a) y2 = 0, y3 = 0; (b) y2 = Ɛ62x�7+y4 −Ɛ6�7, y3 = 1; (c) y2 = Ɛ62x�7+y4 −

Ɛ6�7, y3 = 0. Through a simple analysis, we find the optimal solution is 4110110511115 with the corresponding
optimal value 1025. Moreover, 41101010115 and 4110110510115 are only a local minimizer.

The fifth example is varied from a deterministic MPEC problem in Luo et al. [16, p. 357]:

min Ɛ624−8x1 − 4x2 + 4y1 − 40y2 − 4y35�7

s0t0 xi ≥ 01 i = 1121

x1 + 2x2 − y3 ≤ 1031

0 ≤ Ɛ644 − 2y4 − 4y5 + 8y65�7⊥ y1 ≥ 01

0 ≤ Ɛ61 + 2y4� + 4y5 − 2y67⊥ y2 ≥ 01

0 ≤ 2 + y4 − y5 − y6 ⊥ y3 ≥ 01

0 ≤ Ɛ642 + 2y1 − 2y2 − 2y35�7⊥ y4 ≥ 01

0 ≤ Ɛ644 − 8x1 + 4y1 − 8y2 + 2y35�7⊥ y5 ≥ 01

0 ≤ Ɛ62 − 8x2� − 8y1� + 2y2 + y37⊥ y6 ≥ 01

(40)

where the random variable � satisfies uniform distribution over 40117. The MPEC problem is obtained from a
primal-dual formulation for a bilevel optimization problem with 4y41 y51 y65 being the dual variables. As discussed
in Luo et al. [16], the optimal solution x = 400510085, y = 40100210085 and the optimal value is −1804. In our
test, we use the same initial point as in Luo et al. [16]; that is,

x0
= 40051151 y0

= 400510051111111151 z0
= 411001100110011001100150

The numerical results are displayed in Tables 1–5. A few words about the notation. Iter denotes the number
of iterations returned by fmincon at the end of each test, Appr0Sol denotes the approximate optimal solution,
and Appr0Val denotes the optimal value 41/N5

∑N
k=1 f 4x

N 1 yN 1 �k5. To check the feasibility of the approximate
optimal solution, we also recorded the residual value of the constraints denoted by Res, which is defined as
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Table 1. Numerical results for problem (36).

Appr.Sol

N �N iter xN yN Res Appr.Val

50 10−3 36 1.858700 0.000000 301 × 10−7 606 × 10−8

100 10−4 31 1.868530 0.000000 804 × 10−8 101 × 10−6

200 10−5 36 1.865917 0.000000 401 × 10−8 102 × 10−8

400 10−6 40 1.866691 0.000000 301 × 10−6 308 × 10−7

Table 2. Numerical results for problem (37).

Appr.Sol

N �N iter xN yN Res Appr.Val

50 10−3 23 0.428301 0.356502 0.000020 1.288359
100 10−4 32 0.417516 0.326517 0.000006 1.261283
200 10−5 61 0.426770 0.349296 0.000002 1.282946
400 10−6 42 0.436715 0.341144 0.000001 1.279425

Table 3. Numerical results for problem (38).

Appr.Sol

N �N iter xN yN Res Appr.Val

50 10−3 27 4400000001000000005 4103 × 10−51200498145 0.001143 7.049814
100 10−4 36 4400000001000000005 4502 × 10−51200583615 0.000564 7.058361
200 10−5 41 4400000001000000005 4501 × 10−61200555915 0.000347 7.055591
400 10−6 30 4400000001000000005 4205 × 10−71200586395 0.000022 7.058639

Table 4. Numerical results for problem (39).

Appr.Sol

N �N iter xN yN Res Appr.Val

100 10−3 40 1.000000 4000001601000006561000006561100159815 0.000134 3.078464
400 10−4 52 1.000000 4000000301105029821000000671100020285 2010 × 10−10 2.259537
800 10−5 84 1.046554 4000000011105330561000000071009912775 2011 × 10−8 2.303452

1,600 10−6 83 1.004118 4000000001105049541009980791100005595 1027 × 10−9 1.260364

Table 5. Numerical results for problem (40).

Appr.Sol

N �N iter xN yN Res Appr.Val

100 10−3 87 (0.684957, 0.772538) (0.000000, 0.052389, 0.949784, 0.799280, 0.633791, 2.162078) 0.003198 −140203291
400 10−4 61 (0.593800, 0.790798) (0.000012, 0.124951, 0.875395, 0.657016, 0.610835, 2.046179) 0.038421 −150852703
800 10−5 85 (0.541006, 0.795950) (0.000001, 0.167201, 0.832907, 0.000000, 0.500003, 1.499985) 0.045778 −160952109

1,600 10−6 86 (0.507108, 0.799307) (0.000000, 0.194311, 0.805721, 0.005924, 0.500988, 1.504936) 0.132091 −190093353

�41/N5
∑N

k=1 F 4x
N 1 yN 1 �k5 − zN�1. The regularization parameter t = �N and the exact penalty is fixed with

�= 11000. For fixed-sample size N and parameter �N , we run the algorithm three times. The results depend on
sampling in each run and we record the best result. Note that fmincon requires an initial point. We set the initial
point to be a zero vector for problems (36)–(38), 4111111111111111115 for problem (39), and 4x01 y01 z05 for
problem (40).

The results show that the numerical scheme performed reasonably well, but more tests might be needed to
confirm the claim. Note that the results rely heavily on the Matlab built-in NLP solver fmincon. It would be

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Liu, Xu, and Ye: Stochastic MPCCs
692 Mathematics of Operations Research 36(4), pp. 670–694, © 2011 INFORMS

possible to display stronger results if one uses a more robust NLP solver. Moreover, it might be interesting
to carry out numerical tests on (6). This may require to develop a numerical method, which incorporates the
existing MPEC solvers with well-known techniques in nonsmooth optimization such as the bundle method and
aggregate subgradient method (Lemarchal [11], Kiewiel [10]). We leave this for our future work.

6.3. Concluding remarks. The results established in this paper are presented in terms of M-stationary
points in that from a theoretical point of view, M-stationarity is stronger than C-stationarity. However, from
numerical perspective, it is often easier to obtain a C-stationary point than an M-stationary point, as the latter
usually requires more conditions, see comments in Scholtes [30]. It is therefore interesting to know whether
our results in this paper can be extended to C-stationary point. The answer is “yes.” Let us sketch how this
works: if we reformulate the complementarity constraint 0 ≤ y ⊥ z ≥ 0 as a nonsmooth system of equations
ê4y1 z5 2= min4y1 z5 = 0, then all of the optimality conditions and convergence results will be in the sense of
Clarke’s [6]. We omit the details.

Note also that it is possible to include ordinary stochastic equality and inequality constraints into SMPCC
model (1). Under some appropriate metric regularity conditions as we discussed in §3, we can move these con-
straints to the objective through exact partial penalization. In other words, the partial penalization scheme and the
SAA in this paper apply to classical stochastic programs with stochastic equality and inequality constraints (by
dropping the complementarity constraints). This complements the existing asymptotic and/or stability analysis
by Shapiro [31] and Rachev and Römisch [26] for this type of problems.

Acknowledgments. The work of the first author was carried out while he was visiting the second author at
the School of Mathematics, University of Southampton, sponsored by China Scholarship Council. The authors
thank the two anonymous referees for valuable comments, and the associate editor for effective handling of
the review.

Appendix.
Proof of Lemma 4.1. Observe first that the uniform convergence of HN 4v5 to Ɛ6H4v1 �57 is equivalent to

HN 4v5 ∈ Ɛ6H4v1 �57+ �B w0p01 (41)

for N sufficiently large. Let us estimate supv∈V�4AGN 4v51AG4v550 To this end, we need to review some
elementary properties of �. Let D1 and D2 be two compact subsets in �m and M1 and M2 be two matrices in
�n×m. It is easy to verify that

�4M1D11M1D25≤ �M1��4D11D25 (42)

and
�4M1D11M2D15≤ �M1 −M2��D1�0 (43)

Using (42)–(43) and the triangle inequality of �, we have

�4ïHN 4v5
TAQ4HN 4v551ïƐ6H4v1 �57TAQ4Ɛ6H4v1 �5755

≤�
(

ïHN 4v5
TAQ4HN 4v551ïƐ6H4v1 �57TAQ4HN 4v55

)

+�
(

ïƐ6H4v1 �57TAQ4HN 4v551ïƐ6H4v1 �57TAQ4Ɛ6H4v1 �575
)

≤ �AQ4HN 4v55��ïHN 4v5−ïƐ6H4v1 �57�

+ �ïƐ6H4v1 �57��4AQ4HN 4v551AQ4Ɛ6H4v1 �57550 (44)

We estimate the last two terms in the above equation. By (41),

�AQ4HN 4v55� ≤ �AQ4Ɛ6H4v1 �575+ �B�0

The right-hand side in the inequality is bounded for all v ∈ V since AQ is compact set valued and uniformly
upper semicontinuous on W . On the other hand, ïHN 4v5 converges to ïƐ6H4v1 �57 uniformly on V, this
shows �AQ4HN 4v55��ïHN 4v5− ïƐ6H4v1 �57� → 0 uniformly on V. Note that under integrable boundedness
of ïH4v1�5, ïƐ6H4v1 �57= Ɛ6ïvH4v1�57. To complete the proof, we estimate the second term. By assumption,
AQ4w5 is uniformly upper semicontinuous on W , which means that for any �, there exists a �1 such that

AQ4w′5⊆AQ4w5+ �B1 ∀w′
∈w+ �1B and w ∈W0
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Let v ∈V and w = Ɛ6H4v1 �57. Then w ∈W . By (41), we have from the inclusion above by setting �≤ �1

AQ4HN 4v55⊆AQ4Ɛ6H4v1 �575+ �B1 ∀v ∈V1

which is equivalent to
sup
v∈V

�4AQ4HN 4v551AQ4Ɛ6H4v1 �5755≤ �0

The conclusion follows as � can be arbitrarily small and �ïƐ6H4v1 �57� is bounded. The proof is complete. �
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Management Science, Vol. 10. North-Holland Publishing Company, Amsterdam.
[30] Scholtes, S. 2001. Convergence properties of a regularization sheme for mathematical programs with complementarity constraints.

SIAM J. Optim. 11(4) 918–936.
[31] Shapiro, A. 1991. Asymptotic analysis of stochastic programs. Ann. Oper. Res. 30(1) 169–186.
[32] Shapiro, A. 2006. Stochastic mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 128(1) 223–243.
[33] Shapiro, A., H. Xu. 2008. Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation.

Optim. 57(3) 395–418.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Liu, Xu, and Ye: Stochastic MPCCs
694 Mathematics of Operations Research 36(4), pp. 670–694, © 2011 INFORMS

[34] Tomasgard, A., Y. Smeers, K. Midthun. 2009. Capacity booking in a transportation network with stochastic demand. Proc. 20th
Internat. Sympos. Math. Programming, Chicago.

[35] Werner, A. S. 2004. Bilevel stochastic programming problems: Analysis and application to telecommunications. Doctoral dissertation,
Norwegian University of Science and Technology, Trondheim, Norway.

[36] Werner, A. S., Q. Wang. 2009. Resale in vertically separated markets: Profit and consumer surplus implications. Proc. 20th Internat.
Sympos. Math. Programming, Chicago.

[37] Xu, H. 2010. Uniform exponential convergence of sample average random functions under general sampling with applications in
stochastic programming. J. Math. Anal. Appl. 368(2) 692–710.

[38] Xu, H., F. Meng. 2007. Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs
with equality constraints. Math. Oper. Res. 32(3) 648–668.

[39] Ye, J. J. 2000. Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality
constraints. SIAM J. Optim. 10(4) 943–962.

[40] Ye, J. J. 2005. Necessary and sufficient optimality conditions for mathemtical programs with equilibrium constraints. J. Math. Anal.
Appl. 307(1) 305–369.

[41] Ye, J. J., D. L. Zhu, Q. J. Zhu. 1997. Exact penalization and necessary optimality conditions for generalized bilevel programming
problems. SIAM J. Optim. 7(2) 481–507.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.


	Introduction.
	Preliminaries.
	Variational analysis.
	MPEC constraint qualification and stationarity.

	Exact penalization of the true problem.
	Exact penalty parameters.
	Stationary points.

	Uniform convergence.
	Asymptotic convergence analysis.
	Optimal solutions.
	Stationary points.

	Preliminary numerical test results.
	Convergence analysis of the smoothing scheme.
	Numerical implementation.
	Concluding remarks.


