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NECESSARY OPTIMALITY CONDITIONS FOR OPTIMIZATION 

PROBLEMS WITH VARIATIONAL, INEQUALITY CONSTRAINTS 


J. J. YE AND X. Y.YE 

In this paper we study optimization problems with variational inequality constraints in finite 
dimensional spaces. Kuhn-Tucker type necessary optimality conditions involving coderivatives 
are given under certain constraint qualifications including one that ensures nonexistence of non- 
trivial abnormal multipliers. The result is applied to bilevel programming problems to obtain 
Kuhn-Tucker type necessary optimality conditions. The Kuhn-Tucker type necessary optimality 
conditions are shown to be satisfied without any constraint qualification by the class of bilevel 
programming problems where the lower level is a parametric linear quadratic problem. 

1. Introduction. An optimization problem with variational inequality constraints 
(OPVIC) is a special class of optimization problems over variables x and y in which some 
or all its constraints are defined by a parametric variational inequality with y as its primary 
variable and x the parameter. In this paper we consider optimization problems with vari- 
ational inequality constraints in finite dimensional spaces defined as follows: 

( OPVIC) minimizef(x, y) subjecttoxE RI and y E S(x), 

where f : Rn+" -+ R ,  ill is a nonempty subset of R n ,  and for each x E RIS(x) is the 
solution set of a variational inequality with parameter x, i.e., 

where F : Rn+" -+ Rm and 0, : Rn * Rm is a set-valued map. The above problem is also 
refered to as generalized bilevel programming problems or mathematical programs with 
equilibrium constraints (see, e.g., Luo, Pang, Ralph and Wu 1996, Ye, Zhu and Zhu 
1997). Throughout this paper, we shall make the blanket assumption that the set ( (x, y) 
: x E a , ,  y E S(x) } is nonempty. 

In the case where the set-valued map Q2(x) is convex-valued and F(x,  y) is a gradient 
of a real-valued differentiable and pseudo-convex function, i.e., F(x,  y) = -V,g(x,  y), 
where g : R n f m+ R is differentiable and pseudo-convex in y, the optimization problem 
with variational inequality constraints (OPVIC) is the following bilevel programming 
problem, or so called Stackelberg game (see, e.g., Anandalingam and Friesz 1992, Dempe 
1992, Loridan and Morgan 1989, Outrata 1993, Von Stackelberg 1952, Ye and Zhu 1995, 
1996 and Ye 1996): 

(BPI minimizef(x, y )  subject tox E Rl and y 6 S(x) 

where S(x) is the set of solutions of the problem (P,):  
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(px>  minimize g(x, y ) subject to y E f12 (x) . 

The last decade has witnessed a growing interest in the theory of (OPVIC). See An-
andalingam and Friesz ( 1992), Barbu ( 1984), Friesz, Tobin, Cho and Mehta ( 1990), 
Outrata (1994), Shi ( 1988, 1990), Ye, Zhu and Zhu (1997 ). A natural approach to obtain 
necessary optimality conditions for (OPVIC) is to reduce (OPVIC) to a ordinary (single 
level) mathematical programming problem and use the existing necessary optimality con- 
ditions for the single level problem. There are several equivalent single level formulations 
for (OPVIC). To illustrate we assume that 

where IC, : Rnf"'-+ Rq.  The Karush-Kuhn-Tucker (KKT) approach is to interpret the 
variational inequality constraint y E S(x) as y being a solution of the following optimi- 
zation problem: 

and replace it by the KKT necessary optimality conditions for the above optimization 
problem with is also sufficient if R2(x) is convex for each x. Using this approach, under 
the assumption that R,(x) is convex, F(x ,  y) is differentiable and a certain constraint 
qualification condition holds for the above optimization problem, (F,y3 is a solution of 
(OPVIC) if and only if there exists iiE Rq such that (F,y, f i ) is a solution of the following 
problem: 

Other approaches for single level formulation of (OPVIC) include the value function 
approach and the gap function approach and many others (see Ye and Zhu 1995, Ye, Zhu 
and Zhu 1997). A common phenomenon for these equivalent single level formulations 
is the existence of a nontrivial abnormal multiplier (see Proposition 3.2 of Ye and Zhu 
1995 and Proposition 1.1 of Ye, Zhu and Zhu 1997) which is equivalent to saying that 
the usual constraint qualification conditions such as Mangasarian-Fromovitz condition will 
never be satisfied (see Proposition 3.1 of Ye and Zhu 1995) for these single level 
problems. 

In this paper we formulate problem (OPVIC) where SZ2 := R2(x) is convex and in- 
dependent of x as the following optimization problem with a generalized equation con- 
straint: 

(GP) s.t. (x, y)' E R, x Rm, 
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the normal cone of 0, at y if y E 0, 
M y ,  0,) := 

if y 6% C12 

is the normal cone operator. Note that the assumption that R2(x) = R2 is independent of 
x is not very restrictive since for example any bilevel programming problem with convex 
lower level problem where the constraints are systems of inequalities and equalities sat- 
isfying a certain constraint qualification can be reformulated as (GP) (see the discussion 
in $4). 

In this paper we introduce the concept of pseudo upper-Lipschitz continuity for a set- 
valued map (see Definition 2.8) which is implied by either upper-Lipschitz continuity 
(see Definition 2.7) or pseudo-Lipschitz continuity (see Definition 2.6). Under suitable 
regularity conditions on the problem data we show that if (Y, y3 is a solution of (OPVIC) 
and the set-valued map 

is pseudo upper-Lipschitz continuous at (0, (Y, s),then there exist 77 E R"' such that 

where d denotes the limiting subgradient (see Definition 2.3), N!22denote the set-valued 
map y * N ( y ,  0,)  and D* denotes the coderivative of a set-valued map (see Definition 
2.5). This is in fact in the form of the optimality condition given by Shi (1988, 1990) 
with the paratingent coderivative of the set-valued map Nsl,replaced by the Mordukhovich 
coderivative. 

We shall call a vector q E Rman abnormal multiplier for (GP) if it satisfies 

Sufficient conditions for pseudo-Lipschitz continuity of the set-valued map C include local 
strong monotonicity of F(x,  y)  in variable y uniformly in x and nonexistence of nontrivial 
abnormal multipliers for (GP). In particular for the bilevel programming problem where 
the lower level problem is a parametric linear quadratic problem, the set-valued map C is 
a polyhedral set-valued map hence upper-Lipschitz continuous according to Robinson 
( 1981) .Therefore the Kuhn-Tucker condition derived in this paper is always satisfied by 
the class of the bilevel programming problem where the lower level problem is a para- 
metric linear quadratic problem without any constraint qualzfication. 

We organize the paper as follows. Section 1 contains background material on non- 
smooth analysis and preliminary results. In $2 we derive the Kuhn-Tucker type necessary 
optimality conditions for (OPVIC). Applications to bilevel programming problems are 
given in $3 where we show that the bilevel programming problem where the lower level 
is a parametric quadratic programming problem always satisfies the constraint qualifica- 
tion. An example is given to illustrate the application of the theory. 

2. Preliminaries. This section contains some background material on nonsmooth 
analysis and preliminary results which will be used in the next section. We only give 
concise definitions that will be needed in the paper. For more detail informations on the 
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subject, our references are Aubin and Ekeland ( 1984), Aubin and Frankowska ( 1990), 
Clarke (1983), Mordukhovich (1994a, b) . 

First we give some concepts for various normal cones. 

DEFINITION2.1. Let R be a nonempty subset of Rn.Given TE clR, the closure of set 
R, the following convex cone 

is called the proximal normal cone to set R at point T. 
Equivalently, E E N"(T, R) if and only if there exists t > 0 such that 

where dfl(z) := inf( 1l.z - z ' l l  : Vz' E R] denotes the distance of a point z to a set R. 

DEFINITION2.2. Given .TE clR, the following closed cone 

is called the limiting normal cone to R at point Tand the closed convex hull of the limiting 
normal cone 

is called the Clarke normal cone to set R at point T. 
The following calulus for limiting normal cones will be useful later. 

P R o ~ o s r r ~ o ~2.1 (COROLLARY 4.7 OF MORDUKHOVICH Let1994b). and 0, be 
closed subsets of Rn and let f E 0, n R, . IfN(T, 0,) n (-N(t,  a , ) )  = { 0} ,then one 
has the inclusion 

PRo~osrr ro~2.2. Let @ : Rn =, Rq be a set-valued map and @-' : RQ =, R" be the 
inverse set-valued map to @ defined by @-'  (v) := ( z E Rn :v E @(z)1. Then 

(a) ( z , v) E gph@iff ( v ,  z) E gph@-' 
(b) (J, q)  E N((z, v) ,  gph@) i f f (% J) E N((u, z), gph@-'), 

where gph @ := {(z ,  v) : z E R", v E @(z)} is the graph of @. 

PROOF. (a) follows by the definition of an inverse map. As to (b), by Definition of 
a proximal normal cone (see Definition 2.1) and (a) we have (c, q)  E NT((z, v), gph*) 
if only if (7, J )  E Nn((v, z ),gph@--' ) . (b) then follows from the definition of a limiting 
normal cone (see Definition 2.2). 

Using the definitions for normal cones, we now give definitions for subgradients of a 
single-valued map. 

DEFINITION2.3. Let f : Rn -+ R U ( +a ) be lower semicontinuous and finite at 5 
6 R". The limiting subgradient of f a t  Tis defined by 

and the Clarke generalized gradient of fa t  Fis defined by 



NECESSARY OPTIMALITY CONDITIONS FOR OPTIMIZATION PROBLEMS 98 1 

where epi(f) := ( ( x ,r )  E Rn X R :f (x )  5 r }  is the epigraph off. 
Let f :Rn+"+R be Lipschitz continuous near (Z, fl. In general there is no relationship 

between subgradients and partial subgradients. However under a certain regularity con- 
dition, certain relationships exist. We first define the regularity. 

DEFIN~TION2.4. R, a subset of Rn is said to be regular at Tif N(T, R) = NT(T, R). 
f :Rn +R is said to be regular at Tif its epigraph is regular at T. 

REMARK 2.1. If R is regular at T, then N(T, St) is convex and hence N(T, R) = Nc(T, 
0).Apparently, iff (z) is regular at T, then d, f (i-) = df (3. 

The following proposition is a relationship between the limiting subgradients and their 
partial limiting subgradients. 

2.3 (P~oPOsrno~  Let f :Rn+"+R be Lip- 
schitz continuous near ( f ,  3.Iff is regular at (%, fl then we have 

PROPOSITION 2.3.15 OF CLARKE 1983). 

For set-valued maps, the definition for limiting normal cone leads to the definition of 
coderivative of a set-valued map introduced by Mordukhovich (see, e.g., Mordukho- 
vich 1994b). 

DEFINITION 2.5. Let @ :Rn Rq be an arbitrary set-valued map (assigning to each 
z E Rn a set @ ( z )C Rq which may be empty) and ( f ,  3 € cl gph@. The set-valued map 
D*@(T, ti) from R4 into Rn defined by 

is called the coderivative of @ at point (T, ti). By convention for (T, ti) & cl gph@ we 
define D*@(T, ti)(q) = (21. The symbol D*@(i-) is used when @ is single-valued at Tand 
-
v = @ ( a .  

In the special case when a set-valued map is single-valued, the coderivative is related 
to the limiting subgradient in the following way. 

PROPOSITION 2.1 1 OF MORDUKHOVICH Let @ : Rn-+Rq2.4 (PROPOSITION 199413). 
be single-valued and Lipschitz continuous near T. Then 

The following proposition is a sum rule for coderivatives. 

1994b). : Rn -,R9 
be strictly diferentiable at Twith the Jacobian V@, ( a  E RqXn,i.e., 

PROPOSITION2.5 (COROLLARY 4.4 OF MORDUKHOVICH Let @, 

@,(z)- @,(z l )- v @ l ( a ( z- z')
lim = 0 

2.2 '-+f llz - z'll 

and (P2 : Rn * Rq be an arbitrary closed set-valued map. Then for any ti E @ , ( a  
+ a2(i-) and q E Rq one has 
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We now discuss Lipschitz behavior of a set-valued map. The following concept for 
locally Lipschitz behavior was introduced by Aubin ( 1994). 

DEFINITION2.6. A set-valued map Q, : Rn =+ Rq is said to be pseudo-Lipschitz con- 
tinuous around (T,5) € gphQ, with modulus p 2 0 if there exist a neighborhood U of T, 
a neighborhood V of i7 such that 

where B denotes the closed unit ball in the appropriate space. 
On the other hand the following upper-Lipschitz behavior was studied by Robinson 

(1975, 1976). 

DEFINITION 2.7. A set-valued map Q, :Rn =+ Rq is said to be (locally) upper-Lipschitz 
continuous at T E  R n  with modulus p cl 0 if there exists a neighborhood U of Tsuch that 

It is easy to see that in general, pseudo-Lipschitz continuity of cP around (T,u )  for all 
u E @(adoes not imply upper-Lipschitz continuity of Q, at Tand vice versa. In order to 
establish the relationship between the upper-Lipschitz continuity with the pseudo-Lip- 
schitz continuity, we introduce the following weaker concept of locally upper-Lipschitz 
continuity. 

D E ~ O N2.8. A set-valued map :R" 3 Rq is said to be pseudo upper-Lipschitz 
continuous at (T ,5) E gphQ, with modulus p 2 0 if there exist a neighborhood U of T, a 
neighborhood V of i7 such that 

It turns out that the pseudo upper-Lipschitz continuity is implied by either upper-lip- 
schitz continuity or pseudo-Lipschitz continuity. 

PROPOSITION2.6. ( 1) If Q, is upper-Lipschitz continuous at Tthen Q, is pseudo up- 
per-Lipschitz continuous at (T,v ) for all u € @(a. 

(2) If Q, is pseudo-Lipschitz continuous around (T, 5)  E gphQ,, then Q, is pseudo 
upper-Lipschitz continuous at (T,Z) . 

The following useful criterion for pseudo-Lipschitz continuity of a set-valued map was 
given in Proposition 3.5 of Mordukhovich ( 1 9 9 4 ~ ) .  

PROPOSITION Let Q, : Rn ;..Rq be a set-valued map with a closed graph. Then 2.7. 
Q, is pseudo-Lipschitz continuous around (T, 5)E gphQ,i f  and only if 

Using this criterion we give conditions to ensure pseudo-Lipschitz continuity of the 
solution map for a perturbed generalized equation which will be useful in $3. 

PROPOSITION2.8. Let i2 be a closed subset of R" and i? E fl.Suppose that function 
h : R" -+ R is strictly diflerentiable around Tand Q : Rn 3 Rq is a set-valued map with a 
close graph. Further assume that 

( a )  D*Q(T, h(Z)) (O)n { - N ( ,  6 2 ) I = ( 0 ) .  
(b )  There is no nonzero vector 7 E R" such that 
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Then the solution map for the perturbed generalized equation 

is pseudo-Lipschitz continuous around ( 0 , a .  

PROOF. Denote by G(z) := -h(z) + Q(z) .Then C(v) = G-I (v) 17R. By Proposition 
2.7 it is sufficient to show D*C(O, a ( 0 )  = {O}. 

First we show that 

Indeed, for any (0, q)  E N((0, 3 ,  gphG-I) where q E -N(T, R), by Proposition 2.2, 
one has (q, 0)  E N((F, 0), gphG) and hence from Proposition 2.5, 

Hence equality (1) follows from assumption (a) .  
Now suppose that q E D*C(O, 3 ( 0 ) ,  which means by the definition of coderivatives 

that (q, 0) E N((0, a,gphC). It is easy to see that gphC = gphG-I n (RnX 0 ) .  Since 
( 1) holds, we can apply Proposition 2.1 and obtain 

That is, there exist q, ,  q2 E R nsuch that (q, q l )  E N((0, a,gphG-I), q2E N(T, R) and 
q, + q2= 0. By virtue of Proposition 2.2, (q,,q) E N((T, 0), gphG) which implies that 
q1E D*G(T, 0)(-q). By Proposition 2.5, 

Since -q, = q2 E N(T, R) the above inclusion becomes 

By assumption (b) we deduce from above inclusion that q = 0. That is D*C(O, a ( 0 )  
= {0}. Hence C is pseudo-Lipschitz continuous around (0, by Proposition 2.7. 

3. Necessary optimality conditions. The purpose of this section is to derive neces-
sary optimality conditions involving coderivatives for optimization problem with varia-
tional inequality constraints (OPVIC) . 

First, we consider the following optimization problem with a generalized equation con-
straint: 

min f(z)  
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where R C R"'", f : R -+ R and @ : Rn'-" * R q  is a set-valued map. It is obvious that 
(Po)can be rewritten as the following problem: 

min f(z) 

z E SZ.  

In the following lemma, we show that the problem (PA)is actually equivalent to its 
localized penalized problem (P,)when the function f is Lipschitz continuous and the set-
valued map @-'n R is pseudo upper-Lipschitz continuous. 

LEMMA3.1. Suppose f is Lipschitz continuous of rank Ll 2 0. Assume that zsolves 
(Po)and the set-valued map @ '  f l  R de$ned by (@-InR)(v):= @-'(v)f l  R ispseudo 
upper-lipschitz continuous with modulus p 2 0at (0,T).Then there exist a neighborhood 
U of Tand a neighborhood V of 0 such that (v,z )  = (0,T)solves thefollowing localized 
penalizedproblem of (PA)for all r z Lfp.: 

PROOF. Since @-'  fl SZ is pseudo upper-Lipschitz continuous at (0,a,there exist U ,  
a neighborhood of Tand V, a neighborhood of 0 such that for any z E @ - '  ( v )  n R n U 
there exists z * E @-'  (0)n R such that 

Thus we have for any z E @ - ' ( v )  n R n U ,  t' E V (i.e., v E @ ( z )  n V,  z E SZ n U ) ,  

f (TI -) f(z* ) since Tis a solution of (P,,) 

-) f ( z )  + Lfllz* - zll by Lipschitz continuity off 

s f(z) + Lfp(lt'll by virtue of ( 2 )  

for all r r Lfp. The proof is complete. 
We now give a Kuhn-Tucker type necessary optimality condition for problem ( P o ) .A 

similar result in Proposition 4.3of Zhang ( 1994)was proved under upper Lipschitz con-
tinuity assumption. The use of pseudo upper-Lipschitz continuity assumption significantly 
enlarges applicability of the result since pseudo-Lipschitz continuity implies pseudo up-
per-Lipschitz continuity while upper-Lipschitz continuity may not imply pseudo upper-
Lipschitz continuity. 
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THEOREM3.1. Suppose f is Lipschitz continuous of rank Lfs 0. Let Tbe a solution 
of ( P o )and @ - I  i7 R be pseudo upper-Lipschitz continuous at (0, .$ with modulus p. 
Suppose that D*@(T, 0) (0)  n (-N(T, R))  = ( 0 } . Then for any r 2 Lfp there exists q 
E rB, such that 

where B4 denotes the closed unit ball in R 4 .  

PROOF. By Lemma 3.1 we know that (v, z )  = (0, T)is a solution of (P,).Rewrite 
(P,) in the following form: 

s.t. (2,u )  E gph@ i7 (R x R 9 )n ( U  X V). 

By the well-known optimality condition we have 

since U and V are neighborhood of Tand 0 respectively. 
The assumption D *@(T,0) (0)  n (-N(T, 0 ) ) = { 0 1 is equivalent to 

Thus by Proposition 2.1, (4) implies that 

That is, there exist (p , ,  q )  E df (z3 X (rB,), (p2, q )  E N((T, O), gph@)andp, E Nf1(3 
such that 

By the definition of coderivatives, (p,, q )  E N((Z  01, gph@)implies that 

And hence there exists q E rB, such that 

The proof is complete. 
Now we consider the optimization problems with variational inequality constraints 

(OPVIC) where R2 is a closed convex subset of R m .  Since R2 is a convex set, by the 
definition of a normal cone in the sense of convex analysis, it is easy to see that problem 
(OPVIC) can be rewritten as the optimization problem with generalized equation con-
straints (GP). By applying the previous theorem to the equivalent problem (GP), we 
obtain the following Kuhn-Tucker necessary optimality conditions for (OPVIC) . 
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THEOREM3.2. Let R, be a closed and convex subset of R"' and (f,fl a solution of 
problem (OPVIC). Assume that f is Lipschitz continuous and regular at (T, y3 and F is 
continuously differentiable around (T, y3. Further assume that one of the following as- 
sumptions is satisjed: 

( a )  The set of solutions to the perturbed generalized equation 

is pseudo upper-Lipschitz continuous at (0, (Y, y3). 
(b)  -F is locally strongly monotone in y uniformly in x with modulus 6 > 0, i.e., 

there exist neighborhoods U ,  of Tand (I, of y such that 

(c) 0, is a closed subset of R" and there is no nonzero vector 7 E Rm such that 

where N,),denotes the set-valued map y =, N ( y ,  Q 2 ) .  

(d)  The set R,= Rnand the rank of the matrix V,F(Z,  y3 is m .  

Then there exist r > 0, 7 E rB, such that 


Before proving Theorem 3.2,  we first prove the following lemmas under the same 
assumptions specified in the theorem. 

LEMMA3.2. ( b )implies that the set-valued map defined in ( 6 )is pseudo-Lipschitz 
continuous around (0,(F,9 ) .  

PROOF.Fix any x E U ,  n i2,. Denote the projection of C by 

For any v, v '  E V, a neighborhood of 0, let y E C,(v) n U2 and z E Cx(vr). Then y 
E U2 n R,, z E R, and 

In particular one has 

which implies that 
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( v  + F ( x ,  y )  - v f  - F ( x ,  z ) ,  z - y )  5 0 V v ,v' E V .  

By strong monotonicity of -F ,  there exists S > 0 such that 

( - F ( X , Y )  + F ( x , z ) , Y - Z )  2 S ~ I Y - Z ~ ~ ~ ,V Y E  U, n ~ , , z E~ , , x Eu, n n , .  

Hence for ally E Z x ( v )  n U 2 ,z E C X ( v f ) ,x E UI n a , ,  

That is, C,(v) is pseudo-Lipschitz continuous around (0,y3 with the same modulus p 
= 1I S  for all x E U ,  n a, .Notice that the modulus is independent of x ,  we have 

The proof of the lemma is complete. 

LEMMA3.3. (c) implies that the set-valued map defined in ( 6 )  is pseudo-Lipschitz 
continuous around (0,(Y,y3) .  

PROOF. In order to apply Proposition 2.8, we denote z := ( x ,y ) ,  Q ( z )  := N ( y ,  a,), 
h ( z )  := F ( x ,  y )  and R = R I  x R m .  

Since Q ( z )  = N ( y ,  R 2 )is independent of x ,  it is straightforward to show that 

where On denotes the zero vector in R n .Equation ( 7 )  implies that 

That is, condition (a) in Proposition 2.8 is satisfied. 
As to condition (b)  in Proposition 2.8, by virtue of (7), we have 
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D*Q(F, h(2l)(q)  + N(T, R)  = ( 0 1  x D*Nsi,(Y, h(.Fl)(q) + N(F, Q , )  x (01 .  

So 

0 E -Vh(21Tv + D*Q(Z h ( a ) ( q )  + N(Z, Q )  

implies that 

From assumption ( c ) ,  we conclude from the above inclusions that q = 0. Applying 
Proposition 2.8, we conclude that the set-valued map C is pseudo-Lipschitz continuous 
around (0, (F, y3). 

Now we are ready to prove Theorem 3.2. 

PROOFOF THEOREM3.2. It is obvious that assumption (d)  implies assumption (c).  
Hence by virtue of Lemmas 3.2 and 3.3 and Proposition 2.6, any one of assumptions (b) ,  
(c )  and (d)  imply assumption (a) .  Applying Theorem 3.1 to problem (GP), there exist 
r > 0, q E rBq such that 

where @ ( x ,  y) := - F i x ,  y ) + N(y , Q2).By F'roposition 2.5, the sum rule for coderi-
vatives, we have 

where the last inclusion follows from the regularity of f (c.f. Proposition 2.3).The proof 
of the theorem is complete. 

ANOTHERPROOF OF THEOREM3.2 UNDER ASSUMPTION (c)  . Problem (OPVIC) 
can be also rewritten in the following form: 

Therefore by the well-known optimality condition, we have 

(8)  0 E df (Z, y3 + N((F, 9,GrS n (Q, x Rm)).  

By Theorem 5.1 of Mordukhovich (1994b), we have 
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Now let f = ( t , ,t 2 )E N ( ( X ,  f l ,  G r S )  n ( - N ( F ,  Q 1 )X ( 0 ) ) .Then J 2  = 0 and J I  
E -N(T ,  R ,  ) n D *S(T ,  f l ( 0 ) .  That is, there exists q such that 

and V,F(X,  f l T q  = E l  E N(T,  0 , ) .  But by assumption (c) ,  such q can only be zero 
vector. So E = 0 .  

Therefore by virtue of Proposition 2.1, (8) implies that 

Hence there exists ( f , ,  f 2 )  E N ( ( T ,f l ,  G r S )  such that 

By regularity off, one has 

By using ( 9 ) ,we have the conclusion. 

REMARK 3.1. If we assume further that f is continuously differentiable, inclusions 
( l o )  and ( 1 1 )  become 

If the strong regularity condition introduced by Robinson (1980)  holds at the solution 
point, the solution map S ( x )  will be locally single-valued and Lipschitz continuous around 
(X,  y3 according to Robinson ( 1980) .  In this case, by virtue of Proposition 2.4, 

As in the proof of Theorem 2.3 of Outrata ( 1994),  there exists a suitable chosen index 
set K ( 3  such that 

acS(Z',lTV,f (X ,fl C V,F(X,  f lTco{ p i  : i E K ( Q  } , 

where the vectors p i ,  i E K ( 9  solve the linearization of the generalized equation. Hence 
in the second proof of Theorem 3.2, using the above upper bound instead of the upper 
bound ( 9 )Theorem 2.3 of Outrata ( 1994) can be derived. This establishes the relationship 
between our result and the one obtained by Outrata ( 1 9 9 4 ) .  

Note that Theorem 3.2 involves the coderivative D *Nf2,(7,F(X,  9)whose compu-
tation depends on the limiting normal cone NgphNn2(7,F(X, y3 ) .  In many application, Q2 
can be chosen as R2 = R9+ for some positive integer q. In what follows we compute the 
set NgphNR:(z)for the case z # 0 and q 5 2 and provide an estimate for the set 
NgPhNR:(z)by a system of algebraic equation. Hence the optimality conditions given in 
Theorem 3.2 may be expressed as a systems of inequalities and equalities. 

PROPOS~ION3.1. Let z E gphNR:. Then q E NgPhNRu( z )  implies that 
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PROOF. Let q = 1. Then gphNR+ = ((0, w) X { 0 } )U ( ( 0 )  x ( -w ,  01). For any 
nonzero vector z = (z ,  , i z )  E gphNR+,it is easy to see that 

( 0 )  X R i fz ,  > 0,zr = 0, 
N(z, gphN~* ) = 

R X  ( 0 )  i fz ,  = 0 , z 2 < 0 .  

Let q = 2. Then gphNRi = Rl U R2 U R2 U R4, where 

R, := ( 0 )  x ( 0 , ~ )x (-m,O] X { 0 } ,  

Case 1 .  Two of the components of z E gphNRt are nonzero. If z E R l ,  then z 4 R2 
U clRl U clR4 and there exists a neighborhood of z that does not contain in R2 U clR3 
U clR, . Therefore 

Similarly we have 

{ O }  x {O} X R X R  i fz ,  > 0 , z 2 > 0 , z 3 = O , ~ = 0 ,  f N C ~ , , , ( z ) =  

N,,,(z) = R x R x { 0 }  x ( 0 )  if z, = 0, z2 = 0, z3 < 0, a < 0, 
Ngph&<(~)= 

Nclo,(z)= R x  { 0 }X { 0 }  X R i fz l  = 0 , z 2  > 0 , z 3  < O , a  = 0 ,  

Case 2.  One of the components of z E gphNR: are nonzero. If z = (0, 0, 0, a )  
E gphNRi where z, < 0, then z E R2 fl clR, and z 6 clR, U clR3 and there exists a 
neighborhood of z that does not contain in the set clR1 U clR,. Hence NgphNRi(z) 
= N122Ucl(14(~). Let t > 0 then We first calculate the proximal normal cone N ~ , u C l s 2 , ( ~ ) .  
d c ~ ~ u ~ ~ s ~ , ( t t+ Z )  = llf l l l  if and only if 

Such a t  > 0 exists if and only if t E (-w, 0 ]  X R X [0, w) X { O ) .  Therefore i f z ,  
= 0, z2 = 0, z3 = 0, ZJ < 0 then 

Let zk = (z:, z:, z;, z;) E R2 U clR4 and z, -+ 0. If Z: < 0, then 
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NG2Uclf24(zk)= NLz(zk)= R R ( 0  { O  1 

If z: > 0, then 

N?I2Uclfi4(zk)= N2624(zk) = (01 R X R X {O}. 

Therefore by definition, 

Ngph~R:  (z) = NfiZUclf&(z) 

= ((-m, 0] X R X [0, m )  X ( 0 ) )U (R X R X {0}X {0})  

U ( ( 0 )  X R X R X ( 0 ) ) .  

Similarly, we have 

Nc;f21Uc,c24(~)= { 0 } x ( -w, 01 X R X (0, a)  if zl  > 0, z2 = 0, z3 = 0 , ~= 0, 

N&21ucln3(~)= (-m,O] X { O )  X [0,w) X R . i f z I  = 0,z2> 0,z3= 0 , a  = 0. 

Therefore, If zl  > 0, z2 = 0, z3 = 0, a = 0 then 

Ngph,vR:(z) = Nc~611Ucm4 (z) 

= ( { O }  x (-m, 0] x R x [0, m)) U ({0}X {0}X R X R) 

U ( ( 0 )  X R X R X {O)). 

If z, = 0, z2 = 0, z3 < 0, 24 = 0 then 

NgpmR:(z) = N I ~ ~ U ~ I ~ ~ ~ ( Z )  

= (R X (-m, 0] X {0}X [0, m)) 

u (R x R x { 0 }x { O } )  U (R x {O) x {0}x R). 

If zl = 0, z2 > 0, z3 = 0, G = 0 then 

Ngph~R:(~)= Nclf21Uclfl~(~) 

= ((-w, O] x {0}x [O,m) x R) U ( { O )  X { O )  X R X R) 

U (R x {O}x {0}x R). 

For general q,  similarly we can show that for any vector z E gphNR:, zi + 0 implies that 
q, = 0, Vi  = 1, 2, . . . ,29. The proof of the proposition is complete. 

REMARK 3.2. Application of the above estimation will be given in Example 4.1. 
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4. Applications to bilevel programming problems. Now consider the bilevel pro- 
gramming problem (BP) where the constaint region for the lower level problem (P,) is 
a system of inequalities, i.e., SZ2(x) := { y E Rn' : $ ( x ,  y )  5 0}  where $ : R"'" -* Rq.  
Let y E S ( x ) .  If a certain constraint qualification holds at ( x ,  y ) ,  then there exists u 
E Rq such that 

where uV,$ := ):ukV,+, ( x,y ) . According to Robinson ( 1979), the above Kuhn-Tucker 
conditions for ( P , ) can be written as the generalized equation 

where R = R"' X R $ ,  z = ( y ,  u )  E Rm+q,F :R"fm+q-* Rmiq given by 

F ( x , z )  = 
- [V,g + uV,*l (x, y ) 

Applying Theorem 3.2 we now derive a Kuhn-Tucker type necessary optimality con- 
ditions for (BP) . 

THEOREM 4.1. Assume that f : Rn'" -+ R is Lipschitz continuous and regular, g : 
Rn+m-+ R and : Rn+In-+ R9 are twice continuously diflerentiable. Further assume that 
g is pseudoconvex in y ,  + is quasiconvex in y .Let (Y,y3 solve the problem ( B P ).Suppose 
that a certain constraint qualification holds for ( P , ) and ii is a corresponding multiplier 
associated with (F, y3, i .e ., 

If one of the following conditions hold: 
(a )  The set-valued map 

(13) C(u) := ( ( x ,y ,  u )  E 0, x Rm x Rq : u f - F ( x .  Z) + N ( z ,  Rm X R 4 , ) )  

is pseudo upper-Lipschitz continuous at ( 0 ,  F, y, 3. 
(b )  R l  is a closed subset of R" and there is no nonzero vector q = ( q l ,q2)such that 

then there exist r > 0 ,  q  = ( 7 ) .72)E rBm+qsuch that 
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( 1 9 )  ( - V , + ( x ,  y 3 q 1 ,  -72)  E N ( ( c , +(x,Y3), ~ P ~ N R ? ) ,  

where uV&+ := XkukV; + k ,  and 

PROOF. Since the objective function of the lower level problem g is pseudoconvex in 
y and the constraint 4 is quasiconvex in y ,  by Theorem 4.2.1 1 of Bazaraa and Shetty 
(1979) the Kuhn-Tucker condition is a necessary and sufficient condition for optimality. 
Therefore from the discussion proceeding Theorem 4.1 we know that ( T ,9is a solution 
of the following problem: 

where z := (y, u )  E Rm+9,fl2 = Rm X R 9 + ,f ( x ,  Z )  = f ( x ,  y) and F ( x ,  z )  is defined 
as in ( 1 2 ) .  

It is straightforward to show that 

and 

We now verify that assumption (c)  in Theorem 3.2 is satisfied. Equation ( 1 4 )  is ap- 
parently equivalent to 0 E - V x F ( Y ,  8T q + N(F, $2,). 

Now let ( t l ,t 2 )E D*NRmXR:(Z,F(X,  .T))(q) then by definition of coderivatives, 

Observing 

we obtain from the last inclusion that 
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Since 

( 15 ) and ( 16) are equivalent to 

in light of (21).  Therefore assumption (b)  in Theorem 4.1 implies assumption (c)  in 
Theorem 3.2. Applying Theorem 3.2, we conclude that there exist r > 0, 71 E rBm+,such 
that 

It is easy to see that (23) implies ( 17).  
By virtue of (20), (24) and (21), we obtain 

The proof is complete. 
We now consider the bilevel programming problem where the lower level problem is 

the following parametric quadratic programming problem: 

where Q E RmXmis a symmetric and positive semidefinite matrix, p E R n ,  q E R m ,P 
E R m X n ,A and B are q X n and q X m matrices respectively and b E R9. 

Recall that a set-valued map is called a polyhedral multifunction if its graph is unions 
of finitely many polyhedral convex sets. This class of set-valued maps are closed under 
(finite) addition, scalar multiplication, and (finite) composition. By Proposition 1 of Rob-
inson ( 1981), a polyhedral multifunction is upper-Lipschitz. Hence the following result 
is straighforward. 

PROPOS~TION4.1. The set-valued map 

where 

is upper-Lipschitz continuous around 0. 
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PROOF. Since the graph of NRmxR:is a finite union of polyhedral convex sets. So 
NRmXRr: polyhedral, so that - F  + NRmXRu+(as the sum of - F ( . )  and NRmXRVI(')) 
polyhedral, and so therefore is its inverse map E. 

Proposition 4.1 leads to the following Kuhn-Tucker necessary optimality contions for 
(BP) where the lower level problem is a parametric quadratic programming problem. It 
is an easy corollary of Theorem 4.1. 

COROLLARY4.1. Let (Y,fl be an optimal solution of BP where the lower level prob-
lem is the parametric quadratic programming problem. Suppose that f is Lipschitz con-
tinuous and regular. Then there exist r > 0, q = ( q l ,  q2) E TB, , ,+~ ,ii E R4+such that 

(Ax-+ By- b ,  ii) = 0. 

We now give an example to illustrate the application of the theory. 

EXAMPLE4.1. Consider the following classical bilevel problem: 

min x 2 - 2 y  

This is a BP where the lower level problem is the parametric quadratic mathematical 
problemwithe = 2, P =  -2 ,p  = q = 0,A = (O,O)', B = (1, -1) 'andb = (1,O)'. 

It is easy to see that the solution for the above simple problem is ( x  = 1, y = 1). To 
illustrate the application of the theory we now show that the solution can be actually 
solved from the Kuhn-Tucker necessary optimality conditions developed in this paper. 

Suppose that (F, fl solves the problem. Then by Corollary 4.1 and Proposition 3.1, 
thereexistr > 0 , q  = (q,,q:,q;) E r B 3 , E =  (ill, ii2) E R2suchthat 

We now discuss possible cases: 
Case(1) SupposeyE (0, l ) ,  t h e n 6  = i& = 0 by(29).  T h u s y = F b y ( 2 8 ) .  On 

theotherhand, by (27) we haveq: = q; = Oand henceF= 1 by(25)and(26).  I t i s a  
contradiction. 
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Case (2 )  Suppose y = 0. Then ii, = 0 by (29).By (27) we know q: = 0. Therefore, 
if G > 0, using (27) one has q ,  = 0 and hence ,Y = 0 which contradicts (28). If i& = 0, 
by (28) we have F= y = 0. 

Case (3 )  7= 1 .  Then by (29) and (27) we have i& = 0 and q;  = 0. Suppose ii, 
> 0, then q1= 0, that is, T = 0.By (28), it is easy to see that it is impossible. Therefore, 
iT, = 0 and by (28) one hasT=  y =  1. By (25) and (26) we have q,  = 1, 77:= 0. 

Comparing the value for the objective function for the cases (2 )  and (3 )  we conclude 
that 2= = 1 is the optimal solution. 
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