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NECESSARY OPTIMALITY CONDITIONS FOR OPTIMAL
CONTROL PROBLEMS WITH EQUILIBRIUM CONSTRAINTS∗

LEI GUO† AND JANE J. YE‡

Abstract. This paper introduces and studies the optimal control problem with equilibrium
constraints (OCPEC). The OCPEC is an optimal control problem with a mixed state and control
equilibrium constraint formulated as a complementarity constraint, and it can be seen as a dynamic
mathematical program with equilibrium constraints. It provides a powerful modeling paradigm
for many practical problems such as bilevel optimal control problems and dynamic principal-agent
problems. In this paper, we propose weak, Clarke, Mordukhovich, and strong stationarities for the
OCPEC. Moreover, we give some sufficient conditions to ensure that the local minimizers of the
OCPEC are Fritz John–type weakly stationary, Mordukhovich stationary, and strongly stationary.
Unlike Pontryagain’s maximum principle for the classical optimal control problem with equality and
inequality constraints, a counterexample shows that for general OCPECs there may exist two sets of
multipliers for complementarity constraints. A condition under which these two sets of multipliers
coincide is given.
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1. Introduction. We are given a time interval [t0, t1] ⊆ �, a multifunction U
mapping [t0, t1] to nonempty subsets of �m, and a dynamic function φ : [t0, t1]×�n×
�m → �n. A control or control function u(·) is a measurable function on [t0, t1] such
that u(t) ∈ U(t) for almost every t ∈ [t0, t1]. The state or state trajectory, corre-
sponding to a given control u(·), refers to a solution x(·) of the following controlled
differential equation:

ẋ(t) = φ(t, x(t), u(t)) almost everywhere (a.e.) t ∈ [t0, t1],(1.1)

(x(t0), x(t1)) ∈ E,(1.2)

where E is a given closed subset in �n × �n and ẋ(t) is the first-order derivative of
the state x(·) at time t. The differential equation (1.1) linking the state x(·) and the
control u(·) is referred to as the state equation. In optimal control, one looks for a
state and control pair (x(·), u(·)) satisfying the state equation (1.1) and the boundary
condition (1.2) so as to minimize an objective function J(x(·), u(·)). In practice,
there are generally extra constraints to be satisfied by the state and control pair.
Such constraints are called mixed state and control constraints (mixed constraints for
short).

Pang and Stewart [29] recently introduced a class of controlled differential varia-
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tional inequality (DVI) problems as follows:

ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

(x(t0), x(t1)) ∈ E,

u(t) ∈ K, 〈u′ − u(t),Υ(t, x(t), u(t))〉 ≥ 0 ∀u′ ∈ K, a.e. t ∈ [t0, t1],

where Υ : [t0, t1] × �n × �m → �m is a vector-valued function and K is a closed
and convex subset in �m. The DVI provides a powerful modeling paradigm for many
practical problems such as differential Nash equilibrium games [29, 4], multi–rigid-
body dynamics with frictional contacts [37], and hybrid engineering systems [18]. In
the case where K = �m+ , the DVI becomes the controlled differential complementarity
problem (DCP)

ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

(x(t0), x(t1)) ∈ E,(1.3)

0 ≤ u(t) ⊥ Υ(t, x(t), u(t)) ≥ 0 a.e. t ∈ [t0, t1],

where a ⊥ b means that vector a is perpendicular to vector b. In the case where K
can be expressed as a set of solutions satisfying some inequality constraints such as

K = {u ∈ �m : g(u) ≤ 0},

where g(·) is a convex vector-valued function, if g(·) is affine or Slater’s condition
holds, then the DVI can also be represented as the following DCP:

ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

(x(t0), x(t1)) ∈ E,

−Υ(t, x(t), u(t)) +∇g(u(t))λ(t) = 0 a.e. t ∈ [t0, t1],

0 ≤ λ(t) ⊥ −g(u(t)) ≥ 0 a.e. t ∈ [t0, t1],

(1.4)

where ∇g denotes the transposed Jacobian of g and λ(t) is a Lagrange multiplier
corresponding to the inequality constraint g(u(t)) ≤ 0.

Motivated by the studies for the DVI, we consider a class of controlled differen-
tial complementarity systems where, in addition to the state equation (1.1) and the
boundary condition (1.2), the state and control pair (x(·), u(·)) satisfies some mixed
equality and inequality constraints, as well as a mixed equilibrium system formulated
as a complementarity system:

0 ≤ G(t, x(t), u(t)) ⊥ H(t, x(t), u(t)) ≥ 0 a.e. t ∈ [t0, t1],(1.5)

where G,H : [t0, t1] × �n × �m → �l. We say that an index i is degenerate if
Gi(t, x(t), u(t)) = Hi(t, x(t), u(t)) = 0. It is obvious that such a system includes
DCPs (1.3) and (1.4) as special cases. Correspondingly, it is natural to determine
what is the “best” control (or the “best” state and control pair) satisfying such a
system to achieve some given objective. A simple example is to find the best control
from such a system so that the final state x(t1) will reach some prescribed target
from a given initial state x(t0). In this paper, we introduce a class of optimal control
problems with equilibrium constraints (OCPEC) in which one looks for a state and
control pair (x(·), u(·)) from such a system so as to minimize an objective function
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J(x(·), u(·)). Mathematically, the OCPEC considered in this paper is of the form

min J(x(·), u(·))
s.t. ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

g(t, x(t), u(t)) ≤ 0, h(t, x(t), u(t)) = 0 a.e. t ∈ [t0, t1],(1.6)

0 ≤ G(t, x(t), u(t)) ⊥ H(t, x(t), u(t)) ≥ 0 a.e. t ∈ [t0, t1],

u(t) ∈ U(t) a.e. t ∈ [t0, t1],(1.7)

(x(t0), x(t1)) ∈ E,

where g : [t0, t1]×�n ×�m → �l1 and h : [t0, t1]×�n ×�m → �l2 .
The OCPEC can be considered as a dynamic version of the mathematical program

with equilibrium constraints (MPEC), which has been an active area of research in
recent years (see, e.g., the monographs [26, 28]). The OCPEC provides a powerful
modeling paradigm for many practical problems such as the dynamic optimization of
chemical processes with changes in the number of equilibrium phases [31]. A large part
of source problems of the OCPEC comes from bilevel optimal control problems (see,
e.g., [1, 15, 16, 46, 47]), Stackelberg differential games (see, e.g., [17, 43]), and dynamic
principal-agent problems (see, e.g., [25, 34]) when there exist inequality constraints
in the lower-level problem. For those problems, if the lower-level problem, which is a
parametric optimal control problem, is replaced by Pontryagain’s maximum principle
(see [30, 38]), that is the well-known first-order necessary optimality condition for
optimal control problems, then an OCPEC results; see, e.g., [15, section 6.1].

It is desirable to know whether there exists an optimal control before solving the
OCPEC. Filippov’s existence theorem for Mayer’s problem that is due to Filippov [11]
(see also [3, Theorem 9.2.i]) requires the convexity of the velocity set φ(t, x,U(t, x)),
where

U(t, x) := {u ∈ U(t) : g(t, x, u) ≤ 0, h(t, x, u) = 0, 0 ≤ G(t, x, u) ⊥ H(t, x, u) ≥ 0}.

The velocity set is generally nonconvex due to the existence of the complementarity
constraints. Thus, the classical existence theorem may not be applicable, and one
may need to look for new ways to prove the existence of optimal controls for the
OCPEC or use the existence theorem in a relaxed control setting [39, 50]. We leave
these challenging questions for future research.

In this paper, we assume that an optimal control exists for the OCPEC, and we
focus on deriving its necessary optimality conditions. To the best of our knowledge,
there is no such result in the literature so far. Although deriving necessary optimality
conditions for optimal control problems with mixed constraints is a highly challenging
problem, some progress has been made; see, e.g., [5, 7, 8, 9, 10, 20, 21, 24]. Unfor-
tunately, none of these results is applicable to the OCPEC and its reformulations.
Although constraint (1.5) may be rewritten as a system of inequalities—for almost
every t ∈ [t0, t1],

G(t, x(t), u(t)) ≥ 0, H(t, x(t), u(t)) ≥ 0, G(t, x(t), u(t))�H(t, x(t), u(t)) ≤ 0,(1.8)

where � denotes the transpose—the Mangasarian–Fromovitz constraint qualification
(MFCQ) is violated at any point satisfying (1.8) since the inequalities in (1.8) never
hold strictly all at the same time. The classical necessary optimality conditions for
optimal control problems with mixed equality and inequality constraints generally
require the linear independence constraint qualification (LICQ) (see, e.g., [21]) or the
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Mangasarian–Fromovitz condition (MFC) (see, e.g., [7]) over some neighborhood of
the local minimizer. But both LICQ and MFC are stronger than MFCQ. Thus, the
classical necessary optimality conditions for optimal control problems with equality
and inequality constraints cannot be applied to the OCPEC with the complemen-
tarity constraint (1.5) reformulated as inequality constraints (1.8). In the MPEC
literature, by using the so-called piecewise programming approach (see, e.g., [26, 48]),
the feasible region of an MPEC is locally reformulated as a union of finitely many
pieces where each piece is expressed as a system of equality and inequality constraints,
and then it can be shown that the strong (S-) stationarity holds under the so-called
MPEC LICQ. Such an approach obviously fails for the dynamic complementarity sys-
tem (1.5). A well-known technique to derive a necessary optimality condition for an
MPEC called the Clarke (C-) stationarity is to use the equivalent nonsmooth refor-
mulation min{G,H} = 0 (“min ” denotes the componentwise minimum) to replace
the complementarity system 0 ≤ G ⊥ H ≥ 0 (see, e.g., [35, 45]). This technique,
however, is also not applicable to the OCPEC since such an approach leads to an
optimal control problem with a nonsmooth mixed equality constraint for which there
does not exist any applicable necessary optimality conditions in the control literature.
Another equivalent reformulation of the complementarity constraint is

(
G,H

)
∈ Cl,

where

(1.9) Cl := {(a, b) ∈ �l ×�l : 0 ≤ a ⊥ b ≥ 0}

is called the complementarity cone. It is known that this reformulation is useful in
obtaining a necessary optimality condition in the form of Mordukhovich (M-) station-
arity in the MPEC literature; see, e.g., [45]. Using this reformulation, the OCPEC
can be equivalently reformulated as

(Ps) min J(x(·), u(·))
s.t. ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

(x(t), u(t)) ∈ S(t) a.e. t ∈ [t0, t1],

(x(t0), x(t1)) ∈ E,

with

S(t) :=

{
(x, u) ∈ �n × U(t) :

g(t, x, u) ≤ 0, h(t, x, u) = 0(
G(t, x, u), H(t, x, u)

)
∈ Cl

}
.(1.10)

An optimal control problem in the form of (Ps) with an abstract mixed constraint
S(t) was recently studied by Clarke and De Pinho [7]. In this paper, we first derive
a slightly sharper necessary optimality condition for (Ps) than [7, Theorem 2.1] and
then apply it to the problem with S(t) defined as in (1.10). We hope that we would
get the M-stationarity, as in the MPEC literature. Unfortunately, for the OCPEC,
no sign information on the multipliers associated with the degenerate indices can be
derived, and consequently, we can obtain only a weak stationarity condition. In order
to get more sign information on the multipliers associated with the degenerate indices,
we further utilize the Weierstrass condition to obtain the second set of multipliers. A
counterexample shows that in general these two sets of multipliers may be different in
measure. However, under the MPEC LICQ, since the multipliers corresponding to the
weak stationarity are unique, these two sets of multipliers coincide almost everywhere,
and then we can obtain the S-stationarity with one set of multipliers.
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The rest of this paper is organized as follows. In section 2, we give some pre-
liminaries and preliminary results. In section 3, we develop the necessary optimality
conditions for the OCPEC. Section 4 illustrates our derived results with a simple
example.

2. Preliminaries and preliminary results. Throughout this paper, ‖ · ‖ de-
notes the Euclidean norm, and Bδ(x) := {y : ‖y − x‖ < δ} the open ball centered
at x with positive radius δ. The boundary, closure, convex hull, and closed convex
hull of a subset Ω ⊆ �n are denoted by bdΩ, cl Ω, coΩ, and clcoΩ, respectively.
Moreover, distΩ(x) denotes the Euclidean distance from x to Ω. For any a, b ∈ �n,
a+ := max{a, 0} denotes the nonnegative part of vector a, and 〈a, b〉 the inner product
of vector a and vector b. Given a mapping ψ : �n → �m and a point x ∈ �n, ∇ψ(x)
stands for the transposed Jacobian of ψ(·) at x, and Iψ(x) := {i : ψi(x) = 0} the
active index set of ψ(·) at x. The Minkowski sum of a singleton {a} and an arbitrary
set A is denoted by a + A.

2.1. Background in variational analysis. In this subsection, we review some
basic concepts and results in variational analysis that will be used later on; see, e.g.,
[6, 27, 33] for more details. Given a subset Ω ⊆ �n and x ∈ cl Ω, the proximal normal
cone to Ω at x is defined as

NP
Ω (x) := {v ∈ �n : ∃ σ ≥ 0 s.t. 〈v, y − x〉 ≤ σ‖y − x‖2 ∀y ∈ Ω},

the limiting normal cone to Ω at x is defined as

NL
Ω (x) := {v ∈ �n : ∃(xk, vk) → (x, v) with vk ∈ NP

Ω (xk) ∀k},

and the Clarke normal cone to Ω at x is defined as NC
Ω (x) := clcoNL

Ω (x), which also
holds true even if the space is not finite dimensional but a more general Asplund space
[27]. We can easily obtain the following inclusions:

NP
Ω (x) ⊆ NL

Ω (x) ⊆ NC
Ω (x) ∀x ∈ cl Ω.

For a multifunction Ξ : �n ⇒ �m, its graph and domain are defined, respectively, as

gphΞ := {(x, u) : u ∈ Ξ(x)} and domΞ := {x : Ξ(x) �= ∅}.

Both the limiting normal cone mappingNL
Ω (·) and Clarke normal cone mappingNC

Ω (·)
are closed in the sense that their graphs are closed.

The following expression for the limiting normal cone of the complementarity cone
Cl is well known (see, e.g., [44, Proposition 3.7]) and will be used in section 3.

Proposition 2.1. For any (a, b) ∈ Cl, where Cl is defined in (1.9),

NL
Cl(a, b) =

{
(α, β) ∈ �l ×�l : αi = 0 if ai > 0, βi = 0 if bi > 0

αi < 0, βi < 0 or αiβi = 0 if ai = bi = 0

}
.

Given a lower semicontinuous function ϕ : �n → � ∪ {+∞} and a point x with
ϕ(x) finite, the limiting subdifferential of ϕ at x is defined as

∂Lϕ(x) :=

{
v ∈ �n : ∃(xk, vk) → (x, v) s.t. lim

y→xk

f(y)− f(xk)− 〈vk, y − xk〉
‖y − xk‖ ≥ 0 ∀k

}
.

If ϕ(·) is Lipschitz continuous near x, then the Clarke subdifferential of ϕ(·) at x
can be defined as ∂Cϕ(x) := clco ∂Lϕ(x), which also holds true even if the space
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is not finite dimensional but a more general Asplund space [27]. Both the limiting
subdifferential mapping ∂Lϕ(·) and Clarke subdifferential mapping ∂Cϕ(·) are closed
in the sense that their graphs are closed.

Given a point (x, u) ∈ cl gphΞ for a multifunction Ξ : �n ⇒ �m, the coderivative
D∗Ξ(x, u) : �m ⇒ �n of Ξ(·) at (x, u) is defined as

D∗Ξ(x, u)(y) :=
{
v ∈ �n : (v,−y) ∈ NL

gphΞ(x, u)
}
.

The symbol D∗Ξ(x) is used when Ξ(·) is single-valued at x and u = Ξ(x). Moreover,
if Ξ(·) is single-valued and Lipschitz continuous near x, then, by [27, Theorem 1.90],

D∗Ξ(x)(y) = ∂L〈y,Ξ(x)〉 ∀y ∈ �m.

2.2. Local error bound condition and constraint qualifications. In this
subsection, we consider the following constrained system:

(2.1) Ω := {z ∈ D : g(z) ≤ 0, h(z) = 0, (G(z), H(z)) ∈ Cl},

where D is a closed subset in �d and g : �d → �l1 , h : �d → �l2 , G,H : �d → �l are
all strictly differentiable. We say that the local error bound condition holds (for the
constrained system representing the set Ω as in (2.1)) at z̄ ∈ Ω if there exist τ > 0
and δ > 0 such that

distΩ(z) ≤ τ
(
‖g(z)+‖+ ‖h(z)‖+ distCl(G(z), H(z))

)
∀z ∈ Bδ(z̄) ∩ D.

It is well known that the local error bound condition at z̄ is equivalent to the calmness
of the perturbed constrained system

(2.2) Ω(yg, yh, yG, yH) :=

{
z ∈ D :

g(z) + yg ≤ 0, h(z) + yh = 0,

0 ≤ G(z) + yG ⊥ H(z) + yH ≥ 0

}

at (0, 0, 0, 0, z̄) (see, e.g., [19]). The local error bound condition is very weak, and
there exist many sufficient conditions for it to hold; see, e.g., [14, 19, 40, 41, 42, 49].
The following constraint qualifications are such sufficient conditions.

Definition 2.2 (MPEC constraint qualifications). Let z̄ ∈ Ω, where Ω is defined
in (2.1). When D = �d, we say that the MPEC LICQ holds at z̄ if the family of
gradients

{∇gi(z̄) : i ∈ Ig(z̄)} ∪ {∇hi(z̄) : i = 1, . . . , l2}
∪ {∇Gi(z̄) : i ∈ IG(z̄)} ∪ {∇Hi(z̄) : i ∈ IH(z̄)}

is linearly independent.
We say that the MPEC linear condition holds if all the functions g(·), h(·), G(·),

H(·) are affine and D is a union of finitely many polyhedral sets.
We say that the MPEC quasi normality holds at z̄ if there is no nonzero vector

(λ, υ, μ, ν) such that
• 0 ∈ ∇g(z̄)λ+∇h(z̄)υ −∇G(z̄)μ−∇H(z̄)ν +NL

D (z̄);
• λ ≥ 0, λi = 0 ∀i /∈ Ig(z̄), μi = 0 ∀i /∈ IG(z̄), νi = 0 ∀i /∈ IH(z̄), μi > 0, νi >

0, or μiνi = 0 ∀i ∈ IG(z̄) ∩ IH(z̄);
• there exists a sequence {zk} ⊆ D converging to z̄ such that for each k,

λi > 0 =⇒ gi(z
k) > 0, υi �= 0 =⇒ υihi(z

k) > 0,

μi �= 0 =⇒ μiGi(z
k) < 0, νi �= 0 =⇒ νiHi(z

k) < 0.
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It should be noted that MPEC quasi normality is a weak condition which holds
automatically when the MPEC linear condition holds with D = �d and is also implied
by the MPEC LICQ.

Proposition 2.3. The local error bound condition holds at z̄ ∈ Ω if the MPEC
linear condition or the MPEC quasi-normality condition holds at z̄.

Proof. If the MPEC linear condition holds, then it is easy to see that the per-
turbed constrained system Ω(yg, yh, yG, yH) defined in (2.2) is a polyhedral multifunc-
tion, and hence the local error bound condition holds [32]. Moreover, by [14, Theorem
5.2], the local error bound condition follows from the MPEC quasi-normality condition
immediately.

2.3. Optimal control problem with an abstract set constraint. In this
subsection, we consider the optimal control problem (Ps) where

J(x(·), u(·)) :=
∫ t1

t0

F (t, x(t), u(t))dt + f(x(t0), x(t1)).

Here F : [t0, t1] × �n × �m → � and f : �n × �n → �. The basic hypotheses on
the problem data, in force throughout this subsection, are the following: F (·), φ(·) are
L×B measurable, S(·) is L measurable, and f(·) is locally Lipschitz continuous, where
L × B denotes the σ-algebra of subsets of appropriate spaces generated by product
sets M × N, where M is a Lebesgue (L) measurable subset in �, and N is a Borel
(B) measurable subset in �n ×�m.

We refer to any absolutely continuous function as an arc. An admissible pair for
(Ps) is a pair of functions (x(·), u(·)) on [t0, t1] for which u(·) is a control and x(·) is
an arc that satisfies all the constraints in (Ps). Given a measurable radius function
R : [t0, t1] → (0,+∞], as in [7], we say that an admissible pair (x∗(·), u∗(·)) is a
local minimizer of radius R(·) for (Ps) if there exists ε > 0 such that for every pair
(x(·), u(·)) admissible for (Ps) which also satisfies

‖x(t)−x∗(t)‖ ≤ ε, ‖u(t)−u∗(t)‖ ≤ R(t) a.e. t ∈ [t0, t1],

∫ t1

t0

‖ẋ(t)− ẋ∗(t)‖ dt ≤ ε,

we have J(x∗(·), u∗(·)) ≤ J(x(·), u(·)). Note that the so-calledW 1,1 local minimizer in
the control literature is actually the case where the radius function R(·) is identically
+∞.

Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for (Ps). For every given
t ∈ [t0, t1], a radius function R(·), and a positive constant ε, we define a neighborhood
of the point (x∗(t), u∗(t)) as follows:

(2.3) Sε,R∗ (t) :=
{
(x, u) ∈ S(t) : ‖x− x∗(t)‖ ≤ ε, ‖u− u∗(t)‖ ≤ R(t)

}
.

Other than the basic hypotheses on the problem data, we also assume that the
following assumptions hold for (Ps).

Assumption 2.4. (a) There exist measurable functions kφx(·), kFx (·), kφu(·), kFu (·)
such that for almost every t ∈ [t0, t1] and for every (x1, u1), (x2, u2) ∈ Sε,R∗ (t) we have

‖φ(t, x1, u1)− φ(t, x2, u2)‖ ≤ kφx(t)‖x1 − x2‖+ kφu(t)‖u1 − u2‖,
|F (t, x1, u1)− F (t, x2, u2)| ≤ kFx (t)‖x1 − x2‖+ kFu (t)‖u1 − u2‖.
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(b) There exists a positive measurable function kS(·) such that for almost every
t ∈ [t0, t1] the bounded slope condition holds:

(x, u) ∈ Sε,R∗ (t), (α, β) ∈ NP
S(t)(x, u) =⇒ ‖α‖ ≤ kS(t)‖β‖.(2.4)

(c) The functions kφx(·), kFx (·), kS(·)[kφu(·)+kFu (·)] are integrable, and there exists
a positive number η such that R(t) ≥ ηkS(t) a.e. t ∈ [t0, t1].

Assumption 2.4(a) can be seen as a local Lipschitz condition in variable (x, u) with
measurable Lipschitz constants. This condition is automatically satisfied with time
independent Lipschitz constants when u∗(·) is bounded over [t0, t1], the radius function
R(·) is a positive constant function, and the functions F (·), φ(·) are locally Lipschitz
continuous in variable (t, x, u). Assumption 2.4(b) is a key condition proposed in [7]
for deriving the necessary optimality conditions. We will investigate some sufficient
conditions for such an assumption to hold in our problem setting in section 3.

For a general optimal differential inclusion problem,

min f(x(t0), x(t1))

s.t. ẋ(t) ∈ Ft(x(t)) a.e. [t0, t1],

(x(a), x(b)) ∈ E,

where Ft : �n ⇒ �n is a multifunction, Clarke [5] has derived new state-of-the-art
necessary optimality conditions in the optimal control literature. These conditions
are stratified in that both the hypotheses and the conclusions are formulated rel-
ative to a given radius function. However, it should be noted that, for a point v
lying on the boundary of Ft(x

∗(t)) ∩ clBR(t)(u
∗(t)), one may not find a sequence

{vk} in Ft(x
∗(t)) ∩ BR(t)(u

∗(t)) such that vk → v if Ft(x
∗(t)) is disconnected. Thus,

the derived Weierstrass condition in [5, Theorems 2.3.3 and 3.1.1, Corollary 3.5.3]
should hold only relative to the open ball BR(t)(u

∗(t)) instead of the closed ball
clBR(t)(u

∗(t)). In a recent paper [2], Bettiol, Boccia, and Vinter also proved the
stratified necessary optimality conditions for an optimal differential inclusion prob-
lem involving additional pathwise state constraints [2, Theorem 2.1] and pointed out
that the Weierstrass condition may not hold with a full radius, using a counterexample
[2, Example 2]. Recently, Clarke and De Pinho [7, Theorem 2.1] derived the stratified
necessary optimality conditions for (Ps) by recasting the problem as an equivalent
optimal differential inclusion problem and applying the corresponding necessary op-
timality conditions from [5, Corollary 3.5.3]. In the following, using the same proof
technique as in [7, Theorem 2.1], we give a stratified necessary optimality condition
for (Ps), which will be used in obtaining our main results. Our results differ from
[7, Theorem 2.1] in two aspects. First, our Euler inclusion in Theorem 2.5(iii) is
slightly sharper than that in [7, Theorem 2.1]. Second, the Weierstrass condition of
Theorem 2.5(iv) holds only on the open ball BR(t)(u

∗(t)) instead of the closed ball
clBR(t)(u

∗(t)).

Theorem 2.5. Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for (Ps), and
let Assumption 2.4 hold. Then there exist a number λ0 ∈ {0, 1} and an arc p(·) such
that the following conditions hold:

(i) the nontriviality condition: (λ0, p(t)) �= 0 ∀t ∈ [t0, t1];
(ii) the transversality condition:

(p(t0),−p(t1)) ∈ λ0∂
Lf(x∗(t0), x∗(t1)) +NL

E (x
∗(t0), x∗(t1));
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(iii) the Euler inclusion: for almost every t ∈ [t0, t1],

(ṗ(t), 0) ∈ co
{
(w, 0) : (w, 0) ∈ ∂L

{
〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)

}
(x∗(t), u∗(t))

+NL
S(t)(x

∗(t), u∗(t))
}
;(2.5)

(iv) the Weierstrass condition: for almost every t ∈ [t0, t1],

(x∗(t), u) ∈ S(t), ‖u− u∗(t)‖ < R(t)

=⇒ 〈p(t), φ(t, x∗(t), u)〉 − λ0F (t, x
∗(t), u)

≤ 〈p(t), φ(t, x∗(t), u∗(t))〉 − λ0F (t, x
∗(t), u∗(t)).

Proof. First we consider the case where F (·) ≡ 0. As in the proof of [7, Theorem
2.1], for anyM > 1, by applying [5, Corollary 3.5.3] with the Weirestrass condition on
an open ball BR(t)(u

∗(t)) or [2, Theorem 2.1], we can obtain a number λ0,M ∈ {0, 1}
and an arc pM (·) such that the nontriviality condition holds,

λ0,M + ‖pM (·)‖∞ = 1;

the transversality condition holds,

(pM (t0),−pM (t1)) ∈ λ0,M∂
Lf(x∗(t0), x∗(t1)) +NL

E (x
∗(t0), x∗(t1));

the Euler inclusion holds—for almost every t ∈ [t0, t1],

(ṗM (t), 0) ∈ co
{
(w, 0) : (w, pM (t), 0) ∈ NL

G(t)(x
∗(t), φ(t, x∗(t), u∗(t)), 0)

}
,

where
G(t) :=

{
(x, φ(t, x, u), c(t)(u − u∗(t))) : (x, u) ∈ S(t)

}
with c(t) := M(kφx(t) + kS(t)k

φ
u(t))/kS(t); and the Weierstrass condition holds with

radius R(·)M/(M + 1)—for almost every t ∈ [t0, t1],

(x∗(t), u) ∈ S(t), ‖u− u∗(t)‖ < R(t)M/(M + 1)

=⇒ 〈pM (t), φ(t, x∗(t), u)〉 ≤ 〈pM (t), φ(t, x∗(t), u∗(t))〉.(2.6)

As shown in [7, Theorem 2.1], we can extract a convergent subsequence of the sequence
{(λ0,M , pM (·))}M with limit (λ0, p(·)) as M → ∞. Taking limits as M → ∞ in
the above nontriviality condition, transversality condition, Weierstrass condition, and
Euler inclusion, we can obtain the results (i), (ii), and (iv) of this theorem for the
case where F (·) ≡ 0 and

(ṗ(t), 0) ∈ co
{
(w, 0) : (w, p(t), 0) ∈ NL

G(t)(x
∗(t), φ(t, x∗(t), u∗(t)), 0)

}
.

The Euler inclusion (iii) of this theorem for the case where F (·) ≡ 0 can be obtained
by estimating the limiting normal cone of the above formula as in the last paragraph
of [7, p. 4521].

The general case where a nonzero F is present is reducible to the already treated
case by augmentation, as explained at the end of the proof of [7, Theorem 2.1].

Note that in the proof of Theorem 2.5, we are unable to prove that the Weierstrass
condition holds with full radius R(·), as claimed in the proof of [7, Theorem 2.1]. The
reason for this is that, for a given u lying on the boundary of the set

Ω := {u : (x∗(t), u) ∈ S(t), ‖u− u∗(t)‖ ≤ R(t)},
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to show that

(2.7) 〈p(t), φ(t, x∗(t), u)〉 ≤ 〈p(t), φ(t, x∗(t), u∗(t))〉

in the case where F (·) ≡ 0, we would need to find uM ∈ {u : (x∗(t), u) ∈ S(t), ‖u−
u∗(t)‖ < R(t)M/(M + 1)} such that uM → u as M → ∞ and take limits in (2.6)
to derive the desired inequality (2.7). But this may not be always possible if Ω is
disconnected.

Remark 2.6. Theorem 2.5 is a Fritz John (FJ)-type necessary optimality condi-
tion. In the case where λ0 = 0, no information on the objective can be derived from
the necessary optimality condition, and it then becomes useless. Thus, the case where
λ0 = 1 is desirable. It follows from Theorem 2.5 that if there is no nonzero abnormal
multiplier, i.e., the following implication holds,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p(t0),−p(t1)) ∈ NL
E (x

∗(t0), x∗(t1)),

(ṗ(t), 0) ∈ co
{
(w, 0) : (w, 0) ∈ ∂L〈−p(t), φ(t, ·, ·)〉(x∗(t), u∗(t))
+NL

S(t)(x
∗(t), u∗(t))

}
a.e. t ∈ [t0, t1],

(x∗(t), u) ∈ S(t), ‖u− u∗(t))‖ < R(t)

=⇒ 〈p(t), φ(t, x∗(t), u)〉 ≤ 〈p(t), φ(t, x∗(t), u∗(t))〉 a.e. t ∈ [t0, t1],

=⇒ p(t) = 0 for some t ∈ [t0, t1],

then the conclusions of Theorem 2.5 hold with λ0 = 1. Such a condition is auto-
matically satisfied in the case of free initial or final point, that is, E = E0 × �n or
E = �n × E1 with closed subsets E0, E1 in �n. Supposing λ0 = 0, Theorem 2.5(ii)
yields that p(t1) = 0 or p(t0) = 0, respectively, which contradicts result (i) of this
theorem. Throughout the paper, all the derived necessary optimality conditions are
FJ-type conditions. The desired case where λ0 = 1 can be obtained, provided that
there is no nonzero abnormal multiplier, which is always true if the initial or final
point is free.

3. Necessary optimality conditions for OCPECs. In this section, we de-
velop necessary optimality conditions for the OCPEC under the following basic hy-
potheses.

Assumption 3.1 (basic assumption). F : [t0, t1] × �n × �m → � and φ :
[t0, t1] × �n × �m → �n are L × B measurable; g : [t0, t1] × �n × �m → �l1 , h :
[t0, t1] × �n × �m → �l2 , and G,H : [t0, t1] × �n × �m → �l are L measurable
in variable t and strict differentiable in variable (x, u); U : [t0, t1] ⇒ �m is an L
measurable multifunction; f : �n × �n → � is locally Lipschitz continuous; and E is
a closed subset in �n ×�n.

In fact, we can easily extend our results to the case where the mappings g(·), h(·),
G(·), H(·) are only Lipschitz continuous in variable (x, u) and strictly differentiable
at (x∗(t), u∗(t)). But for simplicity of exposition, we assume that they are strictly
differentiable in variable (x, u) as in Assumption 3.1.

Given an admissible pair (x(·), u(·)) and a point t ∈ [t0, t1], we define the index
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sets

I−t (x, u) := {i : gi(t, x(t), u(t)) < 0},
I0t (x, u) := {i : gi(t, x(t), u(t)) = 0},
I+0
t (x, u) := {i : Gi(t, x(t), u(t)) > 0 = Hi(t, x(t), u(t))},

I00
t (x, u) := {i : Gi(t, x(t), u(t)) = 0 = Hi(t, x(t), u(t))},

I0+
t (x, u) := {i : Gi(t, x(t), u(t)) = 0 < Hi(t, x(t), u(t))}.

Moreover, for any (λ, υ, μ, ν) ∈ �l1 ×�l2 ×�l ×�l, we denote

Ψ(t, x, u;λ, υ, μ, ν) := g(t, x, u)�λ+ h(t, x, u)�υ −G(t, x, u)�μ−H(t, x, u)�ν.

Theorem 3.2. Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for the OCPEC,
and let Assumption 3.1 hold. Suppose that Assumption 2.4 with S(t) defined in (1.10)
is also satisfied. If for almost every t ∈ [t0, t1] the local error bound condition for the
system representing S(t) as in (1.10) holds at (x∗(t), u∗(t)), then there exist a number
λ0 ∈ {0, 1}, an arc p(·), and measurable functions λg : � → �l1 , λh : � → �l2 ,
λG : � → �l, λH : � → �l such that the following conditions hold:

(i) the nontriviality condition: (λ0, p(t)) �= 0 ∀t ∈ [t0, t1];
(ii) the transversality condition:

(p(t0),−p(t1)) ∈ λ0∂
Lf(x∗(t0), x∗(t1)) +NL

E (x
∗(t0), x∗(t1));

(iii) the Euler adjoint inclusion: for almost every t ∈ [t0, t1],

(ṗ(t), 0) ∈ ∂C
{
〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)

}
(x∗(t), u∗(t))

+∇x,uΨ(t, x∗(t), u∗(t);λg(t), λh(t), λG(t), λH(t))

+ {0} × NC
U(t)(u

∗(t)),

λg(t) ≥ 0, λgi (t) = 0 ∀i ∈ I−t (x∗, u∗),

λGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), λHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗);

(iv) the Weierstrass condition for radius R(·): for almost every t ∈ [t0, t1],

(x∗(t), u) ∈ S(t), ‖u− u∗(t)‖ < R(t)

=⇒ 〈p(t), φ(t, x∗(t), u)〉 − λ0F (t, x
∗(t), u)

≤ 〈p(t), φ(t, x∗(t), u∗(t))〉 − λ0F (t, x
∗(t), u∗(t)).

Proof. For simplicity in the proof, we omit the equality and inequality constraints
(1.6) and the control constraint (1.7), since we have checked that all the formulas of the
proof have the corresponding counterparts when using S(t) defined in (1.10) instead
of (3.1). Then (x∗(·), u∗(·)) is a local minimizer of radius R(·) for (Ps) with S(t)
defined as follows:

S(t) =
{
(x, u) :

(
G(t, x, u), H(t, x, u)

)
∈ Cl

}
.(3.1)

By virtue of Theorem 2.5, we can easily get results (i), (ii), and (iv) in this theo-
rem. It now suffices to show result (iii) by Theorem 2.5(iii). Since the local error
bound condition holds at (x∗(t), u∗(t)) and the functions G(t, ·, ·), H(t, ·, ·) are strictly
differentiable, it follows from Proposition 2.1 and [22, Proposition 3.4] that

NL
S(t)(x

∗(t), u∗(t))

⊆
{
−∇x,uG(t, x

∗(t), u∗(t))β −∇x,uH(t, x∗(t), u∗(t))γ : (β, γ) ∈ M∗(t)
}
,(3.2)
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where

(3.3) M∗(t) :=

⎧⎪⎨
⎪⎩(β, γ) :

βi = 0 if i ∈ I+0
t (x∗, u∗),

γi = 0 if i ∈ I0+
t (x∗, u∗),

βi > 0, γi > 0 or βiγi = 0 if i ∈ I00
t (x∗, u∗).

⎫⎪⎬
⎪⎭

It then follows from (2.5) and (3.2) that for almost every t ∈ [t0, t1],
(3.4)

(ṗ(t), 0) ∈ ∂C
{
〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)

}
(x∗(t), u∗(t))

+ co {−∇x,uG(t, x
∗(t), u∗(t))β −∇x,uH(t, x∗(t), u∗(t))γ : (β, γ) ∈ M∗(t)} .

By Carathéodory’s theorem for the convex hull, it then follows from (3.4) that for

almost every t ∈ [t0, t1] there exist α ∈ Δ := {α ∈ �n+m+1
+ :

∑n+m+1
j=1 αj = 1} and

(βj , γj) ∈ M∗(t) (∀j = 1, . . . , n+m+ 1) such that

ψ(t, α, β, γ) ∈ −(ṗ(t), 0) + ∂C
{
〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)

}
(x∗(t), u∗(t)),(3.5)

where

ψ(t, α, β, γ) :=

n+m+1∑
j=1

αj
[
∇x,uG(t, x

∗(t), u∗(t))βj +∇x,uH(t, x∗(t), u∗(t))γj
]

is a Carathéodory mapping since it is continuous in (α, β, γ) and measurable in t by
virtue of [33, Theorem 14.13]. By [33, Theorem 14.56, Exercise 14.12], the multifunc-
tion

∂C
{
〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)

}
(x∗(t), u∗(t))

is measurable in t. Hence,

−(ṗ(t), 0) + ∂C
{
〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)

}
(x∗(t), u∗(t))

is measurable in t. Moreover, by [33, Theorem 14.26], the multifunction M∗(t) is
measurable in t. Thus, it follows from the implicit measurable function theorem [33,
Theorem 14.16] that there exist measurable functions α(·) ∈ Δ and (βj(·), γj(·)) ∈
M∗(·) (∀j = 1, . . . , n+m+ 1) such that for almost every t ∈ [t0, t1],

(ṗ(t), 0) ∈ ∂C
{
〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)

}
(x∗(t), u∗(t))

−
n+m+1∑
j=1

αj(t)∇x,uG(t, x
∗(t), u∗(t))βj(t)−

n+m+1∑
j=1

αj(t)∇x,uH(t, x∗(t), u∗(t))γj(t).

Let

λG(·) :=
n+m+1∑
j=1

αj(·)βj(·), λH(·) :=
n+m+1∑
j=1

αj(·)γj(·),

which are both clearly measurable in t. Moreover, since (βj(t), γj(t)) ∈ M∗(t) (∀j =
1, . . . , n+m+ 1), it is not hard to see that

λGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), λHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗).

Thus, the desired result follows immediately. The proof is complete.



2722 LEI GUO AND JANE J. YE

By virtue of the Weierstrass condition for radius R(·) (Theorem 3.2(iv)), we have
that for almost every t ∈ [t0, t1], u

∗(t) is a local minimizer of the following MPEC:

min
u∈U(t)

−〈p(t), φ(t, x∗(t), u)〉+ λ0F (t, x
∗(t), u)

s.t. g(t, x∗(t), u) ≤ 0, h(t, x∗(t), u) = 0,(3.6)

0 ≤ G(t, x∗(t), u) ⊥ H(t, x∗(t), u) ≥ 0.

Hence, under some constraint qualifications for MPEC (3.6), the popular necessary
conditions such as the C-, M-, and S-stationarities may hold at u∗(t); see, e.g., [23,
35, 45, 49]. This and Theorem 3.2 motivate us to define the following stationarity
conditions.

Definition 3.3. Let (x∗(·), u∗(·)) be an admissible pair of the OCPEC. We say
that the FJ-type weak stationarity (W-stationarity) holds at (x∗(·), u∗(·)) if there exist
a number λ0 ∈ {0, 1}, an arc p(·), and measurable functions λg(·), λh(·), λG(·), λH(·)
such that Theorem 3.2(i)–(iv) hold.

We say that the FJ-type C-stationarity holds at (x∗(·), u∗(·)) if (x∗(·), u∗(·)) is
W-stationary with arc p(·) and there exist measurable functions ηg(·), ηh(·), ηG(·),
ηH(·) such that, for almost every t ∈ [t0, t1],

0 ∈ ∂Lu
{
− 〈p(t), φ(t, x∗(t), ·)〉+ λ0F (t, x

∗(t), ·)
}
(u∗(t))

+∇uΨ(t, x∗(t), u∗(t); ηg(t), ηh(t), ηG(t), ηH(t)) +NL
U(t)(u

∗(t)),(3.7)

ηg(t) ≥ 0, ηgi (t) = 0 ∀i ∈ I−t (x∗, u∗),(3.8)

ηGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), ηHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗),(3.9)

and

ηGi (t)η
H
i (t) ≥ 0 ∀i ∈ I00

t (x∗, u∗).

We say that the FJ-type M-stationarity holds at (x∗(·), u∗(·)) if (x∗(·), u∗(·)) is
W-stationary with arc p(·) and there exist measurable functions ηg(·), ηh(·), ηG(·),
ηH(·) such that, for almost every t ∈ [t0, t1], (3.7)–(3.9) hold and

(3.10) ηGi (t) > 0, ηHi (t) > 0 or ηGi (t)η
H
i (t) = 0 ∀i ∈ I00

t (x∗, u∗).

We say that the FJ-type S-stationarity holds at (x∗(·), u∗(·)) if (x∗(·), u∗(·)) is
W-stationary with arc p(·) and there exist measurable functions ηg(·), ηh(·), ηG(·),
ηH(·) such that, for almost every t ∈ [t0, t1], (3.7)–(3.9) hold and

ηGi (t) ≥ 0, ηHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗).

We will refer to the FJ-type W-, C-, M-, and S-stationarities as the W-, C-, M-, and
S-stationarities, respectively, if λ0 = 1.

In Definition 3.3 there are two sets of multipliers. The ideal situation is when
these two sets of multipliers are identical almost everywhere. In the case where the
multipliers λg(·), λh(·), λG(·), λH(·) and ηg(·), ηh(·), ηG(·), ηH(·) can be chosen
the same almost everywhere, (x∗(·), u∗(·)) being C-, M-, S-stationarities becomes
that (x∗(·), u∗(·)) is W-stationary with multipliers satisfying the following extra sign
conditions:

λGi (t)λ
H
i (t) ≥ 0 ∀i ∈ I00

t (x∗, u∗) a.e. t ∈ [t0, t1];

λGi (t) > 0, λHi (t) > 0, or λGi (t)λ
H
i (t) = 0 ∀i ∈ I00

t (x∗, u∗) a.e. t ∈ [t0, t1];

λGi (t) ≥ 0, λHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗) a.e. t ∈ [t0, t1],
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respectively. Although we hope that these two sets of multipliers can be chosen the
same almost everywhere, the following example shows that that is not always possible.

Example 3.4. Consider the problem

min x(t1)

s.t. ẋ(t) = u(t) a.e. t ∈ [t0, t1],

0 ≤ −u(t) ⊥ x(t)− u2(t) ≥ 0 a.e. t ∈ [t0, t1],

x(t0) ≤ 0,

where x, u : � → �. Since x(·) is absolutely continuous and x(t) ≥ 0 for almost every
t ∈ [t0, t1], we must have x(t) ≥ 0 for every t ∈ [t0, t1]. Then it is easy to see that
(x∗(·), u∗(·)) ≡ (0, 0) is a minimizer of the above problem. Moreover, it is not hard to
verify that for the system Ω := {u : F (u) ∈ C1} with F (u) := (−u, x∗(t) − u2)T and
C1 defined as in (1.9),

� = TΩ(u∗(t))o ⊆ ∇F (u∗(t))NC1 (F (u∗(t))) = �,

where TΩ(u∗(t))o stands for the polar of the tangent cone to Ω at u∗(t). It has been
shown in [13, Theorem 3.2] that this condition TΩ(u∗(t))o ⊆ ∇F (u∗(t))NC1 (F (u∗(t)))
is a constraint qualification for M-stationarity at u∗(t). Thus, for almost every t ∈
[t0, t1], u

∗(t) = 0 is M-stationary to the problem

min
u

−p(t)u s.t. 0 ≤ −u ⊥ x∗(t)− u2 ≥ 0.

By solving the M-stationarity condition at (x∗(·), u∗(·)), we have

p(t0) ≥ 0, p(t1) = −1,(3.11)

ṗ(t) = −λH(t), p(t) = λG(t) a.e. t ∈ [t0, t1],(3.12)

p(t) = ηG(t), ηG(t) > 0, ηH(t) > 0, or ηG(t)ηH(t) = 0 a.e. t ∈ [t0, t1].(3.13)

Since p(·) is absolutely continuous, by virtue of (3.11), there must exist a measurable
set � ⊆ [t0, t1] with positive measure such that

p(t) < 0, ṗ(t) < 0 ∀t ∈ �.

This together with (3.12)–(3.13) implies

λG(t) < 0, λH(t) > 0 a.e. t ∈ �,
ηG(t) < 0, ηH(t) = 0 a.e. t ∈ �,

which shows that λH(t) �= ηH(t) for almost every t ∈ �.

We now show that the FJ-type M-stationarity for the OCPEC in Definition 3.3
is necessary for optimality under certain constraint qualifications. Note that prob-
lem (3.6) is an MPEC with respect to variable u. In the following theorem, we will
assume that some MPEC constraint qualifications for M-stationarity, which are qual-
ifications to derive M-stationarity for optimality, are satisfied. The reader is referred
to [13, 23, 45, 49] and the references within for MPEC constraint qualifications for
M-stationarity.

Theorem 3.5. Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for the OCPEC,
and let Assumption 3.1 hold. Suppose that Assumption 2.4 with S(t) defined in (1.10)
is also satisfied. Then the FJ-type M-stationarity holds at (x∗(·), u∗(·)) if for almost
every t ∈ [t0, t1] one of the following conditions holds:
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(a) The local error bound condition for the system representing S(t) as in (1.10)
holds at (x∗(t), u∗(t)), and an MPEC constraint qualification for M-stationarity
holds at u∗(t) for problem (3.6).

(b) The MPEC linear condition holds for S(t) defined in (1.10); i.e., functions
g(t, ·, ·), h(t, ·, ·), G(t, ·, ·), H(t, ·, ·) are affine in (x, u) and U(t) is a union of
finitely many polyhedral sets.

(c) The MPEC quasi normality condition holds at u∗(t) for problem (3.6); i.e.,
there is no nonzero multiplier (λ, υ, μ, ν) such that

– 0 ∈ ∇uΨ(t, x∗(t), u∗(t);λ, υ, μ, ν) +NL
U(t)(u

∗(t)),
– λ ≥ 0, λi = 0 ∀i ∈ I−t (x∗, u∗), μi = 0 ∀i ∈ I+0

t (x∗, u∗), νi = 0 ∀i ∈
I0+
t (x∗, u∗), μi > 0, νi > 0, or μiνi = 0 ∀i ∈ I00

t (x∗, u∗),
– there exists a sequence {uk} ⊆ U(t) converging to u∗(t) such that for

each k,

λi > 0 =⇒ gi(t, x
∗(t), uk) > 0, υi �= 0 =⇒ υihi(t, x

∗(t), uk) > 0,

μi �= 0 =⇒ μiGi(t, x
∗(t), uk) < 0, νi �= 0 =⇒ νiHi(t, x

∗(t), uk) < 0.

Proof. First we observe that for almost every t ∈ [t0, t1] the local error bound
condition for the system representing S(t) as in (1.10) holds at (x∗(t), u∗(t)) under
either the MPEC linear condition in condition (b) or the MPEC quasi normality in
condition (c). Thus, it follows from Theorem 3.2 that (x∗(·), u∗(·)) is W-stationary
under any one condition. Moreover, conditions (a), (b), and (c) can all imply that
for almost every t ∈ [t0, t1] there exist ηg(t), ηh(t), ηG(t), ηH(t) such that (3.7)–
(3.10) hold [45, Theorem 2.2], [23, Theorem 3.3]. By the implicit measurable function
theorem (see, e.g., [33, Theorem 14.16]), the functions ηg(·), ηh(·), ηG(·), ηH(·) can
be chosen measurably. The proof is complete.

We next derive the FJ-type S-stationarity under the MPEC LICQ. It should be
noted that the MPEC LICQ is generic and hence not a stringent assumption [36].

Theorem 3.6. Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for the OCPEC,
and let Assumption 3.1 hold. Suppose that Assumption 2.4 with S(t) defined in (1.10)
is also satisfied. Assume further that, for almost every t ∈ [t0, t1], U(t) = �m and
the functions F (t, ·, ·), φ(t, ·, ·) are strictly differentiable at (x∗(t), u∗(t)). If for almost
every t ∈ [t0, t1] the MPEC LICQ holds at u∗(t) for problem (3.6), i.e., the family of
gradients{
∇ugi(t, x

∗(t), u∗(t)) : i ∈ I0t (x
∗, u∗)

}
∪ {∇uhi(t, x

∗(t), u∗(t)) : i = 1, . . . , l2}
∪
{
∇uGi(t, x

∗(t), u∗(t)) : i ∈ I0•
t (x∗, u∗)

}
∪
{
∇uHi(t, x

∗(t), u∗(t)) : i ∈ I•0
t (x∗, u∗)

}
is linearly independent, where

I0•
t (x∗, u∗) := I0+

t (x∗, u∗)∪ I00
t (x∗, u∗), I•0

t (x∗, u∗) := I+0
t (x∗, u∗)∪ I00

t (x∗, u∗),

then the FJ-type S-stationarity holds at (x∗(·), u∗(·)). Moreover, the multipliers ηg(·),
ηh(·), ηG(·), ηH(·) can be taken as equal to λg(·), λh(·), λG(·), λH(·) almost every-
where. That is, there exist a number λ0 ∈ {0, 1}, an arc p(·), and measurable functions
λg(·), λh(·), λG(·), λH(·) such that (x∗(·), u∗(·)) is W-stationary and for almost every
t ∈ [t0, t1] the following extra sign condition holds:

λGi (t) ≥ 0, λHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗).
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Proof. Under the MPEC LICQ assumption, by Proposition 2.3, it follows that for
almost every t ∈ [t0, t1] the local error bound condition for the system representing
S(t) as in (1.10) holds at (x∗(t), u∗(t)). Thus, it follows from Theorem 3.2 that
(x∗(·), u∗(·)) is W-stationary. Moreover, for almost every t ∈ [t0, t1], since the MPEC
LICQ holds at u∗(t), it then follows from [35, Theorem 2] that there exist ηg(t), ηh(t),
ηG(t), ηH(t) such that (3.7)–(3.9) hold and

ηGi (t) ≥ 0, ηHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗).

By the implicit measurable function theorem (see, e.g., [33, Theorem 14.16]), the
functions ηg(·), ηh(·), ηG(·), ηH(·) can be chosen measurably. Thus, the first part of
the theorem is derived. Moreover, the MPEC-LICQ can imply that λg(t) = ηg(t),
λg(t) = ηg(t), λG(t) = ηG(t), λH(t) = ηH(t) for almost every t ∈ [t0, t1]. Therefore,
the second part of the theorem follows immediately. The proof is complete.

For problem (Ps), if S(t) = �n × U(t) for almost every t ∈ [t0, t1] (which corre-
sponds to the case of standard optimal control problem without mixed constraints),
then the bounded slope condition (2.4) holds automatically for almost every t ∈ [t0, t1],
since in this case (2.4) becomes

(x, u) ∈ Sε,R∗ (t), β ∈ NP
U(t)(u) =⇒ kS(t)‖β‖ ≥ 0,

which holds trivially if kS(t) ≥ 0. If there exist a closed subset X(t′) ⊆ �n and
x̄∗(t′) ∈ bdX(t′) satisfying S(t′) = X(t′)×�m and

distbdX(t′)(x
∗(t′)) = ‖x∗(t′)− x̄∗(t′)‖ ≤ ε,

then (2.4) at time t′ never holds since there exists 0 �= α ∈ NP
X(t′)(x̄

∗(t′)) by [33,

Exercise 6.19]. If the set of such a point t′ ∈ [t0, t1] is not of measure zero, then
the bounded slope condition in Assumption 2.4 does not hold. As a consequence,
the bounded slope condition can hardly hold for the case of the pure state constraint
S(t) = X(t)×�m. Generally speaking, the bounded slope condition is stringent and
also hard to verify. In the rest of this section, we will investigate sufficient conditions
for the bounded slope condition to hold in our problem setting.

Proposition 3.7. Assume that the local error bound condition for the system
representing S(t) as in (1.10) holds at every (x, u) ∈ Sε,R∗ (t) and⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(x, u) ∈ Sε,R∗ (t), ζ ∈ NL

U(t)(u),

λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

μi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

μi > 0, νi > 0, or μiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ ‖∇xΨ(t, x, u;λ, υ, μ, ν)‖ ≤ kS(t)‖∇uΨ(t, x, u;λ, υ, μ, ν) + ζ‖.(3.14)

Then the bounded slope condition (2.4) holds.

Proof. Let (x, u) ∈ Sε,R∗ (t) and (α, β) ∈ NL
S(t)(x, u). Since the local error bound

condition holds at (x, u), it then follows from [22, Proposition 3.4] that

(α, β) ∈
{
∇x,uΨ(t, x, u;λ, υ, μ, ν) :

λ ∈ NL

	l1
−
(g(t, x, u)), υ ∈ �l2

(μ, ν) ∈ NL
Cl(G(t, x, u), H(t, x, u))

}

+ {0} × NL
U(t)(u).
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Then, by Proposition 2.1, there exist λ, υ, μ, ν such that

(α, β) ∈ ∇x,uΨ(t, x, u;λ, υ, μ, ν) + {0} × NL
U(t)(u), λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

μi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u), μi > 0, νi > 0, or μiνi = 0 ∀i ∈ I00
t (x, u).

It then follows that there exists ζ ∈ NL
U(t)(u) such that

α = ∇xΨ(t, x, u;λ, υ, μ, ν), β = ∇uΨ(t, x, u;λ, υ, μ, ν) + ζ.

Thus, by condition (3.14), we have ‖α‖ ≤ kS(t)‖β‖. The proof is complete.

A sufficient condition for condition (3.14) to hold is the following stronger con-

dition that is similar to the M ε,R
∗ condition given in [7]: There exists a measurable

function κ(·) such that for almost every t ∈ [t0, t1],⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x, u) ∈ Sε,R∗ (t), ζ ∈ NL
U(t)(u),

λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

μi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

μi > 0, νi > 0, or μiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ ‖(λ, υ, μ, ν)‖ ≤ κ(t)‖∇uΨ(t, x, u;λ, υ, μ, ν) + ζ‖.(3.15)

Assumption 3.8. There exist measurable functions kgx(·), khx(·), kGx (·), kHx (·) such
that for almost every t ∈ [t0, t1],

‖g(t, x1, u)− g(t, x2, u)‖ ≤ kgx(t)‖x1 − x2‖ ∀(x1, u), (x2, u) ∈ Sε,R∗ (t),

‖h(t, x1, u)− h(t, x2, u)‖ ≤ khx(t)‖x1 − x2‖ ∀(x1, u), (x2, u) ∈ Sε,R∗ (t),

‖G(t, x1, u)−G(t, x2, u)‖ ≤ kGx (t)‖x1 − x2‖ ∀(x1, u), (x2, u) ∈ Sε,R∗ (t),

‖H(t, x1, u)−H(t, x2, u)‖ ≤ kHx (t)‖x1 − x2‖ ∀(x1, u), (x2, u) ∈ Sε,R∗ (t).

Proposition 3.9. Let Assumption 3.8 and condition (3.15) hold. Then the local
error bound condition for the system representing S(t) as in (1.10) holds at every

(x, u) ∈ Sε,R∗ (t), and the bounded slope condition (2.4) holds with kS(t) = κ(t)(kgx(t)+
khx(t) + kGx (t) + kHx (t)).

Proof. Let (x, u) ∈ Sε,R∗ (t). It is not hard to verify that condition (3.15) implies
that ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
0 ∈ ∇uΨ(t, x, u;λ, υ, μ, ν) +NL

U(t)(u),

λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

μi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

μi > 0, νi > 0, or μiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ (λ, υ, μ, ν) = 0.

This indicates that the MPEC quasi-normality condition holds at (x, u), and then by
Proposition 2.3, the local error bound condition for the system representing S(t) as
in (1.10) holds at (x, u). In the same way as in [7, Proposition 4.2], we can have that
condition (3.14) holds with kS(t) := κ(t)(kgx(t)+k

h
x(t)+k

G
x (t)+k

H
x (t)). Consequently,

the bounded slope condition follows from Proposition 3.7 immediately. The proof is
complete.
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In general, it is not easy to guarantee the integrability of the measurable function
kS(·) in the bounded slope condition (2.4). We next consider a special case where the
mappings g(·), h(·), G(·), H(·), U(·) are all autonomous (i.e., independent of t). In
this case, we will give some sufficient conditions to ensure that the function kS(·) is a
positive constant function which is clearly integrable. We denote U(t) ≡ U , S(t) ≡ S,
S(x) := {u : (x, u) ∈ S}, and

Cε,R∗ := cl {(t, x, u) ∈ [t0, t1]×�n ×�m : (x, u) ∈ Sε,R∗ (t)}.

Note that Cε,R∗ may be unbounded since u∗(·) may be unbounded on [t0, t1].

Proposition 3.10. Let all the mappings g(·), h(·), G(·), H(·), U(·) be autonomous.

Assume that Cε,R∗ is compact for some ε > 0 and that D∗
S(x, u)(0) = {0} for every

(x, u) such that (t, x, u) ∈ Cε,R∗ . Then there exists a certain positive constant π such
that for every t ∈ [t0, t1] the bounded slope condition (2.4) holds with kS(t) = π. A
sufficient condition for D∗

S(x, u)(0) = {0} to hold is the local error bound condition
for the system representing S(t) as in (1.10) at (x, u) and the implication

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ∈ ∇uΨ(t, x, u;λ, υ, μ, ν) +NL
U (u),

λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

μi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

μi > 0, νi > 0, or μiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ ∇xΨ(t, x, u;λ, υ, μ, ν) = 0.(3.16)

Proof. We prove the first part of this result by contradiction. Assume to the
contrary that for every k there exist tk ∈ [t0, t1], (x

k, uk) ∈ Sε,R∗ (tk), and (αk, βk) ∈
NL
S (x

k, uk) such that ‖αk‖ > k‖βk‖. Without loss of generality, we assume that
‖αk‖ = 1 and αk → α with ‖α‖ = 1. Since ‖αk‖ > k‖βk‖ ∀k, it follows that βk → 0.

Since Cε,R∗ is compact, we may assume that (tk, x
k, uk) → (t, x, u) ∈ Cε,R∗ . Since

the limiting normal cone mapping NL
S (·) is closed, we can have (α, 0) ∈ NL

S (x, u),
which means α ∈ D∗

S(x, u)(0) by the definition of coderivative. Then the assumption
D∗

S(x, u)(0) = {0} gives a contradiction with the relation ‖α‖ = 1. The proof for
the first part of the proposition is complete.

Next we show the second part of this claim. For any α ∈ D∗
S(x, u)(0), by

the definition of coderivative, we have (α, 0) ∈ NL
S (x, u). Then, as in the proof of

Proposition 3.7, there exist λ, υ, μ, ν such that

(α, 0) ∈ ∇x,uΨ(t, x, u;λ, υ, μ, ν) + {0} × NL
U (u), λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

μi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u), μi > 0, νi > 0, or μiνi = 0 ∀i ∈ I00
t (x, u).

It then follows that

α = ∇xΨ(t, x, u;λ, υ, μ, ν), 0 ∈ ∇uΨ(t, x, u;λ, υ, μ, ν) +NL
U (u),

which together with condition (3.16) implies that α = 0. The proof for the second
part of the proposition is complete.

The following condition that is stronger than condition (3.16) is similar to the
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so-called MFC proposed in [7]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ∈ ∇uΨ(t, x, u;λ, υ, μ, ν) +NL
U (u),

λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

μi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

μi > 0, νi > 0, or μiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ (λ, υ, μ, ν) = 0,(3.17)

which clearly implies the MPEC quasi-normality defined in Theorem 3.5(c), and hence
the local error bound condition for the system representing S(t) as in (1.10) holds at
(x, u) by Proposition 2.3. Thus, by Proposition 3.10, we can have the following result
immediately.

Corollary 3.11. Let all the mappings g(·), h(·), G(·), H(·), U(·) be autonomous.

Assume that Cε,R∗ is compact for some ε > 0 and that condition (3.17) holds for every

(x, u) such that (t, x, u) ∈ Cε,R∗ . Then there exists a certain positive constant π such
that for every t ∈ [t0, t1] the bounded slope condition (2.4) holds with kS(t) = π.

In Proposition 3.10 and Corollary 3.11, conditions (3.16) and (3.17) are both
required to hold over some neighborhood of the optimal process (x∗(·), u∗(·)). In
order to weaken this requirement, Clarke and De Pinho [7, Definition 4.7] introduced
the following concept.

Definition 3.12. We say that (t, x∗(t), u) is an admissible cluster point of (x∗(·),
u∗(·)) if there exist a sequence {tk} ⊆ [t0, t1] converging to t and corresponding points
(xk, uk) ∈ S(tk) such that limk→∞ xk = x∗(t) and limk→∞ uk = limk→∞ u∗(tk) = u.

Based on Definition 3.12, we have the following sufficient condition for the bounded
slope condition to hold with certain positive constant.

Proposition 3.13. Let R(·) ≡ r > 0 be a positive constant function and all the
mappings g(·), h(·), G(·), H(·), U(·) be autonomous. Assume that for all admissible
cluster points (t, x∗(t), u) of (x∗(·), u∗(·)), condition (3.16) and the local error bound
condition for the system representing S(t) as in (1.10) hold at (x∗(t), u) or the stronger
condition (3.17) holds at (x∗(t), u). Then for every t ∈ [t0, t1] the bounded slope
condition (2.4) holds with some radius η ∈ (0, r) and kS(t) = π for some constant
π > 0.

Proof. Mimicking the proof of Proposition 3.10, we can show that there exist
ε1 ∈ (0, ε), η ∈ (0, r), and π > 0 such that for every t ∈ [t0, t1] the following bounded
slope condition holds:

(x, u) ∈ Sε1,η∗ (t), (α, β) ∈ NP
S (x, u) =⇒ ‖α‖ ≤ π‖β‖.

The proof is complete.

Although all the mappings g(·), h(·), G(·), H(·), U(·) are assumed to be au-
tonomous in Propositions 3.10 and 3.13 and Corollary 3.11, their results can be ap-
plied to the nonautonomous case if U(t) ≡ U is autonomous and we treat the time
variable t as a state variable. We now illustrate how this can be done. Since

σ(t) = t ∀t ∈ [t0, t1] ⇐⇒ σ̇(t) = 1 ∀t ∈ [t0, t1], σ(t0) = t0,(3.18)
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it is clear that the OCPEC is equivalent to the following optimal control problem:

min J(x(·), u(·)) :=
∫ t1

t0

F (σ(t), x(t), u(t))dt + f(x(t0), x(t1))

s.t. ẋ(t) = φ(σ(t), x(t), u(t)), σ̇(t) = 1 a.e. t ∈ [t0, t1],

g(σ(t), x(t), u(t)) ≤ 0, h(σ(t), x(t), u(t)) = 0 a.e. t ∈ [t0, t1],

0 ≤ G(σ(t), x(t), u(t)) ⊥ H(σ(t), x(t), u(t)) ≥ 0 a.e. t ∈ [t0, t1],

u(t) ∈ U a.e. t ∈ [t0, t1],

σ(t0) = t0, (x(t0), x(t1)) ∈ E.

It is easy to see that (σ(·), x∗(·), u∗(·)) is a local minimizer of radius R(·) for the above
problem if (x∗(·), u∗(·)) is a local minimizer of radius R(·) for the OCPEC and σ(·) is
defined in (3.18). Thus, the results in Propositions 3.10 and 3.13 and Corollary 3.11
can be applied to the above problem to get the desired result.

We close this section by noting the equivalence of S-stationarity for the OCPEC
and the classical necessary optimality condition for the OCPEC treated as an optimal
control problem with mixed inequality constraints (1.8). The proof for the following
result is similar to that of [12, Proposition 4.1], and we omit the proof here.

Proposition 3.14. (x∗(·), u∗(·)) is an FJ-type stationary solution of the OCPEC
treated as an optimal control problem with mixed inequality constraints (1.8) if and
only if (x∗(·), u∗(·)) is an FJ-type S-stationary solution of the OCPEC for which those
two sets of multipliers can be chosen as the same almost everywhere.

4. A simple example. In this section, we consider a simple class of the OCPEC
in which the “best” control needs to be chosen from the DCP (1.3) so as to make
the final state x(t1) reach some prescribed target T from a given initial state x(t0).
Mathematically, the problem considered in this section is

min 1
2‖x(t1)− T ‖2

ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

0 ≤ u(t) ⊥ Υ(t, x(t), u(t)) ≥ 0 a.e. t ∈ [t0, t1],

x(t0) ∈ E0,

(4.1)

where E0 ⊆ �n is a closed subset. In this case, S(t) := {(x, u) : (u,Υ(t, x, u)) ∈ Cm},
and Sε,R∗ (t) is defined as in (2.3). For simplicity, we assume that the functions φ(·),
Υ(·) are Lmeasurable in variable t and strictly differentiable in (x, u). Moreover, there
exist measurable functions kφx(·), kφu(·), kΥx (·) such that for almost every t ∈ [t0, t1],

‖Υ(t, x1, u)−Υ(t, x2, u)‖ ≤ kΥx (t)‖x1 − x2‖ ∀(x1, u), (x2, u) ∈ Sε,R∗ (t),

‖φ(t, x1, u1)− φ(t, x2, u2)‖ ≤ kφx(t)‖x1 − x2‖+ kφu(t)‖u1 − u2‖
∀(x1, u1), (x2, u2) ∈ Sε,R∗ (t).

In the following, we apply the derived results in section 3 to problem (4.1). The
following result follows immediately from Proposition 3.9 and Theorems 3.2, 3.5, and
3.6. Note that since the final point x(t1) in problem (4.1) is free, λ0 can be chosen as
1 by Remark 2.6. Moreover, kS(t) = κ(t)kΥx (t) a.e. t ∈ [t0, t1] in this case, and since
(x∗(·), u∗(·)) is feasible to problem (4.1), we have

u∗(t) ∈ {u : (u,Υ(t, x∗(t), u)) ∈ Cm} a.e. t ∈ [t0, t1].
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Theorem 4.1. Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for problem
(4.1). Assume that there exists a measurable function κ(·) such that for almost every
t ∈ [t0, t1],⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x, u) ∈ Sε,R∗ (t),

μi = 0 ∀i ∈ I+0
t (x, u),

νi = 0 ∀i ∈ I0+
t (x, u),

μi > 0, νi > 0, or μiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ ‖(μ, ν)‖ ≤ κ(t)‖μ+∇uΥ(t, x, u)ν‖.

Assume also that the functions kφx(·), κ(·)kΥx (·)kφu(·) are integrable and that there exists
a positive number η > 0 such that R(t) ≥ ηkS(t) a.e. t ∈ [t0, t1]. Then (x∗(·), u∗(·)) is
W-stationary; i.e., there exist an arc p(·) and measurable functions λG(·), λH(·) such
that for almost every t ∈ [t0, t1], the following hold:

(i) p(t0) ∈ NL
E0

(x∗(t0)), −p(t1) = x∗(t1)− T ,

(ii) (ṗ(t), 0) = −∇x,uφ(t, x
∗(t), u∗(t))p(t)−(0, λG(t))−∇x,uΥ(t, x∗(t), u∗(t))λH (t),

λGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), λHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗),
(iii) 〈p(t), φ(t, x∗(t), u)〉 ≤ 〈p(t), φ(t, x∗(t), u∗(t))〉 for any u satisfying (x∗(t), u) ∈

S(t), ‖u− u∗(t))‖ < R(t).
If, in addition, the MPEC quasi normality holds at u∗(t) ∈ {u : (u,Υ(t, x∗(t), u)) ∈

Cm} for almost every t ∈ [t0, t1], then (x∗(·), u∗(·)) is M-stationary; i.e., all the above
results (1), (2) and (3) hold, and there exist measurable functions ηG(·), ηH(·) such
that

∇uφ(t, x
∗(t), u∗(t))p(t) + ηG(t) +∇uΥ(t, x∗(t), u∗(t))ηH(t) = 0,

ηGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), ηHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗),
ηGi (t) > 0, ηHi (t) > 0, or ηGi (t)η

H
i (t) = 0 ∀i ∈ I00

t (x∗, u∗).

If, in addition, the MPEC-LICQ holds at u∗(t) ∈ {u : (u,Υ(t, x∗(t), u)) ∈ Cm} for
almost every t ∈ [t0, t1], then (x∗(·), u∗(·)) is S-stationary; that is, for almost every
t ∈ [t0, t1], all the above results (1), (2), and (3) hold and

λGi (t) ≥ 0, λHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗).

In the rest of this section, we focus on a proper specialization of the DCP (1.3)
where

φ(t, x, u) := Ax+Bu+ c, Υ(t, x, u) := Cx+Du+ q

for some matrices A,B,C,D and vectors c, q of appropriate sizes. Note that in this
case, the functions φ(·),Υ(·) are both autonomous. Then problem (4.1) reduces to

min 1
2‖x(t1)− T ‖2

ẋ(t) = Ax(t) +Bu(t) + c a.e. t ∈ [t0, t1],

0 ≤ u(t) ⊥ Cx(t) +Du(t) + q ≥ 0 a.e. t ∈ [t0, t1],

x(t0) ∈ E0.

(4.2)

In this case, let R(·) ≡ r > 0 be a positive constant function, and set

S(t) ≡ S := {(x, u) : (u,Cx+Du+ q) ∈ Cm},(4.3)

Sε,r∗ (t) :=
{
(x, u) ∈ S : ‖x− x∗(t)‖ ≤ ε, ‖u− u∗(t)‖ ≤ r

}
,

Cε,r∗ := cl {(t, x, u) ∈ [t0, t1]×�n ×�m : (x, u) ∈ Sε,r∗ (t)}.(4.4)



OPTIMAL CONTROL WITH EQUILIBRIUM CONSTRAINTS 2731

The next result follows from Proposition 3.10 and Theorems 3.5–3.6 immedi-
ately. Note that the local error bound condition for the system representing S(t)
as in (4.3) holds since the functions φ(t, ·, ·),Υ(t, ·, ·) are affine in (x, u), and when
u∗(·) is bounded over [t0, t1], the compactness of Cε,r∗ is superfluous. Moreover, since
(x∗(·), u∗(·)) is feasible to problem (4.2), we have

u∗(t) ∈ {u : (u,Cx∗(t) +Du+ q) ∈ Cm} a.e. t ∈ [t0, t1].

Theorem 4.2. Let (x∗(·), u∗(·)) be a local minimizer of positive constant radius
R(·) ≡ r > 0 for problem (4.2), and let Cε,r∗ defined in (4.4) be compact. Assume that
for all (t, x, u) ∈ Cε,r∗ the following hold:⎧⎪⎨

⎪⎩
μ+DT ν = 0,

μi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

μi > 0, νi > 0, or μiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ C�μ = 0.

Then (x∗(·), u∗(·)) is M-stationary; i.e., there exist an arc p(·) and measurable func-
tions λG(·), λH(·) and ηG(·), ηH(·) such that for almost every t ∈ [t0, t1], the following
hold:

(i) p(t0) ∈ NL
E0

(x∗(t0)), −p(t1) = x∗(t1)− T ,

(ii) −A�p(t)−C�λH(t) = ṗ(t), B�p(t) + λG(t) +D�λH(t) = 0, λGi (t) = 0 ∀i ∈
I+0
t (x∗, u∗), λHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗),
(iii) 〈B�p(t), u − u∗(t)〉 ≤ 0 ∀u : (x∗(t), u) ∈ S, ‖u− u∗(t))‖ < r,
(iv) B�p(t) + ηG(t) +D�ηH(t) = 0,

ηGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), ηHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗),
ηGi (t) > 0, ηHi (t) > 0, or ηGi (t)η

H
i (t) = 0 ∀i ∈ I00

t (x∗, u∗).
If, in addition, the MPEC-LICQ holds at u∗(t) ∈ {u : (u,Cx∗(t)+Du+ q) ∈ Cm}

for almost every t ∈ [t0, t1], then (x∗(·), u∗(·)) is S-stationary; that is, for almost every
t ∈ [t0, t1] all the above results (i), (ii), and (iii) hold and

λGi (t) ≥ 0, λHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗).
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