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NECESSARY CONDITIONS FOR BILEVEL DYNAMIC
OPTIMIZATION PROBLEMS*

JANE J. YE!

Abstract. In this paper we study the bilevel dynamic optimization problem, which is a hierarchy
of two optimization problems where the constraint region of the upper-level problem is determined
implicitly by the solution to the lower-level problem and where the upper-level decision variable is a
vector while the lower-level decision variable is an admissible control function. To obtain optimality
conditions, we reformulate the bilevel dynamic optimization problem as a single-level optimal control
problem that involves the value function of the lower-level problem. A sensitivity analysis of the
lower-level problem with respect to the perturbation in the upper-level decision variable is given,
and the first-order necessary optimality conditions are derived by using nonsmooth analysis.
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1. Introduction. Let us consider a two-level hierarchical system where the higher
level (hereafter the “leader”) and the lower level (hereafter the “follower”) must find
vectors z € Z and control functions u(-), respectively, to minimize their individual
objective functions J;(z,u) and Jo(z,u). The leader is assumed first to select his
decision vector z € Z and the follower next to select his decision control function
u(-) € U, where Z is a nonempty subset of R™ and I/ is the set of admissible controls.
Under these assumptions on the order of play, the game will proceed as follows. Given
any decision vector z € Z chosen by the leader, the follower will select his decision
control function u,(-) € U (depending on the decision vector z chosen by the leader)
to minimize his objective Jo(z,u,). Assume that the game is cooperative, i.e., if the
follower’s problem has several optimal controls for a given parameter z, then the fol-
lower allows the leader to choose which of them is actually used. Thus the leader
chooses his optimal decision vector z € Z to minimize the leader’s objective J(z,u,).
In other words, given any decision vector z € Z chosen by the leader, the follower
faces the ordinary (single-level) optimal control problem involving a parameter z:

t1

Py(2) minJy(z,u) = G(t, z(t), z,u(t))dt + g(x(t1)),

s.t. &(t) = ¢>(t,(;7(t),z,u(t)) a.e.,
z(to) = xo, z(t1) € C1,
u(t) € U(t) a.e.,

while the leader faces the bilevel dynamic optimization problem:

ty

P mini(z,us) = [ F(t,22(2), 2,uz(t)dt + f(22(t1))

to

over z € Z and all optimal pairs (z.,u,) of Py(2).
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The bilevel dynamic optimization problem has many applications in economics
and management science. For instance, the leader may be the government that sets
up the taxation policy z and the follower may be a company that seeks the optimal
policy u,(t) in reaction to the government’s taxation policy.

The bilevel static problem where both leader’s and follower’s decisions are vec-
tors instead of control functions was first introduced by von Stackelberg [10] for an
economic model. The bilevel dynamic problem where both leader’s and follower’s de-
cisions are control functions was first considered by Chen and Cruz in [2]. The bilevel
dynamic optimization problem studied in this paper is a special case of the bilevel
dynamic problem as in Zhang [13]. Several names for bilevel (static or dynamic)
optimization problems have been used in the literature, such as Stackelberg game,
principal-agent problem, bilevel programming problem, and two-level hierarchical op-
timization problem. Most of the bilevel (static or dynamic) problems are attacked by
reducing the lower-level problem through first-order necessary conditions (cf. Bard
and Falk [1] and Zhang [13], [14] for the bilevel static problem and Zhang [13] for the
bilevel dynamic problem). The reduction is equivalent if and only if the lower-level
problem satisfies certain convexity assumptions since in this case the first-order nec-
essary condition is also sufficient. Apart from the strong convexity assumption, the
resulting optimality conditions of the above approach involve second-order (general-
ized in nonsmooth case [13]) derivatives and a larger system since the reduced problem
minimizes over the set of original decision variables as well as the set of multipliers of
the lower-level problem.

The purpose of this paper is to provide first-order necessary conditions for problem
Py under very general assumptions (in particular, without convexity assumptions on
the lower-level problem).

Define the value function of the lower-level optimal control problem as an extended-
valued function V : Z — R defined by

SG(ta(t), 2 u(t)dt + g(a(t)) 1 E(t) = ¢(t,z(t), 2,u(t)) ae.
V(z) = inf u(t) e U(t)  ae. )
$(t0) = Xp, l’(tl) eCh

where R := RU{—o0o0}U{+40c0} is the extended real line and inf § = +oc by convention.
Our approach is to reformulate P, as in the following single-level optimal control
problem:

P, minJy(z,u) = /t1 F(t,z(t), z(t), u(t))dt + f(z(t1)),

to
s.t. 2(t) = ¢(t, z(t), z(t), u(t)) a.e.,
2(t) =0,
z(to) = zo, x(t1) € C1,
u(t) € U(t) a.e.,

G(t,x(t), 2(t),u(t))dt + g(z(t1)) < V(2(t1)).

to

The above problem is obviously equivalent to the original bilevel dynamic optimization
problem P; and is a standard optimal control problem except that the endpoint
constraints involve the value function V' of the lower-level optimal control problem.
In general V is not an explicit function of the problem data and is nonsmooth even
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in the case where all problem data are smooth functions. Recent developments in
nonsmooth analysis allow us to study the generalized derivatives of the value function
V and relate them to the multiplier sets for the lower-level optimal control problem,
hence deriving a necessary condition for optimality. This approach was first used
by Ye and Zhu [12] to derive first-order necessary conditions for the static bilevel
optimization problem. The following basic assumptions are in force throughout this
paper:

(A1) Z ¢ IR™ and C; are closed.

(A2) U(t) : [to,t1] — IR™ is a nonempty compact-valued set-valued map. The
graph of U(t) (i.e., the set {(s,r) : s € [to,t1],r € U(s)}), denoted by GrU, is
L x B measurable, where £x B denotes the o-algebra of subsets of [to, t1] x R™
generated by product sets M x N where M is a Lebesgue measurable subset
of [tg,t1] and N is a Borel subset of IR™.

(A3) There exists an integrable function & defined on [tg,?;] such that for each
(t,u) € GrU, the functions ¢(t,-,-,u), F'(¢,,-,u), G(t,-, -, u) are locally Lip-
schitz of rank k(t). For each (z,z) € IR? x IR", the functions ¢(-,z,z,-) :
[to,t1] x R™ — R%, F(-,z,2,-) : [to,t1] x R™ — IR, G(-,x,2,") : [to,t1] x
R™ — IR are £ x B measurable.

(A4) The functions f, g : IR* — IR are locally Lipschitz continuous.

(A5) For any z € Z, P»(z) has an admissible pair (whose definition is given below).

A control function is a (Lebesgue) measurable selection u(-) for U(-), that is, a measur-
able function satisfying u(t) € U(t) a.e. t € [to,t1]. An arcis an absolutely continuous
function. An admissible pair for Py(z) is a pair of functions (z(-),u(-)) on [tg,t1] of
which u(-) is a control function and z(-) : [to,t1] — IR? is an arc that satisfies the
differential equation &(t) = ¢(t, x(t),z,u(t)) a.e., together with the initial condition
z(to) = xo and the endpoint constraint x(t;) € C;. The first and the second com-
ponents of an admissible pair are called an admissible trajectory and an admissible
control, respectively. A solution to problem Py(z) is an admissible pair that minimizes
the value of the cost functional Jy(z,u) over all admissible pairs. An admissible strat-
egy for P; includes a vector z € Z and an optimal control u, for P2(z). The strategy
(z,u;) is optimal for the bilevel dynamic optimization problem P, if (z,u,) minimizes
the value of the cost functional Jy(z,u,) among all admissible strategies for P;.

A plan of the paper is as follows. In §2, we give background material on nonsmooth
analysis that will be referred to in the following sections. In §3, we study generalized
differentiability of the value function V(z). The necessary condition for optimality
is given in §4. In §5, we consider an extension to the bilevel dynamic optimization
problem defined in §1 to allow opportunity costs; a fishery regulation problem is used
to demonstrate applications of the necessary condition for optimality derived.

2. Nonsmooth analysis background. In this section we shall give a concise
review of the material on nonsmooth analysis that will be required.

Let C be a nonempty closed set in IR™. A vector ( € IR" is a proximal normal
to C at point & € C if for t > 0 sufficiently small, the unique point of C nearest to
Z + t¢ (in the Euclidean norm) is Z. It is a limiting prozimal normal if there exist
points x € C,xz, — Z, and proximal normals (x to C at xy, such that {x — (. Let
the limiting proximal normal cone to C at T be the set

Ne(z) := {¢ : ¢ is a limiting proximal normal to C at Z}
and the Clarke normal cone to C at T to be the set

N¢(Z) := clcoNg ().
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Now consider a lower semicontinuous function ¢ : R™ — R U {400} and a point
Z € IR™ where ¢ is finite. A vector ( € IR™ is called a prozimal subgradient of ¢(-) at
Z provided that there exist M > 0,6 > 0 such that
(¢, —z) < p(2)) — o(7) + M||z' — Z|%, z' €z + 6B,

where (a,b) denotes the inner product of vectors a and b. The set of all proximal

subgradients of ¢(-) at Z is denoted 0™ ¢(Z). The limiting subgradient of ¢ at T is the
set

o(a) = { Jim G G € 070w, 1 — 7.0(o) ~ #(@) |

The singular limiting subgradient of ¢ at T is the set

éoo(b(.’i) = {klgrolo thCr : Cx € (r‘)?rcl')(ick),xk — a‘c,gb(xk) — (f)(i‘),tk l 0} .

The limiting subgradient is a smaller object than the Clarke generalized gradi-
ent. In fact, if ¢ is Lipschitz continuous near z, we have 0¢(x) = codo(z), where
0@ and coA denote the Clarke generalized gradient of ¢ and the convex hull of the
set A, respectively. For the definition and the precise relation between the limiting

subgradient and the Clarke generalized gradient, the reader is referred to Clarke [5]
and Rockafellar [9].

The following proposition summarizes the prerequisites regarding limiting sub-
gradients and limiting proximal normal cones.

PROPOSITION 2.1. (a) If C is a nonempty closed convex set, the limiting prozimal
normal cone to C coincides with the normal cone in the sense of convex analysis, i.e.,
one has ¢ € No(Z) if and only if

¢, z—Z)<0 Ve eC.

(b) The function ¢(-) is Lipschitz near = if and only if d®¢(x) = {0}.
(c) If dp(x) # 0, then

d(sp)(z) = sdp(z) Vs >0.

(d) (Clarke [5, Prop. 1.5]) Let ¢ and ¢ : R™ — IRU{+o00} be lower semicontinuous
functions finite at z, with 0°¢(z) N (—d°Y(x)) = {0}. Then we have

8(6 +¥)(z) C do(z) + v ().
(e) Let W (z) be the indicator function of the set C. Then
Ne(z) = 0%c(z) = 0%V ().

A(f) Let S1 and Sy be closed subets of IR™ and let & € S; N Sy. If Ng, () N
(=Ng, (%)) = {0}, then we have

Nslmsz(:i') C Nsl () + NSQ(.%‘).

(g) (chain rule) Let ¢p(x) := f(F(x)) where F : R™ — IR is Lipschitz on some
neighbourhood of &, while f : IR — IR U {+o0} is lower semicontinuous with F(T) in
domf :={y: f(y) # +oo}. Then if

0 ¢ d(CF)(x) YV nonzero vectors ¢ € 8% f(F(z)),
we have

86(z) C U{O(CF)(T) : ¢ € Df (F(2))}-
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3. Differentiability of the value function. To discuss generalized differen-
tiability of the value function V'(z), we will refer to the following assumptions:
(A6) For some a > 0,8 > 0, the function (¢(t,-,z,u),G(t,-, z,u)) satisfies the
following growth condition: for all z € Z, (¢,u) € GrU, one has

[(o(t, z, z,u), G(t, 2, z,u))| < alz|+ 8.

(A6)" The functions ¢ and G are continuously differentiable in z and 2 and lower
semicontinuous in u. There exists an integrable function &(t) such that

|6l + [Vad| + |Gl + Vo G| < k(t).
(A7) For any (t,,2) € [to,t1] x IR? x IR™, the set

{(¢(t,z, z,u),G(t,z,z,u)) :ue Ut)}

is convex.
(A7) For any (t,z,2) € [to,t1] x IR% x IR", the set

{(¢(t, z, z,u), G(t,x, z,u) + 6) : w € U(t),6 > 0}

is convex.
The Hamiltonian for Ps(z) is the function defined by

Hy(t,z, z,p2; A) := sup{pz - ¢(t, z, z,u) — AG(t,z,z,u) : u € U(t)}.

An index X\ multiplier corresponding to an admissible trajectory z for Py(z) is an arc
(p2,q) such that

(_pQ(t)a _Q(t)a l‘(t)) € 8(z,z,p2)H2(t) (Il(t), Z,pQ(t); )‘) a.e.
—pa(t1) € Mg(z(t1)) + Ne, (z(tr)),
q(t1) = 0.

The collection of all such arcs is the set M*(z), the index A multiplier set correspond-
ing to x. Let Y be the set of all optimal trajectories  to problem P(z). Let

MMNY) = | ] M*2).
z€eY

For any index A multiplier (ps,q) € M*(z), we define Q(p2,q) = —q(to). The nota-
tion QM*(z) designates the set of all possible values of —q(ty) obtained in this way,
and Q(M*(Y)) denotes Ugyey Q(M™(z)). The following result relates the differential
properities of V' to the arcs ¢ in the multiplier sets introduced above.

THEOREM 3.1. In addition to assumptions (A1)—(A5), suppose either (A6)—(AT)

or (A6)'~(A7)" hold. If QMO(Y) = {0}, then V is Lipschitz continuous near z and
one has

dV(z) c QML(Y).

Theorem 3.1 under assumptions (A6)-(A7) can be obtained by reducing the orig-
inal optimal control problem to an differential inclusion problem and applying the
sensitivity result in Clarke and Loewen [6, Thm. 3.3]. Before proving Theorem 3.1
under assumptions (A1)—-(A5) and (A6)'—(AT7)’, we first give the following result.
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LEMMA 3.2. Let «; be a sequence converging to o, and let (x;,u;) be an admissible
pair for Pa(o;). Then there exists a subsequence of {x;} converging uniformly to an
arc x and a control u with (x,u) being an admissible pair for Pa(«) such that

Jo(z,u) < liminf Jo(x;, u;).

The proof can be reduced to an application of [4, Thm. 3.1.7] by studying the
differential inclusion

@), 9(t), a(t)) € T(t,2(t),y(t), alt))  ae,
where y € IR and the convex multifunction I' is defined via
T(t,x,y, a) = {[¢(t,z,a,u), 7,0 : G(t,z,v,u) <r < k(t)+1uecUt)}

The essential fact in the reduction is Filippov’s lemma: (x,y, ) satisfies the above
differential inclusion iff there is a control u for x such that (x,u) is an admissible pair
for Py(«) and y satisfies

Gtz au) <y < k(t) +1

We now turn to the proof of the theorem. By (A5), Py(z) has an admissible pair.
So V(z) is finite. It follows from Lemma 3.2 that V' is lower-semicontinuous.
Step 1. Let o € Z be a point near z. Let ( € 9"V (a), and let (z,u) be a solution

of P»(«) that exists by virtue of Lemma 3.2. Then by definition, for some M > 0 and
for all @ near o, we have

V(Oé/) - <C7 a/> + j\/”a/ - Oc|2 > V((X) - <C,O{>

= [ Gt z(t), e,u®))dt + g(z(t1)) — (¢, q).

to
Let («',u’) be an admissible pair for Pz(c’). Then

ty

G(t,2'(t), o/ \u'(t))dt + g(x(t1)) = (¢, &) + Mo/ — of?

to

2/1 G(t, z(t), o, u(t))dt + g(a(t1)) — (¢, a).

to
Hence (z, a,u) is a solution of the following optimal control problem:

ty

min : G(t,z'(t), o/ (t), 4 (t))dt + g(z' (t1)) — (¢, (tn)),
st #(t) = ¢t 2/ (1), & (), W' (1)  ae.,

o/(t) =0,
2! (tg) = xo, 2'(t1) € Cy,
u'(t) € U(t) a.e.

In the proof of Theorem 5.2.1 of Clarke [4], if we replace the the Clarke generalized
gradient 0 by the limiting subgradient 0 in the transversality conditions, the argument
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goes through without modification (cf. Clarke [5]). It follows that there exist a scalar
A > 0 and arcs pg, ¢ such that

(1) —pa(t) = Vx¢(t,:r(t),a,u(t))Tp2(t) — AV,G(t, z(t), o, u(t)) a.e.;

(2)  =d(t) = Vad(t, 2(t), a,u(t)) Tpa(t) = AVaG(t, (1), a,ult))  aes
urgg'z%){p2(t) : ¢(t7 £C(t), Ol,’lt) - )‘G(t’m(t)’ a,u)}

(3) = po(t) - ¢(t, (t), a, u(t)) — AG (¢, z(t), v, u(t)) a.e.,
—pa(t1) € Mg(z(t1)) + Na (z(t1)),
qlto) = =A¢,  q(t) =

[P2lloo + [lglloc + 2 >0,

where 9 denotes the Clarke generalized gradient, || - || denotes the supremum norm,
and T denotes the transpose.

By Clarke [4, Thm. 2.8.2], since ¢ and G are continuously differentiable in (z, 2),
O(z,a,ps) Ha(t, T, ¢, p2; A) is the convex hull of all points of the form

(Voo (t, z, a,u) pp—AVLG(t, z, a,u), Vao(t, ,a,u) " pa— AV G(t, z, a,u), d(t, T, o, )],

where w in U(t) is any point at which the maximum defining Ha(t, x, @, p2; A\) is
achieved. Hence (1), (2), and (3) imply that

(_p2 (t)v _Q(t)’ .’L‘(t)) € 3(x,a,p2)H2 (t’ x(t)v &, P2 (t); )‘) a.e.

Step 2. For any ¢ € OV (z), by definition, ¢ = lim;_, ¢; where ¢; € 0™V (o),
a; — z, and V(o) — V(z). By Step 1, for each (;, there exists an arc (p},q;), a
scalar A;, and an arc z; that solves Po(a;) such that

(=p2' (), =i (1), 2:(1)) € 8(z,a,p2)H2(t,wi(t),ai,pé(t); Ai) a.e.,
— ph(t1) € Mdg(zi(tr)) + Ne, (z:(t1)),
gi(to) = —XiGs, q(t1) =0,
D51 + llgsll + Xi > 0.

Since M9(Y') = {0}, we must indeed have )\; = 1 for i sufficiently large and |p(0)|
bounded (cf., Clarke and Loewen [6, p. 253]). Passing to a uniformly convergent
subsequence of {(p},q;,z;)} by Lemma 3.2 and Clarke [4, Thm. 3.1.7] leads to an
optimal trajectory x for P(z) and an arc (ps,q) such that

("'p2( ) (t)a (t)) € 8(w.a,p2)H2(t*x(t)va)p2(t);>‘) a.e.,
— pa(t1) € g(x(t1)) + Ne, (z(t1)),
q(to) =—=¢, q(t1) =0.

That is, (p2,q) € QM (Y).

Similarly to Ye [11], one can show 8V (z) € QMP(Y) using results from Step 2.
The Lipschitz continuity of V near z then follows by virtue of assumption M%(Y) =
{0} and (b) of Proposition 2.1. The proof of Theorem 3.1 is now complete.
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4. Necessary conditions for optimality. Define the pseudo-Hamiltonian for
problem (Py) as

Hl(t,ff,Z,Pl;/\»T) =P ¢(t,(L’,Z,'LL) - TG(t,JI, Z,U) - /\F(t, CU,Z,U),

for t € [to,t1]), z,p1 € R%, z€ Z, \,7 € R.

THEOREM 4.1. Assume assumptions (A1)-(A4) hold. Let (z,u(t)) be an optimal
strategy of the bilevel dynamic optimization problem P, and z(t) the corresponding
trajectory. Assume that the value function for the lower-level problem V is locally
Lipschitz continuous. Then there exist A > 0,7 > 0 and arcs p1,n such that:

(4) _(pl (t)an(t)) € a(w,z)Hl(t?x(t)vzvpl (t)wu(t); )\,’f’) a.e.,
(5) max Hj(t,z(t),z,p1(t), u; A7) = Hi(t, z(t), 2, p1(t), u(t); A, 1) a.e.,

u€eU(t)

n(to) =0,
(6)  —pi(t1) € NOf(x(tr)) +rdg(z(t1)) + Ne, (z(tr)),
(7 n(t) € rovV(z),
8)  |Ipilloo + IMllos +A+7 > 0.

The following result, which is a limiting subgradient version of Corollary 1 of
Theorem 2.4.7 in Clarke [4], will be useful in proving Theorem 4.1. We should prove
it by using a chain rule.

LEMMA 4.2. Let C = {z : ¢(x) < 0}, where ¢ : R™ — IR is Lipschitz continuous
on some neighborhood of & € C. Suppose that 0 & dy(z) . Then

9) Ne(@) ¢ | rov(@).

r2>0

Proof. If Z is in the interior of C, then N¢(z) = {0} and the above relation is
trivially satisfied. Suppose Z is in the boundary of C. By virtue of (a), (c), and (e)
of Proposition 2.1, 0 ¢ 9¢(&) implies

0 & Ir(z) V nonzero scalars r € Ry = 8°Up_(1h(z)) = Nr_ (¥(Z)).
Since ¢ (Z) = Y r_(¥(Z)). by the chain rule ((g) of Proposition 2.1) we have
(10) 0¥ (z) C U{O(ry)(@) : 7 € DV R_($(@)},

which is the relation (9) thanks to Proposition 2.1(e). 0

The proof of the following result is straightforward.

LEMMA 4.3. Let F(z,y,z) : R? x R™ x IR® — R U {+0o} be a lower semicon-
tinuous function and (Z,§,2) € domF. Suppose F(x,y,2) = Fi(x) + Fa(y) + F5(2).
Then

OF (z,§,2) C OFy(Z) x OFy(y) x OFs(3).

Proof of Theorem 4.1. We pose the optimal control problem Py equivalently as
the problem

~

B min / LR a(t), 2(t), u(t))dt + F(a(t))

to
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s.t. 2(t) = ot z(t), 2(t), u(t)) a.e.,
y(t) = G(t, z(t), 2(¢), u(t)) a.e.,
(t) =0,
u(t) € U(t) a.e.,
(2,3,2)(t0) € {zo} x {0} x R,
(z,9,2)(t1) € S:={(z,9,2) 1 g(zx) +y—V(z) <0,z € C4}.
The problem above is exactly in the form described in §5.2.1 of Clarke [4]. The
pseudo-Hamiltonian is the function
H(t,z,y,2,p1,D2,M, U, A) = D1 - d(t, z, z,u) + p2G(t, z, z,u) — AF (¢, z, z,u),

for t € [to, 1], z,p1 € R%, y,p2,m, A € R,z € Z. Applying Theorem 5.2.1 of Clarke [4]

with the generalized gradient replaced by the limiting subgradient in the transversality

conditions leads to the existence of a scalar A > 0 and an arc (p;, p2,n) such that

(11) _(pl (t),pQ(t)3 ﬂ(t)) € a(m,y,z)H(t1 .’E(t), y(t)$ z(t)7p1 (t)a p2(t)a n(t)v U(t), )‘) a.e.,
urgng‘.) H(t’ .’If(t), y(t)v Z(t), J4! (t)7 P2 (t)a T’(t)’ u, )‘)

(12) = H(t,z(t),y(t), 2(t), p1(t), p2(2), m(t), u(t), A) e,
(13)  (p1(to), P2(t0), n(to)) € Nizo}x {0y xr(z(t0), y(to), 2(t0)),
(14) = (p1(t2), p2(t1),n(t1)) € A0S (@(t1), y(t1), 2(t1)) + Ns(2(t1), y(t1), 2(t1)),
(15) lp1lloo + lIP2lloc + linlleo + A >0,
where f(g,y,z) = f(x).
Let F(x,y,2) = g(z) +y — V(z). Then by Lemma 4.3, one has
(16) dF(z,y,2) C dg(z) x {1} x d(=V (2)).

Therefore 0 ¢ ('}ﬁ‘(w,y, z).

Let S1 := {(z,y,2) : g(z) +y — V(2) < 0} and S5 := C; x R x IR. By Lemma
4.2 and inclusion (16), one has

Nsl(m’yvz) - U réﬁ'(x,y,z)
r>0

c |J rldg(x) x {1} x 8(=V)(2)].
r>0
Since ¥g,(z,y,2) = ¥¢, (2) + Yr(y) + ¥R(2), by Lemma 4.3 and (e) of Proposition
2.1 one has
Ngs,(z,y,z) C No, () x {0} x {0} Y(z,y,2) € C1 x R x IR.

It follows that the second component of any triple in the set -N s,(x,y,2) is 0. The
only vectors in Ng, (z,y, 2) that share this property are among those for which r =0
in the estimate above. Thus, Ng, (z,y,2) N (—=Ng,(z,y,2)) = {0} and Proposition 2.1
(f) gives

Ns(@(t1),y(t1), 2(t1)) C Ns, (2(t1), y(t1), 2(t1)) + Ns, (2(t1), y(t1). 2(t1))
c | rldg(a(tr)) x {1} x 9(=V)(2)]

r>0
+Ne, (z(t1)) x {0} x {0}.
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By Lemma 4.3, one has

Of(x(tr),y(tr), 2(t1)) C Of (x(t1)) x {0} x {0}.

Hence from (14), one has

—(p1(t1), p2(t1),n(t1)) € MOf(x(t1)) x {0} x {0}
+ U ria(e(t) x {1} x H(-V)(2)]
r>0
+Ne, (z(t1)) x {0} x {0}
C Af(x(t1)) x {0} x {0}
+ | rlBoa(t) x {1} x (0 ()]

r>0
+Ne, ((t1)) x {0} x {0},

from which the transversality conditions (6) and (7) follow and one has pa(t;) = —r,
where r > 0. Since H is independent of y, (11) implies that pa(¢) = 0 and

(17) - (pl (t)’ ﬂ(t)) € a(w,z)H(t’ .’L’(t), y(t)v Z(t),pl (t)7p2(t)’ n(t)7 u(t); )\) a.e.

Hence p; = —r, where r > 0; and (4), (5), and (8) follow from (17), (12), and (15),
respectively. From (13), one has n(tg) = 0. The proof of the theorem is thus complete.
]

Combining Theorem 4.1 and Theorem 3.1, one has the following necessary con-
ditions for optimality for the general bilevel dynamic optimization problem.

THEOREM 4.4. In addition to assumptions (A1)-(Ab), suppose either assump-
tions (A6)—(AT7) or (A6)'—(A7)" hold. Let (z,u) be an optimal strategy of the bilevel
dynamic optimization problem Py and x(t) the corresponding trajectory. Suppose that
QMO(Y) = {0}. Then there exist scalars A > 0,7 > 0, integers I,J, \i; > 0,
ELI Z}I=1 Xij = 1, optimal trajectories x;(t) of the lower-level problem Py(z), and
arcs 1,1, p5,q" such that

(18) - (pl (t)ﬂ?(t)) € a(z,z)Hl(tvx(t)vzvpl(t)au(t); >‘$7") a.e.,
uléll%) Hy(t, z(t), z,p1(t), w; A, v) = Hi(t, z(t), 2, p1 (), u(t); A, r) a.e.,
n(to) =0,

—pi(t1) € N0f (z(t1)) + rdg(x(t1)) + No, (2(t1)),
n(t) =7 Xi;q? (to);
i

(19) (—p (), =4 (t), &:(t)) € a(z,z,pg)H2(thi(t)7Z’péj(t); 1) a.e.,
¢ (t1) = 0,
— p¥ (t1) € g(=:(t1)) + Ne, (zi(t)),
IP1lloc + [Inlloc + A+ 7 > 0.

Remark 4.1. A sufficient condition for QM°(Y) = {0} to hold is C; = IR%.
Indeed, in this case, the index 0 multiplier set consists of all arcs (p2, q) such that

(20) (_pZ(t)> _Q(t)a IIZ(t)) € a(a:,z,pz)H2(ta Il?(t), Z, P2 (t); 0) a.e.
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(21) p2(t1) =0,
(22) q(t1) = 0.

Due to the Lipschitz continuity of ¢ in (z, z), by virtue of Theorem 2.8.2 of Clarke
[4], (20) implies that

P2 < k(@)llp2(D)]]-

By Gronwall’s Lemma, the above inequality implies that ps is either identically 0 or
nonvanishing on [tg, t1]. Therefore (21) implies that ps = 0. Hence ¢(t) = 0 by virtue
of (20). But g satisfies (22), therefore ¢ = 0. That is QM°(Y) = {0}.

Another sufficient condition for M°(Y) = {0} to hold is that ¢(t,z,z,u) be
independent of z since in this case ¢(t) = 0.

Remark 4.2. By Clarke [4, Thm. 2.8.2], 0(3,q,p,) H2(t, x, &, p2; 1) is the convex hull
of all points of the form

Veo(t,z, o, u) p2~ VGt 2, a, u), Vad(t,z, a,u) | pp — Vo G(t, z,a,u), ¢(t, z, o, u)],

where u in U(t) is any point at which the maximum defining Ha(t,x,a,p2;1) is
achieved. Therefore if in addition to assumptions (A1)-(A5) and (A6)'-(A7)', we
assume the set

{(Vao(t, x, 1) "py — Vo G(t, z, 0, u), Vad(t, 2, a,u) " p2 — Vo G(t, 2, a,u) :u € U(t)}
is convex for any t, z, z, p2, then the inclusion (19) becomes the following equations:

- 1912‘7 (t) = vxqs(ta xi(t)’ 2, u1(t))Tp1§] (t) - VmG(t7 xi(t)v 2 ul(t)) a.e.,
= 47() = Vao(t,zi(t), 2, w(t) TpY (1) = VG (tzi(t), 2, m(t))  ace,

urggé){péj(t) S @(t, zi(t), z,u) — G(t, zi(t), z,u)}

=py (t) - 0(t,7i(t), 2, (1)) — G(t,wi(t), 2, wi(t)) e,
Zi () = o(t, x:(t), 2, us (t)) a.e.,

where u;(t) is an optimal control function associated with trajectory z;(t).

5. Extensions and an example. There are many situations where an oppor-
tunity cost exists for the follower. That is, the follower will participate only if his
optimal cost is less than or equal to the opportunity cost L > 0 that he may receive

from somewhere else. In this case, the leader faces the following bilevel optimization
problem:

P, mindi(e,u) = / CF(t (), 2(8). ul®)dt + fla(t),

s.t. &(t) = d)(:, z(t), 2(t), u(t)) a.e.,
3(t) =0,
:1‘(750) = X, .'D(tl) S Cl,
u(t) € U(t) a.e.,
/ " Gt 2(0), 2(8), w(t))dt + 9(a(tr)) < V(2),

to
131

G(t,x(t), 2(), u(t))dt + g(z(t1)) < L.

to
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The technique described in the previous section can be applied to this more general
problem in exactly the same way, and one obtains the following necessary conditions
for optimality.

THEOREM 5.1. Assume that in addition to (A1)-(A5), either assumptions (A6)-
(AT) or (A6)'—(AT) hold. Let (z,u) be an optimal strategy of the bilevel dynamic opti-
mization problem Py and x(t) the corresponding trajectory. Suppose that QMO (Y) =
{0}. Then there exist scalars A > 0,7 > 0,0 < # < r, integers I1,J, Aij > 0,
Zle Z;.le Xij = 1, optimal trajectories x;(t) of the lower-level problem Pa(z), and
arcs p1,7M, D3 ,q" such that

- (Pl(t)ﬂ?(t)) € a(a:,z)Hl(tvx(t)>z»pl(t)au(t); )\,7‘) a.e.,
max) Hy(t,z(t), z,p1(t), us A\, 7) = Hy(t,2(t), z,p1(t), u(t); A\, 7) a.e.,

ueU(t
n(to) =0,
—pi(t1) € A0f(2(tr)) + rdg(a(tr)) + Ne, (2(t1)),
n(t) =7 Nijg” (to),
ij

(=¥ (£), =47 (t), (1)) € Oa,z,pp) Ha(t, z(t), 2,05 (¢); 1) a.e.,
g (t) =0,
— P (t1) € Bg(z:(tr)) + Ne, (i(t)),
IP1lloo + Inlloc + X +7 > 0.

The following example is a simplified and finite horizon version of a fishery regu-
lation problem first formulated and solved by Clarke and Munro using principal and
agent analysis (see Clarke and Munro [7] and (8] for details).

Example. It has now been generally agreed that the fishery resources within the
200-mile zones are the property of the adjacent coastal states. For those coastal states
opting to permit a distant water presence in their 200-mile zones, one of the problems
they face is devising optimum terms and conditions of access to the Coastal State
Exclusive Economic Zones to be imposed upon the distant water fleets.

Assume that the fish population follows the dynamic system

&(t) = F(z(t)) — ¢E()=(t),

where z(t) is the fish population at time ¢; F'(z) is the rate of natural growth; and
gE(t)z(t) is the rate of catch at time ¢, where E(t) is the fishing effort at time ¢ and
q is a positive constant. We assume that F(z) is a twice continuously differentiable
function satisfying Fi(z) > 0 for 0 < z < Z, F(0) = F(Z) = 0 and F"(z) < 0 for all
x > 0, where & denotes the carrying capacity of the resource. It is also assumed that

0 < E(t) < Emax,

where Ep,x is an arbitary upper bound on E(t). Suppose that the coastal state
imposes the condition that at the terminal time T3, the fish population cannot be less
than z > 0.

Suppose that the coastal states as a leader impose a unit tax n on catch ¢E(t)x(t)
and a unit tax m on effort E(t). Then the distant water fleet would receive the profit
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in time period [0, 7]

T
/0 e [(po — n)az(t) — (co + m)| E()dt

if he decided to use the fishing effort E(-) where py and ¢y are the unit price on catch
and unit cost on effort, respectively, § > 0 is the discount rate, and z(-) is the fish
population corresponding to the fishing effort E(-). Hence for the given unit tax on
catch and effort n and m, the distant water fleet as a follower faces the following
optimal control problem:

T
Py(n,m) max/0 e % (po — n)qz(t) — (co + m)]E(t)dt,
s.t. z(t) = F(z(t)) — q¢E(t)z(t),
I(O) = Xy, .’L‘(Tl) Z 5,
E(t) € [0, Enax]-

The optimal control problem P, (n, m) is linear. The necessary condition for (z, E)
to solve Py(n,m) is the existence of an arc ps such that

(23)  —p2(t) = p2(t)[F'(2(t) — ¢E()] + e~ (po ~ n)qE(2),

peiax O @®) - gBx(t)] + e (po — n)qz(t) — (co +m)]E}

(24) = pa(t)[F(z(t)) — gE(t)z(t)] + e~ [(po — n)qz(t) — (co + m)|E(t),
p2(T1) > 0.

Since E(t) has to maximize the Hamiltonian (see (24)), E(t) must be either the
singular control or else E(t) = 0 or Enyax. The singular control arises when the
coefficient of E in the Hamiltonian is zero, implying that

(25) pa(t) =€ [(po —n) - Co;m]
(26) pa(t) = e~ [—6 [(Po —n) — Coqzm] + coq;m %} .
From the adjoint equation (23), one has
P2 = —p2[F'(z) = qE] = ¢™*((po — n)4E
(27) =~ { [(Po —n)— CO;’"] [F'(2) - gB] + (po — n)qE} ,

where (25) is used for pp. When the two expressions for pa(t), (26) and (27), are
equated, the control variable E cancels out and the following equation emerges:

o Pt m)fe
(25) B G+ myjaz "

For fixed (n, m), this equation gives a unique solution x, that is the optimal biomass
and the optimal trajectory is the one that takes the most rapid path to the optimal
biomass z, (cf. Clark [3]).
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Let V(n,m) be the optimal value of the above problem. The distant water fleet
will participate only when V'(n, m) > L, the alternative remuneration from some other

coastal state.

The coastal state as a leader now faces the following bilevel dynamic optimization

problem:

T,
Py max/ e~ (nqx(t) + m)E(t)dt,
0
s.t. &(t) = F(z(t)) — ¢E(t)x(t),
z(0) = o, z(Th1) >z,
E(t) € [0, Epax] a.e.,

T
V(n,m) < /O e=%{(po — n)qz(t) — (co + m)| E(t)dt,

V(n,m) > L.

It is easy to show that all the conditions of Theorem 5.1 are satisfied. Notice that
the lower-level problem P(n, m) has a unique solution. By Theorem 5.1 and Remark
3.2, if (n, m, z, E) is an optimal solution to Py, then there exist arcs py, p2, 71,72, 41, @2

and scalars A > 0, r > 0, 0 < # < r such that
(29)  —p1 =pi[F'(z) — gE) + e % [r(po — n) + AnlqE,
= (r— 1)e“5tqu,
e = (r = e "B,
max  {p1(t)[F(z(t)) — ¢Ex(t)] + e **[r(po — n)gz(t) — (co + m)]

E€(0,Emax]
+A(ngz(t) + m)|E}
= p1(B)[F(z(t)) — gE@)a(t)] + e~**[r[(po — n)gz(t) — (co + m)]
(30) +A(ngz(t) + m)|E(t),

(m1,m2)(0) = (0,0),
(31)  pi(Th) >0,
(n1,m2)(T1) = 74(0),
(32)  —pp = pa[F(x) — qE] + e % (po — n)qE,

41 = e %qaE,
Go=e %E,
(33) max  {pa(t)[F(x(t)) — ¢Ex(t)] + e~ *[(po — n)gz(t) — (co + m)|E}

E€[0,Emax]

= p2(t)[F(x(t) — gE()x(t)] + e~ [(po — n)gz(t) — (co + M) E(t),
(g1,42)(0) = (0,0),

(34)  po(Th) 20,
Ipilles + [Inlloc + A+ 7> 0.

Take A = 1. As in the proof of (28), from (29) and (30) we can show that the steady

state (n,m, z.) for problem P, is a solution of the following equation:

: F(2.)(r(co +m) —m)/gz.?
(35) Bt o —m +n—(rleo  m) —m) gz,
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and the optimal trajectory for P, is the one that takes the most rapid path to the
optimal biomass (n,m,z). Since (n,m,z, E) is an optimal solution of Py, (z, E)
must be the optimal solution of the lower-level problem Py(n,m). Therefore x, must
be the optimal biomass associated with (n,m) defined by (28). Combining equations
(28) and (35), one has

n = pPPo,
m = —pcCo,

where p is some constant to be determined. It is obvious that the optimal tax (n,m)

must be such that V(n,m) = L. Let V be the net global returns from the fishery,
ie.,

Ty
Vo = max {/0 e % (poqz(t) — cO)E(t)dt} .

Then
T
(1 —p)Vo = max {/0 e (1 — p)poq(t) — (1 — p)co]E(t)dt}
T
= max {/ e (po — n)qz(t) — (co + m)]E(t)dt}
0
(36) =V(n,m) =1L,

from which it follows that p = (Vo — L)/V4. (36) also indicates that E(¢t) will maximize
the global net returns from the fishery. Hence the above necessary condition for
optimality is indeed satisfied by A =1, r = 1, # = 0, n = ppg, m = —pcy, and the
corresponding fishing effort F(t) since equations (29), (30), and (31) are necessary for
E(t) to maximize the net global returns from the fishery; (32), (33), and (34) are the
necessary optimality conditions for the lower-level problem; and the rest of equations
are easily seen to hold. The results agree with the work of Clarke and Munro [7].
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