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Abstract. In general, the value function associated with an exit time problem is a discontin-
uous function. We prove that the lower (upper) semicontinuous envelope of the value function is a
supersolution (subsolution) of the Hamilton–Jacobi equation involving the proximal subdifferentials
(superdifferentials) with subdifferential-type (superdifferential-type) mixed boundary condition. We
also show that if the value function is upper semicontinuous, then it is the maximum subsolution of
the Hamilton–Jacobi equation involving the proximal superdifferentials with the natural boundary
condition, and if the value function is lower semicontinuous, then it is the minimum solution of the
Hamilton–Jacobi equation involving the proximal subdifferentials with a natural boundary condi-
tion. Futhermore, if a compatibility condition is satisfied, then the value function is the unique lower
semicontinuous solution of the Hamilton–Jacobi equation with a natural boundary condition and a
subdifferential type boundary condition. Some conditions ensuring lower semicontinuity of the value
functions are also given.
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1. Introduction. In this paper we study the exit time problem (also called the
control problem with a boundary condition as in [10]). In its simplest form, the exit
time problem involves a given open set E in Rn, and asks for choices for the time
t∗ ≥ 0 and the measurable function u on [0, t∗) which will

minimize J(x, u) :=

∫ t∗

0

e−λsf(y(s), u(s))ds+ e−λt∗h(y(t∗))

subject to (s.t.) ẏ(t) = g(y(t), u(t)) a.e. t ∈ [0, t∗],
u(t) ∈ U a.e. t ∈ [0, t∗),

y(0) = x, y(t) ∈ E, 0 ≤ t < t∗, y(t∗) �∈ E.
By the classical Hamilton–Jacobi (H–J) theory (or the so-called dynamic pro-

gramming theory), if the value function V is continuously differentiable, then it is the
unique solution of the following H–J equation:

λV (x) +H(x,−∇V (x)) = 0 ∀x ∈ E,(1)

where the Hamiltonian H(x, p) := max{p · g(x, u)− f(x, u) : u ∈ U}, with the natural
boundary condition

V (x) = h(x) ∀x ∈ ∂E.
Due to the complicated behavior of the trajectories at the boundary of the state

space, the value function for the exit time problem is in general discontinuous, even
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if all the problem data are Lipschitz continuous, unless some nontangency condition
is imposed on the boundary (see, e.g., [12, 23, 10] for the Lipschitz continuity of the
value function). Solving the H–J equation (1) with appropriate boundary conditions
in some nonclassical sense has become an active research area. Gonzalez and Rofman
[13] proved that the value function is an upper bound of a suitable set of subsolutions
of the H–J equation. Dempster and Ye [10] characterized the Lipschitz value function
as a solution of the H–J equation involving the Clarke generalized gradient. Bardi
and Soravia [2], Barles and Perthame [4, 5], Blanc [6], Ishii [14], and Soravia [17, 18]
have studied the solution of the H–J equation (1) with various boundary conditions in
the framework of the viscosity solutions first introduced by Crandall and Lions [9] for
continuous functions and later defined for discontinuous functions by Ishii [14, 15] and
modified by Barron and Jenson [3] for the case of convex Hamiltonians. The reader
is also referred to the recent monograph of Bardi and Capuzzo-Dolcetta [1] for the
history and the recent development of the H–J equation using the viscosity approach.

Under assumptions that reduce the exit time problem to a generalized optimal
stopping time problem, Ye and Zhu [24] showed that the value function of the exit
time problem with relaxed controls is the unique lower semicontinuous solution of the
H–J equation with the usual gradient replaced by the proximal subdifferential ∂pV (x)
(see Definition 2.1) with the natural boundary condition

V (x) = h(x) ∀x ∈ Ec,

where Ec denotes the complement of the state space E and the subdifferential type
boundary condition, i.e.,

λV (x) +H(x,−∂pV (x)) ≤ 0 ∀x ∈ ∂E.
The purpose of this paper is to extend the H–J theory using the equivalence

between the invariance and the H–J equation to treat exit time problems under as-
sumptions that are much more general than those in [24]. In particular, we allow
the discount rate λ to be zero and the exit cost h to be unbounded. In Theorem
2.2 we show that the lower (upper) semicontinuous envelope of the value function
is a supersolution (subsolution) of the H–J equation involving the proximal subdif-
ferentials (superdifferentials) with subdifferential-type (superdifferential-type) mixed
boundary condition. In Theorems 2.3 and 2.4 we show that if the value function is
upper semicontinuous, then it is the maximum subsolution of the H–J equation in-
volving the proximal superdifferentials with the natural boundary condition, and if
the value function is lower semicontinuous, then it is the minimum solution of the
H–J equation involving the proximal subdifferentials with a natural boundary condi-
tion. Some conditions ensuring lower semicontinuity of the value functions are given
in Proposition 2.5.

The technique of treating semicontinuous solutions to the H–J equation by using
equivalence between the invariance property and the H–J equation was first introduced
by Subbotin [19] for differential games (see also Subbotin [20]) and has been used
in [8, 11] for finite horizon problems and in [22] for minimal time problems. The
equivalence of the various concepts of the solution to the H–J equation in an open set
was also given in [8].

We arrange the paper as follows: In the next section we state the problem for-
mulation for the exit time problem and our main results. In section 3 we establish
the equivalence among the optimality principle, the invariance property, and the H–J
equations. The proofs of the main results are contained in section 4.
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2. The exit time problems and the H–J equation. Let U be a compact
subset of Rm and Prob(U) the set of all Borel probability measures on U . Consider
Prob(U) as a subset of the dual of C(U) endowed with the weak star topology, where
C(U) is the Banach space of continuous functions on U with the supremum norm.
For any φ ∈ C(U) and u ∈ Prob(U), we denote the pairing of φ and u by φ(u) :=∫
U
φ(r)u(dr). Let U be the set of all Lebesgue measurable mappings from R to

Prob(U). For finite real numbers a < b, define U[a,b] := {u|[a,b] : u ∈ U}. Then U[a,b]

is a weak star compact subset of L1([a, b];C(U))∗. We endow U with the following
topology: un converges to u in U provided that un|[a,b] converges to u|[a,b] in U[a,b]

for any finite real numbers a < b. The set U[a,b] is the collection of relaxed control
functions defined in Warga [21]. It is the compactification of the set of usual control
functions in the weak star topology of L1([a, b];C(U))∗. Elements of U[a,b] are called
relaxed controls. Using the set of relaxed controls ensures the existence of the optimal
solution and also ensures the convexity of the velocity set so that the invariance
theorems can be used. Any relaxed control can be approximated by usual controls.
We refer to [21] for more details.

Let the state space E be an open subset of Rd, Ē be the closure of E, and O
be an open set containing Ē. Assume that g : O × U → Rd satisfies the following
condition.

(H1) g(x, u) is continuous, bounded, and Lipschitz in x uniformly in u ∈ U .
Under such a condition, for each x ∈ O and u ∈ U , the differential equation

ẏ(s) = g(y(s), u(s)) a.e.

has a unique solution defined on R that satisfies the side condition y(0) = x. We
denote this solution by y[x, u](·) to indicate its dependence on x and u.

For each initial state x ∈ E and control function u, define the exit time t∗[x, u]
to be the first time the trajectory starting from x ∈ E corresponding to the control u
exits from the state space E, or infinity if it never exits the state space; i.e.,

t∗[x, u] := inf{t > 0 : y[x, u](t) �∈ E},

where inf ∅ = ∞ by convention. For any x ∈ Ec, we define t∗[x, u] := 0. Where there
is no confusion, we will simply use t∗ instead of t∗[x, u].

Let λ ≥ 0 be the discount rate. Consider the following exit time problem:

Px minimize J(x, u) :=

∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt∗h(y[x, u](t∗))

s.t. u ∈ U .

We state some further basic assumptions:
(H2) The running cost f(x, u) : O×U → Rd is continuous, bounded, and Lipschitz

in x uniformly in u ∈ U . The exit cost h(x) : O → R is lower semicontinuous.

Furthermore, when t∗[x, u] = ∞ the integral
∫ t∗

0
e−λsf(y[x, u](s), u(s))ds con-

verges and the limit e−λ∞h(y[x, u](∞)) := limr→∞ e−λrh(y[x, u](r)) exists
and is finite.

Remark 1. The exit time problem we consider in this paper is more general
than that usually considered in the literature (see, e.g., [1, 6]) in that we allow the
discount rate λ to be zero and the exit cost h to be unbounded. Notice that under
the assumption that f is bounded, the integral

∫∞
0
e−λsf(y[x, u](s), u(s))ds converges
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automatically for the case λ > 0 so the assumption (H2) is mainly for the case when
λ = 0.

Under our assumptions, it is known that there exists an optimal control for the
exit time problem for each x ∈ E. Define the value function of the family of problems
Px as

V (x) := min

{∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt∗h(y[x, u](t∗)) : u ∈ U
}
.

Unlike a standard free end point optimal control problem whose value function
is continuous if the terminal cost is continuous, the value function for the exit time
problem is in general discontinuous even in the case where the terminal cost h is
smooth. To see this we examine two simple examples.

Example 1. Let E = (0, 1) be the state space and the control set U = {−1}.
Consider the following exit time problem where f(x, u) ≡ 0, g(x, u) = u, h(x) = x,
λ = 0 :

min y(t∗)
s.t. ẏ = u, u(t) = −1,

y(0) = x.

It is easy to see that the value function

V (x) =

{
0 if x ∈ [0, 1),
x if x �∈ [0, 1)

is upper semicontinuous with discontinuity at x = 1.
Example 2. In Example 1, change the control set to U = {1}. Then the value

function becomes

V (x) =

{
1 if x ∈ (0, 1],
x if x �∈ (0, 1],

which is lower semicontinuous with discontinuity at x = 0.
In order to see the connections between the value function and the H–J equations

we define the lower and upper semicontinuous envelopes of a function W : O → R as

W∗(x) := lim inf
y→x

W (y)

and

W ∗(x) := lim sup
y→x

W (y),

respectively. Then it is easy to see that W∗ is lower semicontinuous and W ∗ is upper
semicontinuous.

We will use the concept of proximal subdifferentials (superdifferentials) for any
lower (upper) semicontinuous functions defined as follows.

Definition 2.1 (see, e.g., Clarke [7] and Loewen [16]). Let φ : Rd → (−∞,∞]
be an extended-valued lower semicontinuous function. The proximal subdifferential of
φ at x ∈ Rd where φ(x) �= ∞ is a set-valued map defined by

∂pφ(x) := {ξ ∈ Rd :∃σ > 0, δ > 0

s.t. φ(y) ≥ φ(x)− σ‖y − x‖2 + 〈ξ, y − x〉 ∀y ∈ x+ δB},
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where 〈a, b〉 denotes the inner product of the vectors a and b and B denotes the open
unit ball. Let φ : Rd → [−∞,∞) be an extended-valued upper semicontinuous func-
tion. The proximal superdifferential of φ at x where φ(x) �= ∞ is defined by

∂pφ(x) := −∂p(−φ)(x),

i.e.,

∂pφ(x) := {ξ ∈ Rd :∃σ > 0, δ > 0

s.t. φ(y) ≤ φ(x) + σ‖y − x‖2 + 〈ξ, y − x〉 ∀x+ δB}.

Remark 2. Since the function y → φ(x)−σ‖y−x‖2+〈ξ, y−x〉 in the right-hand
side of the inequality in the definition of the proximal subdifferential is a quadratic,
it is easy to see that ξ ∈ ∂pφ(x) if and only if there is a parabola fitting under the
epigraph of φ at (x, φ(x)) with ξ as the slope of φ at x. Hence, in the case where there
does not exist a parabola fitting under the epigraph of φ at (x, φ(x)), the proximal
subdifferential of φ at x may be empty (e.g., φ(x) = −|x| has an empty proximal
subdifferential at 0). Similarly the proximal superdifferential may be empty. However,
we shall see later that the emptiness of the proximal subdifferential (superdifferential)
is actually an advantage.

We now state our main results. The first result gives the connection between the
semicontinuous envelopes of the value function and the H–J inequalities.

Theorem 2.2. Under assumptions (H1)–(H2) the lower semicontinuous enve-
lope of the value function V∗(x) is a supersolution of the H–J equation involving the
proximal subdifferentials (in E), i.e.,

λV∗(x) +H(x,−∂pV∗(x)) ≥ 0 ∀x ∈ E(2)

with the subdifferential-type mixed boundary condition

max{V∗(x)− h(x), λV∗(x) +H(x,−∂pV∗(x))} ≥ 0 ∀x ∈ ∂E,(3)

and the upper semicontinuous envelope of the value function V ∗(x) is a subsolution
of the H–J equation involving the proximal superdifferentials (in E), i.e.,

λV ∗(x) +H(x,−∂pV ∗(x)) ≤ 0 ∀x ∈ E,(4)

with the superdifferential-type mixed boundary condition

min{V ∗(x)− h∗(x), λV ∗(x) +H(x,−∂pV ∗(x))} ≤ 0 ∀x ∈ ∂E,(5)

where ∂E denotes the boundary of E.
Remark 3. Equation (2) should be understood in the following sense: At any

point x ∈ E where ∂pV∗(x) �= ∅,

λV∗(x) +H(x,−ξ) ≥ 0 ∀ξ ∈ ∂pV∗(x).

Hence the points x where ∂pV∗(x) = ∅ can be neglected. Equation (4) is understood in
a similar way. Equation (3) means that if x ∈ ∂E is a point where V∗(x) < h(x) and
∂pV∗(x) �= ∅, then

λV∗(x) +H(x,−ξ) ≥ 0 ∀ξ ∈ ∂pV∗(x).
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Similarly, (5) means that if x ∈ ∂E is a point where V ∗(x) > h∗(x) and ∂pV ∗(x) �= ∅,
then

λV ∗(x) +H(x,−ξ) ≤ 0 ∀ξ ∈ ∂pV ∗(x).

Note that a similar result was given in Theorem 2.9 of Blanc [6] in the viscosity
solution sense for the case λ > 0 and bounded exit cost h. In general, as in Remark
2.7 of Blanc [6], we do not expect to have a unique function that satisfies (2)–(5).

When the value function has a semicontinuity property, the following two the-
orems give connections between the value function (instead of its semicontinuous
envelopes) and the H–J equation with natural boundary condition (instead of the
mixed boundary condition).

Theorem 2.3. In additions to assumptions (H1)–(H2), assume that the value
function is upper semicontinuous. Then it is the maximum upper semicontinuous
function that is a subsolution of the H–J equation involving the proximal superdiffer-
entials (in E), i.e.,

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ E,
with the natural boundary condition

W (x) = h(x) ∀x ∈ ∂E.
Theorem 2.4. In additions to assumptions (H1)–(H2), assume that the value

function is lower semicontinuous. Then it is the minimum lower semicontinuous
solution of the H–J equation involving the proximal subdifferentials (in E), i.e.,

λW (x) +H(x,−∂pW (x)) = 0 ∀x ∈ E,
with the natural boundary condition

W (x) = h(x) ∀x ∈ ∂E.
We now give some conditions which ensure lower semicontinuity of the value

function. First we state the required assumptions.
(A) ∀ x ∈ ∂E and u ∈ U such that y[x, u](t) ∈ Ē ∀t ∈ [0,∞), the limit

limr→∞ e−λrh(y[x, u](r)) exists. Also, ∀x ∈ ∂E, all controls u ∈ U and
r ≥ 0 such that y[x, u](t) ∈ Ē∀t ∈ [0, r], y[x, u](r) ∈ ∂E, or r = ∞,

h(x) ≤
∫ r

0

e−λsf(y[x, u](s), u(s))ds+ e−λrh(y[x, u](r)).

Proposition 2.5. In addition to assumptions (H1)–(H2), if (A) is satisfied, then
the value function V (x) is lower semicontinuous on Ē.

Proof. Let x ∈ Ē and xn ∈ Ē, xn → x. By definition of the value function for
each n, there exists un ∈ U and t∗[xn, un] := t∗n such that

V (xn) =

∫ t∗n

0

e−λsf(y[xn, un](s), un(s))ds+ e
−λt∗nh(y[xn, un](t

∗
n)).(6)

We now consider two cases.
Case 1. The sequence {t∗n} is bounded. Without loss of generality we may assume

that t∗n converges to r, t∗n ∈ [0, r + 1] and un|[0,r+1] converges to u ∈ U[0,r+1] in the
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topology of U[0,r+1]. Then y[xn, un](s) uniformly converges to y[x, u](s) in [0, r + 1].
Since Ē and ∂E are closed, y[x, u](t) ∈ Ē ∀t ∈ [0, r] and y[x, u](r) ∈ ∂E. Taking lim
inf in (6) when n→ ∞ yields by virtue of lower semicontinuity of h

lim inf
n→∞ V (xn) ≥

∫ r

0

e−λsf(y[x, u](s), u(s))ds+ e−λrh(y[x, u](r))

=

∫ t∗

0

e−λsf(y[x, u](s), u(s))ds

+

∫ r

t∗
e−λsf(y[x, u](s), u(s))ds+ e−λrh(y[x, u](r))

≥
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt∗h(y[x, u](t∗))

(by assumption (A))

≥ V (x).
Case 2. The sequence {t∗n} is unbounded. Without loss of generality we may

assume that t∗n → ∞. For each integer m > 0, consider the restriction of un to [0,m].
Since U[0,m] is compact we can extract a convergent subsequence from {un|[0,m]}.
Using the diagonal method we can choose a subsequence {uni

} of {un} and an element
u ∈ U such that uni |[0,m] converges to u|[0,m] in U|[0,m] for any m. We may assume
that

lim
i→∞

V (xni) = lim inf
n→∞ V (xn).

Taking lim inf in (6) when ni → ∞ yields in the case t∗[x, u] = ∞ that

lim inf
i→∞

V (xni) ≥
∫ ∞

0

e−λsf(y[x, u](s), u(s))ds+ e−λ∞h(y[x, u](∞))

≥ V (x)
and in the case t∗[x, u] <∞ that

lim inf
i→∞

V (xni) ≥
∫ ∞

0

e−λsf(y[x, u](s), u(s))ds+ e−λ∞h(y[x, u](∞))

=

∫ t∗

0

e−λsf(y[x, u](s), u(s))ds

+

∫ ∞

t∗
e−λsf(y[x, u](s), u(s))ds+ eλ∞h(y[x, u](∞))

≥
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt∗h(y[x, u](t∗))

(by assumption (A))

≥ V (x).
The proof of the proposition is complete.

Remark 4. In its essentials the above result says that if we allow the trajectory
to continue after the first exit time but assume that it is cheaper to stop at the first exit
time than to continue until the trajectory reaches the boundary again, then the value
function is lower semicontinuous. The assumption (A) is not satisfied at the boundary
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point x = 1 for Example 1 since the only r in this case is r = 1 and the trajectory
starting at x = 1 using the only control u = −1 reaches the boundary state x = 0 at
time r = 1, but 1 = h(1) �≤ h(y[1, u](1)) = 0. On the other hand, the assumption (A)
is satisfied by Example 2 and hence the value function is lower semicontinuous.

Combining Theorem 2.4 and Proposition 2.5, we have the following corollary.
Corollary 2.6. Under assumptions (H1), (H2), and (A), the value function is

the minimum lower semicontinuous solution of the H–J equation involving the proxi-
mal subdifferentials (in E), i.e.,

λW (x) +H(x,−∂pW (x)) = 0 ∀x ∈ E,(7)

with the natural boundary condition

W (x) = h(x) ∀x ∈ ∂E.(8)

One may wonder whether the natural boundary condition (8) is enough for the
uniqueness of the solution to (7). The following example gives a negative answer.

Example 3. Let E = R2\{0} be the state space and the control set U = [−1, 1].
Consider the exit time problem where f(x, u) ≡ 1, g(x, u) = (u, 0), h(x) = 0, λ = 1. It
is easy to see that

V (x) =

{∫ |x1|
0
e−sds = 1− e−|x1| if x2 = 0,∫∞

0
e−sds = 1 if x2 �= 0,

H(x, p) = max{p1u : u ∈ [−1, 1]} − 1 = |p1| − 1,

and

∂pV (x1, 0) =

 (e−x1 , 0) if x1 > 0,
(−ex1 , 0) if x1 < 0,
[−1, 1]× {0} if x1 = 0.

Hence the value function is a lower semicontinuous solution of the H–J equation (7)
with the natural boundary condition (8). However, the functionW (x) = 1 if x �= 0 and
W (0) = 0 is also a lower semicontinuous solution of (7), (8). Indeed, by Corollary 2.6,
the value function is the minimum solution of the H–J equation (7) with the natural
boundary condition V (0) = 0.

The above example shows that the natural boundary condition (8) may not be
enough to ensure the uniqueness of the solution to the H–J equation involving the
proximal subdifferentials (7). However, V satisfies the subdifferential-type boundary
condition

λV (0) +H(x,−∂pV (0)) ≤ 0

while W (x) does not satisfy the above boundary condition. (Note ∂pW (0) = R2.)
We now give a compatibility condition stronger than assumption (A) under which the
value function is not only lower semicontinuous but also a unique lower semicontinuous
solution to the H–J equation involving the proximal subdifferentials with the natural
boundary condition and the subdifferential-type boundary condition.

(H3) ∀ x ∈ O \ E, all controls u ∈ U

h(x) ≤
∫ r

0

e−λsf(y[x, u](s), u(s))ds+ e−λrh(y[x, u](r)) ∀0 ≤ r < τ∗,(9)
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where

τ∗ := inf{t > 0 : y[x, u](t) �∈ O \ E}

and when

τ∗ = ∞,
∫ τ∗

0

e−λsf(y[x, u](s), u(s))ds

converges and the limit limr→∞ e−λrh(y[x, u])(r)) exists and is finite.
Remark 5. When E = Rd and h = 0 the exit time problem becomes an infinite

horizon problem and assumption (H3) is satisfied vacuously. If f ≥ 0 and h = 0, then
assumption (H3) is also satisfied. This includes the time optimal control problem since
solving a time optimal control problem is equivalent to solving an exit time problem
with f = 1 and h = 0. Note that (H3) is a local version of the assumption (5.8) in
Bardi and Capuzzo-Dolcetta [1] and (H3′) in Ye and Zhu [24].

The statement of the following theorem is known from Corollary 4.5 of Ye and
Zhu [24] for the case where λ > 0 and h is bounded under the assumption that (9)
is satisfied globally ∀x ∈ Rd. However, the proof we give here is independent and
different.

Theorem 2.7. Under assumptions (H1)–(H3), the value function V (x) is a
unique lower semicontinuous solution of the H–J equation involving the proximal sub-
differentials (in E), i.e.,

λV (x) +H(x,−∂pV (x)) = 0 ∀x ∈ E

with the natural boundary condition

V (x) = h(x) ∀x ∈ O\E

and the subdifferential-type boundary condition, i.e.,

λV (x) +H(x,−∂pV (x)) ≤ 0∀x ∈ ∂E.

Remark 6. Note that a similar result was proved in Theorem 5.5 of Bardi and
Capuzzo-Dolcetta [1] for the lower semicontinuous envelope of the value function in
the viscosity solution sense in the case where λ > 0 and h is bounded under the
assumption that (9) is satisfied globally ∀x ∈ Rd.

3. Optimality principle, invariance, and the H–J equation.
Definition 3.1. Let W (x) : G :→ R where G ⊆ Rd is an open set. We say that

W (x) satisfies
(a) the superoptimality principle in G if and only if ∀x ∈ G there exists a control
u ∈ U such that

W (x) ≥
∫ τ

0

e−λsf(y[x, u](s), u(s))ds+ e−λτW (y[x, u](τ)) ∀0 ≤ τ < τ∗;

(b) the suboptimality principle in G if and only if ∀x ∈ G and ∀u ∈ U ,

W (x) ≤
∫ τ

0

e−λsf(y[x, u](s), u(s))ds+ e−λτW (y[x, u](τ)) ∀0 ≤ τ < τ∗.
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Here τ∗ := inf{t > 0 : y[x, u](t) �∈ G} is the exit time from set G.
The following facts are well known from the Bellman optimality principle.
Proposition 3.2. The value function V (x) satisfies the superoptimality principle

in E and suboptimality principle in E.
Furthermore, the following results indicate that not only the value function but

also its lower (upper) semicontinuous envelope satisfies the superoptimality (subopti-
mality) principle in E.

Proposition 3.3. The lower semicontinuous envelope of the value function V∗(x)
satisfies the superoptimality principle in E and the upper semicontinuous envelope of
the value function V ∗(x) satisfies the suboptimality principle in E.

Proof. Fix x ∈ E, and suppose V∗(x) = limn→∞ V (xn) where limn→∞ xn =
x, xn ∈ E. Then by Proposition 3.2, there exists un ∈ U and t∗[xn, un] = t∗n such that

V (xn) ≥
∫ τ

0

e−λsf(y[xn, un](s), un(s))ds+ e
−λτV (y[xn, un](τ)) ∀0 ≤ τ < t∗n.

Without loss of generality assume that t∗n → t∗ where t∗ may be finite or infinity.
Let 0 ≤ τ < t∗. Hence, for n large enough τ ≤ t∗n. Taking limits and using the
compactness of relaxed controls, we find a control u ∈ U such that

V∗(x) ≥
∫ τ

0

e−λsf(y[x, u](s), u(s))ds+ e−λτV∗(y[x, u](τ)) ∀0 ≤ τ < t∗.

Similarly we can prove that V ∗(x) satisfies the suboptimality principle.
In the following proposition, we show that either semicontinuity on Ē and the

optimality principle in E or the suboptimality principle in an open set containing Ē
gives the comparison results.

Proposition 3.4.
(a) Suppose that W satisfies the superoptimality principle in E. If W is lower

semicontinuous on Ē and

W (x) ≥ h(x) ∀x ∈ ∂E,

then W (x) ≥ V (x) ∀x ∈ Ē.
(b) Suppose that W satisfies the suboptimality principle in E. If W is upper

semicontinuous on Ē and

W (x) ≤ h(x) ∀x ∈ ∂E,

then W (x) ≤ V (x) ∀x ∈ Ē.
(b′) Suppose that W satisfies the suboptimality principle in the open set O con-

taining Ē and

W (x) ≤ h(x) ∀x ∈ ∂E.

Then W (x) ≤ V (x) ∀x ∈ Ē.
Proof. (a) Suppose that W satisfies the superoptimality in E and W (x) ≥

h(x) ∀x ∈ ∂E. Then ∀x ∈ E there exists u ∈ U such that ∀τn ∈ [0, t∗).

W (x) ≥
∫ τn

0

e−λsf(y[x, u](s), u(s))ds+ e−λτnW (y[x, u](τ)).
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Without loss of generality, assume that τn → t∗. Taking limits in the above inequality,
we have by the compactness of relaxed controls and the lower semicontinuity of the
function W that

W (x) ≥
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt∗W (y[x, u](t∗))

≥
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt∗h(y[x, u](t∗))

≥ V (x).
Similarly we can prove (b).

(b′) Now suppose W satisfies the suboptimality in O and W (x) ≤ h(x) ∀x ∈ ∂E.
If x ∈ ∂E, then W (x) ≤ h(x) = V (x). If x ∈ E, then ∀u ∈ U we have

W (x) ≤
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt∗W (y[x, u](t∗))(10)

≤
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt∗h(y[x, u](t∗)).(11)

Hence W (x) ≤ V (x).
Definition 3.5 (see [22, Definition 3.1]). Suppose Ω ⊂ Rn is nonempty, Θ ⊂ Rn

is open, and Γ : Rn =⇒ Rn is a set-valued map.
(a) Then (Γ,Ω) is weakly invariant in Θ provided that ∀x ∈ Ω ∩ Θ, there ex-

ists an absolutely continuous function y(·) that satisfies ẏ(s) ∈ Γ(y(s)) a.e.,
y(0) = x, and

y(s) ∈ Ω ∀s ∈ [0, τ∗).

(b) Then (Γ,Ω) is strongly invariant in Θ provided that ∀x ∈ Ω ∩Θ and for any
absolutely continuous function y(·) that satisfies ẏ(s) ∈ Γ(y(s)) a.e., y(0) = x
one has

y(s) ∈ Ω ∀s ∈ [0, τ∗)

where τ∗ := inf{t > 0 : y(t) �∈ Θ}.
Define

F (s, x, r) := {(g(x, u),−e−λsf(x, u)) : u ∈ U},
F̃ (s, x, r) := {(g(x, u), e−λsf(x, u)) : u ∈ U}.

We write {1} × F for the set-valued map defined as

({1} × F )(s, x, r) := {(1, g(x, u),−e−λsf(x, u)) : u ∈ U}.
Similarly, we define {1} × F̃ and {−1} × {−F}. Let W : G → R. We denote the
epigraph of the function e−λtW (x) by XW , i.e.,

XW := {(t, x, r) : r ≥ e−λtW (x)}.
The following results show that the optimality principles are equivalent to the invari-
ance properties.

Proposition 3.6 (equivalence of optimality principles and invariances). Let G
be an open set in Rd.
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(a) A function W satisfies the superoptimality principle in G if and only if ({1}×
F,XW ) is weakly invariant in R×G×R;

(b) A function W satisfies the suboptimality principle in G if and only if either

({1}×{F̃}, X−W ) is strongly invariant in R×G×R or ({−1}×{−F}, XW )
is strongly invariant in R×G×R.

Proof. Since the proof is straightforward by using definitions, we prove only the
second part of (b). Let (t, x, r) ∈ XW ∩R×G×R. Then x ∈ G and r ≥ e−λtW (x).
By suboptimality principle, we have ∀u ∈ U ,

eλτW (y[x, u](−τ)) ≤
∫ 0

−τ

e−λsf(y[x, u](s), u(s))ds+W (x) ∀0 ≤ τ ≤ τ∗,

where τ∗ := inf{t > 0 : y[x, u](−τ) �∈ G}. Let z0(τ) = −τ + t, z(τ) = y[x, u](−τ),
zd+1(τ) = r −

∫ −τ

0
e−λ(t+s)f(y[x, u](s), u(s))ds. Then z0(0) = t, z(0) = y[x, u](0) =

x, zd+1(0) = r, (ż0, ż, ˙zd+1)(s) ∈ ({−1} × {−F})(z0(s), z(s)), and

zd+1(τ) = r −
∫ −τ

0

e−λ(t+s)f(y[x, u](s), u(s))ds

≥ e−λtW (x)−
∫ −τ

0

e−λ(t+s)f(y[x, u](s), u(s))ds

= e−λt(W (x)−
∫ −τ

0

e−λsf(y[x, u](s), u(s))ds)

≥ e−λ(t−τ)W (y[x, u](−τ))
= e−λz0(τ)W (z(τ)).

That is, (z0, z, zd+1)(τ) ∈ XW ∀0 ≤ τ < τ∗. So ({−1} × {−F}, XW ) is strongly
invariant in R × G × R. Conversely, we can show that if ({−1} × {−F}, XW ) is
strongly invariant in R × G × R, then W satisfies the suboptimality principle in
G.

In the case when the function satisfying the optimality principles has semicontinu-
ity properties, the invariances can be described by the H–J equations in the following
way.

Proposition 3.7 (equivalence of invariances and the H–J equations). Let G be
an open subset in Rd.

(a) Let W : G→ R be a lower semicontinuous function. Then ({1} × F,XW ) is
weakly invariant in R×G×R if and only if

λW (x) +H(x,−∂pW (x)) ≥ 0 ∀x ∈ G.

(b) Let W : G→ R be an upper semicontinuous function. Then ({1} × F̃ ,X−W )
is strongly invariant in R×G×R if and only if

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ G.

(b′) LetW : G→ R be a lower semicontinuous function. Then ({−1}×{−F}, XW )
is strongly invariant in R×G×R if and only if

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ G.
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The proof is based on the following lemmas. We denote Np
Ω(x) = ∂pδΩ(x), where

δΩ is the indicator function of a set Ω defined by

δΩ(x) =

{
0 if x ∈ Ω,
+∞ if x �∈ Ω.

Lemma 3.8 (see, e.g., [22, Theorem 3.1]). Suppose that for each x ∈ Rn, Γ(x) is
not empty, convex, and compact, and the graph gphΓ := {(x, v) : v ∈ Γ(x)} is closed
in R2n. Let Ω ⊆ Rn be closed and Θ ⊆ Rn be open.

(a) Then (Γ,Ω) is weakly invariant in Θ if and only if

min{〈v, ξ〉 : v ∈ Γ(x)} ≤ 0 ∀x ∈ Ω ∩Θ, ξ ∈ Np
Ω(x),

where Np
Ω(x) is the proximal normal cone to Ω at x ∈ Ω defined by

Np
Ω(x) := {ξ ∈ Rn : ∃M > 0 s.t. 〈ξ, x′ − x〉 ≤M‖x′ − x‖2 ∀x′ ∈ Ω}.

(b) In addition, assume that Γ is Lipschitz continuous; i.e., for each compact
subset C ⊂ Rn, there exists K > 0 so that

Γ(x) ⊂ Γ(y) +K‖x− y‖B ∀x, y ∈ C.
Then (Γ,Ω) is strongly invariant in Θ if and only if

max{〈v, ξ〉 : v ∈ Γ(x)} ≤ 0 ∀x ∈ Ω ∩Θ, ξ ∈ Np
Ω(x).

Lemma 3.9. Suppose that for each x ∈ Rn, Γ(x) is not empty, convex, and
compact, and the graph gphΓ := {(x, v) : v ∈ Γ(x)} is closed in R2n. Let θ be a lower
semicontinuous function and Θ be an open subset of Rn. Then

(a)

min{〈v1, η〉+ v2ρ : (v1, v2) ∈ Γ(z, r)} ≤ 0 ∀(z, r) ∈ epiθ ∩Θ,

(η, ρ) ∈ Np
epiθ(z, r)(12)

if and only if

min{〈v1, η〉 − v2 : (v1, v2) ∈ Γ(z, θ(z))} ≤ 0 ∀z ∈ Θ, η ∈ ∂pθ(z).(13)

(b) In addition, assume that Γ is Lipschitz continuous. Then

max{〈v1, η〉+ v2ρ : (v1, v2) ∈ Γ(z, θ(z))} ≤ 0 ∀(z, r) ∈ epiθ ∩Θ,

(η, ρ) ∈ Np
epiθ(z, r)(14)

if and only if

max{〈v1, η〉 − v2 : (v1, v2) ∈ Γ(z, θ(z)))} ≤ 0 ∀z ∈ Θ, η ∈ ∂pθ(z).(15)

Proof. Since an equivalent definition of the proximal subdifferential of φ at z is
that

η ∈ ∂pθ(z) if and only if (η,−1) ∈ Np
epiθ(z, θ(z)),

(13) and (15) are (12) and (14) with r = θ(z) and ρ = −1, respectively. So it suffices
to prove that (13) and (15) imply (12) and (14), respectively.
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We first suppose that (13) holds. Let (z, r) ∈ epiθ ∩Θ, (η, ρ) ∈ Np
epiθ(z, r). Then

by the nature of epigraphs, we have ρ ≤ 0. Let us assume first that ρ < 0 from which it
follows that r = θ(z). Since Np

epiθ(z, θ(z)) is a cone, we have (−η
ρ ,−1) ∈ Np

epiθ(z, θ(z))

and consequently −η
ρ ∈ ∂pθ(z). By (13), we have

min

{
−
〈
v1,
η

ρ

〉
− v2 : (v1, v2) ∈ Γ(z, θ(z))

}
≤ 0.

Since ρ < 0, we have

min{〈v1, η〉+ v2ρ : (v1, v2) ∈ Γ(z, θ(z))} ≤ 0.

That is, (12) holds ∀ ρ < 0.
We see that (η, ρ) = 0 trivially satisfies (12). Now suppose ρ = 0 and η �= 0,

from which it follows that (η, 0) ∈ Np
epiθ(z, θ(z)). By definition (cf. [16]), η is in the

singular limiting subdifferential of θ at z. So there exists {zi}, {ηi}, and {ρi} so that
zi → z, θ(zi) → θ(z), ηi → η, ρi < 0, ρi ↑ 0, and −ηi

ρi
∈ ∂pθ(zi). By (13), we have

min

{
−
〈
v1,
ηi
ρi

〉
− v2 : (v1, v2) ∈ Γ(zi, θ(zi))

}
≤ 0.

So there exist (vi1, v
i
2) ∈ Γ(zi, θ(zi)) such that

〈vi1, ηi〉+ vi2ρi ≤ 0.

Without loss of generality, assume that vi1 → v1, v
i
2 → v2. Then (v1, v2) ∈ Γ(z, θ(z))

and

〈v1, η〉+ v2 · 0 ≤ 0 ∀(η, 0) ∈ Nepiθ(z, θ(z)),

which is (12) when ρ = 0.
Now suppose (15) holds. Let (η, ρ) ∈ Np

epiθ(z, r), (z, r) ∈ epiθ ∩ Θ. Then ρ ≤ 0.
If ρ < 0, then the proof is similar to that in (a). If ρ = 0, then r = θ(z), (η, 0) ∈
Np

epiθ(z, θ(z)). So there exist {zi}, {ηi}, and {ρi} such that zi → z, θ(zi) → θ(z), ηi →
η, ρi < 0, ρi ↑ 0, and −ηi

ρi
∈ ∂pθ(zi). By (15), we have

max

{
−
〈
v1,
ηi
ρi

〉
− v2 : (v1, v2) ∈ Γ(zi, θ(zi))

}
≤ 0.

That is,

max{〈v1, ηi〉+ v2ρi : (v1, v2) ∈ Γ(zi, θ(zi))} ≤ 0.

Since Γ is Lipschitz continuous, letting (v1, v2) ∈ Γ(zi, θ(zi)), we have

Γ(zi, θ(zi)) ⊂ Γ(z, θ(z)) +K(‖z − zi‖2 + |θ(z)− θ(zi)|2)1/2B.
Therefore there exists (vi1, v

i
2) ∈ Γ(z, θ(z)) such that

(v1, v2) = (vi1, v
i
2) +K(‖x1 − zi‖2 + |θ(x1)− θ(zi)|2)1/2e,

where ‖e‖ ≤ 1. Hence

〈v1, ηi〉+ v2ρi = 〈vi1, ηi〉+ vi2ρi + 〈λie1, ηi〉+ 〈λie2, ρi〉
≤ 〈λie1, ηi〉+ 〈λie2, ρi〉,
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where λi = K(‖x1 − zi‖2 + |θ(x1)− θ(zi)|2)1/2 → 0 as i→ ∞. Taking limits, we have

〈v1, η〉+ v2 · 0 ≤ 0 ∀(η, 0) ∈ Nepiθ(x1, θ(x1)).

That is, (14) when ρ = 0.
Lemma 3.10 (see [24, Lemma 4.1]). Let W be an extended-valued lower semi-

continuous function. Then

∂p(e
−λtW (x)) = {−λe−λtW (x)} × {e−λt∂pW (x)}.

Proof of Proposition 3.7. By virtue of (a) in Lemmas 3.8 and 3.9, ({1} × F,XW )
is weakly invariant in R×G×R if and only if

min{ξ1 + ξ2 · g(x, u) + e−λtf(x, u) : u ∈ U} ≤ 0 ∀x ∈ G, ξ ∈ ∂p(e−λtW (x)).

By Lemma 3.10, that is,

min{−λW (x) + η · g(x, u) + f(x, u) : u ∈ U} ≤ 0 ∀x ∈ G, η ∈ ∂pW (x).

Hence

λW (x) +H(x,−η) ≥ 0 ∀x ∈ G, η ∈ ∂pW (x).

By virtue of (b) in Lemmas 3.8 and 3.9, ({1} × F̃ ,X−W ) is strongly invariant in
R×G×R if and only if

max{ξ1 + ξ2 · g(x, u)− e−λtf(x, u) : u ∈ U} ≤ 0 ∀x ∈ G, ξ ∈ ∂p(−e−λtW (x)).

By Lemma 3.10, that is,

max{λW (x)− η · g(x, u)− f(x, u) : u ∈ U} ≤ 0 ∀x ∈ G, η ∈ ∂p(−W (x)).

Hence

λW (x) +H(x,−η) ≤ 0 ∀x ∈ G, η ∈ ∂pW (x).

By virtue of (b) in Lemmas 3.8 and 3.9, ({−1}×{−F}, XW ) is strongly invariant
in R×G×R if and only if

max{−ξ1 − ξ2 · g(x, u)− e−λtf(x, u) : u ∈ U} ≤ 0 ∀x ∈ G, ξ ∈ ∂p(e−λtW (x)).

By Lemma 3.10, that is,

max{λW (x)− η · g(x, u)− f(x, u) : u ∈ U} ≤ 0 ∀x ∈ Rd, η ∈ ∂pW (x).

Hence

λW (x) +H(x,−η) ≤ 0 ∀x ∈ G, η ∈ ∂pW (x).

We now derive from Propositions 3.6 and 3.7 the equivalence between the opti-
mality principles and the H–J equations.

Proposition 3.11 (equivalence of optimality principles and the H–J equations).
Let G be an open subset of Rd.
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(a) Let W : G → R be a lower semicontinuous function. Then it satisfies the
superoptimality principle in G if and only if it is a supersolution of the H–J
equation involving the proximal subdifferentials in G; i.e.,

λW (x) +H(x,−∂pW (x)) ≥ 0 ∀x ∈ G.
(b) Let W : G → R be an upper semicontinuous function. Then it satisfies

the suboptimality principle in G if and only if it is a subsolution of the H–J
equation involving the proximal superdifferentials in G; i.e.,

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ G.
(b′) Let W : G → R be a lower semicontinuous function. Then it satisfies the

suboptimality principle in G if and only if it is a subsolution of the H–J
equation involving the proximal subdifferentials in G; i.e.,

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ G.
4. Proof of main results.
Proof of Theorem 2.2. By Proposition 3.3, V∗(x) satisfies the superoptimality

principle in E. So by (a) of Proposition 3.11, it is a supersolution of the H–J equation
involving the proximal subdifferentials in E.

We now prove that V∗ satisfies the boundary condition

max{V∗(x)− h(x), λV∗(x) +H(x,−∂pV∗(x))} ≥ 0 ∀x ∈ ∂E.(16)

If V∗(x)− h(x) ≥ 0 ∀x ∈ ∂E, then the boundary condition (16) holds. Otherwise
suppose that there exists x ∈ ∂E such that V∗(x) < h(x).

Let xn → x, V (xn) → V∗(x). We may assume without loss of generality that xn ∈
E ∀n. Indeed, if there exists a subsequence {xp} of {xn} such that xp ∈ ∂E ∀p, then,
by definition of the value function on the boundary of E and the lower semicontinuity
of the exit cost h, we have

V∗(x) = lim
n→∞V (xn) = lim

p→∞V (xp) = lim
p→∞h(xp) ≥ h(x),

which contradicts the assumption that V∗(x) < h(x).
Now by the Bellman optimality principle, there exists a control un ∈ U , t∗n :=

t∗[xn, un] > 0 such that

V (xn) ≥
∫ r

0

e−λsf(y[xn, un](s), un(s))ds+ e
−λτnV (y[xn, un](r)) ∀0 ≤ r ≤ t∗n.

Now let r̄ = lim inf t∗n. We must have r̄ > 0, since otherwise we can find a
subsequence of {t∗n} such that t∗n → 0 so that

V∗(x) = lim
n→∞V (xn)

≥ lim inf
n→∞

∫ t∗n

0

e−λsf(y[xn, un](s), un(s))ds+ lim inf
n→∞ e−λt∗nh(y[xn, un](t

∗
n))

≥ h(x) since h is lower semicontinuous,

which is a contradiction. Now by the compactness of relaxed controls on [0, r̄], there
exists u = limn→∞ un such that

V∗(x) ≥
∫ r

0

e−λsf(y[x, u](s), u(s))ds+ e−λrV∗(y[x, u](r)) ∀r ∈ (0, r̄].
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Let ξ ∈ ∂pV∗(x). Then there exist σ > 0, δ > 0 such that

V∗(x′)− V∗(x) + σ‖x′ − x‖2 ≥ 〈ξ, x′ − x〉 ∀x′ ∈ x+ δB.
Let x′ = y[x, u](r) where r ∈ [0, r̄] is fixed. Then

〈ξ, y[x, u](r)− x〉 ≤ σ‖y[x, u](r)− x‖2 + V∗(y[x, u](r))− V∗(x)
≤ σ‖y[x, u](r)− x‖2 − eλr

∫ r

0

e−λsf(y[x, u](s), u(s))ds

+eλrV∗(x)− V∗(x).
Since y[x, u](r)− x = ∫ r

0
g(y[x, u](s), u(s))ds, one has∫ r

0

[〈−ξ, g(y[x, u](s), u(s))〉 − f(y[x, u](s), u(s))]ds

+

∫ r

0

[(1− eλ(r−s))f(y[x, u](s), u(s))]ds+ (eλr − 1)V∗(x) ≥ −σ‖y[x, u](r)− x‖2.

By virtue of the boundedness of g and the Lipschitz continuity of g, f uniformly in
u ∈ U , one has

‖y[x, u](r)− x‖ ≤Mgr

(‖ξ‖Lg + Lf )Mgs+ 〈ξ, g(x, u(s))〉 − f(x, u(s))
≥ 〈ξ, g(y[x, u](s), u(s))〉 − f(y[x, u](s), u(s)),

where Mg, Lg, Lf denote the bound of g and the Lipschitz constants of g, f , respec-
tively. Therefore, one has∫ r

0

[〈−ξ, g(x, u(s))〉 − f(x, u(s))]ds+ (eλr − 1)V∗(x)

≥ o(r)−
∫ r

0

[(1− eλ(r−s))f(y[x, u](s), u(s))]ds

≥ o(r)−
∫ r

0

(1− eλ(r−s))Mfds,

where o(r) indicates a function g(r) such that limt→0+ |g(r)|/r = 0 and Mf is the
bound of f . Since the term in the square bracket in the first integral is bounded from
above by

H(x,−ξ) = max{〈−ξ, g(x, u)〉 − f(x, u) : u ∈ U},
(17) implies that

H(x,−ξ)r + (eλr − 1)V∗(x) ≥ o(r)−
∫ r

0

(1− eλ(r−s))Mfds.

Dividing the above inequality by r and letting r → 0, we have

λV∗(x) +H(x,−∂pV∗(x)) ≥ 0.

Similarly by Proposition 3.3, V ∗(x) satisfies the suboptimality principle. So by
Proposition 3.6, ({−1} × {−F}, XV ∗) is strongly invariant in R × E × R. Hence, by
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Proposition 3.7, V ∗ is a proximal subsolution of the H–J equation. The boundary
condition can be proved similarly.

Proof of Theorem 2.3. By Proposition 3.2, the value function V (x) satisfies the
suboptimality principle in E. Since V (x) is upper semicontinuous, by (b) of Proposi-
tion 3.11, it is a subsolution of the H–J equation involving the proximal superdiffer-
entials, i.e.,

λV (x) +H(x,−∂pV (x)) ≤ 0 ∀x ∈ E.
Conversely, let W (x) be an upper semicontinuous function such that

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ E
W (x) ≤ h(x) ∀x ∈ ∂E.

Then by (b) of Proposition 3.11, W satisfies the suboptimality principle in E. By (b)
of Proposition 3.4, W (x) ≤ V (x) ∀x ∈ Ē.

Proof of Theorem 2.4. By Proposition 3.2, the value function V satisfies both
the superoptimality principle in E and the suboptimality principle in E. Since the
value function is assumed to be lower semicontinuous, by the equivalence of the opti-
mality principles and the H–J equations ((a) and (b′) of Proposition 3.11), the value
function is both a supersolution and subsolution (hence a solution) of the H–J equa-
tion involving the proximal subdifferentials. Now if W (x) is a lower semicontinuous
solution of the H–J equation involving the proximal subdifferentials in E with the
natural boundary condition W (x) = h(x) ∀x ∈ ∂E, then by (a) of Proposition 3.4,
W (x) ≥ V (x) ∀x ∈ E.

Proof of Theorem 2.7. By Proposition 3.2, the value function V satisfies both
the superoptimality principle in E and the suboptimality principle in E. Observing
that V (x) = h(x) ∀x ∈ Ec we have by assumption (H3) that the value function also
satisfies the suboptimality principle in O which contains Ē. Since by Proposition 2.5
the value function is lower semicontinuous, by (a) and (b′) of Proposition 3.11,

λV (x) +H(x,−∂pV (x)) ≥ 0 ∀x ∈ E,(17)

λV (x) +H(x,−∂pV (x)) ≤ 0 ∀x ∈ O.(18)

Now suppose W is a lower semicontinuous function that satisfies (17), (18), and the
natural boundary condition W (x) = h(x) ∀x ∈ O\E. Then by Proposition 3.11, W
satisfies both the superoptimality principle in E and the suboptimality principle in
O. Hence by (a) and (b′) of Proposition 3.4, W (x) = V (x) ∀x ∈ Ē.
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