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Abstract. The generalized bilevel programming problem (GBLP) is a bilevel mathematical
program where the lower level is a variational inequality. In this paper we prove that if the objective
function of a GBLP is uniformly Lipschitz continuous in the lower level decision variable with respect
to the upper level decision variable, then using certain uniform parametric error bounds as penalty
functions gives single level problems equivalent to the GBLP. Several local and global uniform para-
metric error bounds are presented, and assumptions guaranteeing that they apply are discussed. We
then derive Kuhn–Tucker-type necessary optimality conditions by using exact penalty formulations
and nonsmooth analysis.
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1. Introduction. We consider the following mathematical programming problem
with variational inequality constraints (which is called the generalized bilevel program-
ming problem (GBLP)):

GBLP minimize f(x, y) subject to x ∈ X and y ∈ S(x)(1)

where f : Rn+m → R, X is a nonempty and closed subset of Rn, and for each x ∈ X,
S(x) is the solution set of a variational inequality with parameter x,

S(x) = {y ∈ U(x) : 〈F (x, y), y − z〉 ≤ 0 ∀z ∈ U(x)}.

Here U : X → Rm is a set-valued map and F : Rn+m → Rm is a function. Throughout
this paper, we make the blanket assumption that GrS := {(x, y) : x ∈ X, y ∈ S(x)},
the graph of S, is not empty.

One can interpret the above problem as a hierarchical decision process where there
are two decision makers and the upper level decision maker always has the first choice
as follows: given a decision vector x for the upper level decision maker (the leader),
S(x) is viewed as the lower level decision maker’s (the follower’s) decision set, i.e.,
the set of decision vectors that the follower may use. Assuming that the game is
cooperative (i.e., the follower’s decision set S(x) is not a singleton), the follower allows
the leader to choose the lower level decision from S(x). Having complete knowledge
of the follower’s possible reactions, the leader selects decision vectors x ∈ X and
y ∈ S(x), minimizing his objective function f(x, y).
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If F (x, y) is the partial gradient of a real-valued differentiable function (i.e.,
F (x, y) = −∇yg(x, y), where g : Rn+m → R is differentiable in y and U(x) is convex),
then the variational inequality with parameter x,

〈F (x, y), y − z〉 ≤ 0 ∀z ∈ U(x),(2)

is the first-order necessary optimality condition for the following optimization problem
with parameter x:

Px minimizey g(x, y) subject to y ∈ U(x)(3)

(see, e.g., [13]). Furthermore, if g(x, y) is pseudoconvex in y (i.e., 〈∇yg(x, y), y −
z〉 ≤ 0 implies g(x, y) ≤ g(x, z) for all y, z ∈ U(x)), then a vector y ∈ U(x) is a
solution to (2) if and only if it is a global optimal solution to (3). In this case,
the mathematical programming problem with variational inequality constraints (1)
is the classical bilevel programming problem (CBLP), or Stackelberg game (see, e.g.,
[1, 6, 17, 26, 29, 30, 31, 32]),

CBLP minimize f(x, y) subject to x ∈ X and y ∈ Σ(x),

where Σ(x) is the set of solutions for the problem Px. The correspondence between
lower level problems breaks down if F is not the partial gradient of a function with
respect to y. Since problem (1) includes problems that are not classical bilevel pro-
gramming problems, we call problem (1) a generalized bilevel programming problem
(GBLP). The problem has been studied under the name “mathematical programs
with equilibrium constraints” by other authors (see [12] and [19]).

In this paper we assume that

U(x) = {y ∈ Rm : c(x, y) ≤ 0},
where c : Rn+m → Rd is a function. Throughout this paper we assume that f, c, and
F are continuous. Under these assumptions, it is known [12, Lem. 1] that the solution
set S(x) of the variational inequality with parameter x is closed. Refer to [12] for the
results on the existence of solutions for GBLP and CBLP.

Reducing a (generalized or classical) bilevel programming problem to a single level
optimization problem is a useful strategy from both theoretical and computational
points of view. There are several equivalent single level formulations for the GBLP.
The Karush–Kuhn–Tucker (KKT) approach is to interpret the variational inequality
constraint y ∈ S(x) with y being a solution of the following optimization problem:

minimize 〈F (x, y), z〉 subject to z ∈ U(x),

and to replace this minimization problem by its KKT necessary optimality conditions.
These conditions are also sufficient if the feasible region U(x) is convex. Assuming
that U(x) is convex, c(x, y) is differentiable in y and one of the usual constraint qual-
ifications, such as the Mangasarian–Fromowitz, condition is satisfied by the system of
constraints c(x, y) ≤ 0 in terms of variable y at a feasible point (x∗, y∗). Then (x∗, y∗)
is a solution to the GBLP if and only if there exists u∗ ∈ Rd such that (x∗, y∗, u∗) is
a solution to the following problem:

KS minf(x, y)

s.t. F (x, y) +∇yc(x, y)Tu = 0,

〈u, c(x, y)〉 = 0,(4)

u ≥ 0, c(x, y) ≤ 0,

x ∈ X, y ∈ Rm.
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To handle general GBLPs and CBLPs where U(x) may or may not be convex,
the value function and the gap function can be used to derive equivalent single level
problems. Consider the CBLP. Define the value function V (x) : X → [−∞,∞] by

V (x) := inf{g(x, y) : y ∈ U(x)}.(5)

Then, for any x ∈ X, we have

g(x, y)− V (x) ≥ 0 ∀y ∈ U(x), and g(x, y)− V (x) = 0 if and only if y ∈ Σ(x).(6)

Thus, CBLP is equivalent to the following single level optimization problem:

VS minf(x, y)

s.t. g(x, y)− V (x) = 0,(7)

c(x, y) ≤ 0,

x ∈ X, y ∈ Rm.

Following [14] and [25], define the gap function G0(x, y) : X ×Rm → [−∞,∞] by

G0(x, y) := sup{〈F (x, y), y − z〉 : z ∈ U(x)}.(8)

It is easy to see that, for any x ∈ X,

G0(x, y) ≥ 0 ∀y ∈ U(x) and G0(x, y) = 0 if and only if y ∈ S(x).(9)

Hence GBLP is equivalent to the following single level optimization problem:

GS minf(x, y)

s.t. G0(x, y) = 0,(10)

c(x, y) ≤ 0,

x ∈ X, y ∈ Rm,

Using the single level equivalent formulations KS, VS, and GS (see (4), (7), and
(10)), one can derive Fritz John-type necessary optimality conditions for the origi-
nal GBLP or CBLP. (See, e.g., [30] for the derivation of Fritz John-type necessary
optimality conditions for CBLP.) In deriving Kuhn–Tucker-type necessary optimal-
ity conditions, however, we need to find constraint qualifications. Unfortunately,
the usual constraint qualifications such as the Mangasarian–Fromowitz condition,
never hold for problems VS and GS. To see this, for convenience, we assume that
U(x) = Rm, X = Rn and that g(x, y), V (x), and G0(x, y) are Lipschitz continuous.
Now suppose that (x∗, y∗) is a solution of GBLP. Then (6) and (9) imply the inclusions
0 ∈ ∂(g(x∗, y∗)−V (x∗)) and 0 ∈ ∂G0(x∗, y∗), respectively. These imply that there al-
ways exist abnormal multipliers for problems VS and GS. This is equivalent to saying
that the Mangasarian–Fromowitz condition will never hold (see, e.g., [30, Prop. 3.1]
for the equivalence). This phenomenon is intrinsic in bilevel problems. Even when
using the KKT approach, the usual constraint qualifications will never hold for KS as
long as the lower level problem is constrained. The following is a precise statement
of this fact.

Proposition 1.1. Let (x∗, y∗, u∗) be a solution of KS. Suppose that I := {0 ≤
i ≤ d : ci(x

∗, y∗) = 0} 6= ∅. Then the Mangasarian–Fromowitz condition does not
hold at (x∗, y∗, u∗).
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Proof. The complementary slackness condition (4) implies that u∗i = 0 ∀i ∈ Ic :=
{0 ≤ i ≤ d : ci(x

∗, y∗) 6= 0}. So

ci(x
∗, y∗) = 0, i ∈ I

and

−u∗i = 0, i ∈ Ic

are active constraints for KS at (x∗, y∗, u∗). Set

c̃i(x, y, u) := ci(x, y),

ĉi(x, y, u) := −ui,

and

h(x, y, u) := 〈u, c(x, y)〉.

Suppose that there exists a vector v ∈ Rn+m+d such that

〈v,∇c̃i(x∗, y∗, u∗)〉 =
n+m∑
j=1

vj∇jci(x∗, y∗) < 0 ∀i ∈ I

and

〈v,∇ĉi(x∗, y∗, u∗)〉 = −vn+m+i < 0 ∀i ∈ Ic,

where ∇jci(x, y) denotes the gradient of ci with respect to the jth component of the
vector (x, y). Then

〈v,∇h(x∗, y∗, u∗)〉

=
∑
i∈I

ui

n+m∑
j=1

vj∇jci(x∗, y∗) +
∑
i∈Ic

vn+m+ici(x
∗, y∗) < 0.

Thus, the Mangasarian–Fromowitz condition cannot hold at (x∗, y∗, u∗).
The difficulty here is obviously due to the equality constraints (4), (7), and (10),

which reflect the bilevel nature of the problem.
The partial calmness condition is identified in [30] as an appropriate constraint

qualification for problem VS. It is also proved that the existence of a uniformly weak
sharp minimum is a sufficient condition for partial calmness, and a parametric linear
lower level problem is always partially calm.

Recently, using the theory of exact penalization for mathematical programming
problems with subanalytic constraints and the theory of error bounds for quadratic
inequality systems, Luo et al. [19] successfully derived various penalty functions for the
single level equivalent mathematical programming problem KS. By using the theory
of parametric normal equations, Luo et al. [19] also obtained some necessary and
sufficient stationary point conditions for GBLP.

In this paper we use the uniform parametric error bound as a tool to establish
(local or global) exact penalty formulations of several single level mathematical pro-
gramming problems (including KS, VS, and GS) that are equivalent to GBLP. Since
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the exact penalty formulations move the troublesome equality constraints (4), (7),
and (10) to the objective function, we can get Kuhn–Tucker-type necessary optimal-
ity conditions under the usual constraint qualifications. The concept of a uniform
parametric error bound generalizes the uniformly weak sharp minimum defined in
[30]. Thus, the uniform parametric error bounds derived in this paper provide many
more exact penalty formulations than those in [30] for VS. Using the uniform para-
metric error bound as a tool, the conditions we derived in this paper are very general
and distinct (cf. Theorem 6.5) from the ones derived in [19].

The paper is arranged as follows. In the next section we introduce uniform para-
metric error bounds and show that they provide local and global exact penalty for-
mulations of GBLP. In section 3, we discuss several useful uniform parametric error
bounds. Kuhn–Tucker-type necessary optimality conditions for problem GBLP associ-
ated with various uniform parametric error bounds are derived in section 4. In section
5, the relationships between various uniform parametric error bounds are discussed
and some examples are given showing that the various equivalent single level opti-
mization formulations with uniform parametric error bounds and their corresponding
necessary optimality conditions complement each other. In section 6, we show that
uniform parametric error bounds can be used to derive exact penalty formulations for
KS.

2. Partial calmness and exact penalization. In this section we introduce
uniform parametric error bounds and show that they are useful in deriving exact
penalty formulations for GBLP.

Consider the following mathematical programming problem:
MP minimize f(x)

subject to h(x) = 0,
g(x) ≤ 0,
x ∈ C,

where f : Rn → R, h : Rn → R, g : Rn → Rm are lower semicontinuous and C is a
closed subset in Rn. The corresponding perturbed problem is

MP(ε) minimize f(x)
subject to h(x) = ε,

g(x) ≤ 0,
x ∈ C,

where ε ∈ R. The following definition was introduced in [30].
Definition 2.1 (partial calmness). Let x∗ solve MP. The problem MP is said to

be partially calm at x∗ provided that there exist constants µ > 0, δ > 0 such that, for
all ε ∈ δB and all x ∈ x∗ + δB that are feasible for MP(ε), one has

f(x)− f(x∗) + µ|h(x)| ≥ 0.

Here B denotes the open unit ball in Rn. The constants µ and δ are called the modulus
and radius, respectively.

The partial calmness condition is similar to, but different from, the calmness
condition introduced by Clarke and Rockafellar (see, e.g., [5]; see also Definition 4.1)
in that only the equality constraint h(x) = 0 is perturbed.

The concept of calmness was shown to be closely related to “exact penalization”
in [5, Prop. 6.4.3]. More precisely, if x∗ is a local solution of MP and the problem MP
is calm at x∗, then x∗ is a local solution for a penalized problem. In the following
proposition we show that the concept of partial calmness is equivalent to local exact
penalization.
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Proposition 2.2. Assume that f is continuous. Suppose x∗ is a local minimum
of MP and MP is partially calm at x∗. Then there exists µ∗ > 0 such that x∗ is a
local minimum of the following penalized problems for all µ ≥ µ∗:

MPµ minimize f(x) + µ|h(x)|
subject to g(x) ≤ 0,

x ∈ C.
Any local minima of MPµ with µ > µ∗ with respect to the neighborhood of x∗ in which
x∗ is a local minimum are also local minima of MP.

Proof. Suppose that x∗ is a local minimum of MP but not MPµ for any µ > 0.
Then, for each positive integer k, there exists a point xk ∈ x∗ + (1/k)B ⊂ C and
g(xk) ≤ 0 such that

f(xk) + k|h(xk)| < f(x∗).(11)

Since x∗ is a local minimum of MP, the above inequality implies that |h(xk)| > 0.
Therefore,

0 < |h(xk)| < f(x∗)− f(xk)

k
.(12)

Taking the limit as k goes to infinity in (12), one has

|h(xk)| → 0 as k →∞.

But then the inequality (11) contradicts the hypothesis that MP is partially calm at
x∗. Thus for some µ∗ > 0, x∗ must be a local minimum of MPµ∗ .

It is obvious that a local minimum of MPµ∗ must be a local minimum for MPµ
whenever µ ≥ µ∗.

Conversely, let µ > µ∗ and xµ be a local minimum of MPµ in the neighborhood
of x∗ in which x∗ is a local minimum. Then

f(xµ) + µ|h(xµ)| = f(x∗) since x∗ is a local minimum of MPµ,

≤ f(xµ) +
1

2
(µ+ µ∗)|h(xµ)| since

1

2
(µ+ µ∗) > µ∗,

which implies that

(µ− µ∗)|h(xµ)| ≤ 0.

Therefore, h(xµ) = 0, which implies that xµ is also a local minimum of MP.
Remark 2.3. Notice that in the above result, no continuity assumption is required

for the function h(x). When the function h is continuous, it is easy to see that if MP
is partially calm at a solution x∗ of MP with modulus µ and radius ε, then there
exists a δ̂ ≤ δ such that x∗ is a δ̂-local solution to the penalized problem MPµ; i.e.,

f(x) + µ|h(x)| ≥ f(x∗) ∀x ∈ C s.t. g(x) ≤ 0, x ∈ x∗ + δ̂B.

Therefore, in our definition of partial calmness, the restriction on the size of per-
turbation ε ∈ δB can be removed when h is continuous, and it then corresponds to
the definition of calmness given by Burke [2]. Furthermore, the infimum of µ∗ in
Proposition 2.2 can be taken as the modulus of partial calmness.
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For any x ∈ X, y ∈ Rm, define the parametric distance function

dS(x)(y) := inf{‖y − z‖ : z ∈ S(x)}

to be the distance from the point y to the set S(x). The GBLP is equivalent to
a mathematical programming problem involving a parametric distance function con-
straint:

DP minimize f(x, y)
subject to dS(x)(y) = 0,

c(x, y) ≤ 0,
x ∈ X, y ∈ Rm.

It is known (see [5, Prop. 2.4.3]) that if the objective function of a constrained
optimization problem is Lipschitz continuous then the distance function is an exact
penalty term. In what follows, we extend this result to the mathematical programming
problem with variational inequality constraints, GBLP. The constraint implied in the
parametric distance function is, in fact, in the lower level decision variable. It is
natural that we only need to assume that the objective function is locally Lipschitz
in the lower level decision variable uniformly in the upper level decision variable to
prove the exact penalty property of the parametric distance function. We need the
following definition.

From now on we shall use N(z) to denote a neighborhood of z.
Definition 2.4. Let (x∗, y∗) ∈ Rn+m. The function f(x, y) is said to be locally

Lipschitz near y∗ uniformly in x ∈ N(x∗) if there exists L > 0 and a neighborhood
N(y∗) of y∗ such that

|f(x, y′)− f(x, y)| ≤ L|y′ − y| ∀y′, y ∈ N(y∗), x ∈ N(x∗).

The following result generalizes Proposition 2.4.3 of Clarke [5] to GBLP. We omit
the proof of the global result, since it is essentially the same as the local one and the
converse part of the proof in Proposition 2.2.

Theorem 2.5. Let (x∗, y∗) be a local solution of problem DP. Assume that f
is locally Lipschitz near y∗ uniformly in x on a neighborhood of x∗ with constant L.
Then problem DP is partially calm at (x∗, y∗) with modulus L.

Furthermore, let (x∗, y∗) be a global solution of GBLP and assume that f(x, ·) is
Lipschitz continuous in y with constant L > 0 uniformly for all x ∈ X. Then (x∗, y∗)
is a global solution of the penalized problem

DPµ minimize f(x, y) + µdS(x)(y)
subject to c(x, y) ≤ 0,

x ∈ X, y ∈ Rm
for any µ ≥ L, and any other global solution of DPµ for any µ > L is also a global
solution of GBLP.

Proof. Let δ > 0 be such that (x∗, y∗) is a local solution of DP in (x∗, y∗)+2δB ⊂
X × Y . For any 0 ≤ ε < δ, let (x, y) ∈ (x∗, y∗) + δB be feasible for DPε; i.e.,
dS(x)(y) = ε and c(x, y) ≤ 0, (x, y) ∈ (x∗, y∗) + δB. Since S(x) is closed, one can
choose a y′ ∈ S(x) such that ‖y′ − y‖ = ε. Since (x, y′) is feasible for DP and

‖(x, y′)− (x∗, y∗)‖ ≤ ‖(x, y′)− (x, y)‖+ ‖(x, y)− (x∗, y∗)‖
≤ ε+ δ < 2δ,

we have

f(x, y′) ≥ f(x∗, y∗).(13)
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Since f(x, ·) is locally Lipschitz near y∗,

f(x, y)− f(x, y′) ≥ −Lε.(14)

Combining (13) and (14) yields

f(x, y)− f(x∗, y∗) + Lε ≥ 0;

i.e., DP is partially calm at (x∗, y∗) with modulus L.

Theorem 2.5 shows that the distance function provides an exact penalty equivalent
formulation for GBLP under very mild conditions. However, the parametric distance
function is usually an implicit nonsmooth function of the data in the original problem.
It is difficult to compute or estimate its Clarke generalized gradient.

To overcome this difficulty, we shall use the parametric distance function dS(x)(y)
establishing some equivalent exact penalty formulations of GBLP. These equivalent
formulations have penalty functions with computable Clarke generalized gradients.

We call a function r(x, y) : Rn+m → R a merit function provided

r(x, y) ≥ 0 ∀(x, y) ∈ GrU and r(x, y) = 0 if and only if (x, y) ∈ GrS.(15)

A merit function is called a uniform parametric error bound for the inclusion y ∈ S(x)
with modulus δ > 0 in the set Q ⊂ GrU if it satisfies

dS(x)(y) ≤ δr(x, y) ∀(x, y) ∈ Q.(16)

A merit function provides the following equivalent formulation of GBLP:

RP minimize f(x, y)
subject to r(x, y) = 0,

c(x, y) ≤ 0,
x ∈ X, y ∈ Rm.

Its corresponding penalized problem is

RPµ minimize f(x, y) + µr(x, y)
subject to c(x, y) ≤ 0,

x ∈ X, y ∈ Rm.
Next we show that if r(x, y) is a uniform parametric error bound and f is Lipschitz

near y∗ uniformly in x, then there exists µ > 0 such that the problem RPµ is an exact
penalty equivalence of RP. As in Theorem 2.5 we omit the proof for the global result.

Theorem 2.6. Let (x∗, y∗) be a local solution of problem GBLP and r be a
uniform parametric error bound with modulus δ > 0 in a neighborhood of (x∗, y∗).
Suppose that f is locally Lipschitz near y∗ uniformly for all x in a neighborhood of x∗.
Then there exists µ∗ > 0 such that (x∗, y∗) is a local solution of the penalized problem
RPµ for all µ ≥ δµ∗ and any local solution to RPµ with µ > δµ∗ with respect to the
neighborhood of (x∗, y∗) is also a local solution to RP.

Furthermore, let (x∗, y∗) be a global solution of GBLP and r be a uniform para-
metric error bound in GrU . Assume that f(x, ·) is Lipschitz continuous with constant
L > 0 uniformly for all x ∈ X. Then (x∗, y∗) is a global solution of RPµ for all
µ ≥ δL, and any other global solution of RPµ for all µ > δL is also a global solution
of GBLP.

Proof. Being a local solution of GBLP, (x∗, y∗) is also a local solution of DP. DP
is partially calm by Theorem 2.5. Thus, by Proposition 2.2, there exists a µ∗ > 0



GENERALIZED BILEVEL OPTIMIZATION 489

such that (x∗, y∗) is also a solution to DPµ∗ . Hence, for all (x, y) in a neighborhood
of (x∗, y∗) which are feasible for RPδµ∗ , one has

f(x∗, y∗) + δµ∗ · r(x∗, y∗) = f(x∗, y∗) + µ∗ · dS(x∗)(y
∗) since y∗ ∈ S(x∗),

≤ f(x, y) + µ∗ · dS(x)(y) since (x∗, y∗) solves DPµ∗ ,

≤ f(x, y) + δµ∗ · r(x, y) by inequality (16).

Therefore, (x∗, y∗) is also a local solution of RPδµ∗ . The proof for the converse is
similar to that of the converse part of Proposition 2.2.

Remark 2.7. As in Remark 2.3 when the uniform parametric error bound r is
continuous, the constant µ∗ in Theorem 2.6 can be taken as the modulus of partial
calmness, which is the Lipschitz constant of f(x, ·) by virtue of Theorem 2.5.

Sometimes a uniform parametric error bound is not nicely behaved but its square
is; e.g.,

√
|x| is not Lispchitz continuous near 0 but |x| is. Therefore, we are interested

in the following formulations which are equivalent to GBLP when r(x, y) is a merit
function.

RSP minimize f(x, y)
subject to r2(x, y) = 0,

c(x, y) ≤ 0,
x ∈ X, y ∈ Rm.

Its penalized problem is
RSPµ minimize f(x, y) + µr2(x, y)

subject to c(x, y) ≤ 0,
x ∈ X, y ∈ Rm.

Although the penalty term r2(x, y) might be better behaved, it is smaller than r(x, y)
for all (x, y) that are close to (x∗, y∗). Hence, to formulate an equivalent exact penalty
formulation for the problem RSP, one needs to impose a stronger condition on f . The
following definition gives such a condition.

Definition 2.8. Let x0 ∈ X. The mapping f(x, y) : Rn × Rm → R is up-
per Hölder continuous with exponent 2 near every y ∈ S(x) uniformly for x in a
neighborhood of x0 provided there exists L > 0 such that

f(x, y′)− f(x, y) ≥ −L‖y′ − y‖2 ∀y′ ∈ N(y), y ∈ S(x), x ∈ N(x0).

The constant L is called the modulus.
We prove that r2(x, y) provides an exact penalty formulation for GBLP if r(x, y)

is a uniform parametric error bound and f is upper Hölder continuous with exponent
2 near every y ∈ S(x) uniformly in x in a neighborhood of x∗.

Theorem 2.9. Let (x∗, y∗) be a local solution of the problem RSP. Assume that
r is a uniform parametric error bound with modulus δ in a neighborhood of (x∗, y∗)
and that f is upper Hölder continuous with exponent 2 and modulus L > 0 near every
y ∈ S(x) uniformly in x in a neighborhood of x∗. Then (x∗, y∗) is a local solution
of the penalized problem RSPµ for all µ ≥ δ2L, and any local solution to RSPµ with
µ > δ2µ∗ in the neighborhood of (x∗, y∗) is also a local solution to RSP.

Proof. Let α > 0 be such that (x∗, y∗) is a local solution of RSP in (x∗, y∗) +

α(δ + 1)B ⊂ X × Y . For any ε, 0 ≤ ε
1
2 < α, let (x, y) ∈ (x∗, y∗) + αB be such that

r2(x, y) = ε, c(x, y) ≤ 0. Since S(x) is closed, one can choose y′(x) ∈ S(x) such that

‖y − y′(x)‖ = dS(x)(y) ≤ δr(x, y) = δε
1
2 . Since (x, y′(x)) is feasible for RSP and

‖(x, y′(x))− (x∗, y∗)‖ ≤ ‖(x, y′(x))− (x, y)‖+ ‖(x, y)− (x∗, y∗)‖
≤ δε 1

2 + α < α(δ + 1),
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we have

f(x, y′(x)) ≥ f(x∗, y∗).

Therefore

f(x, y)− f(x∗, y∗)

≥ f(x, y)− f(x, y′(x)) by optimality of (x∗, y∗),

≥ −L‖y − y′(x)‖2 by upper Hölder continuity of f,

= −L(dS(x)(y))2,

≥ −Lδ2r2(x, y) since r(x, y) is a uniform parametric error bound,

= −Lδ2ε;

i.e., RSP is partially calm at (x∗, y∗) with modulus δ2L. The rest of the proof is
similar to the converse part of Proposition 2.2.

3. Some uniform parametric error bounds. In this section we discuss some
useful uniform parametric error bounds. We start with two definitions.

Definition 3.1. Let Ω ⊂ Rn. A mapping F (x, y) : Rn × Rm → Rm is called
strongly monotone with respect to y uniformly in x ∈ Ω with modulus µ > 0 provided

〈F (x, y)− F (x, z), y − z〉 ≥ µ‖y − z‖2 ∀y, z ∈ U(x), x ∈ Ω.

Definition 3.2. Let Ω ⊂ Rn. The mapping F (x, y) : Rn × Rm → Rm is called
pseudostrongly monotone with respect to y uniformly in x ∈ Ω with modulus µ > 0
provided

〈F (x, y), z − y〉 ≥ 0 implies 〈F (x, z), z − y〉 ≥ µ‖z − y‖2 ∀y, z ∈ U(x), x ∈ Ω.

3.1. Uniformly weak sharp minima for the lower level optimization
problem.

Definition 3.3 (see [30]). A family of parametric mathematical programming
problems {(Px) : x ∈ X} as defined in (3) is said to have uniformly weak sharp
minima in Ω ⊂ GrU if there exists an δ > 0 such that

dΣ(x)(y) ≤ δ(g(x, y)− V (x)) ∀(x, y) ∈ Ω,(17)

where Σ(x) is the solution set of the lower level optimization problem Px. The constant
δ is called the modulus of the uniformly weak sharp minima.

By virtue of (9), g(x, y) − V (x) is a merit function. When Σ(x) = S(x) (e.g.,
when U(x) is convex, g(x, y) is pseudoconvex and differentiable in y), g(x, y)− V (x)
is obviously a uniform parametric error bound.

The next result follows easily from a result about regular points due to Ioffe
(Theorem 1 and Corollary 1.1 of [8]).

Proposition 3.4. Let (x∗, y∗) be an optimal solution of the CBLP. Suppose that
g(x, y) is Lipschitz continuous in y uniformly in x ∈ X with constant Lg > 0. Assume
that there exist σ > 0 such that for any (x, y) ∈ GrU satisfying y 6∈ S(x) and any
ξ ∈ ∂yg(x, y), η ∈ (Lg + 1)∂dS(x)(y) (or η ∈ NS(x)(y)),

‖ξ + η‖ ≥ σ.
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Then

dS(x)(y) ≤ (1/σ)(g(x, y)− V (x)) ∀(x, y) ∈ GrU.

Consider the bilevel programming problem where the lower level problem is the
following parametric quadratic programming problem:

QPx ming(x, y) := 〈y, Px〉+
1

2
〈y,Qy〉+ ptx+ qty

s.t. y ∈ Ωx := {y ∈ Y : Ax+By − b ≤ 0}.

Here Q ∈ Rm×m is a symmetric and positive semidefinite matrix, p ∈ Rn, q ∈ Rm,
P ∈ Rm×n; A and B are d× n and d×m matrices, respectively, and b ∈ Rd.

The next proposition gives a sufficient condition for the family of parametric
quadratic programming problems {QPx : x ∈ Rn} to have uniformly weak sharp
minima.

Proposition 3.5. Assume that there exists a constant M > 0 such that for all
(x, y) ∈ GrS, every element z of (N(y,Ωx) + span(∇yg(x, ȳ))) ∩ B can be expressed
as

z = η∇yg(x, ȳ) + ξ,

where |η| ≤M and ξ ∈ N(y,Ωx). Assume

ker(∇2
yg(x, ȳ))⊥ ⊂ span(∇yg(x, ȳ)) +N(y,Ωx) ∀ (x, y) ∈ GrS(18)

or, equivalently,

(∇yg(x, ȳ))⊥ ∩ T (y,Ωx) ⊂ ker(∇2
yg(x, ȳ)) ∀ (x, y) ∈ GrS,

where ȳ is any element in S(x), A⊥ := {y ∈ Rm : 〈y, x〉 = 0 ∀x ∈ A} denotes the
subspace perpendicular to A, span(d) represents the subspace generated by the vector
d, T (y, C) is the tangent cone to the set C at y, and ker(A) is the nullspace of the
matrix A. Then {QPx : x ∈ X} has uniformly weak sharp minima.

Before proving the above result we first state the following description of the
solution set of a convex program given in Mangasarian [21].

Lemma 3.6. Let S be the set of solutions to the problem min{g(y) : y ∈ Ω} where
g : Rn → R is a twice continuously differentiable convex function and Ω is a convex
subset of Rn. Let ȳ ∈ S. Then

S = {y ∈ Ω : ∇g(y) = ∇g(ȳ), 〈∇g(ȳ), y − ȳ〉 = 0}.

It follows that for QPx, the solution set S(x) is

S(x) = Ωx ∩ {y : 〈∇yg(x, ȳ), y − ȳ〉 = 0} ∩ {y : ∇2
yg(x, ȳ)(y − ȳ) = 0}.

Since Ωx is a polyhedral one has

T (y, S(x)) = T (y,Ωx) ∩ (∇yg(x, ȳ))⊥ ∩ ker(∇2
yg(x, ȳ))(19)

by virtue of Corollaries 16.4.2 and 23.8.1 of Rockafellar [28].
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Proof of Proposition 3.5. By virtue of Theorem 2.6 of Burke and Ferris [4], it
suffices to show that for all x ∈ X, y ∈ S(x), there exists an α > 0 such that

g′2(x, y; d) ≥ α‖d‖ ∀d ∈ T (y,Ωx) ∩N(y, S(x)),

where g′2(x, y; d) is the directional derivative of g with respect to y in the direction d.
Note that (19) and (18) imply that

N(y, S(x)) = N(y,Ωx) + span(∇yg(x, ȳ)) + ker(∇2
yg(x, ȳ))⊥

= N(y,Ωx) + span(∇yg(x, ȳ)).

Since d ∈ T (y,Ωx) ∩N(y, S(x)), one has

‖d‖ = sup{〈z(x), d〉 : z(x) ∈ B ∩N(y, S(x))}
≤ sup{〈η∇yg(x, ȳ) + ξ, d〉 : |η| < M, ξ ∈ N(y,Ωx)}
≤M〈∇yg(x, ȳ), d〉 = M〈∇yg(x, y), d〉 = Mg′2(x, y; d).

The first inequality follows from the assumption, and the second equality follows from
Lemma 3.6. Setting α = 1/M completes the proof.

The following bilinear programming problem with parameter x is a special case
of QPx.

BLPx min〈y, Px〉+ ptx+ qty

s.t. Ax+By − b ≤ 0,

y ∈ Rm.

Proposition 3.5 has the following simple consequence.
Corollary 3.7. The bilinear programming problem BLPx has a uniformly weak

sharp minima if there exists a constant M > 0 such that for all (x, y) ∈ GrS, every
element z of (N(y,Ωx) + span(Px+ q)) ∩B can be expressed as

z = η(Px+ q) + ξ

where |η| ≤M and ξ ∈ N(y,Ωx).
The following example shows that the assumption in Corollary 3.7 cannot be

omitted.
Example 3.8. Consider the problem

minx+ y

s.t. 0 ≤ x ≤ 1, y ∈ arg min{−xy : x+ y − 1 ≤ 0, y ≥ 0}.

The solution set of the lower level problem is

S(x) =

{
[0, 1] if x = 0,
1− x if 0 < x ≤ 1.

The value function of the lower problem is

V (x) =

{
0 if x = 0,
−x(1− x) if 0 < x ≤ 1.

It is easy to check that the assumption in Corollary 3.7 is not satisfied and there is
no uniformly weak sharp minimum. In fact, if we replace the constraint 0 ≤ x ≤ 1 by
0 < ε ≤ x ≤ 1, then the assumption in Corollary 3.7 is satisfied, and uniformly weak
sharp minima exist.
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3.2. A standard gap bound. Consider a parametric variational inequality
with nonseparable and linear constraints, i.e.,

U(x) = {y ∈ Rm|c(x, y) = Ax+By − b ≤ 0},(20)

where A and B are d × n and d × m matrices, respectively, and b ∈ Rd. In this
case, ∀x0 ∈ X, y0 ∈ U(x0) solve the variational inequality with parameter x0 (see
(2)) if and only if there exists λ0 ∈ Rd such that (x0, y0, λ0) satisfies the following
complementarity system:

F (x0, y0) +BTλ0 = 0,

(Ax0 +By0 − b)Tλ0 = 0,

Ax0 +By0 − b ≤ 0, λ0 ≥ 0.

If the gradients of the binding constraints in the variational inequality (2) at (x0, y0),
i.e., those ∇ycj(x0, y0) such that cj(x0, y0) = 0, j ∈ {1, 2, . . . , d}, are linearly indepen-
dent, and the strict complementarity condition

λ0i > 0 ⇐⇒ ci(x0, y0) = 0, ∀i ∈ {1, 2, . . . , d}(21)

holds, then the variational inequality (2) with parameter x has a unique solution y(x)
for all x in a neighborhood of x0, and the above complementarity system has a unique
solution (y(x), λ(x)) for all x in a neighborhood of x0. Furthermore, the functions
y(x) and λ(x) are Lipschitz continuous, and the strict complementarity condition (21)
is satisfied in a neighborhood of x0 (see, e.g., Friesz et al. [10]).

The following result due to Marcotte and Zhu [25] shows that the gap function
defined by (8) can serve as a uniform parametric error bound under certain conditions.

Proposition 3.9. Assume that X is a compact, convex subset of Rn and U(x)
defined as in (20) is compact. Let the mapping F be strongly monotone with respect
to y uniformly in x ∈ X, and let ∇yF be Lipschitz continuous in y uniformly in x.
Suppose x0 ∈ X. If the linear independence and strict complementarity conditions
hold at y0 = y(x0), then there exists a constant δ > 0 and a neighborhood of (x0, y0)
such that

dS(x)(y) ≤ δG0(x, y) ∀(x, y) ∈ GrU ∩N(x0, y0).

Now we consider a parametric variational inequality with separable and linear
constraints; i.e., U(x) = {y ∈ Rm|By ≤ b} is a convex polyhedron. In this case we
can weaken the assumptions of Proposition 3.9.

We need the following definition due to Dussault and Marcotte [7].
Definition 3.10. Let F be a continuous, monotone mapping from a convex

polyhedron X ⊂ Rn into Rn and denote by VIP(X,F ) the variational inequality
problem associated with X and F ; i.e., find x∗ in X such that

VIP(F,X) 〈F (x∗), x∗ − x〉 ≤ 0 for all x in X.

We say that VIP(F,X) is geometrically stable if, for any solution x∗ of the variational
inequality, 〈F (x∗), x∗−x〉 = 0 implies that x lies on the optimal face, i.e., the minimal
face of X containing the (convex) solution set to VIP(F,X).

The following result due to Marcotte and Zhu [25] gives a useful error bound.
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Proposition 3.11. Assume that X is a convex polyhedron, U(x) = {y : By−b ≤
0} is compact, and the mapping F is strongly monotone with respect to y uniformly
in x ∈ X. Let x0 ∈ X and assume that there exists a neighborhood of x0 such that
VIP(F (x, ·), Y ) is geometrically stable inside that neighborhood. Then there exist some
neighborhood N(x0) of x0 and a positive number δ > 0 such that

dS(x)(y) ≤ δG0(x, y) ∀y ∈ U(x), x ∈ N(x0).

3.3. A square root standard gap bound. The following result gives a uni-
form parametric error bound in terms of the square root of the gap function G0.

Proposition 3.12. Assume that the mapping F is pseudostrongly monotone
with respect to y uniformly in x ∈ N(x0) with modulus µ. Then one has

dS(x)(y) ≤
√
µ

µ

√
G0(x, y) ∀y ∈ U(x), x ∈ N(x0).

Proof. Let y(x) ∈ S(x). Then, by the definition of S(x), one has

〈F (x, y(x)), y − y(x)〉 ≥ 0 ∀y ∈ U(x).

Since y(x) ∈ U(x), it follows from the pseudostrong monotonity of F and the definition
of G0 that, for all x ∈ N(x0) and y ∈ U(x), one has

µ‖y(x)− y‖2 ≤ 〈F (x, y), y − y(x)〉 ≤ G0(x, y),

from which the result follows readily.

3.4. A square root differentiable gap bound. Recently, Fukushima [11] gave
an optimization formulation of a variational inequality based on the differentiable gap
function defined as

Gα(x, y) = max
z∈U(x)

{
〈F (x, y), y − z〉 − 1

2α
‖y − z‖2M

}
,(22)

where α > 0 is a given constant, ‖ · ‖M denotes the elliptic norm in Rm defined by

‖z‖M = 〈z,Mz〉 12 , and M is a symmetric positive definite matrix. It is easy to see
that the differentiable gap function Gα satisfies condition (15). The following result
gives a uniform parametric error bound based on

√
Gα.

Proposition 3.13. Suppose U(x) is convex and x0 ∈ X. Let the mapping F be
pseudostrongly monotone with respect to y uniformly in x ∈ N(x0). Then there exists
δ > 0 such that

dS(x)(y) ≤ δ
√
Gα(x, y) ∀y ∈ U(x), x ∈ N(x0).

Proof. Let y(x) ∈ S(x). Then, by the definition of S(x), one has

〈F (x, y(x)), y − y(x)〉 ≥ 0 ∀y ∈ U(x).

Since y(x) ∈ U(x), it follows from the pseudostrong monotonity of F that, for every
x ∈ N(x0) and y ∈ U(x),

〈F (x, y), y − y(x)〉 ≥ µ‖y − y(x)‖2.
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Let yt = y + t(y(x) − y) for t ∈ [0, 1]. By the convexity of U(x), yt ∈ U(x) for any
y ∈ U(x). It follows from the definition of Gα(x, y) (see (22)) that

Gα(x, y) ≥ 〈F (x, y), y − yt〉 −
1

2α
‖y − yt‖2M

= t〈F (x, y), y − y(x)〉 − t2

2α
‖y − y(x)‖2M

≥
(
tµ− t2‖M‖

2α

)
‖y − y(x)‖2.

Letting t = min{1, αµ
‖M‖} gives

Gα(x, y) ≥ σ‖y − y(x)‖2,

where

σ =

{
(µ− ‖M‖2α ) if µ ≥ ‖M‖α ,
αµ2

2‖M‖ if µ ≤ ‖M‖α .

This proves the result.

3.5. A projection bound. The following projection characterization of y ∈
S(x) is well known (see, e.g., [15]).

Lemma 3.14. An arbitrary vector y ∈ Y is a solution of the variational inequality
with parameter x if and only if it satisfies

h(x, y) = y − projU(x)(y − F (x, y)) = 0

where projU(x)(z) is the orthogonal projection of a vector z onto the set U(x).

It follows from the above lemma that any vector norm of h(x, y) satisfies condition
(15). The following result is a parametric version of [27, Thm. 3.1]. The proof is
omitted since it is essentially the same as that of [27, Thm. 3.1].

Proposition 3.15. Let x0 ∈ X. Assume that the mapping F is strongly mono-
tone with respect to y uniformly in N(x0) with modulus µ, and F is Lipschitz contin-
uous in y with constant LF > 0 uniformly in x ∈ N(x0). Then we have

dS(x)(y) ≤ ((LF + 1)/µ)‖h(x, y)‖ ∀y ∈ U(x), x ∈ N(x0).(23)

Remark 3.16. An important special case of GBLP is one where F (x, y) = Qx+
My+q and U(x) = Rm+ , the nonnegative orthant inRm. In this case, finding a solution
y ∈ Rm to the parametric variational inequality (1) reduces to the parametric linear
complementarity problem of finding a y ∈ Rm satisfying

y ≥ 0, Qx+My + q ≥ 0, 〈y,Qx+My + q〉 = 0.

The uniform projection error bound holds when M is a P -matrix (see Mathias and
Pang [24]) and when M is an R0-matrix. (See Mangasarian and Ren [23] and Luo
and Tseng [18].)
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4. Kuhn–Tucker-type necessary optimality conditions. In this section we
derive Kuhn–Tucker-type necessary optimality conditions for GBLP.

Without loss of generality, we assume in this section that all solutions of the
mathematical programming problems lie in the interior of their abstract constraint
sets.

First we give a concise review of the material on nonsmooth analysis. Our refer-
ence is Clarke [5].

Consider the following mathematical programming problem:
P minimize φ(x, y)

subject to c(x, y) ≤ 0,
x ∈ X, y ∈ Rm.

The corresponding perturbed problem is
P(α) minimize φ(x, y)

subject to c(x, y) + α ≤ 0,
x ∈ X, y ∈ Rm,

where φ(x, y) : Rn+m → R and c(x, y) : Rn+m → Rd are locally Lipschitz near the
points of interest.

Definition 4.1 (calmness). Let (x∗, y∗) solve P. Problem P is calm at (x∗, y∗)
provided that there exist δ > 0 and µ > 0 such that for all α ∈ δB, for all (x, y) ∈
(x∗, y∗) + δB which are feasible for P(α), one has

φ(x, y)− φ(x∗, y∗) + µ‖α‖ ≥ 0.

Definition 4.2 (abnormal and normal multipliers). Let (x, y) be feasible for P.
Define M0(x, y), the set of abnormal multipliers corresponding to (x, y), as the set

M0(x, y) := {s ∈ Rd : 0 ∈ ∂c(x, y)>s, s ≥ 0, 〈s, c(x, y)〉 = 0}.

Define M1(x, y), the set of normal multipliers corresponding to (x, y), as the set

M1(x, y) := {s ∈ Rd : 0 ∈ ∂φ(x, y) + ∂c(x, y)>s, s ≥ 0, 〈s, c(x, y)〉 = 0}.

Remark 4.3. A sufficient condition for P to be calm at (x∗, y∗) is M0(x∗, y∗) =
{0}. M0(x∗, y∗) = {0} if and only if the Mangasarian–Fromowitz conditions are
satisfied [30].

Proposition 4.4 (Kuhn–Tucker Lagrange multiplier rule). Let (x∗, y∗) solve
P. Suppose φ, c are locally Lipschitz near (x∗, y∗) and problem P is calm at (x∗, y∗).
Then there exists s ≥ 0 such that

0 ∈ ∂φ(x∗, y∗) + ∂c(x∗, y∗)>s

and

0 = 〈s, c(x∗, y∗)〉.

The following theorem gives a necessary condition for optimality when an error
bound r(x, y) is explicitly known.

Theorem 4.5. Let (x∗, y∗) be a solution of problem GBLP. Let r(x, y) be a uni-
form parametric error bound in a neighborhood of (x∗, y∗) and RPµ be the associated
penalized problem of RP, where µ > 0. Assume that f and r are locally Lipschitz near
(x∗, y∗) and the associated penalized problem RPµ is calm at (x∗, y∗). Then there
exists a nonzero vector s ≥ 0 such that

0 ∈ ∂f(x∗, y∗) + µ∂r(x∗, y∗) + ∂c(x∗, y∗)>s
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and

0 = 〈s, c(x∗, y∗)〉.

Proof. By Theorem 2.6, (x∗, y∗) is also a solution of the associated penalized
problem RPµ. The result follows from Proposition 4.4.

However, in many cases, uniform parametric error bounds are implicit functions
of the original problem data. The useful uniform parametric error bounds derived in
section 4 involve the class of marginal functions or value functions. In order to derive
necessary conditions in these cases, one must first study the generalized differentia-
bility of marginal functions.

Consider the following parametric mathematical programming problem:
Pα minimize φ(α, y)

subject to c(α, y) ≤ 0,
y ∈ Rm.

We assume that for problem Pα the functions φ and c are locally Lipschitz near the
point of interest y0 ∈ Rm. Let y be feasible for Pα. Define

M0
α(y) : = {π ∈ Rd : 0 ∈ ∂yc(α, y)>π, 〈π, c(α, y)〉 = 0, π ≥ 0},

M1
α(y) : = {π ∈ Rd : 0 ∈ ∂yφ(α, y) + ∂yc(α, y)>π, 〈π, c(α, y)〉 = 0, π ≥ 0}.

Let W (α) = inf{φ(α, y) : c(α, y) ≤ 0, y ∈ Y }. The following result is an easy conse-
quence of Corollary 1 of Theorem 6.5.2 of Clarke [5].

Proposition 4.6 (generalized differentiability of marginal functions). Let Σα0 be
the solution set to problem Pα0 and suppose it is nonempty. Suppose M0

α0
(Σα0) = {0}.

Then W (α) is Lipschitz near α0, and one has

∂W (α0) ⊂ clco{∂αφ(α0, y) + ∂αc(α0, y)>π : y ∈ Σα0
, π ∈M1

α0
(y)},

where clcoA denotes the closed convex hull of the set A.
Set G0(x, y) = −min{〈F (x, y), z − y〉 : c(x, z) ≤ 0, z ∈ Rm}. The parameter

here is α = (x, y). Let Σ(x,y) denote the set of vectors at which G0(x, y) attains the
maximum. By Proposition 4.6, one has the following result.

Proposition 4.7. Suppose M0
(x∗,y∗)(Σ(x∗,y∗)) = {0}. Assume that f, F , and c

are locally Lipschitz near (x∗, y∗) and that ∂F (x∗, y∗) ⊂ ∂xF (x∗, y∗) × ∂yF (x∗, y∗).
Then G0(x, y) is Lipschitz near (x∗, y∗) and one has

∂G0(x∗, y∗)

⊂ co{(∂xF (x∗, y∗)>(y∗ − y)− ∂xc(x∗, y)>π, ∂yF (x∗, y∗)>(y∗ − y) + F (x∗, y∗)) :

y ∈ Σ(x∗,y∗), π ∈M1
(x∗,y∗)(y)},

where

M0
(x∗,y∗)(y) = {π ∈ Rd : 0 ∈ ∂yc(x∗, y)>π, π ≥ 0, 〈π, c(x∗, y)〉 = 0},

M1
(x∗,y∗)(y) = {π ∈ Rd : 0 ∈ F (x∗, y∗) + ∂yc(x

∗, y)>π, π ≥ 0, 〈π, c(x∗, y)〉 = 0}.

Combining Proposition 4.7, Remark 4.3, and Theorems 2.6, 2.9, and 4.5, one has
the following result.

Theorem 4.8. Suppose f, F , and c are C1. Let (x∗, y∗) be a solution of GBLP.
Assume either of the following assumptions is satisfied:
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• G0(x, y) is a uniform parametric error bound in a neighborhood of (x∗, y∗).
•
√
G0(x, y) is a uniform parametric error bound in a neighborhood of (x∗, y∗)

and f is upper Hölder continuous with exponent 2 near every y ∈ S(x) uni-
formly in x in a neighborhood of x∗.

Suppose M0
(x∗,y∗)(Σ(x∗,y∗)) = {0}. Then there exist µ > 0, s ∈ Rd, positive integers

I, J , λij ≥ 0,
∑I
i=1

∑J
j=1 λij = 1, yi ∈ Σ(x∗,y∗), and πij ∈ Rd such that

0 = ∇xf(x∗, y∗) +∇xc(x∗, y∗)>s+ µ
∑
ij

λij{∇xF (x∗, y∗)>(y∗ − yi)−∇xc(x∗, yi)>πij},

0 = ∇yf(x∗, y∗) +∇yc(x∗, y∗)>s+ µ
∑
ij

λij{∇yF (x∗, y∗)>(y∗ − yi) + F (x∗, y∗)},

0 = 〈s, c(x∗, y∗)〉, s ≥ 0,

0 = F (x∗, y∗) +∇yc(x∗, yi)>πij ,
0 = 〈πij , c(x∗, yi)〉, πij ≥ 0.

For Gα(x, y), the differentiable gap function defined in (22), since y is the unique
solution in the right-hand side of (22), we have Σ(x,y) = {y}. By Proposition 4.6, one
has the following result.

Proposition 4.9. Suppose f, F , and c are locally Lipschitz near (x∗, y∗). As-
sume that M0

(x∗,y∗)(y
∗) = {0}. Then Gα(x, y) is Lipschitz near (x∗, y∗) and one has

∂Gα(x∗, y∗) ⊂ {(−∂xc(x∗, y∗)>π, F (x∗, y∗)) : π ∈M1
(x∗,y∗)(y

∗)},
where

M1
(x∗,y∗)(y

∗) = {π ∈ Rd : 0 ∈ F (x∗, y∗) + ∂yc(x
∗, y∗)>π, π ≥ 0, 〈π, c(x∗, y∗)〉 = 0}.

Furthermore, if c is a C1 function and M1
(x,y)(y) = {π} is a singleton, then Gα(x, y)

is C1 and one has

∇Gα(x, y) = (−∇xc(x, y)>π, F (x, y)).

Combining Proposition 4.9, Remark 4.3, and Theorems 2.6, 2.9, and 4.5, one has the
following result.

Theorem 4.10. Let (x∗, y∗) be a solution of GBLP. Suppose F is locally Lipschitz
near (x∗, y∗) and f and c are C1 functions. Assume that either of the following
assumptions is satisfied:

• Gα(x, y) is a uniform parametric error bound in a neighborhood of (x∗, y∗).
•
√
Gα(x, y) is a uniform parametric error bound in a neighborhood of (x∗, y∗)

and f is upper Hölder continuous with exponent 2 near every y ∈ S(x) uni-
formly in x in a neighborhood of x∗.

Suppose M0
(x∗,y∗)(y

∗) = {0}. Then there exist µ > 0, s ∈ Rd, and π ∈ Rd such that

0 = ∇xf(x∗, y∗) +∇xc(x∗, y∗)>s− µ∇xc(x∗, y∗)>π,
0 = ∇yf(x∗, y∗) +∇yc(x∗, y∗)>s+ µF (x∗, y∗),

0 = 〈s, c(x∗, y∗)〉 = 0, s ≥ 0,

0 = F (x∗, y∗) +∇yc(x∗, y∗)>π,
0 = 〈π, c(x∗, y∗)〉, π ≥ 0.

Remark 4.11. To shorten the exposition, we have assumed in Theorems 4.8 and
4.10 that f, F, g, and c are C1 functions. However, these theorems can also be stated
without difficulty when f, F, g, and c are merely Lipschitz continuous.
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5. Relationships between various uniform parametric error bounds. In
this section, we study the relationships between various uniform parametric error
bounds. Through illustrative examples we show that various equivalent single level op-
timization formulations with uniform parametric error bounds and their corresponding
necessary optimality conditions complement each other.

The following result is easy to prove.
Proposition 5.1. Suppose that rS and rB are two merit functions that satisfy

the following inequality:

rS(x, y) ≤ δrB(x, y) ∀(x, y) ∈ GrU,

for a constant δ > 0. If rS(x, y) is a uniform parametric error bound, then so is
rB(x, y).

Motivated by the above result we now establish certain inequalities and equalities
among various uniform parametric error bounds.

Proposition 5.2.

(1) If the objective function g(x, y) of the lower level optimization problem (3) is
convex and C1 (continuously differentiable) in y, then

g(x, y)− V (x) ≤ G0(x, y).(24)

Furthermore, if the lower level problem is linear, then

g(x, y)− V (x) = G0(x, y).

(2) For GBLP, we have √
Gα(x, y) ≤

√
G0(x, y).(25)

(3) For (x, y) in a neighborhood of the solution (x∗, y∗) of GBLP,

G0(x, y) ≤
√
G0(x, y).(26)

(4) For GBLP, we have

‖h(x, y)‖ ≤
√

2G0(x, y).(27)

Proof. (1) Let y(x) ∈ arg miny∈U(x) g(x, y). By the convexity of g(x, ·) and the
definition of G0, we have

G0(x, y) ≥ 〈∇yg(x, y), y − y(x)〉
≥ g(x, y)− g(x, y(x))

= g(x, y)− V (x).

The second assertion follows from the definitions of V (x) and G0(x, y).
(2) This follows directly from the definitions of Gα and G0.
(3) Since G0 is continuous in (x, y) and G0(x∗, y∗) = 0, G0(x, y) < 1 in a neigh-

borhood of the solution (x∗, y∗) of GBLP. This implies the result.
(4) Taking α = 1 and M = I the identity matrix in the definition of Gα, we have

G1(x, y) = 〈F (x, y), y − p(x, y)〉 − 1

2
‖y − p(x, y)‖2 ≥ 0,
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where p(x, y) = ProjU(x)(y − F (x, y)). Thus

G0(x, y) ≥ 〈F (x, y), y − p(x, y)〉

≥ 1

2
‖y − p(x, y)‖2 =

1

2
‖h(x, y)‖2.

The proof is completed.
As shown in section 4, one of the major applications of the exact penalty formu-

lation with uniform parametric error bounds is to derive Kuhn–Tucker-type necessary
optimality conditions. For this purpose parametric error bounds must be Lipschitz
continuous (see Theorem 4.5). Among the aforementioned error bounds, G0, h, and
g − V are Lipschitz continuous under appropriate constraint qualifications on U(x).
The rest are generally not Lipschitz. By virtue of Proposition 5.1, if we have an exact
penalty formulation with a given uniform parametric error bound then a similar ex-
act penalty formulation is also valid, with that error bound replaced by a larger one.
Smaller error bounds generally require stronger conditions. Hence, on one hand, error
bounds G0, h, and φ−V can be Lipschitz continuous but require stronger conditions.
On the other hand, larger bounds such as

√
G0 may not be Lipschitz continuous but

require weaker conditions. In the case when uniform parametric error bounds are not
Lipschitz continuous, Theorems 4.8 and 4.10 show that stronger assumptions, such
as upper Hölder continuity on the upper level objective functions, may be required.
Therefore, various error bounds and their equivalent exact penalty representations
complement each other. The following are some illustrative examples.

Example 5.3. Consider the following classical bilevel programming problem:

(P1) minx2 − 2y

s.t. x ∈ [0, 2] and y ∈ arg min{y2 − 2xy : y ∈ [0, 2x]}.
It is easy to verify that (1, 1) is the unique solution of (P1) and assumption (18) does

not hold. Therefore, Proposition 3.5 does not apply and one may suspect that (P1)
does not have a uniformly weak sharp minimum. Indeed, direct calculation shows
that the value function for the lower level problem is V (x) = x2. Using the value
function approach, problem (P1) is equivalent to the following problem:

minx2 − 2y

s.t. (y − x)2 = 0,

y ∈ [0, 2x], x ∈ [0, 2].

Here (y−x)2 is not an exact penalty term for the above problem, since for any µ > 0
(1, y) where y ∈ (1, 2+µ

µ ) assigns a lower value to the objective function than (1, 1) in
the penalized problem

minx2 − 2y + µ(y − x)2

s.t. y ∈ [0, 2x], x ∈ [0, 2].

It is clear that the function F (x, y) = ∇yg(x, y) = y − x is strongly monotone in y
uniformly for x ∈ R. The standard gap function takes the form

G0(x, y) = max
z∈[0,2x]

〈y − x, y − z〉

= y2 − xy + max
z∈[0,2x]

〈y − x,−z〉

= y2 − xy − x[(y − x)− |y − x|]
= (y − x)2 + x|y − x|.
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The linear independence and the strict complementarity conditions can easily be ver-
ified at (1, 1). Hence, by Proposition 3.9, the gap function G0(x, y) is a uniform
parametric error bound in a neighborhood of (1, 1). Indeed, it is easy to see that
(1, 1) is also the unique solution of the penalized problem

s.t. y ∈ [0, 2x], x ∈ [0, 2]

for any µ > 0.
We now slightly modify the above example to show that the strict complemen-

tarity conditions cannot be omitted from Proposition 3.9.
Example 5.4. Consider the same problem in Example 5.3 with constraints y, z ∈

[0, 2x] replaced by y, z ∈ [0, x] and with x ∈ [0, 2] replaced by x ∈ [0,∞).
Again, one can check that (1, 1) is the only solution to the problem. However,

the gap function is different. In fact, in this example,

G0(x, y) = max
z∈[0,x]

〈y − x, y − z〉

= y2 − xy + max
z∈[0,x]

〈y − x,−z〉

= y2 − xy + x2 − xy
= (y − x)2.

Thus the equivalent single level problem involving the standard gap function is
minimize x2 − 2y
subject to (y − x)2 = 0,

y ∈ [0, x], x ∈ [0,∞).
Again, (y − x)2 is not an exact penalty term. This is due to the fact that the strict
complementarity condition does not hold at (1,1).

F (x, y) = y − x is strongly monotone; therefore, it is pseudostrongly monotone
with respect to y uniformly for all x ∈ Rn. Using Propositions 3.12, 3.13, and 3.15,
the problem has the square root standard gap bound, the square root differentiable
gap bound, and the projection bound. The differentiable gap function associated with
α = 1 and M = I takes the form

G1(x, y) = max
z∈[0,x]

{
〈y − x, y − z〉 − 1

2
(y − z)2

}
=

1

2
(y − x)2.

The projection bound takes the form |h(x, y)| = |y− x|. Indeed, the original problem
is equivalent to the following penalized problem:

s.t. y ∈ [0, x], x ∈ [0,∞),

for all µ > 0.
Note that the uniform parametric error bounds for Example 5.4 are all Lipschitz

continuous. We now give an example which has a square root standard gap bound
that is not Lipschitz continuous.

Example 5.5. Consider the following classical bilevel programming problem:

min(x− 1)2 + x2(y + 1)2

s.t. x ∈ [−1, 1] and y ∈ arg min
{(

sin
π

2
x
)
y : y ∈ [−1, 1]

}
.
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Here (1,−1) is the optimal solution of the problem, and the solution set of the
lower level problem is

S(x) =

 {1} if − 1 ≤ x < 0,
[-1,1] if x = 0,
{−1} if 0 < x ≤ 1.

The standard gap function for the problem is

G0(x, y) = max
{

sin
π

2
x · (y − z) : z ∈ [−1, 1]

}
=

 sin π
2x · (y − 1) −1 ≤ x < 0,

0 x = 0,
sin π

2x · (y + 1) 0 < x ≤ 1.

Since F (x, y) = sin π
2x is independent of y, F is pseudostrongly monotone with respect

to y uniformly for all x in a neighborhood of 1. By Proposition 3.12,
√
G0(x, y) is

an error bound in the neighborhood of (1,−1). However,
√
G0(x, y) is not Lipschitz

continuous near (x∗, y∗) = (1,−1). Theorem 4.5 cannot be used.
We now verify that the assumptions of Theorem 4.8 are satisfied. The objective

function f(x, y) = (x−1)2 +x2(y+1)2 is upper Hölder continuous near every y ∈ S(x)
uniformly for x in a neighborhood of 1. Since the constraint set −1 ≤ x ≤ 1,−1 ≤
y ≤ 1 has an interior point, the Slater condition is satisfied. Theorem 4.8 implies
that at (x∗, y∗) = (1,−1), there must exist µ > 0, (s1, s2, s3) ≥ (0, 0, 0), an integer J ,

λj ≥ 0,
∑J
j=1 λj = 1, and πj = (π1

j , π
2
j , π

3
j ) ∈ R3 such that

0 = 2(x∗ − 1) + 2x∗(y∗ + 1)2 + s3 − µ
∑
j

λjπ
3
j ,

0 = 2x∗2(y∗ + 1) + µ sin
(π

2
x∗
)

+ s1 − s2,

0 = s1(y∗ − 1),

0 = s2(−1− y∗),
0 = s3(x∗ − 1),

0 = sin
(π

2
x∗
)

+ π1
j − π2

j ,

0 = π1
j (y∗ − 1),

0 = π2
j (−1− y∗),

0 = π3
j (x∗ − 1).

Indeed, the above condition holds for J = 1, λ1 = 1, µ = s2 = π2
1 = 1, and s1 = s3 =

π1
1 = π3

1 = 0.

6. Exact penalty functions for the KKT formulation. In this section, we
assume that c(x, y) is convex and differentiable in y and that one of the usual con-
straint qualifications holds for the inequality system c(x, y) ≤ 0 in terms of variable
y. Under these assumptions, besides formulating GBLP as the single level equiva-
lent problem GS or VS, one can also formulate GBLP as the equivalent single level
problem KS. We will show that some of the uniform parametric error bounds such
as G0(x, y),

√
G0(x, y), and g(x, y)− V (x) can not only serve as exact penalty terms



GENERALIZED BILEVEL OPTIMIZATION 503

themselves, but can also play an important role in deriving equivalent exact penalty
formulations for KS.

The following results establish the relationships among the KKT, the standard
gap, and the value function formulations of GBLP.

Proposition 6.1. Suppose c(x, y) is convex and differentiable in the y variable.
Then

G0(x, y) ≤ −〈u, c(x, y)〉 for all (x, y, u) ∈ X ×Rm ×Rdsuch that

u ≥ 0, c(x, y) ≤ 0, F (x, y) +∇yc(x, y)tu = 0.

Proof. From mathematical programming weak duality (see, e.g., [20]), one has

G0(x, y) := sup{〈F (x, y), y − z〉 : ∀z ∈ Rm s.t. c(x, z) ≤ 0}
= − inf{〈F (x, y), z − y〉 : ∀z ∈ Rm s.t. c(x, z) ≤ 0}
≤ − sup{〈F (x, y), z − y〉+ 〈u, c(x, y)〉 : ∀(z, u) ∈ Rm ×Rd s.t.

u ≥ 0, c(x, z) ≤ 0,

F (x, z) +∇yc(x, z)tu = 0}
≤ − sup{〈u, c(x, y)〉 : ∀(x, y, u) ∈ X ×Rm ×Rd s.t.

u ≥ 0, c(x, y) ≤ 0,

F (x, y) +∇yc(x, y)tu = 0}.

Combining Proposition 6.1 and (1) from Proposition 5.2, we get the following
result.

Corollary 6.2. Assume that the objective function g(x, y) for the lower level
optimization problem (3) and c(x, y) are convex and C1 in y. Then

g(x, y)− V (x) ≤ −〈u, c(x, y)〉∀(x, y, u) ∈ X ×Rm ×Rd such that

u ≥ 0, c(x, y) ≤ 0,∇yg(x, y) +∇c(x, y)tu = 0.

Remark 6.3. Propositions 5.1 and 6.1 and Corollary 6.2 show that any condition
ensuring that the standard gap function or g(x, y) − V (x) provides exact penalty
terms for the equivalent single level problems GS and VS, respectively, ensure that
−〈u, c(x, y)〉 is an exact penalty function for the equivalent single level problem KS.
The converse is not necessarily true.

Under assumptions involving continuous subanalytic functions, Luo et al. proved
in [19] that there exists a constant N > 0 such that (−〈u, c(x, y)〉)1/N is an exact
penalty term for KS. Moreover, for the case where the mapping F (x, y) is affine and
the feasible region is compact, N can be taken as 1 or 2 depending on whether or not
the strict complementarity condition is satisfied. To compare our results with those
in [19], we summarize the related results in [19].

Theorem 6.4 (see Theorems 4 and 6 of [19]). Consider GBLP where the lower
level problem is QPx. Assume that f(x, y) is Lipschitz continuous in both variables
and that the set

{(x, y) ∈ X ×Rm : Ax+By − b ≤ 0}

is a compact polyhedron. Suppose GBLP has a solution. Then there exist positive
scalars µ∗ and β such that for all scalars µ ≥ µ∗, any vector (x∗, y∗) solves GBLP
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if and only if for some u∗ ∈ Rd, the triple (x∗, y∗, u∗) solves the following penalized
problem in the variables (x, y, u):

minf(x, y) + µ
√
−〈u,Ax+By − b〉

s.t. Px+Qy + q +BTu = 0,

u ≥ 0, ‖u‖ ≤ β,
Ax+By − b ≤ 0,

x ∈ X, y ∈ Rm.

Furthermore, if the strict complementarity condition is satisfied for all (x, y, u) in the
feasible region of KS, then we can remove the square root.

In the following result we relax most of the assumptions of Theorem 6.4 but we
require stronger conditions on F (x, y).

Theorem 6.5. Consider GBLP where f(x, y) is Lipschitz continuous in y uni-
formly in x ∈ Rn with constant L, and c(x, y) is convex and differentiable in y.
Suppose that there exists a solution to GBLP.

If F (x, y) is pseudostrongly monotone with respect to y uniformly in x ∈ X with
modulus δ, then any vector (x∗, y∗) is a global solution to GBLP if and only if for
some u∗ ∈ Rd, the triple (x∗, y∗, u∗) is a global solution to the following penalized
problem in the variables (x, y, u):

minf(x, y) + µ
√
−〈u, c(x, y)〉

s.t. F (x, y) +∇yc(x, y)Tu = 0,

u ≥ 0, c(x, y) ≤ 0,

x ∈ X, y ∈ Rm,

for all µ ≥
√
δ
δ L.

Under the assumptions of Propositions 3.4 and 3.5, any vector (x∗, y∗) is a global
solution to GBLP if and only if for some u∗ ∈ Rd, the triple (x∗, y∗, u∗) is a global
solution to the following penalized problem in the variables (x, y, u):

minf(x, y)− δµ〈u, c(x, y)〉
s.t. F (x, y) +∇yc(x, y)Tu = 0,

u ≥ 0, c(x, y) ≤ 0,

x ∈ X, y ∈ Rm,

for all µ ≥ L, where δ is the modulus of the uniformly weak sharp minimum.
Proof. We only prove the first assertion, since the proof of the second is similar.

Assume (x∗, y∗, u∗) is a global solution of CS. Then (x∗, y∗) is a global solution of
GBLP. By Proposition 3.12,

√
G0(x, y) is a uniform parametric error bound with

modulus
√
δ
δ . Therefore, by Theorem 2.6, (x∗, y∗) is a global solution of RP√δ

δ µ
with

r(x, y) =
√
G0(x, y) for all µ ≥ L. Therefore,

f(x∗, y∗) ≤ f(x, y) +

√
δ

δ
µ
√
G0(x, y) ∀x, y s.t. c(x, y) ≤ 0,

≤ f(x, y) +

√
δ

δ
µ
√
−〈u, c(x, y)〉 ∀(x, y, u) s.t.

u ≥ 0, c(x, y) ≤ 0, F (x, y) +∇yc(x, y)tu = 0,
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where the last inequality follows from Proposition 6.1.
The proof of the converse is similar to the converse part in the proof of Proposition

2.2.
Even when c(x, y) is convex and C1 in y, the ranges of applications of Theorems

6.4 and 6.5 are different. Indeed, the following example, taken from [19], is a situation
where Theorem 6.5 is applicable but Theorem 6.4 is not.

Example 6.6. Consider the problem:

(P2) minx− y

s.t. x ≥ 0, and y ∈ arg min

{
1

2
y2 : x+ y ≥ 0, y ≥ 0

}
.

In [19], by direct arguments, (P2) is shown to be equivalent to the penalized problem

(P3) minx− y + µ
√
u(x+ y)

s.t. y − u = 0, x+ y ≥ 0,

(x, y, u) ≥ 0,

for any µ > 0. Indeed, it is easy to see that (0, 0) is the unique solution to the problem
(P2) and (0, 0, 0) is the unique solution of the penalized problem (P3) for any µ > 0. It
is also observed in [19] that Theorem 6.4 is not applicable because the feasible region
is not compact. On the other hand, since F (x, y) = y is strongly monotone with
respect to y for all x ∈ Rn, this example does satisfy all the conditions of Theorem
6.5. By Theorem 6.5 both

√
G0(x, y) and the square root of the complementarity

term are exact penalty terms. The standard gap function in this case is G0(x, y) = y2

for all x ≥ 0. Therefore, (P2) is equivalent to both (P3) and the following problem:

(P4) minx− y + µ|y|
s.t. x+ y ≥ 0, x ≥ 0, y ≥ 0.

Indeed, it is easy to see that (0, 0) is the unique solution of (P4).
Now we discuss an example to which both the KKT and the non-KKT approaches

apply, but yield different equivalent single level problems.
Example 6.7. Consider the problem

(P5) minx+ y1 + y2

s.t. a ≤ x ≤ b,

(y1, y2) ∈ arg min
y1,y2

{
1

2
y2

1 + xy1 + y2, :
1

2
y1 + x ≥ 0, y1 ≥ 0, y2 ≥ 0

}
,

where a and b are positive constants. It is obvious that S(x) = {(0, 0)} and V (x) = 0
for all x ≥ 0. F (x, y) = (y1 + x, 1) is not pseudostrongly monotone. Therefore, the
assumptions of Propositions 3.9, 3.11, and 3.13 are not satisfied. However, one can
verify that the assumptions of Proposition 3.5 are satisfied. Therefore, for any µ > 0,
(x∗, y∗) is a solution of the original problem (P5) if and only if it is the solution of
the following problem (by the value function approach):

(P6) minx+ y1 + y2 + µ

(
1

2
y2

1 + xy1 + y2

)
s.t.

1

2
y1 + x ≥ 0, a ≤ x ≤ b, y1 ≥ 0, y2 ≥ 0.
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By Theorem 6.5, there exists u∗ ∈ R3 such that (x∗, y∗, u∗) is a solution of the
following problem:

(P7) minx+ y1 + y2 + µ

(
u1

(
1

2
y1 + x

)
+ u2y1 + u3y2

)
s.t. 0 = y1 + x− 1

2
u1 − u2,

0 = 1− u3,

a ≤ x ≤ b, 1

2
y1 + x ≥ 0, y1 ≥ 0, y2 ≥ 0, u1 ≥ 0, u2 ≥ 0

for any µ > 0. Clearly, (P5) and (P6) have a unique solution (a, 0, 0), and (P7) has a
unique solution (a, 0, 0, 0, 0, 1). Note that the compactness of the feasible region and
the strict complementarity assumptions of Theorem 6.4 fail for this example.

Examples 6.6 and 6.7 illustrate that both the KKT and the non-KKT approaches
have their advantages and disadvantages. On one hand, by the KKT approach, the
exact penalty term is an explicit function of the problem data, but the number of
variables in the single level problem increases. On the other hand, by the non-KKT
approach, although the number of variables stays the same in the equivalent single
level problem, the exact penalty function needs to be computed.

Acknowledgment. We thank J. S. Treiman for his comments on an early version
of this paper, which helped to improve the exposition.
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