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1. Introduction. An optimization problem with variational inequality constraints
(OPVIC) is a special class of an optimization problem over variables x and y in which
some or all of its constraints are defined by a parametric variational inequality with y
as its primary variable and x as the parameter. In this paper we consider a very gen-
eral optimization problem with variational inequality constraints in finite dimensional
spaces defined as follows:

(OPVIC) minimize f(x, y)

subject to (s.t.) ψ(x, y) ≤ 0, (x, y) ∈ C,
y ∈ Ω, 〈F (x, y), y − z〉 ≤ 0 ∀z ∈ Ω,

where f : Rn+m → R, ψ : Rn+m → Rd, F : Rn+m → Rm are Lipschitz near all
optimal solutions of (OPVIC), C is a nonempty closed subset of Rn+m, and Ω is a
closed convex subset of Rm. The above problem is also called a generalized bilevel
programming problem (see, e.g., Ye, Zhu, and Zhu [27]) or a mathematical program
with equilibrium constraints (see, e.g., Luo, Pang, and Ralph [10]). The reader is
referred to [10] for recent developments on the subject and references for other types
of optimality conditions.

Although under certain constraint qualifications one can reduce (OPVIC) to an
ordinary nonlinear programming problem, it is known that the usual constraint quali-
fication such as the Mangasarian–Fromovitz constraint qualification cannot in general
be satisfied for the equivalent nonlinear programming problem (see [27, Proposition
1.1]). In Ye and Ye [26], under the pseudoupper-Lipschitz continuity, a Kuhn–Tucker
type necessary optimality condition involving Mordukhovich coderivatives was derived
for (OPVIC). In Ye [25], it was shown that a Kuhn–Tucker type necessary optimal-
ity condition involving the proximal coderivatives (which are in general smaller than
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Mordukhovich coderivatives) holds under a stronger constraint qualification in the
case where the variational inequality is a complementarity system, i.e., Ω = Ra ×Rb+
with a+ b = m.

The purpose of this paper is to study (OPVIC) under much weaker assumptions
and derive more powerful results than those in [26]. In particular, we incorporate
inequality constraints and an abstract constraint in our problems and we do not
assume the smoothness of the mapping F as in [26].

As in [26], we formulate (OPVIC) as the following optimization problem with a
generalized equation constraint:

(GP) minf(x, y)

s.t. ψ(x, y) ≤ 0, (x, y) ∈ C,
0 ∈ F (x, y) +N(y,Ω),

where

N(y,Ω) :=

{
the normal cone of Ω at y if y ∈ Ω,
∅ if y 
∈ Ω

is the normal cone operator.
We show that if (x̄, ȳ) is a local solution of (OPVIC), then there exist λ ≥ 0, η ∈

Rm, and γ ∈ Rd+ not all zero such that

0 ∈ λ∂f(x̄, ȳ) + ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ)
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C),

〈ψ(x̄, ȳ), γ〉 = 0,

where ∂ denotes the limiting subgradient (see Definition 2.2), NΩ denotes the set-
valued map y ⇒ N(y,Ω), and D∗ denotes the coderivative of a set-valued map (see
Definition 2.4). Moreover we introduce the concept of calmness for (OPVIC) and
show that under the calmness condition λ can be taken as 1. Several constraint
qualifications that are stronger than the calmness condition but easier to verify are
introduced and their relationships are indicated.

Note that in the case where Ω = Rm, (OPVIC) is reduced to an ordinary nonlinear
programming problem with equality, inequality, and abstract constraints. Hence our
results are applicable even for an ordinary nonlinear programming problem.

We organize the paper as follows. Section 2 contains background material on
nonsmooth analysis. In section 3, we derive the Fritz John type necessary optimality
condition involving Mordukhovich coderivatives and the Kuhn–Tucker type neces-
sary optimality conditions involving Mordukhovich coderivatives under the calmness
condition. In section 4 we introduce several constraint qualifications for the Kuhn–
Tucker necessary optimality conditions involving the Mordukhovich coderivatives and
study the relationships between these constraint qualifications. Applications to bilevel
programming problems are discussed in section 5.

The following notations are used throughout the paper. For an m-by-n matrix A
and index sets I ⊆ {1, 2, . . . ,m}, J ⊆ {1, 2, . . . , n}, AI and AI,J denote the submatrix
of A with rows specified by I and the submatrix of A with rows and columns specified
by I and J , respectively. For a mapping ψ : Rn → Rd and a vector γ ∈ Rd, 〈ψ, γ〉(x)
is the function defined by 〈ψ, γ〉(x) := 〈ψ(x), γ〉. For a vector d ∈ Rn, di is the ith
component of d and dI is the subvector composed from the components di, i ∈ I.
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〈a, b〉 is the inner product of vectors a and b. gphΦ is the graph of a set-valued map
Φ and epif is the epigraph of a function f . intΩ, clΩ, and coΩ denote the interior,
the closure, and the convex hull of a set Ω. We denote by Bδ(x0) and B the open ball
centered at x0 with radius δ > 0 and the open unit ball, respectively.

2. Preliminaries. This section contains some background material on non-
smooth analysis which will be used later. We give only concise definitions that will be
needed in the paper. For more detailed information on the subject, our references are
Clarke [3], Clarke et al. [4], Rockafellar and Wets [19], Loewen [9], and Mordukhovich
[13, 14].

First we give some concepts for various normal cones.
Definition 2.1. Let Ω be a nonempty subset of Rn. Given z̄ ∈ clΩ, the convex

cone

Nπ(z̄,Ω) := {ξ ∈ Rn : ∃M > 0 s.t. 〈ξ, z − z̄〉 ≤M‖z − z̄‖2 ∀z ∈ Ω}

is called the proximal normal cone to set Ω at point z̄, the closed cone

N(z̄,Ω) :=

{
lim
k→∞

ξk : ξk ∈ Nπ(zk,Ω), zk → z̄

}

is called the limiting normal cone to Ω at point z̄, and the closed convex hull of the
limiting normal cone

NC(z̄,Ω) := clcoN(z̄,Ω)

is called the Clarke normal cone to set Ω at point z̄.
Using the definitions for normal cones, we now give definitions for subgradients

of a single-valued map.
Definition 2.2. Let f : Rn → R ∪ {+∞} be lower semicontinuous and finite at

z̄ ∈ Rn. The proximal subgradient of f at z̄ is defined by

∂πf(z̄) := {ξ : (ξ,−1) ∈ Nπ((z̄, f(z̄)), epif)},

the limiting subgradient of f at z̄ is defined by

∂f(z̄) := {ξ : (ξ,−1) ∈ N((z̄, f(z̄)), epif)},

and the Clarke generalized gradient of f at z̄ is defined by

∂Cf(z̄) := {ξ : (ξ,−1) ∈ NC((z̄, f(z̄)), epif)},

where epif := {(x, r) ∈ Rn ×R : f(x) ≤ r} is the epigraph of f .
The following calculus rules for subgradients are well known and can be found in

the references given in the beginning of this section (see, e.g., [9, Proposition 5A.4,
Theorem 5A.8], proof of [5, Lemma 2.2]).

Proposition 2.3. Let functions f : Rn → R ∪ {+∞} be lower semicontinuous
and finite at z̄ ∈ Rn, g : Rn → R be Lipschitz near z̄, and h : Rn → R is C1+ at z̄
(i.e., the gradient of h is Lipschitz near z̄). Then the nonnegative scalar multiplication
rule is

∂(λf)(z̄) = λ∂f(z̄) ∀λ ≥ 0
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and the sum rules are

∂(f + g)(z̄) ⊆ ∂f(z̄) + ∂g(z̄),

∂π(f + h)(z̄) = ∂πf(z̄) +∇h(z̄).
Let ϕ(x) := f(F (x)), where F : Rm → Rn is Lipschitz near x̄ and f : Rn → R is

Lipschitz near F (x̄). Then the chain rule is

∂ϕ(x̄) ⊆
⋃

{∂〈η, F 〉(x̄) : η ∈ ∂f(F (x̄))}.

For set-valued maps, the definition for a limiting normal cone leads to the def-
inition of coderivative of a set-valued map introduced by Mordukhovich (see, e.g.,
[14]).

Definition 2.4. Let Φ : Rn ⇒ Rq be an arbitrary set-valued map (assigning
to each z ∈ Rn a set Φ(z) ⊂ Rq which may be empty) and (x̄, ȳ) ∈ clgphΦ, where
gphΦ := {(z, v) : v ∈ Φ(z)} denotes the graph of the set-valued map Φ. The set-valued
map D∗Φ(z̄, v̄) from Rq into Rn defined by

D∗Φ(z̄, v̄)(η) = {ξ ∈ Rn : (ξ,−η) ∈ N((z̄, v̄), gphΦ)}
is called the coderivative of Φ at the point (z̄, v̄). By convention for (z̄, v̄) 
∈ clgphΦ
we define D∗Φ(z̄, v̄)(η) = ∅. The symbol D∗Φ(z̄) is used when Φ is single-valued at z̄
and v̄ = Φ(z̄).

In the special case when a set-valued map is single-valued, the coderivative is
related to the limiting subgradient in the following way.

Proposition 2.5 (see [14, Proposition 2.11]). Let Φ : Rn → Rq be single-valued
and Lipschitz near z̄. Then

D∗Φ(z̄)(η) = ∂〈Φ, η〉(z̄) ∀η ∈ Rq.
We now give some concepts for Lipschitz behavior of a set-valued map. The

following concept for Lipschitz behavior was introduced by Aubin [1].
Definition 2.6. A set-valued map Φ : Rn ⇒ Rq is said to be pseudo-Lipschitz

continuous around (z̄, v̄) ∈ gphΦ if there exist a neighborhood U of z̄, a neighborhood
V of v̄, and µ ≥ 0 such that

Φ(z) ∩ V ⊂ Φ(z′) + µ‖z′ − z‖clB ∀z′, z ∈ U.
On the other hand, the following upper-Lipschitz behavior was studied by Robin-

son [21].
Definition 2.7. A set-valued map Φ : Rn ⇒ Rq is said to be upper-Lipschitz

continuous at z̄ ∈ Rn if there exist a neighborhood U of z̄ and µ ≥ 0 such that

Φ(z) ⊂ Φ(z̄) + µ‖z − z̄‖clB ∀z ∈ U.
The following proposition is a sum rule for coderivatives.
Proposition 2.8 (see [14, Corollary 4.2]). Let Φ1 and Φ2 be closed-graph set-

valued maps from Rn into Rq and let v̄ ∈ Φ1(z̄)+Φ2(z̄). Assume that the multifunction
S : Rn+q ⇒ R2q defined by

S(z, v) := {(v1, v2) ∈ R2q|v1 ∈ Φ1(z), v2 ∈ Φ2(z), v1 + v2 = v}
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is locally bounded around (z̄, v̄) and either Φ1 is pseudo-Lipschitz around (z̄, v1) or Φ2

is pseudo-Lipschitz around (z̄, v2) for each (v1, v2) ∈ S(z̄, v̄). Then for any η ∈ Rq

D∗(Φ1 +Φ2)(z̄, v̄)(η) ⊆∪(v1,v2)∈S(z̄,v̄)[D
∗Φ1(z̄, v1)(η) +D

∗Φ2(z̄, v2)(η)].

The following sum rule for the case where one of the set-valued maps is single-
valued follows from Propositions 2.5 and 2.8.

Corollary 2.9. Let Φ1 : Rn → Rq be single-valued and Lipschitz near z̄ and
Φ2 : Rn ⇒ Rq be an arbitrary closed set-valued map. Then for any v̄ ∈ Φ1(z̄)+Φ2(z̄)
and η ∈ Rq

D∗(Φ1 +Φ2)(z̄, v̄)(η) ⊆ ∂〈Φ1, η〉(z̄) +D∗Φ2(z̄, v̄ − Φ1(z̄))(η).

3. Necessary optimality conditions. The purpose of this section is to de-
rive the necessary optimality conditions involving Mordukhovich coderivatives for
(OPVIC).

The following fundamental results obtained by Mordukhovich will be useful in
proving the Fritz John type necessary optimality condition involving Mordukhovich
coderivatives.

Lemma 3.1 (extremal principle). Let Ω1, . . . ,Ωn be closed sets in Rm and let
x̄ ∈ ∩ni=1Ωi. Suppose that there exist a neighborhood U of x̄ and sequences {aik} ⊆
Rm, i = 1, 2, . . . , n such that aik → 0 as k → ∞ for i = 1, 2, . . . , n and

∩ni=1(Ωi − aik) ∩ U = ∅ ∀k = 1, 2, . . . .

Then there exists ξi ∈ N(x̄,Ωi), i = 1, . . . , n such that

ξ1 + ξ2 + · · ·+ ξn = 0, ‖ξ1‖+ ‖ξ2‖+ · · ·+ ‖ξn‖ = 1.

Although the terminology of the extremal principle was first given by Mordukhovich
[14], the essence of the results can be traced back to Mordukhovich [11]. We may use-
fully view it as an extension of the Hahn–Banach separation theorem to nonconvex
sets. The proof for the case when n = 2 can be found in [14, Theorem 3.2]. For
the case when n > 2, the result can be proved in exactly the same way as the proof
of [14, Theorem 3.2] or mathematical induction on n can be used as in the proof of
Mordukhovich and Shao [17, Theorem 3.2].

The extremal principle turns out to be very useful in deriving the Fritz John type
necessary optimality condition as shown in the following theorem.

Theorem 3.2. Let (x̄, ȳ) be a local solution of (OPVIC). Then there exist λ ≥ 0,
η ∈ Rm, γ ∈ Rd+ not all zero such that

0 ∈ λ∂f(x̄, ȳ) + ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ)
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C),

〈ψ(x̄, ȳ), γ〉 = 0.

Proof. Define

Ω1 := {(x, y, u0, u, v) : f(x, y) ≤ u0},
Ω2 := {(x, y, f(x̄, ȳ), u, 0) : ψ(x, y) ≤ u},
Ω3 := {(x, y, f(x̄, ȳ), 0, 0) : (x, y) ∈ C},
Ω4 := {(x, y, f(x̄, ȳ), 0, v) : v ∈ F (x, y) +N(y,Ω)}.
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Then (x̄, ȳ, f(x̄, ȳ), 0, 0) ∈ ∩4
i=1Ωi. By taking a1k = (0, 0, νk, 0, 0) with νk < 0, νk → 0,

aik = 0 ∀i = 2, 3, 4, and U = V × R1+d+m, where V is a neighborhood of the local
minimizer (x̄, ȳ), it is easy to verify that

∩4
i=1(Ωi − aik) ∩ U = ∅ ∀k = 1, 2, . . . .

By Lemma 3.1, there exist ξi, not all zero such that ξi ∈ N((x̄, ȳ, f(x̄, ȳ), 0, 0),Ωi),
i = 1, 2, 3, 4, and

0 = ξ1 + ξ2 + ξ3 + ξ4.

That is, there exist (a,−λ) ∈ Rn+m+1, (b,−γ) ∈ Rn+m+d, c ∈ Rn+m, (d,−η) ∈
Rn+m+m not all zero such that

(a,−λ) ∈ N((x̄, ȳ, f(x̄, ȳ)), epif),(3.1)

(b,−γ) ∈ N((x̄, ȳ, 0), epiψ),(3.2)

c ∈ N((x̄, ȳ), C),(3.3)

(d,−η) ∈ N((x̄, ȳ, 0), gphϕ) where ϕ(x, y) := F (x, y) +N(y,Ω),(3.4)

and

0 = a+ b+ c+ d.(3.5)

By the definition of epigraph, inclusion (3.1) implies that λ ≥ 0. Since f is Lipschitz
near (x̄, ȳ), either a = 0, λ = 0, or λ > 0 and ( aλ ,−1) ∈ N((x̄, ȳ, f(x̄, ȳ)), epif), which
by definition implies that a

λ ∈ ∂f(x̄, ȳ). Hence (3.1) implies that

λ ≥ 0, a ∈ λ∂f(x̄, ȳ).(3.6)

Similarly, inclusion (3.2) implies that γ ≥ 0. Let M := {i : ψi(x̄, ȳ) = 0} be
the index set of the binding constraints. Inclusion (3.2) implies that (b,−γM ) ∈
N((x̄, ȳ, 0), gphψM ), which is equivalent to b ∈ D∗ψM (x̄, ȳ)(γM ) by definition of
coderivatives. By virtue of Proposition 2.5, we haveD∗ψM (x̄, ȳ)(γM ) = ∂〈ψM , γM 〉(x̄, ȳ).
Therefore we have

γ ≥ 0, 〈ψ(x̄, ȳ), γ〉 = 0, b ∈ ∂〈ψ, γ〉(x̄, ȳ).(3.7)

By definition of coderivatives, (3.4) implies that d ∈ D∗ϕ(x̄, ȳ, 0)(η). By Corollary
2.9, we have

d ∈ D∗ϕ(x̄, ȳ, 0)(η)
⊆ ∂〈F, η〉(x̄, ȳ) + {0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η).(3.8)

The conclusion of the theorem follows from inclusions (3.6), (3.7), (3.3), (3.8), and
(3.5).

Remark. In the case of ordinary mathematical programming problems, Ω = Rm,
Theorem 3.2 is a limiting subgradient version of the generalized Lagrange multiplier
rules in Clarke [3, Theorem 6.1.1] and was obtained by Mordukhovich in [12, Theorem
1(b)].

The following constraint qualification called no nonzero abnormal multiplier con-
straint qualification (NNAMCQ) follows from the Fritz John type necessary condition.
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Corollary 3.3. Let (x̄, ȳ) be a local solution of (OPVIC). Assume that condition
(NNAMCQ) is satisfied, i.e., there is no nonzero vector (γ, η) ∈ Rd+ ×Rm such that

0 ∈ ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ)
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C),(3.9)

〈ψ(x̄, ȳ), γ〉 = 0

is satisfied at (x̄, ȳ). Then λ > 0 in the conclusion of Theorem 3.2.
Proof. By Theorem 3.2, there exists λ ≥ 0, η ∈ Rm, γ ∈ Rd+ not all zero such that

0 ∈ λ∂f(x̄, ȳ) + ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ)
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C),(3.10)

〈ψ(x̄, ȳ), γ〉 = 0.

The case λ = 0 is impossible under condition (NNAMCQ). Indeed, if λ = 0 in the
above condition, then the inclusion (3.10) coincides with inclusion (3.9). But this is
impossible since (γ, η) is nonzero.

It is well known that the calmness condition (see, e.g., Clarke [3]) is the weakest
constraint qualification for nonlinear programming problems with Lipschitz problem
data. We now extend the concept to the setting of (OPVIC).

Definition 3.4. Let (x̄, ȳ) be a local solution to (OPVIC). (GP) is said to be
calm at (x̄, ȳ) provided that there exist ε > 0 and µ > 0 such that ∀ (p, q) ∈ εB
∀ (x, y) ∈ Bε(x̄, ȳ) satisfying

ψ(x, y) + p ≤ 0, (x, y) ∈ C,
q ∈ F (x, y) +N(y,Ω)

it follows that

f(x̄, ȳ) ≤ f(x, y) + µ‖(p, q)‖.
Lemma 3.5. Let (x̄, ȳ) be a local solution to (GP), where (GP) is calm at (x̄, ȳ).

Then (x̄, ȳ, 0) is a local solution to the following problem:

min f(x, y) + dµmax{ψi(x, y), 0, i = 1, . . . , d}+ µ‖q‖
s.t. (x, y, q) ∈ gphΦ ∩ C ×Rm,

where Φ is a set-valued map defined by Φ(x, y) := F (x, y) +N(y,Ω).
Proof. By definition of the calmness,

f(x̄, ȳ) ≤ f(x, y) + µ(‖p‖+ ‖q‖) ∀(x, y, p, q)
s.t. ψ(x, y) + p ≤ 0, (x, y, q) ∈ gphΦ ∩ C ×Rm, (x, y) ∈ Bε(x̄, ȳ), (p, q) ∈ εB.

Since

ψi(x, y)− ψ+
i (x, y) ≤ 0, i = 1, . . . , d

taking pi = −ψ+
i (x, y), we have for (x, y) in a neighborhood of (x̄, ȳ) and q near 0,

f(x̄, ȳ) ≤ f(x, y) + µ
(

d∑
i=1

ψ+
i (x, y) + ‖q‖

)

≤ f(x, y) + dµmax{ψi(x, y), 0, i = 1, . . . , d}+ µ‖q‖.
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Notice that max{ψi(x̄, ȳ), 0, i = 1, . . . , d} = 0. The proof is complete.
Theorem 3.6. Let (x̄, ȳ) be a local solution of (OPVIC). Suppose that (GP) is

calm at (x̄, ȳ). Then λ can be taken as 1 in the conclusion of Theorem 3.2.
Proof. By Lemma 3.5, (x̄, ȳ, 0) is a local solution to the new (OPVIC):

min f̃(x, y, q)

s.t. 0 ∈ F̃ (x, y, q) +N(y,Ω),

where f̃(x, y, q) := f(x, y) + dµmax{ψi(x, y), 0, i = 1, . . . , d}+ µ‖q‖ and F̃ (x, y, q) :=
−q + F (x, y).

We now prove that condition (NNAMCQ) is satisfied. Indeed, it is easy to see
that the inclusion (3.9) for the new (OPVIC) is

0 ∈ ∂〈F, η〉(x̄, ȳ)× {−η}+ {0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η)× {0}+N((x̄, ȳ), C)× {0},
which is only satisfied by the zero vector η = 0.

Applying Corollary 3.3, there exists η ∈ Rm such that

0 ∈ ∂f̃(x̄, ȳ, 0) + ∂〈F, η〉(x̄, ȳ)× {−η}
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η)× {0}+N((x̄, ȳ), C)× {0}.

Note that

f̃(x, y, q) = f(x, y) + dµh(ψ(x, y)) + µ‖q‖,
where h : Rd → R is defined by h(u) := max{u1, . . . , ud, 0}. By the sum rule and the
chain rule in Proposition 2.3,

∂f̃(x̄, ȳ, 0) ⊆ ∂f(x̄, ȳ)×{0}+dµ∪{∂〈η, ψ〉(x̄, ȳ) : η ∈ ∂h(ψ(x̄, ȳ))}+µ({0}×{0}×B).
The proof of the theorem is completed after calculating the subgradient of the

convex function h at ψ(x̄, ȳ), i.e.,

∂h(ψ(x̄, ȳ)) =

{
γ ∈ Rd : γi ≥ 0, γiψi(x̄, ȳ) = 0, i = 1, . . . , d and

d∑
i=1

γi = 1

}
.

Remark. In the case of ordinary mathematical programming problems, Ω = Rm,
Theorem 3.6 can be considered as a limiting subgradient version of the generalized
Lagrange multiplier rules in Clarke [3, Proposition 6.4.4].

Note that Theorems 3.2 and 3.6 involve the coderivative D∗NΩ(ȳ,−F (x̄, ȳ))(η).
By the definition of coderivatives,

ξ ∈ D∗NΩ(ȳ,−F (x̄, ȳ))(η) ⇐⇒ (ξ,−η) ∈ N((ȳ,−F (x̄, ȳ)), gphNΩ).

Hence calculation of the coderivative D∗NΩ(ȳ,−F (x̄, ȳ))(η) depends on calculation
of the limiting normal cone N((ȳ,−F (x̄, ȳ)), gphNΩ). In the case Ω = Rm+ , the lim-
iting normal cone N((ȳ,−F (x̄, ȳ)), gphNΩ) can be calculated explicitly by using the
following proposition.

Proposition 3.7. For any (ȳ, z̄) ∈ gphNRm
+
, define

L := L(ȳ, z̄) := {i ∈ {1, 2, · · · ,m} : ȳi > 0, z̄i = 0},
I+ := I+(ȳ, z̄) := {i ∈ {1, 2, · · · ,m} : ȳi = 0, z̄i < 0},
I0 := I0(ȳ, z̄) := {i ∈ {1, 2, · · · ,m} : ȳi = 0, z̄i = 0}.
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Then

N((ȳ, z̄), gphNRm
+
) = {(α,−β) ∈ R2m : αL = 0, βI+ = 0

∀i ∈ I0, either αiβi = 0 or αi < 0 and βi < 0}.

Proof. The proof of the above proposition follows from [25, Proposition 2.7] and
the definition of the limiting normal cones.

In many applications, Ω can be chosen as Ω = Ra × Rb+ for some nonnegative
integers a, b with a + b = m. Let y = (z, u), F (x, y) = (G(x, y), H(x, y)). Since
NRa(z) = {0} is a constant map, we have

D∗NΩ(ȳ,−F (x̄, ȳ))(α, β) = {0} ×D∗NRb
+
(ū,−H(x̄, z̄, ū))(β).

Again the limiting normal cone N((ū,−H(x̄, z̄, ū)), gphNRb
+
) can be calculated by

using Proposition 3.7.
In the case where Ω is a polyhedral convex set, a calculation of the limiting normal

cone to the graph of the normal cone to the set Ω was first given in the proof of [6,
Theorem 2] and stated in [20, Proposition 4.4].

4. Constraint qualifications. In this section we study sufficient conditions for
the calmness, introduce some constraint qualifications, and discuss the relationships
between them.

Definition 4.1. We say that the constraint system (CS) for (OPVIC)

(CS) ψ(x, y) ≤ 0, (x, y) ∈ C,
0 ∈ F (x, y) +N(y,Ω)

has a local error bound at a point (x̄, ȳ) if there exist positive constants µ, δ, and ε
such that

d((x, y),Σ(0, 0)) ≤ µ‖(p, q)‖ ∀ (p, q) ∈ εB,
(x, y) ∈ Σ(p, q) ∩Bδ(x̄, ȳ),(4.1)

where

Σ(p, q) := {(x, y) ∈ C : ψ(x, y) + p ≤ 0, q ∈ F (x, y) +N(y,Ω)}(4.2)

is the set of solutions to the perturbed generalized equation.
Note that (CS) has a local error bound at a point (x̄, ȳ) if and only if Σ(p, q) is

pseudoupper-Lipschitz continuous around (0, 0, x̄, ȳ) in the terminology of [26, Def-
inition 2.8]. Σ(p, q) being either pseudo-Lipschitz continuous around (0, 0, x̄, ȳ) (see
Definition 2.6) or upper-Lipschitz continuous (see Definition 2.7) at (x̄, ȳ) implies that
(CS) has a local error bound at (x̄, ȳ).

We now prove that the existence of a local error bound for the constraint system
of (OPVIC) at a solution (x̄, ȳ) implies that (OPVIC) is calm at (x̄, ȳ).

Proposition 4.2. Suppose that (CS) has a local error bound at (x̄, ȳ), a local
solution to (OPVIC). Then (GP) is calm at (x̄, ȳ).

Proof. Since (CS) has a local error bound at (x̄, ȳ), there exist positive numbers
µ, δ, ε such that (4.1) is satisfied. Let (p, q) ∈ εB, (x, y) ∈ Σ(p, q) ∩ Bδ(x̄, ȳ) and
(x∗, y∗) ∈ Σ(0, 0) be the projection of the vector (x, y). Then
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f(x̄, ȳ) ≤ f(x∗, y∗) since (x̄, ȳ) solves (OPVIC)

= f(x, y) + (f(x∗, y∗)− f(x, y))
≤ f(x, y) + Lf‖(x∗, y∗)− (x, y)‖ where Lf is the Lipschitz constant of f

= f(x, y) + Lfd((x, y),Σ(0, 0))

≤ f(x, y) + Lfµ‖(p, q)‖ by virtue of (4.1).

The proof is complete.
We now study sufficient conditions for existence of a local error bound that are

easier to verify. Recall that a set-valued map is called a polyhedral multifunction if its
graph is a union of finitely many polyhedral convex sets. This class of set-valued maps
is closed under (finite) addition, scalar multiplication, and (finite) composition. By
Robinson [23, Proposition 1], a polyhedral multifunction is upper-Lipschitz. Hence
the following result provides a sufficient condition for existence of a local error bound.

Theorem 4.3. Suppose that the mappings ψ, F are affine, C is polyhedral, and
Ω is a polyhedral convex set. Then the solution map for the perturbed generalized
equation (4.2) is upper-Lipschitz at any feasible solution of (OPVIC) and hence (CS)
has a local error bound at any feasible solution of (OPVIC).

Proof. Since the graph of NΩ is a finite union of polyhedral convex sets, NΩ is
polyhedral. Hence (ψ, F )+Rd+×NΩ ( as the sum of polyhedral maps (ψ, F ), Rd+×NΩ)
is polyhedral, and so therefore is its inverse map

S(p, q) := {(x, y) : ψ(x, y) + p ≤ 0, q ∈ F (x, y) +N(y,Ω)}.
That is, the graph

gphS := {(x, y, p, q) : ψ(x, y) + p ≤ 0, q ∈ F (x, y) +N(y,Ω)}
is a union of polyhedral convex sets. Since

gphΣ = {(x, y, p, q) ∈ C ×Rd ×Rm : ψ(x, y) + p ≤ 0, q ∈ F (x, y) +N(y,Ω)}
= (C ×Rd ×Rm) ∩ gphS,

which is also a union of polyhedral convex sets, Σ is also a polyhedral multifunction.
By [23, Proposition 1], Σ is upper-Lipschitz. Hence (CS) has a local error bound at
any feasible point.

Remark. The result in the case Ω = Rm is actually the well-known error bound
result for linear systems due to Hoffman [7]. In this case, the above result recovers the
well-known result in nonlinear programming that no other constraint qualification is
needed when the constraint system is linear.

We now prove that condition (NNAMCQ) defined in Corollary 3.3 is a sufficient
condition for existence of a local error bound.

Theorem 4.4. Assume that condition (NNAMCQ) is satisfied at (x̄, ȳ). Then
the solution map for the perturbed generalized equation (4.2) is pseudo-Lipschitz con-
tinuous around (0, 0, x̄, ȳ) and hence (CS) has a local error bound at (x̄, ȳ).

Proof. By virtue of [16, Proposition 3.5], it suffices to prove that

D∗Σ(0, 0, x̄, ȳ)(0, 0) = {(0, 0)}.
Suppose that (γ,−η) ∈ D∗Σ(0, 0, x̄, ȳ)(0, 0), which means by the definition of coderiva-
tives that

(γ,−η, 0, 0) ∈ N((0, 0, x̄, ȳ), gphΣ).
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By the definition of limiting normal cones, there are sequences (pk, qk, xk, yk) →
(0, 0, x̄, ȳ) and (γk,−ηk, αk, βk) → (γ,−η, 0, 0) with

(γk,−ηk, αk, βk) ∈ Nπ((pk, qk, xk, yk), gphΣ).
For each k by the definition of proximal normal cones, there are M > 0 such that
∀ (p, q, x, y) ∈ gphΣ,
〈(γk,−ηk, αk, βk), (p, q, x, y)− (pk, qk, xk, yk)〉 ≤M‖(p, q, x, y)− (pk, qk, xk, yk)‖2.

That is, (pk, qk, xk, yk) is a solution to the optimization problem

min〈−(γk,−ηk, αk, βk), (p, q, x, y)〉+M‖(p, q, x, y)− (pk, qk, xk, yk)‖2

s.t. ψ(x, y) + p ≤ 0, (x, y) ∈ C,
q ∈ F (x, y) +N(y,Ω).

Inclusion (3.9) for the above problem is

0 ∈ {(γ, 0)} × ∂〈ψ, γ〉(xk, yk) + {(0,−η)} × ∂〈F, η〉(xk, yk)
+{(0, 0, 0)} ×D∗NΩ(y

k, qk − F (xk, yk))(η) + {(0, 0)} ×N((x, y), C),

〈ψ(xk, yk) + pk, γ〉 = 0,

which is only satisfied by γ = 0, η = 0 and hence (NNAMCQ) is satisfied at (pk, qk, xk, yk).
Applying Corollary 3.3, there exist γ̃k ∈ Rd, η̃k ∈ Rm such that

0 ∈ −(γk,−ηk, αk, βk) + {(γ̃k, 0)} × ∂〈ψ, γ̃k〉(xk, yk) + {(0,−η̃k)} × ∂〈F, η̃k〉(xk, yk)
+{(0, 0, 0)} ×D∗NΩ(y

k, qk − F (xk, yk))(η̃k) + {(0, 0)} ×N((xk, yk), C),

〈ψ(xk, yk) + pk, γ̃k〉 = 0.

That is,

(αk, βk) ∈ ∂〈ψ, γk〉(xk, yk) + ∂〈F, ηk〉(xk, yk)
+{0} ×D∗NΩ(y

k, qk − F (xk, yk))(ηk) +N((xk, yk), C),

〈ψ(xk, yk) + pk, γk〉 = 0.

Taking limits as k → ∞ by virtue of Lipschitz continuity of ψ and F , we have

0 ∈ ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ) + {0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C),

〈ψ(x̄, ȳ), γ〉 = 0.

Consequently, by condition (NNAMCQ), (γ, η) = (0, 0) and hence Σ is pseudo-
Lipschitz continuous around (0, 0, x̄, ȳ).

In the case of the nonlinear programming problem (i.e, when Ω = Rm), condition
(NNAMCQ), with the limiting subgradient replaced by the Clarke generalized gradi-
ent, is equivalent to the generalized Mangasarian–Fromovitz constraint qualification
(see, e.g., [24, Proposition 3.1] and [8]). We now extend the equivalence to the case
where Ω = Ra ×Rb+. The result was proved by Outrata [18, Proposition 3.3] for the
case where Ω = Rm+ , ψ is independent of y and there are no abstract constraints.
Note that our result improves the one in [18] in that no extra assumption such as (A)
in [18] is needed for the inequality constraints. However, the proof technique is the
same as that in [18]. Hence we only sketch the proof.
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Proposition 4.5. Assume that Ω = Ra×Rb+ with a, b nonnegative integers and
a + b = m, C = D × Rb, where D is a closed subset of Rn+a. Let y = (z, u) and
F (x, y) = (G(x, y), H(x, y)) and suppose all mappings ψ,G,H are C1. We say that
the generalized Mangasarian–Fromovitz constraint qualification (GMFCQ) is satisfied
at (x̄, ȳ) if

(i) for every partition of I0 into sets P,Q,R with R 
= ∅, there exist vectors
k ∈ intTC((x̄, z̄), D), h ∈ Rb such that hI+ = 0, hQ = 0, hR ≥ 0,

∇x,zψM (x̄, z̄, ū)k +∇uψM (x̄, z̄, ū)h ≤ 0,

∇x,zG(x̄, z̄, ū)k +∇uG(x̄, z̄, ū)h = 0,

∇x,zHL∪P (x̄, z̄, ū)k +∇uHL∪P (x̄, z̄, ū)h = 0,

∇x,zHR(x̄, z̄, ū)k +∇uHR(x̄, z̄, ū)h ≥ 0,

and either hi > 0 or

∇x,zHi(x̄, z̄, ū)k +∇uHi(x̄, z̄, ū)h > 0 for some i ∈ R;
(ii) for every partition of I0 into the sets P,Q, the matrix[ ∇x,zG(x̄, z̄, ū) ∇uGL∪P (x̄, z̄, ū)

∇x,zHL∪P (x̄, z̄, ū) ∇uHL∪P,L∪P (x̄, z̄, ū)
]

has full row rank and there exist vectors k ∈ intTC((x̄, z̄), D), h ∈ Rb such
that

hI+ = 0, hQ = 0,

∇x,zψM (x̄, z̄, ū)k +∇uψM (x̄, z̄, ū)h < 0,

∇x,zG(x̄, z̄, ū)k +∇uG(x̄, z̄, ū)h = 0,

∇x,zHL∪P (x̄, z̄, ū)k +∇uHL∪P (x̄, z̄, ū)h = 0,

where TC((x̄, z̄), D) denotes the Clarke tangent cone of D at (x̄, z̄),M := {i : ψi(x̄, z̄, ū) =
0} is the index set of binding inequality constraints, and

L := L(x̄, z̄, ū) := {i ∈ {1, 2, · · · , b} : ūi > 0, Hi(x̄, z̄, ū) = 0},
I+ := I+(x̄, z̄, ū) := {i ∈ {1, 2, · · · , b} : ūi = 0, Hi(x̄, z̄, ū) > 0},
I0 := I0(x̄, z̄, ū) := {i ∈ {1, 2, · · · , b} : ūi = 0, Hi(x̄, z̄, ū) = 0}.

Then (GMFCQ) implies (NNAMCQ) and under the assumption that intTC((x̄, z̄), D) 
=
∅ (GMFCQ) is equivalent to (NNAMCQ) with limiting normal cone of D replaced by
the Clarke normal cone of D.

Proof. Let η = (α, β). Then the condition (NNAMCQ) is equivalent to saying
that there is no nonzero vector (γ, α, β) ∈ Rd+ ×Ra ×Rb such that

0 ∈ ∇ψM (x̄, z̄, ū)�γM +∇G(x̄, z̄, ū)�α+∇H(x̄, z̄, ū)�β
+{0} × {0} ×D∗NRb

+
(ū,−H(x̄, z̄, ū))(β) +N((x̄, z̄), D)× {0},

where A� denotes the transpose of a matrix A. That is, there is no (γ, α, β) 
= 0 such
that γ ≥ 0 and

−∇x,zψM (x̄, z̄, ū)�γM −∇x,zG(x̄, z̄, ū)�α−∇x,zH(x̄, z̄, ū)�β ∈ N((x̄, z̄), D),

(−∇uψM (x̄, z̄, ū)�γM −∇uG(x̄, z̄, ū)�α−∇uH(x̄, z̄, ū)�β,−β)
∈ N((ū,−H(x̄, z̄, ū)), gphNRb

+
).
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Let (w,−β) ∈ N((ū,−H(x̄, z̄, ū)), gphNRb
+
). Then, by Proposition 3.7, wL =

0, βI+ = 0 and for any i ∈ I0, either wiβi = 0 or wi < 0, βi < 0. So I0 splits into the
sets

P := {i ∈ I0 : wi = 0}, Q := {i ∈ I0 : βi = 0}, R := {i ∈ I0 : wi < 0, βi < 0}.

Using this partition, condition (NNAMCQ) is equivalent to the following two condi-
tions:

(i) For every partition of I0 into the sets P,Q,R with R 
= ∅ there are no vectors
γM , w, α, βL∪P∪R satisfying the system

−∇x,zψM (x̄, z̄, ū)�γM −∇x,zG(x̄, z̄, ū)�α
−∇x,zHL∪P∪R(x̄, z̄, ū)�βL∪P∪R ∈ N((x̄, z̄), D)

−∇uψM,L∪P (x̄, z̄, ū)�γM −∇uGA,L∪P (x̄, z̄, ū)�α
−∇uHL∪P∪R,L∪P (x̄, z̄, ū)�βL∪P∪R = 0,

wI+∪Q∪R = −∇uψM,I+∪Q∪R(x̄, z̄, ū)�γM −∇uGA,I+∪Q∪R(x̄, z̄, ū)�α

−∇uHL∪P∪R,I+∪Q∪R(x̄, z̄, ū)�βL∪P∪R,
γM ≥ 0, wR < 0, βR < 0;

(ii) For every partition of I0 into the sets P,Q there are no vectors γM , w, α, βL∪P
satisfying the system

−∇x,zψM (x̄, z̄, ū)�γM −∇x,zG(x̄, z̄, ū)�α
−∇x,zHL∪P (x̄, z̄, ū)�βL∪P ∈ N((x̄, z̄), D)

−∇uψM,L∪P (x̄, z̄, ū)�γM −∇uGA,L∪P (x̄, z̄, ū)�α
−∇uHL∪P,L∪P (x̄, z̄, ū)�βL∪P = 0,

wI+∪Q = −∇uψM,I+∪Q(x̄, z̄, ū)�γM −∇uGA,I+∪Q(x̄, z̄, ū)�α

−∇uHL∪P,I+∪Q(x̄, z̄, ū)�βL∪P ,
γM ≥ 0,

where A denotes the index set A := {1, 2, · · · , a}.
In the case where D is an open set, as in Outrata [18], the results follow from

applying Motzkin’s and Tucker’s theorems of alternatives and the general case follows
from applying the convex separation theorem.

Remark. Note that in the case where Ω = Rm, (OPVIC) is an ordinary nonlinear
programming problem with equality, inequality constraints, and abstract constraints
and (GMFCQ) is reduced to the condition that the matrix ∇F (x̄, ȳ) has full row rank
and there exist vectors k ∈ intTC((x̄, ȳ), C) such that

∇ψM (x̄, ȳ)k < 0,

∇F (x̄, ȳ)k = 0,

which is the generalized Mangasarian–Fromovitz constraint qualification for the non-
linear programming problems (see, e.g., Jourani [8]). Note that we can also deal
with the case where the mappings ψ, F are not smooth but Lipschitz continuous only
by replacing the gradient ∇ by the Clarke gradient ∂C without any difficulty. The
smoothness in the assumption is just for the easy exposition.
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The following theorem extends a sufficient condition in [4, Theorem 3.3.1] for
existence of a local error bound of an equality system to (CS). Note that as in the
proof of [4, Theorem 3.3.8], we can prove that (NNAMCQ) is stronger than the
following sufficient condition for existence of an local error bound.

Theorem 4.6. Let (x̄, ȳ) ∈ Σ(0, 0), where Σ is the solution map (4.2). Assume
that the bounded constraint qualification condition (Bounded CQ) is satisfied at (x̄, ȳ),
i.e., there exist constants µ > 0, 0 < ε ≤ ∞, such that

µ−1 ≤ inf{‖ξ‖ :ξ ∈ ∂〈ψ, e1〉(x, y) + ∂〈F, e2〉(x, y)
+{0} ×D∗NΩ(y, q − F (x, y))(e2) +N((x, y), C),

〈ψ(x, y) + p, e1〉 = 0, ‖(e1, e2)‖ = 1, e1 ≥ 0,

(p, q) 
= 0, (x, y) ∈ Σ(p, q) ∩Bε(x̄, ȳ)}.

Then if ε <∞ ∀ 0 < δ < ε,

d((x, y),Σ(0, 0)) ≤ µ‖(p, q)‖ ∀ (x, y) ∈ Σ(p, q) ∩Bδ(x̄, ȳ), (p, q) ∈ (ε− δ)µ−1B

and if ε = ∞,

d((x, y),Σ(0, 0)) ≤ µ‖(p, q)‖ ∀ (x, y) ∈ Σ(p, q).

Proof. Observe that

Σ(0, 0) = {(x, y) : 0 ∈ Φ(x, y)}
= {(x, y) : d(0,Φ(x, y)) = 0},

where Φ(x, y) := (−ψ(x, y), F (x, y))+Rd−×N(y,Ω)+∆C(x, y) and ∆C is the indicator
mapping of set C defined by

∆C(x, y) :=

{ {0} if (x, y) ∈ C,
∅ if (x, y) 
∈ C.

It is obvious that the following claim will be useful.
Claim. Suppose the function f(x) : Rn → R ∪ {+∞} is nonnegative and lower

semicontinuous. Let x0 be a solution of S = {x : f(x) = 0}. Suppose that for some
µ > 0, 0 < ε ≤ ∞,

‖ξ‖ ≥ µ−1 ∀ ξ ∈ ∂πf(x), 0 < f(x) <∞, x ∈ Bε(x0).

If ε <∞, then ∀ 0 < δ < ε,

d(x, S) ≤ µf(x) ∀x ∈ Bδ(x0), f(x) < (ε− δ)µ−1

and if ε = ∞, then

d(x, S) ≤ µf(x) ∀x ∈ Rn.

Proof of the claim. Taking V = Bε(x0) in [4, Theorem 3.3.1],

min{d(x,Bε(x0)
C), d(x, S)} ≤ µf(x) ∀x ∈ Bε(x0),

where ΩC denotes the complement of a set Ω.
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Let 0 < δ < ε and x ∈ Bδ(x0). Then obviously, d(x,Bε(x0)
C) > ε− δ. Hence for

all x ∈ Bδ(x0) satisfying f(x) < (ε− δ)µ−1 ,

d(x, S) = min{d(x,Bε(x0)
C), d(x, S)} ≤ µf(x) < ε− δ.

In the case ε = ∞, d(x,B∞(x0)
C) = ∞, hence

d(x, S) ≤ µf(x) ∀x.
The proof of the claim is complete.

Observe that

d(0,Φ(x, y)) := inf{‖(p, q)‖ : (p, q) ∈ Φ(x, y)} = inf{‖(p, q)‖+ΨgphΦ(x, y, p, q)},
where ΨE denotes the indicator function of set E. By the statement and the proof of
[9, Theorem 5A.2], the function (x, y) → d(0,Φ(x, y)) is lower semicontinuous and

∂πd(0,Φ(x, y)) ⊆ {(γ, η) : (γ, η, 0, 0) ∈ ∂πg(x, y, p, q)
for some (p, q) such that d(0,Φ(x, y)) = ‖(p, q)‖+ΨgphΦ(x, y, p, q)},

where g(x, y, p, q) := ‖(p, q)‖+ΨgphΦ(x, y, p, q). At the point (x, y, p, q) ∈ gphΦ such
that 0 < d(0,Φ(x, y)) = ‖(p, q)‖, ‖(p, q)‖ is smooth and the subgradient is the unit
sphere Sd+m. By the sum rule Proposition 2.3, we have

∂πg(x, y, p, q) = {0} × {0} × Sd+m +Nπ((x, y, p, q), gphΦ).

Hence

∂πd(0,Φ(x, y)) ⊆ {(γ, η) : (γ, η, 0, 0) ∈ {0} × {0} × Sd+m +Nπ((x, y, p, q), gphΦ)

for some (p, q) such that d(0,Φ(x, y)) = ‖(p, q)‖+ΨgphΦ(x, y, p, q)}.
For any (γ, η, 0, 0) ∈ {0} × {0} × Sd+m + Nπ((x, y, p, q), gphΦ), there exists

(e1, e2) ∈ Sd+m such that (γ, η, e1,−e2) ∈ Nπ((x, y, p, q), gphΦ). By definition of
the proximal normal cone, there exists M > 0 such that ∀ (x′, y′, p′, q′) ∈ gphΦ,

〈(γ, η, e1,−e2), (x′, y′, p′, q′)− (x, y, p, q)〉 ≤M‖(x′, y′, p′, q′)− (x, y, p, q)‖2.

That is, (x, y, p, q) is an optimal solution to

min 〈−(γ, η, e1,−e2), (x′, y′, p′, q′)〉+M‖(x′, y′, p′, q′)− (x, y, p, q)‖2

s.t. ψ(x′, y′) + p′ ≤ 0, (x′, y′) ∈ C,
q′ ∈ F (x′, y′) +N(y′,Ω).

One can easily verify that (NNAMCQ) for the above problem is satisfied. Applying
Corollary 3.3, we conclude that

(γ, η) ∈ ∂〈ψ, e1〉(x, y) + ∂〈F, e2〉(x, y)
+{0} ×D∗NΩ(y, q − F (x, y))(e2) +N(x, y, C),

e1 ≥ 0, 〈ψ(x, y) + p, e1〉 = 0.

Hence,

∂πd(0,Φ(x, y)) ⊆{(γ, η) : (γ, η) ∈ ∂〈ψ, e1〉(x, y) + ∂〈F, e2〉(x, y)
+{0} ×D∗NΩ(y, q − F (x, y))(e2) +N((x, y), C)

for some (e1, e2) ∈ Sd+m such that e1 ≥ 0, 〈p+ ψ(x, y), e1〉 = 0,

and some (p, q) such that d(0,Φ(x, y)) = ‖(p, q)‖+ΨgphΦ(x, y, p, q)}.
The proof of the theorem is completed after applying the claim.
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Now consider the case where the abstract constraint is independent of y, i.e.,
C = D ×Rm, there is no inequality constraint and ∀ x near x̄ the solution map

y(x) := {y ∈ Rm : 0 ∈ F (x, y) +N(y,Ω)}
is single-valued and Lipschitz on a neighborhood of ȳ. Then it is obvious that a
local solution (x̄, ȳ) of (OPVIC) is also a local solution to the problem of minimizing
f(x, y(x)) overD, and hence no other constraint qualifications are needed. A sufficient
condition for the existence of such a Lipschitz continuous single-valued map is the
strong regularity of the generalized equation

0 ∈ F (x̄, y) +N(y,Ω)(4.3)

at ȳ in the sense of Robinson [22]. Indeed, in the following theorem we will show that
strong regularity is stronger than the constraint qualification (NNAMCQ). The reader
is referred to [22] for conditions of strong regularity. Since (4.3) is strongly regular in
particular if F is locally strongly monotone in y uniformly in x, the following condition
is weaker than the one in [26, Theorem 3.2 (b)]. Note that the result for the case
Ω = Rm+ was proved by Outrata [18] using a different proof.

Theorem 4.7. Let (x̄, ȳ) be a solution to the generalized equation. Assume that
F (x, y) is C1 around (x̄, ȳ) and the generalized equation (4.3) is strongly regular at ȳ.
Then the constraint qualification (NNAMCQ) is satisfied at (x̄, ȳ).

Proof. Let y := x and f(q, y) := −q + F (x̄, y) in [22, Theorem 2.1 and Corollary
2.2]. Since the generalized equation (4.3) is strongly regular at ȳ, there exist neigh-
borhoods N of 0 and W of ȳ, and a single-valued function y(q) : N → W , such that
for any q ∈ N , y(q) is the unique solution in W of the inclusion

q ∈ F (x̄, y) +N(y,Ω).

Further, y(q) is Lipschitz continuous near 0. That is Σx̄(q) := {y ∈ Rm : q ∈
F (x̄, y) +N(y,Ω)} is pseudo-Lipschitz continuous around (0, ȳ). Note that from [15,
Theorem 5.8], Σx̄(q) is pseudo-Lipschitz continuous around (0, ȳ) if and only if there
is no nonzero vector η ∈ Rm such that

0 ∈ ∇yF (x̄, ȳ)�η +D∗NΩ(ȳ,−F (x̄, ȳ))(η).
Therefore there is no nonzero vector η ∈ Rm such that

0 ∈ ∇xF (x̄, ȳ)�η +N(x̄, D),

0 ∈ ∇yF (x̄, ȳ)�η +D∗NΩ(ȳ,−F (x̄, ȳ))(η).
That is, (NNAMCQ) is satisfied.

Corollary 4.8. The following conditions are constraint qualifications:
(1) [calmness constraint qualification (calmness CQ)]: The problem (GP) is calm

at (x̄, ȳ).
(2) [error bound CQ]: (CS) has a local error bound at (x̄, ȳ).
(3) [linear constraint qualification (linear CQ)]: The mappings ψ, F are affine, C

is polyhedral, and Ω is a polyhedral convex set.
(4) [strongly regular constraint qualification (SRCQ)]: There is no inequality con-

straint ψ(x, y) ≤ 0. F is C1 around the optimal solution (x̄, ȳ). C = D×Rm,
where D is a closed subset of Rn. The generalized equation

0 ∈ F (x̄, y) +N(y,Ω)

is strongly regular at ȳ.
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(5) [no nonzero abnormal multiplier constraint qualification (NNAMCQ)]: There
is no nonzero vector (γ, η) ∈ Rd+ ×Rm such that

0 ∈ ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ) + {0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C)

〈ψ(x̄, ȳ), γ〉 = 0.

(6) [generalized Mangasarian–Fromovitz constraint qualification (GMFCQ)]: Stated
as in Proposition 4.5.

(7) [bounded constraint qualification (bounded CQ)]: There exist constants µ >
0, 0 < ε ≤ ∞, such that

µ−1 ≤ inf{‖ξ‖ :ξ ∈ ∂〈ψ, e1〉(x, y) + ∂〈F, e2〉(x, y)
+{0} ×D∗NΩ(y, q − F (x, y))(e2) +N((x, y), C),

〈ψ(x, y) + p, e1〉 = 0, ‖(e1, e2)‖ = 1, e1 ≥ 0,

(p, q) 
= 0, (x, y) ∈ Σ(p, q) ∩Bε(x̄, ȳ)}.
In summary, we have proved the following relationships between the constraint

qualifications:
(SRCQ)

⇓
(NNAMCQ) ⇐= (GMFCQ) when Ω = Ra ×Rb+

⇓
Linear CQ Bounded CQ

⇓ ⇓
Error Bound CQ

⇓
Calmness CQ.

5. Applications to bilevel programming problems. The purpose of this
section is to illustrate applications of the results obtained in the previous sections to
the bilevel programming problems defined as follows:

(BP) minimize f(x, z) s.t. ψ(x, z) ≤ 0, (x, z) ∈ D and z ∈ S(x),
where S(x) is the set of solutions of the problem (Px):

(Px) minimize g(x, z) s.t. ϕ(x, z) ≤ 0

and f : Rn+a → R, ψ : Rn+a → Rd, ϕ : Rn+a → Rb. For simplicity, we assume all
functions f, g, ψ, ϕ are smooth enough.

Let z ∈ S(x). If a certain constraint qualification holds for the lower level problem
(Px) at z, then there exists u ∈ Rb such that

∇zg(x, z) + u∇zϕ(x, z) = 0, ϕ(x, z) ≤ 0,

u ≥ 0, 〈u, ϕ(x, z)〉 = 0,

where u∇zϕ(x, z) :=
∑
uk∇zϕk(x, z). It is easy to see that the above Kuhn–Tucker

conditions for (Px) can be written as the generalized equation

0 ∈ ((∇zg + u∇zϕ)t(x, z),−ϕ(x, z)) +N((z, u), Ra ×Rb+),
where at denotes the transpose of a vector a. Hence the original bilevel programming
problem becomes an (OPVIC).
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Applying Theorems 3.2 and 3.6 we now derive necessary optimality conditions for
(BP).

Theorem 5.1. Assume that f and ψ are C1, g, ϕ are twice continuously differen-
tiable around (x̄, z̄). Further assume that g is pseudoconvex in z, ϕ is quasi-convex in
z. Let (x̄, z̄) solve the problem (BP). For each feasible solution (x, z) of (BP) suppose
that a certain constraint qualification holds for (Px) at z and ū is a corresponding
multiplier associated with (x̄, z̄), i.e.,

0 = ∇zg(x̄, z̄) + ū∇zϕ(x̄, z̄), ū ≥ 0, 〈ϕ(x̄, z̄), ū〉 = 0.

Then there exist λ ≥ 0, γ ∈ Rd+, α ∈ Ra, β ∈ Rb not all zero such that

0 ∈ λ∇f(x̄, z̄) + γ∇ψ(x̄, z̄) + α∇(∇zg + ū∇zϕ)t(x̄, z̄)− β∇ϕ(x̄, z̄) +N((x̄, z̄), D),

〈ψ(x̄, z̄), γ〉 = 0, (−∇zϕ(x̄, z̄)α,−β) ∈ N(ū, ϕ(x̄, z̄)), gphNRb
+
).

λ can be taken as 1 if one of the following constraint qualifications hold:
(a) ∇zg, ψ, ϕ are affine mappings and D is polyhedral.
(b) There is no nonzero vector (γ, α, β) ∈ Rd+ ×Ra ×Rb such that

0 ∈ γ∇ψ(x̄, z̄) + α∇(∇zg + ū∇zϕ)t(x̄, z̄)− β∇ϕ(x̄, z̄) +N((x̄, z̄), D),

〈ψ(x̄, z̄), γ〉 = 0, (−∇zϕ(x̄, z̄)α,−β) ∈ N((ū, ϕ(x̄, z̄)), gphNRb
+
).

(c) There exist µ > 0 and ε > 0 such that

µ−1 ≤inf{‖(ξ1, ξ2)‖ :

ξ1 ∈ e1∇ψ(x, z) + e2∇(∇zg + u∇zϕ)t(x, z)− e3∇ϕ(x, z) +N((x, z), D),

(ξ2 −∇zϕ(x, z)e2,−e3) ∈ N((u, q + ϕ(x, z)), gphNRb
+
),

〈ψ(x, z) + p, e1〉 = 0, ‖(e1, e2, e3)‖ = 1, e1 ≥ 0,

(p, q) 
= 0, (x, z, u) ∈ Σ(p, q) ∩Bε(x̄, z̄, ū)},
where

Σ(p, q) := {(x, z, u) ∈ C ×Rb : ψ(x, z) + p ≤ 0,

q ∈ ((∇zg + u∇zϕ)t(x, z),−ϕ(x, z)) +N((z, u), Ra ×Rb+)}.
(d) D = E × Ra, where E is a closed subset of Rn and there is no inequality

constraint ψ(x, z) ≤ 0. Furthermore the strong second order sufficient con-
dition and the linear independence of binding constraints hold for the lower
level problem Px̄ at z̄, i.e., for any nonzero v such that

∇zϕi(x̄, z̄)tv = 0, i ∈ L,
〈v, (∇2

zg(x̄, z̄) + ū∇2
zϕ(x̄, z̄))v〉 > 0, and gradients of the binding constraints

{∇zϕi(x̄, z̄), i ∈ L ∪ I0} are linearly independent, where

ū∇2
zϕ(x̄, z̄) :=

∑
ūi∇2

zϕi(x̄, z̄)

and

L := L(x̄, z̄, ū) := {i : ūi > 0, ϕi(x̄, z̄) = 0},
I0 := I0(x̄, z̄, ū) := {i : ūi = 0, ϕi(x̄, z̄) = 0},
I+ := I+(x̄, z̄, ū) := {i : ūi = 0, ϕi(x̄, z̄) < 0}.
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Proof. Since the objective function of the lower level problem g is pseudoconvex in
z and the constraint ϕ is quasi-convex in z, by Theorem 4.2.11 of Bazaraa and Shetty
[2] the Kuhn–Tucker condition is a necessary and sufficient condition for optimality.
Therefore from the discussion preceding Theorem 5.1 we know that (x̄, z̄) is a solution
of the following problem:

min f(x, z)

s.t. 0 ∈ ((∇zg + u∇zϕ)t(x, z),−ϕ(x, z)) +N((z, u), Ra ×Rb+),(5.1)

ψ(x, z) ≤ 0, (x, z) ∈ C.
Condition (a) is the linear constraint qualification (Linear CQ). Condition (b) is

the no nonzero abnormal multiplier constraint qualification (NNAMCQ). Condition
(c) is the bounded constraint qualification (Bounded CQ). Condition (d) is a sufficient
condition for the strong regularity of the generalized equation (5.1) by virtue of [22,
Theorem 4.1].

Remark. In the case where D = {(x, z) : h(x, z) ≤ 0} and h(x, z) : Rn+a → Rq,
if h is an affine mapping, it is known that

N((x̄, z̄), D) = {ζ∇h(x̄, z̄) : ζ ∈ Rq+, 〈h(x̄, z̄), ζ〉 = 0}.
In this case, the necessary optimality condition becomes the existence of λ ≥ 0,
γ ∈ Rd+, α ∈ Ra, β ∈ Rb not all zero and ζ ∈ Rq+ such that

0 = λ∇f(x̄, z̄) + γ∇ψ(x̄, z̄) + α∇(∇zg + ū∇zϕ)t(x̄, z̄)− β∇ϕ(x̄, z̄) + ζ∇h(x̄, z̄),
〈h(x̄, z̄), ζ〉 = 0, 〈ψ(x̄, z̄), γ〉 = 0,

(−∇zϕ(x̄, z̄)α,−β) ∈ N(ū, ϕ(x̄, z̄)), gphNRb
+
).

Hence incorporating an abstract constraint in (OPVIC) can be used as a useful device
to handle linear and nonlinear constraints separately.
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