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Abstract. For a lower semicontinuous (l.s.c.) inequality system on a Banach space, it is
shown that error bounds hold, provided every element in an abstract subdifferential of the constraint
function at each point outside the solution set is norm bounded away from zero. A sufficient condition
for a global error bound to exist is also given for an l.s.c. inequality system on a real normed linear
space. It turns out that a global error bound closely relates to metric regularity, which is useful for
presenting sufficient conditions for an l.s.c. system to be regular at sets. Under the generalized Slater
condition, a continuous convex system on Rn is proved to be metrically regular at bounded sets.

AMS subject classifications. 49J52, 90C26, 90C31

Key words. abstract subdifferentials, inequality systems, error bounds, metrical regularity,
generalized Slater condition

PII. S1052623400371557

1. Introduction. Let X be a real normed linear space and C a nonempty closed
subset of X. Let fi, |gj | : X → (−∞,+∞] be lower semicontinuous (l.s.c.) for each
i = 1, . . . , r and j = 1, . . . , s. Denote the solution set of an l.s.c. (inequality) system
by

S := {x ∈ C : f1(x) ≤ 0, . . . , fr(x) ≤ 0; g1(x) = 0, . . . , gs(x) = 0},
which is assumed to be nonempty. The distance function dS : X → R is defined by

dS(x) = inf{‖x− s‖ : s ∈ S}.
The set S is said to have a global error bound if there exists a constant µ > 0 such
that

dS(x) ≤ µ( ‖F (x)+‖ + ‖G(x)‖ ) ∀x ∈ C,

where F (x)+ = (f1(x)+, . . . , fr(x)+) ∈ Rr with fi(x)+ := max{fi(x), 0} for i =
1, . . . , r, G(x) = (g1(x), . . . , gs(x)) ∈ Rs and ‖ · ‖ is the usual Euclidean norm. The
set S is said to have a local error bound if there exist constants µ > 0 and δ > 0 such
that

dS(x) ≤ µ( ‖F (x)+‖ + ‖G(x)‖ ) ∀x ∈ C with ‖(F (x)+, G(x) )‖ < δ.

Apparently if the set S has a global (local) error bound, then functions involved
provide a global (local) error estimate for the distance from any point x to the so-
lution set S. Because this kind of estimation has many important applications in
optimization, many sufficient conditions for error bounds to exist have been given
since Hoffman [10] proved that a global error bound always holds for any linear in-
equality systems on Rn. The reader is referred to [1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 16,
17, 18, 21, 22, 23] and the references therein for the results on error bounds.
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It is worth pointing out that there are two important classes of conditions in these
results. One contains the Slater condition (explicitly or implicitly), which closely
relates to the points inside the solution set S of a system, while the other is expressed
by various subdifferentials of functions at the points outside S. Since the latter includes
subdifferentials, one can use the knowledge of nonsmooth analysis to study this issue
more effectively.

To the authors’ knowledge, it is Ioffe [11] who first used Ekeland’s variational
principle and the sum rule to prove the existence of a global error bound (as well as
metric regularity at a point) for a Lipschitz continuous equality system under the con-
dition that any element in the Clarke subdifferential of the constraint function at each
point outside the solution set be norm bounded away from zero. Using Ioffe’s method,
Ye [22] and Jourani [13] have sharpened the result of Ioffe by replacing the Clarke
subdifferential with the limiting subdifferential in Rn and a partial subdifferential in
a general Banach space, respectively. In a Hilbert space, Clarke et al. [4, Theorem
3.3.1] have weakened Ioffe’s condition using the proximal subdifferential instead of
the Clarke subdifferential (see also Ye [23, Claim]). Since the proximal subdifferential
does not satisfy the sum rule, the result of Clarke et al. was proved not by Ioffe’s
method but by the decrease principle. We note that Wu [21] has used a different
tool, that is, the fuzzy sum rule (instead of the sum rule), to prove that the Clarke
subdifferential in Ioffe’s condition can be replaced by the proximal subdifferential for
an l.s.c. system on Rn. This method is in fact suitable for various subdifferentials on
a Banach space no matter whether they satisfy the fuzzy sum rule or the sum rule
since the latter always implies the former. Therefore in this paper, we introduce an
abstract subdifferential which satisfies the fuzzy sum rule and then take advantage
of this method to show that the Clarke subdifferential in Ioffe’s condition can really
be replaced by such an abstract subdifferential which includes many subdifferentials
in the nonsmooth analysis literature. These results unify and extend those stated in
this paragraph. In fact, for an l.s.c. system they have provided sufficient conditions
not only for a global error bound but also for a local error bound as well as for metric
regularity.

This paper is organized as follows. In section 2, we introduce the concept of ∂ω-
subdifferential and show that several common subdifferentials in nonsmooth analysis
are ∂ω-subdifferentials. In section 3, we use the ∂ω-subdifferential to present sufficient
conditions for error bounds to exist for l.s.c. inequality systems on Banach spaces.
Section 4 is devoted to a sufficient condition for a global error bound to hold for a
general inequality system on a real normed linear space. With this result we extend
those of Deng [5, 6] to an l.s.c. convex system on a real normed linear space. In
section 5, relations between error bound and metrical regularity are revealed, and
some sufficient conditions are given for a continuous convex system to be metrically
regular at a nonempty set. In particular, we prove that a generalized Slater condition
is sufficient for a continuous convex system to be metrically regular at any bounded
sets in Rn.

Throughout this paper, B and B, respectively, denote the open unit ball and its
closure of X, while B∗ and B∗ are, respectively, the open unit ball and its closure of
the dual space X∗. For a nonempty closed subset C of X, ψC and NC(x) denote the
indicator function of C and the (Clarke) normal cone to C at x ∈ C, respectively. For
an extended real-valued function f defined on X, its epigraph is written as

epi f := {(x, r) ∈ domf ×R : f(x) ≤ r},
where domf := {x ∈ X : f(x) < +∞}.
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2. ∂ω-subdifferentials. Here we introduce the concept of ∂ω-subdifferentials
for l.s.c. functions, which unifies that of several common subdifferentials in the non-
smooth analysis literature.

Definition 2.1. Let X be a Banach space and f : X → (−∞,+∞] be l.s.c. at
x ∈ domf. A subset of X∗, denoted by ∂ωf(x), is called a ∂ω-subdifferential of f at
x if it has the following properties:

(ω1) ∂ωg(x) = ∂ωf(x) if g = f in a neighborhood of x.
(ω2) 0 ∈ ∂ωf(x) when f attains a local minimum at x.
(ω3) If f is convex and Lipschitz of rank L near x, then ∂ωf(x) ⊆ LB∗.
(ω4) The fuzzy sum rule holds; that is, if g : X → (−∞,+∞] is Lipschitz near x,

then for any ξ ∈ ∂ω(f +g)(x) and any δ > 0, there exist x1, x2 ∈ x+ δB such
that

f(x1) ∈ f(x) + δB1, g(x2) ∈ g(x) + δB1, and ξ ∈ ∂ωf(x1) + ∂ωg(x2) + δB∗,

where B1 = (−1, 1).
The following commonly used subdifferentials turn out to be ∂ω-subdifferentials.
Example 2.1. Let X be a Banach space and f : X → (−∞,+∞] be l.s.c. at

x ∈ domf. The Clarke–Rockafellar generalized derivative of f at x in the direction
v ∈ X is defined as follows:

f◦(x; v) := lim
ε→0+

lim sup

y
f→x

t→0+

inf
w∈v+εB

f(y + tw) − f(y)

t
,

where y
f→x signifies that y and f(y) converge to x and f(x), respectively. The gener-

alized gradient of f at x is the subset of X∗ given by

∂f(x) =

{ {ξ ∈ X∗ : f◦(x; v) ≥ 〈ξ, v〉 ∀v ∈ X} if f◦(x; 0) �= −∞;
∅ if f◦(x; 0) = −∞.

By the above definition (see Clarke [3, Proposition 2.1.2 (a) and Corollary 1 of The-
orem 2.9.8]), ∂f(x) satisfies properties (ω1)–(ω4).

Example 2.2. Let X be an Asplund space, i.e., a Banach space such that every
continuous convex function is Fréchet differentiable at each point of some Gδ dense
subset of this space (which includes all reflexive Banach spaces). Let f : X →
(−∞,+∞] be l.s.c. at x ∈ domf. The Fréchet subdifferential of f at x, denoted by
∂F f(x), is the set

{
ξ ∈ X∗ : lim inf

‖h‖→0

f(x + h) − f(x) − 〈ξ, h〉
‖h‖ ≥ 0

}
.

Based on the definition, Ioffe [12, Proposition 1], and Fabian [8, Theorem 3], ∂F f(x)
is a ∂ω-subdifferential of f at x.

Example 2.3. Let H be a Hilbert space and f : H → (−∞,+∞] be l.s.c. at
x ∈ domf. A vector ξ ∈ H∗ is called a proximal subgradient of f at x provided that
there exist positive numbers M and δ such that

f(y) ≥ f(x) + 〈ξ, y − x〉 −M‖y − x‖2 ∀y ∈ x + δB.

The set of all such ξ is denoted by ∂πf(x) and is referred to as the proximal subdiffer-
ential of f at x. It follows that ∂πf(x) satisfies properties (ω1)–(ω4) from the above
inequality and Clarke et al. [4, Theorems 1.7.3 and 1.8.3].
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Remark 2.1. (i) For a convex function, all subdifferentials in Examples 2.1–2.3
coincide with the subdifferentials in the sense of convex analysis.

(ii) The Fréchet subdifferential contains only the Fréchet derivative whenever a
function is Fréchet differentiable, and the proximal subdifferential includes only the
Fréchet derivative when a function is Fréchet differentiable and its Fréchet derivative
is locally Lipschitz continuous.

(iii) In an Asplund space, one has

∂F f(x) ⊆ ∂f(x),

while in a Hilbert space, the following inclusions hold:

∂πf(x) ⊆ ∂F f(x) ⊆ ∂f(x).

3. Sufficient conditions for an l.s.c. system. Consider a simple inequality
system

f(x) ≤ 0,

where f is a locally Lipschitz function defined on R. If the solution set S := {x ∈
R : f(x) ≤ 0} is nonempty, then the inequality dS(x) ≤ µf(x)+ holds automatically
for any x ∈ S and any µ > 0. To look for a sufficient condition for this inequality to
hold for some µ > 0 and any point x ∈ R\S, we can take one point x0 ∈ S such that
f(x0) = 0 and f(y) > 0 for any y ∈ (x0, x] = {tx0 + (1 − t)x : t ∈ [0, 1)}. By the
Lebourg mean-value theorem [3, Theorem 2.3.7], there exist z ∈ (x0, x] and ξ ∈ ∂f(z)
such that

f(x) − f(x0) = ξ · (x− x0),

from which f(x)+ = ‖ξ‖ · ‖x−x0‖ ≥ ‖ξ‖dS(x). Therefore if ‖ξ‖ ≥ µ−1 holds for some
µ > 0 and any ξ ∈ ∂f(x) for each x ∈ R\S, then dS(x) ≤ µf(x)+ holds for any x ∈ R.

For an l.s.c. function f defined on a Banach space X, will the existence of a
positive constant µ such that

‖ξ‖ ≥ µ−1 ∀ξ ∈ ∂ωf(x) ∀x ∈ X\S

also imply the existence of a global error bound? The following theorem gives an
affirmative answer.

Theorem 3.1. Let f : X → (−∞,+∞] be an l.s.c. function on a Banach space
X. Suppose that x0 ∈ S := {x ∈ X : f(x) ≤ 0} and there exist µ > 0 and 0 < ε ≤ ∞
such that

‖ξ‖∗ ≥ µ−1 ∀ξ ∈ ∂ωf(x)

for any x with 0 < f(x) < ε (or ‖x− x0‖ < ε and 0 < f(x) < +∞). Then we have

dS(x) ≤ µf(x)+ ∀x ∈ X with f(x) < ε/2 ( or ‖x− x0‖ < ε/2).

Proof. We need only to prove the conclusion for the case where 0 < ε < +∞,
since for the case ε = +∞ we can obtain the corresponding result by taking the limit
from the former one.

Suppose that there were u such that f(u) < ε/2 (or u ∈ x0 + (ε/2)B) and

dS(u) > µf(u)+.
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Then u �∈ S and hence 0 < f(u) < +∞. Besides, we can choose α > 0 and t > 1 such
that

f(u) ≤ ε

2 + α
<

ε

2

(
or ‖u− x0‖ ≤ ε

2 + α
<

ε

2

)
and dS(u) > tµf(u) := γ.(3.1)

Thus f(u)+ = f(u) = γ(tµ)−1 and hence

f(u)+ ≤ inf
v∈X

f(v)+ + γ(tµ)−1.

Note that the function f(·)+ is l.s.c. and bounded below. Applying Ekeland’s
variational principle [7] to f(·)+ with σ = γ(tµ)−1 and λ = γ, we find x ∈ X satisfying

‖x− u‖ ≤ γ,(3.2)

f(v)+ + (tµ)−1h(v) ≥ f(x)+ ∀v ∈ X,(3.3)

where h(v) := ‖v − x‖.
From (3.1), (3.2), and (3.3), we have

x ∈ X,x �∈ S and 0 < f(x) < +∞.(3.4)

On the other hand, (3.3) implies that the function

f(v)+ + (tµ)−1h(v)

attains its minimum on X at x. Hence by property (ω2) in Definition 2.1,

0 ∈ ∂ω[f(x)+ + (tµ)−1h(x)].(3.5)

Since f is l.s.c. and 0 < f(x), there exists δ1 > 0 such that

0 < f(y) ∀y ∈ x + δ1B.

Thus by property (ω1) in Definition 2.1 and (3.5),

0 ∈ ∂ω(f + (tµ)−1h)(x).(3.6)

Let δ := min{f(x), (1 − t−1)µ−1, δ1, αε(2 + α)−1}. Then by property (ω4) in
Definition 2.1 and (3.6), there exist x1 and x2 both in x + δB such that

f(x) − δ < f(x1) < f(x) + δ

and

0 ∈ ∂ωf(x1) + ∂ω((tµ)−1h)(x2) + δB∗.

The inequalities mean that x1 ∈ x + δB and 0 < f(x1) < +∞. The inclusion, by
property (ω3) in Definition 2.1, implies that there exists

ξ ∈ ∂ωf(x1)

such that

‖ξ‖∗ < (tµ)−1 + δ ≤ (tµ)−1 + (1 − t−1)µ−1 = µ−1,
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which contradicts the assumption since

0 < f(x1) < f(x) + δ ≤ f(u)+ + (tµ)−1‖u− x‖ + δ

≤ f(u) + (tµ)−1γ + δ = 2f(u) + δ

≤ 2ε

2 + α
+

αε

2 + α
= ε

(
or ‖x1 − x0‖ ≤ ‖x1 − x‖ + ‖x− u‖ + ‖u− x0‖ < δ + γ +

ε

2 + α

≤ αε

2 + α
+ dS(u) +

ε

2 + α
≤ (1 + α)ε

2 + α
+ ‖u− x0‖

≤ (1 + α)ε

2 + α
+

ε

2 + α
= ε

)
.

Remark 3.1. In terms of the proximal subdifferential in a Hilbert space, Clarke
et al. [4, Theorem 3.3.1] indicates that the inequality dS(x) ≤ µf(x)+ holds if x is
sufficiently near x0 and 0 < f(x) is sufficiently small. (For more discussion about
Clarke et al. [4, Theorem 3.3.1], see Ye [23, Claim].) Theorem 3.1 guarantees the
inequality to be true if x is sufficiently near x0 (or 0 < f(x) is sufficiently small).

If X is an Asplund space and f is Fréchet differentiable, the Fréchet subdifferential
can be taken as ∂ωf. Theorem 3.1 applied in this case gives the following corollary.
Note that a Fréchet differentiable function may not be Lipschitz continuous. The
result cannot obtained by Ioffe [11, Theorem 1 or Corollary 1.1].

Corollary 3.2. Let f : X → (−∞,+∞] be l.s.c. on an Asplund space X.
Assume that x0 ∈ S := {x ∈ X : f(x) ≤ 0} and that there exist µ > 0 and 0 < ε ≤ ∞
such that f is Fréchet differentiable at any x with 0 < f(x) < ε (or ‖x− x0‖ < ε and
0 < f(x) < +∞), and

‖∇f(x)‖∗ ≥ µ−1.

Then we have

dS(x) ≤ µf(x)+ ∀x ∈ X with f(x) < ε/2 (or ‖x− x0‖ < ε/2).

The result in Theorem 3.1 for a single inequality system can easily be extended
to a system including equalities, inequalities, and an abstract constraint x ∈ C as
follows.

Theorem 3.3. Let C be a closed subset of X and each fi, |gj | : X → (−∞,+∞]
be l.s.c. for i = 1, . . . , r and j = 1, . . . , s. Assume that

x0 ∈ S := {x ∈ C : f1(x) ≤ 0, . . . , fr(x) ≤ 0; g1(x) = 0, . . . , gs(x) = 0},
and denote

f(x) = max{f1(x), . . . , fr(x); |g1(x)|, . . . , |gs(x)|}.
Suppose that there exist µ > 0 and 0 < ε ≤ ∞ such that

‖ξ‖∗ ≥ µ−1

whenever ξ ∈ ∂ω(f + ψC)(x) for any x ∈ C with 0 < f(x) < ε (or ‖x − x0‖ < ε and
0 < f(x) < +∞). Then we have

dS(x) ≤ µf(x)+ ≤ µ(‖F (x)+‖ + ‖G(x)‖)
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for any x ∈ C with f(x) < ε/2 (or ‖x− x0‖ < ε/2).
Proof. By Theorem 3.1, it suffices to check that f is l.s.c.
For any x ∈ X, denote Fi(x) = fi(x) for i = 1, . . . , r, and Fi(x) = |gi−r(x)| for

i = r + 1, . . . , r + s. Then for each 1 ≤ i ≤ r + s, Fi(x) is l.s.c.,

lim inf
y→x

f(y) = lim inf
y→x

max{Fi(y) : 1 ≤ i ≤ r + s}
≥ lim inf

y→x
Fi(y) ≥ Fi(x),

and hence

lim inf
y→x

f(y) ≥ f(x) ∀x ∈ X,

which implies that f is l.s.c.
Remark 3.2. (i) We have proved Theorem 3.3 based on Theorem 3.1, while

Theorem 3.1 can be obtained from Theorem 3.3 by taking C = X, r = 1, and s = 0
in it. Therefore they are equivalent to each other. Besides, for the cases ε = +∞ and
ε < +∞, Theorems 3.1 and 3.3 both give the corresponding sufficient conditions for
global error bounds and local error bounds, respectively.

(ii) Theorem 3.3 has extended Ioffe [11, Theorem 1 and Corollary 1.1] from a
Lipschitz equality system to an l.s.c. inequality system. It is also an extension of Wu
[21, Theorem 4.19] in which X = Rn, r = 1, s = 0, ε = +∞, and ∂ω = ∂π.

Theorem 3.3 is stated in terms of any ∂ω-subdifferentials; however, to simplify
checking the conditions, we often try to use smaller ∂ω-subdifferentials (such as
the proximal subdifferential in a Hilbert space and the Fréchet subdifferential in an
Asplund space) or some ∂ω-subdifferentials with better properties (for example, the
Clarke subdifferential). Besides, in Theorem 3.3, only |gi| is required to be l.s.c. no
matter whether g is. These points are illustrated in the following example.

Example 3.1. Consider the function g : R → R given by

g(x) =

{
1 − |x| if x is a rational number ;

−1 + |x| if x is a irrational number.

Take C = R. Then S = {x ∈ R : g(x) = 0} = {−1, 1}, ψC(x) = 0, and

|g(x)| = |1 − |x|| =

{
1 − |x| if |x| ≤ 1;
|x| − 1 if |x| > 1

is l.s.c. (in fact it is Lipschitz of rank 1). It is easy to find

∂π|g(x)| = {−1} for x < −1 or 0 < x < 1,

∂π|g(x)| = {1} for − 1 < x < 0 or 1 < x, and

∂π|g(0)| = ∅.

For any x ∈ C with g(x) �= 0, since

∂π(|g| + ψC)(x) = ∂π|g(x)| ⊆ {−1, 1},

we have ‖ξ‖ = 1 for any ξ ∈ ∂π(|g| + ψC)(x). Thus, by Theorem 3.3,

dS(x) ≤ |g(x)| = |1 − |x|| ∀x ∈ R.
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Remark 3.3. Note dS(0) = 1 = |g(0)| in this example. Thus µ = 1 is the
smallest constant such that the above inequality holds for any x in R. Besides, to use
Theorem 3.3 to find a global error bound, we cannot use the Clarke subdifferential
since if we choose it as a ∂ω-subdifferential, then ∂ωg(0) = ∂g(0) = [−1, 1] and it is
impossible to find a µ to satisfy the condition in Theorem 3.3.

Let Y be a real normed linear space and F : X × Y → (−∞,+∞] be l.s.c. For
any fixed y ∈ Y, the partial subdifferential ∂xF (x, y) at (x, y) ∈ X × Y in x defined
in Jourani [13] is in fact a ∂ω-subdifferential of F (x, y) at x (denoted by ∂x

ωF (x, y))
when F (x, y) is considered as a function of the first variable. Since we use the fuzzy
sum rule in the definition of ∂ω-subdifferential instead of the sum rule as in that of the
partial subdifferential, ∂ω-subdifferentials include more subdifferentials in nonsmooth
analysis than partial subdifferentials. For example, for the case F (x, y) = f(x) ∀y ∈ Y
the proximal subdifferential ∂πF (x, y) = ∂πf(x) is a ∂ω-subdifferential but not a
partial subdifferential.

Now applying Theorem 3.3 to a function F defined on X×Y , we have the following
result of which Jourani [13, Theorem 2.4] is a special case when we take C = X × Y
and ε = +∞.

Theorem 3.4. Let F : X × Y → (−∞,+∞] satisfy that for each y ∈ Y the
function F (·, y) is l.s.c. Let C be a nonempty closed subset of X×Y. Assume that for
y ∈ Y the set

S(y) := {x ∈ X : (x, y) ∈ C and F (x, y) ≤ 0}
is nonempty and that there exist µ > 0 and 0 < ε ≤ ∞ such that

‖ξ‖∗ ≥ µ−1 ∀ξ ∈ ∂x
ω(F + ψC)(x, y)

for any x ∈ X with (x, y) ∈ C and 0 < F (x, y) < ε. Then we have

dS(y)(x) ≤ µF (x, y)+ ∀x ∈ X with (x, y) ∈ C and F (x, y) < ε/2.

Proof. For y ∈ Y in the assumption, denote

f(·) := F (·, y) and C(y) := {x ∈ X : (x, y) ∈ C}.
Upon applying Theorem 3.3 to the solution set

S(y) = {x ∈ C(y) : f(x) ≤ 0}
we obtain the inequality desired.

4. Sufficient conditions for a general system. In this section we suppose
that X is a real normed linear space. Motivated by a note of a referee of Deng [6,
Corollary 2], we present the following condition to guarantee the existence of a global
error bound for a general inequality system.

Theorem 4.1. Let f be an extended real-valued function on a subset C of X and
S = {x ∈ C : f(x) ≤ 0} be nonempty. Suppose that there exist a unit vector u in X
and a constant µ > 0 such that for any λ > 0,

x + λu ∈ C and sup
λ>0

f(x + λu) − f(x)

λ
≤ −µ−1(4.1)

for any x ∈ C\S with f(x) < +∞. Then

dS(x) ≤ µf(x)+ ∀x ∈ C.
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Proof. It suffices to show that the inequality holds for x ∈ C\S with f(x) < +∞.
Now for such an x, 0 < f(x) < +∞, x + λu ∈ C, and f(x + λu) ≤ f(x) − µ−1λ for
any λ > 0, so by taking λ = µf(x), we have f(x + λu) ≤ 0, i.e., x + λu ∈ S. Thus
dS(x) ≤ ‖λu‖ = µf(x).

Remark 4.1. It is easy to see that C in Theorem 4.1 must be unbounded since
for x ∈ C with f(x) < +∞ and any λ > 0, x + λu must be in C.

Recall that for a nonempty closed convex subset C of X, the recession cone of C,
denoted by C∞, is the set

C∞ =
{
x ∈ X : ∃{µi} ⊆ (0,+∞) & {xi} ⊆ C s.t. lim

i→∞
µi = 0 and lim

i→∞
µixi = x

}
.

According to Rockafellar [19, Theorem 2A(c)], C∞ can equivalently be expressed as

C∞ = {x ∈ X : C + {x} ⊆ C}.
For an l.s.c. and proper convex function f : X → (−∞,+∞], since its epigraph

is a closed convex subset of X × R, one can use the recession cone of epi f to define
the recession function of f , denoted by f∞, i.e.,

epi(f∞) = (epi f)∞.

We refer to [20] for examples of recession functions.
Similar to Deng [5, 6], we use the recession function to give the following sufficient

condition for a global error bound.
Corollary 4.2. Let C be a closed convex subset of X and each fi : X →

(−∞,+∞] be l.s.c. proper convex for i ∈ I = {1, . . . , r}. Assume that S = {x ∈ C :
fi(x) ≤ 0, i ∈ I} is nonempty and denote f(x) := max{fi(x) : i ∈ I}. Suppose that
there exist a unit vector u ∈ C∞ and a constant µ > 0 such that f∞

i (u) ≤ −µ−1 for
each i ∈ I. Then for any 1 ≤ p ≤ +∞,

dS(x) ≤ µf(x)+ ≤ µ‖F (x)+‖p ∀x ∈ C,

where ‖ · ‖p denotes the p-norm on Rr.
Proof. Since S = {x ∈ C : f(x) ≤ 0}, we need only to check that the conditions

in Theorem 4.1 are satisfied for C and f.
First, by Rockafellar [19, Theorem 2A(a)], the inclusion u ∈ C∞ implies that

x+ λu must be in C for each x ∈ C and any λ ≥ 0. Besides, according to Rockafellar
[19, Corollary 3C(a)], for each i ∈ I,

f∞
i (u) = sup

λ>0

fi(x + λu) − fi(x)

λ
∀x ∈ domfi.

So if f∞
i (u) ≤ −µ−1, then for any λ > 0,

fi(x + λu) ≤ fi(x) − λµ−1 ∀x ∈ domfi.

Hence for any x ∈ domf and any λ > 0,

f(x + λu) ≤ f(x) − λµ−1.

In particular, for any x ∈ C\S with f(x) < +∞,

sup
λ>0

f(x + λu) − f(x)

λ
≤ −µ−1.
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Therefore, for any 1 ≤ p ≤ +∞, by Theorem 4.1,

dS(x) ≤ µf(x)+ ≤ µ‖F (x)+‖p ∀x ∈ C.

Remark 4.2. Note that each fi in Corollary 4.2 is an l.s.c. and convex function
on a real normed linear space. So it is an improvement on Deng [5, Theorem 2.3], in
which X is a reflexive Banach space and each fi is a continuous and convex function
for i = 1, . . . , r. Besides, Deng [6, Corollary 2] can be obtained as a special case of
Corollary 4.2 where p = 1 and f1 is a continuous and convex function on a Banach
space X. Furthermore, Corollary 4.2 not only extends Jourani [13, Theorem 3.3] but
also proves that condition (i) in it is redundant.

5. Global error bounds and metric regularity. In Deng [6] close relations
between global error bounds and metric regularity are revealed for a continuous and
convex inequality system. Most of them turn out to be true for an l.s.c. convex
inequality system, and some of them can further be refined. To show this we recall
the concept of metric regularity and introduce that of uniformly metric regularity.

Definition 5.1. Let f be an extended real-valued function on X, C be a subset
of X, and S = {x ∈ C : f(x) ≤ 0} be nonempty. The system

f(x) ≤ 0, x ∈ C,(5.1)

is said to be metrically regular at a nonempty set S1 ⊆ S if there exist constants δ > 0
and µ(δ) > 0 such that

dS(x) ≤ µ(δ)f(x)+ ∀x ∈ C with dS1
(x) ≤ δ.

When S1 = {z} ⊆ S, we simply say that the system (5.1) is metrically regular at z.
In particular, the system (5.1) is said to be uniformly metrically regular at S if it is
metrically regular at each point of S with the same δ > 0 and µ(δ) > 0.

Obviously for any ∅ �= S1 ⊆ S2 we have dS1(x) ≥ dS2(x) for any x ∈ X, so if the
system (5.1) is metrically regular at S2, then it must also be metrically regular at S1.

As the referees of this paper pointed out, the notion of metric regularity is related
to moving sets, and the equivalence between error bound and (the very definition of)
metric regularity usually fails to hold. The following result states the relations between
global error bounds and metric regularity for an l.s.c. inequality system.

Theorem 5.2. Let f be an l.s.c. extended real-valued function on X and S =
{x ∈ X : f(x) ≤ 0} be nonempty. Consider the following statements:

(a) There is a constant µ > 0 such that dS(x) ≤ µf(x)+ for any x ∈ X.
(b) The system (5.1) is metrically regular at any nonempty set S1 ⊆ S.
(c) The system (5.1) is metrically regular at S.
(d) The system (5.1) is uniformly metrically regular at S.
(e) The system (5.1) is metrically regular at each point of S.

Then the following implications hold:
(i) (a) ⇒ (b) ⇔ (c) ⇔ (d) ⇒(e).
(ii) If f is convex, (a) ⇔ (b) ⇔ (c) ⇔ (d).

(iii) If f is convex and S is compact, (a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e).
Proof. Since the implications (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) in (i) are obvious,

it suffices to show (d) ⇒ (b) for (i), (d) ⇒ (a) for (ii), and (e) ⇒ (a) for (iii). But
since the last implication was proved in Deng [6, Corollary 4] (assuming that X = Rn,
f is continuous and convex, and S is bounded) and the proof is still valid with the
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hypothesis in this theorem, it remains to prove (d) ⇒ (b) for (i) and (d) ⇒ (a) for
(ii).

(d) ⇒ (b) for (i): We suppose that statement (d) is true. Then there are constants
δ > 0 and µ(δ) > 0 such that for each z ∈ S,

dS(x) ≤ µ(δ)f(x)+ whenever ‖x− z‖ ≤ δ.

Hence for any nonempty subset S1 of S, we have dS(x) ≤ µ(δ)f(x)+ for any x with
dS1

(x) ≤ δ/2 since for such an x we can find a point x1 ∈ S1 such that ‖x− x1‖ ≤ δ.
This proves that statement (b) holds.

(d) ⇒(a) for (ii): Suppose that f is an l.s.c. proper convex function, that (d)
holds, and that δ > 0 is the constant in the definition of uniformly metric regularity.
Then S is closed, dS(x) > 0 for any x ∈ X\S. Thus for any fixed x ∈ X\S and any
ε > 0, there exists x ∈ S such that ‖x − x‖ ≤ dS(x) + ε. If ‖x − x‖ ≤ δ, we already
have the inequality dS(x) ≤ µ(δ)f(x)+. If ‖x − x‖ > δ, taking λ := δ/‖x − x‖ and
y = λx + (1 − λ)x, we have

‖y − x‖ = λ‖x− x‖ = δ,

which implies dS(y) ≤ µ(δ)f(y)+. Besides, by the convexity of f , f(y) ≤ λf(x). Hence

dS(x) ≤ ‖x− x‖ = ‖y − x‖/λ = [‖x− x‖ − ‖y − x‖]/λ

≤ [dS(x) + ε− ‖y − x‖]/λ ≤ [dS(y) + ε]/λ

≤ [µ(δ)f(y)+ + ε]/λ ≤ [µ(δ)λf(x) + ε]/λ

= µ(δ)f(x)+ + ε/λ = µ(δ)f(x)+ + ε[dS(x) + ε]/δ.

This explains that statement (a) is true since ε > 0 and x are arbitrary.
Remark 5.1. Deng [6] proved the implications (a) ⇔ (b) ⇔ (c) for a continuous

convex system on a Banach space, and the implication (e) ⇒ (a) when X = Rn and S
is bounded. Theorem 5.2 has extended these results to an l.s.c. system and contains
the new equivalent statement (d). Furthermore Theorem 5.2 is allowed to be applied
to an l.s.c. extended real-valued function f defined on a closed convex subset C of X
to obtain an equivalent result whose statement is the same as that of Theorem 5.2
with the set {x ∈ X : f(x) ≤ 0} and the inequality “dS(x) ≤ µf(x)+ for any x ∈ X”
replaced by {x ∈ C : f(x) ≤ 0} and “dS(x) ≤ µf(x)+ for any x ∈ C,” respectively.

In the rest of this paper, we use Theorems 3.1 and 5.2 to give some sufficient
conditions for l.s.c. systems to be metrically regular at sets.

Proposition 5.3. Let f : X → R be l.s.c. Assume that S = {x ∈ X : f(x) ≤ 0}
is nonempty and that there exist µ > 0 and 0 < ε ≤ ∞ such that for each z ∈ S,

‖ξ‖∗ ≥ µ−1

whenever ξ ∈ ∂ωf(x) for any x ∈ X with 0 < f(x) and ‖x − z‖ < ε. Then the
system (5.1) is metrically regular at S. If f is in addition convex, then there is a
constant µ > 0 such that

dS(x) ≤ µf(x)+ ∀x ∈ X.

Proof. According to Theorem 5.2, it suffices to show that the system (5.1) is
metrically regular at S.
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By Theorem 3.1, the inequality

dS(x) ≤ µf(x)+

holds for each z ∈ S and any x ∈ X with ‖x − z‖ < ε/2, i.e., the system (5.1)
is uniformly metrically regular at S. Hence by implication (i) of Theorem 5.2, the
system (5.1) is metrically regular at S.

The following proposition indicates that if the solution set is compact and contains
no stationary points for ∂ω-subdifferentials with some limiting property, then the
system is metrically regular at the solution set.

Proposition 5.4. Let f : X → R be continuous. Assume that

S = {x ∈ X : f(x) ≤ 0}
is nonempty and compact and that for each z ∈ S, 0 �∈ ∂ωf(z) and ∂ωf satisfies that
ξ ∈ ∂ωf(z) if xn → z, ξn ∈ ∂ωf(xn), and ξn → ξ. Then the system (5.1) is metrically
regular at S, and hence there is a constant µ > 0 such that

dS(x) ≤ µf(x)+ ∀x ∈ X.

Proof. Based on relation (iii) in Theorem 5.2, we need only to prove statement
(e) in Theorem 5.2. Let z ∈ S be fixed. Then by Theorem 3.1 it is enough to show
that there exist µ > 0 and ε > 0 such that

‖ξ‖∗ ≥ µ−1 ∀ξ ∈ ∂ωf(x)

for any x with ‖x − z‖ < ε and 0 < f(x) < +∞. In fact, if this were not true, then
there would exist sequences {xn} and {ξn} such that xn → z, ξn ∈ ∂ωf(xn), and
ξn → 0. But this would lead to 0 ∈ ∂ωf(z), which contradicts the assumption.

We now consider a convex system which also includes an abstract constraint. In
the following proposition we prove that the generalized Slater condition is sufficient
for metric regularity.

Proposition 5.5. Let fi : X → R be locally Lipschitz and convex for i ∈ I =
{1, . . . , r}, and let C be a closed and convex subset of X. Let N ∪ L be a partition of
the index set I such that fi is linear for each i ∈ L. Denote

f(x) = max{fi(x), |fj(x)| : i ∈ N, j ∈ L}.
Suppose that there exist

x∗, x0 ∈ S := {x ∈ C : fi(x) ≤ 0, i ∈ N ; fj(x) = 0, j ∈ L}
such that fi(x

∗) < 0 for each i ∈ N and {−∇fi(x0) : i ∈ L} is C-linearly independent,
i.e.,

−
∑
i∈L

λi∇fi(x0) ∈ NC(x0) implies λi = 0 ∀i ∈ L.

Then there exist positive numbers δ and µ such that
(i) ‖ξ‖∗ ≥ µ−1 ∀ξ ∈ ∂f(x) + NC(x) for any x ∈ C with ‖x − x0‖ < δ and

0 < f(x);
(ii) dS(x) ≤ µf(x)+ for any x ∈ C with ‖x− x0‖ < δ/2, i.e., the system (5.1) is

metrically regular at x0.
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Moreover, if X = Rn and {−∇fi(x) : i ∈ L} is C-linearly independent for each x ∈ S,
then for any bounded subset Ω ⊆ Rn there exist δ > 0 and µ > 0 such that

dS(x) ≤ µf(x)+ for any x ∈ C ∩ (Ω + δB),

i.e., the system (5.1) is metrically regular at Ω.
Proof. Since f is Lipschitz near x and ψC is finite at x and both functions are

convex, by Clarke [3, Corollary 1 of Theorem 2.9.8 and Proposition 2.4.12],

∂(f + ψC)(x) = ∂f(x) + ∂ψC(x) = ∂f(x) + NC(x).

Hence by applying Theorem 3.1 to the function f + ψC , statement (ii) follows from
statement (i). So for statements (i) and (ii), it suffices to prove statement (i).

Suppose that statement (i) were not true. Then there would exist sequences
{xk} ⊆ C and ξk ∈ ∂f(xk) + NC(xk) such that xk → x0, ξk → 0, and 0 < f(xk) for
each k. By Clarke [3, Proposition 2.3.12 and Theorem 2.3.9], for each xk there exists

a set of numbers λ
(k)
i such that

λ
(k)
i ≥ 0 ∀i ∈ N,

∑
i∈N

λ
(k)
i +

∑
i∈L

|λ(k)
i | = 1,

ξk ∈
∑
i∈N

λ
(k)
i ∂fi(xk) +

∑
i∈L

λ
(k)
i ∇fi(xk) + NC(xk), and

λ
(k)
i (fi(xk) − f(xk)) = 0 ∀i ∈ N, λ

(k)
i (|fi(xk)| − f(xk)) = 0 ∀i ∈ L.

Since each sequence {λ(k)
i } is bounded by 1 for each i, we can assume that λ

(k)
i → λi

for each i ∈ N ∪ L as k → +∞. We denote the index of binding constraints at x0 by
I(x0) = {i ∈ N : fi(x0) = 0}. Taking the limit as k → ∞ gives

λi ≥ 0 ∀ i ∈ I(x0), λi = 0 ∀i ∈ N\I(x0),∑
i∈N

λi +
∑
i∈L

|λi| = 1, and

0 ∈
∑

i∈I(x0)

λi∂fi(x0) +
∑
i∈L

λi∇fi(x0) + NC(x0),

where the inclusion follows from the fact that ∂fi(xk) is the subdifferential of fi at
xk and NC(xk) is the normal cone to C at xk in the sense of convex analysis. Since
by assumption {−∇fi(x0) : i ∈ L} is C-linearly independent, this inclusion implies
that there is at least one i0 ∈ I(x0) such that λi0 > 0, from which we would obtain a
contradiction.

In fact, if we use the above λi to define the function

g(y) =
∑

i∈I(x0)

λifi(y) +
∑
i∈L

λifi(y) + ψC(y),

then g is convex, and by the sum rule of subdifferentials (in the sense of convex
analysis) we have

0 ∈
∑

i∈I(x0)

λi∂fi(x0) +
∑
i∈L

λi∇fi(x0) + NC(x0) = ∂g(x0),
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which means that g attains its global minimum at x0. Therefore this together with
the continuity of g yields

0 = g(x0) ≤ g(x∗) ≤ λi0fi0(x∗) < 0.

This is a contradiction.
Now suppose that X = Rn. Let δ > 0 be the positive number stated in (i). Then

for any fixed bounded set Ω we can take ε > δ such that Ω + δB ⊆ B(x0, ε/2). By
Theorem 3.3, it suffices to show that there exists µ > 0 such that ‖ξ‖ ≥ µ−1 ∀ξ ∈
∂f(x) + NC(x) for any x ∈ C with δ ≤ ‖x− x0‖ ≤ ε and 0 < f(x).

Suppose that there exist sequences {xk} ⊆ C and ξk ∈ ∂f(xk)+NC(xk) such that
δ ≤ ‖xk − x0‖ ≤ ε, 0 < f(xk), and ξk → 0 as k → +∞. Since {xk} lies in a compact
set, we can assume that xk converges to some point x ∈ C with δ ≤ ‖x − x0‖ ≤ ε.
Taking the limit for ξk ∈ ∂f(xk)+NC(xk), we have 0 ∈ ∂f(x)+NC(x) ⊆ ∂(f+ψC)(x)
by the sum rule of subdifferentials in the sense of convex analysis. This means that
f attains its global minimum over C at x since f + ψC is convex. Note that f is
continuous and f(xk) is positive. Thus

0 = f(x∗) ≥ f(x) = lim
k→+∞

f(xk) ≥ 0.

Thus x ∈ S. But by statement (i) there exist positive numbers δ and µ such that

‖ξ‖ ≥ µ−1 ∀ξ ∈ ∂f(x) + NC(x)

for any x ∈ C with ‖x − x‖ < δ and 0 < f(x). This contradicts the properties of
subsequences {xk} and {ξk}.

Remark 5.2. In Proposition 5.5, the Slater condition fi(x
∗) < 0 for i ∈ N is

important to guarantee that (i) and (ii) hold. Without this condition, (i) and (ii)
may fail. One simple example is the function f(x) = x2 with S = {x ∈ R : f(x) ≤
0} = {0}. On the other hand, statement (i) is a local property, i.e., without addi-
tional conditions, property (i) cannot generally be extended to all points outside the
neighborhood. For example, for any n ≥ 2, the function

f(x) =




x− 1 if x ≥ 0;

−√
2 − (x + 1)2 if −1 −

√
2

n2+1 < x < 0;

− x
n − 1+

√
2(n2+1)

n if x ≤ −1 −
√

2
n2+1

is differentiable and convex with f(0) = −1 and f(1) = 0. The inequality in statement
(i) of Proposition 5.5 holds for x0 = 1, δ = 1, and µ = 1. But for any x < −1 −√

2(n2 + 1), f(x) > 0 and |f ′(x)| = 1/n < 1/µ.
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