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Abstract. For a lower semicontinuous function f on a Banach space X, we study the existence
of a positive scalar µ such that the distance function dS associated with the solution set S of f(x) ≤ 0
satisfies

dS(x) ≤ µmax{f(x), 0}

for each point x in a neighborhood of some point x0 inX with f(x) < ε for some 0 < ε ≤ +∞.We give
several sufficient conditions for this in terms of an abstract subdifferential and the Dini derivatives
of f . In a Hilbert space we further present some second-order conditions. We also establish the
corresponding results for a system of inequalities, equalities, and an abstract constraint set.
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1. Introduction. Let (X, d ) be a metric space. For a proper and lower semicon-
tinuous (l.s.c.) function f : X → (−∞,∞], denote the solution set of the inequality
system f(x) ≤ 0 by

S := {x ∈ X : f(x) ≤ 0}
and the distance from a point x ∈ X to the set S by

dS(x) := inf{d(x, s) : s ∈ S}
if S is nonempty. By convention, dS(x) = +∞ if S is empty.

Let T be a nonempty subset of X and let γ be a positive scalar. We say that the
inequality system f(x) ≤ 0 has an error bound of the pair (S, T ) with exponent γ if
the set S is nonempty and there exists a scalar µ > 0 such that

dS(x) ≤ µ[f(x)+]
γ for all x ∈ T,

where f(x)+ := max{f(x), 0}. For the case γ = 1, if

T = f−1(0, ε) := {x ∈ X : 0 < f(x) < ε}
for some 0 < ε < +∞ (ε = +∞), we simply say that the system f(x) ≤ 0 (or the set
S) has a local (global ) error bound ; if

T = B(x0, δ) := {x ∈ X : d(x, x0) < δ}
for some x0 ∈ S and 0 < δ, the set S is said to be metrically regular at x0.
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Error bounds have important applications in sensitivity analysis of mathematical
programming and in convergence analysis of some algorithms. In his seminal paper
[8], Hoffman showed that a linear inequality system has a global error bound. For
nonlinear inequality systems, the existence of error bounds usually requires some
conditions. Most earlier results about error bounds are related to a continuous or
convex system on Rn. The reader is referred to the recent survey papers [11, 14] and
the references therein for a summary of the theory and applications of error bounds.

Recently Ng and Zheng [15, 16] andWu and Ye [21, 22] studied l.s.c. inequality sys-
tems and presented several sufficient conditions for error bounds in terms of the lower
Dini derivative and an abstract subdifferential. These results are mainly established
for the case T = f−1(0, ε) (0 < ε ≤ +∞). The first purpose of this paper is to extend
and develop the above first-order conditions to the case T = B(x0, δ) ∩ f−1(0, ε),
where x0 ∈ X, 0 < ε ≤ +∞ and 0 < δ ≤ +∞. We do not assume that x0 lies in
the solution set S nor that δ is +∞. However, our results are applicable to the cases
x0 ∈ S and δ = +∞; that is, they serve as sufficient conditions not only for regularity
(when x0 ∈ S) but also for error bounds (when δ = +∞). The second purpose is
to present a second-order sufficient condition for the existence of error bounds with
exponents 1/2 in a Hilbert space from which we can further obtain sufficient condi-
tions for nonconvex quadratic systems. Our third purpose is to specify the first-order
and second-order conditions for the following system of inequalities, equalities, and
an abstract set:

gi(x) ≤ 0 for all i ∈ I := {1, . . . ,m},
hj(x) = 0 for all j ∈ J := {1, . . . , n},

x ∈ C,

where gi and |hj | are l.s.c. and C is a nonempty closed subset of X.
It is worth pointing out that, unlike other error bound results, the nonemptiness

of the solution set of an inequality system in ours comes as a conclusion instead of an
assumption. Therefore, we can also use them as sufficient conditions for the existence
of its solutions.

Apart from the above notation, the following concepts on nonsmooth analysis
also are needed in this paper (see, e.g., [3, 4, 17]):

Let X be a normed linear space, let x and v be in X, and let f : X → (−∞,+∞]
be finite at x.

• The lower Dini derivative of f at x in the direction v is

f−(x; v) := lim inf
u→v
t→0+

f(x+ tu)− f(x)

t
.

• The upper Dini derivative of f at x in the direction v is

f+(x; v) := lim sup
u→v
t→0+

f(x+ tu)− f(x)

t
.

• The Clarke derivative of f at x in the direction v is

f◦(x; v) := lim sup
y→x
t→0+

f(y + tv)− f(y)

t
.
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• The Clarke subdifferential of f at x is

∂◦f(x) := {ξ ∈ X∗ : 〈ξ, v〉 ≤ f◦(x; v) for all v ∈ X}.

When X is a Hilbert space, we say that a vector ξ ∈ X is a proximal subgradient
of f at x provided that there exist positive scalars M and δ such that

f(y) ≥ f(x) + 〈ξ, y − x〉 −M‖y − x‖2 for all y ∈ B(x, δ).

The set of all such ξ, denoted by ∂πf(x), is referred to as the proximal subdifferential
of f at x.

For each ξ ∈ ∂πf(x), we define the following second-order subderivatives:

d2
Lf(x|ξ)(u) := lim inf

t→0+

f(x+ tu)− f(x)− t〈ξ, u〉
t2

,

d2
−f(x|ξ)(u) := lim inf

v→u
t→0+

f(x+ tv)− f(x)− t〈ξ, v〉
t2

,

d2
+f(x|ξ)(u) := lim sup

v→u
t→0+

f(x+ tv)− f(x)− t〈ξ, v〉
t2

.

Usually, for u ∈ X and ξ ∈ ∂πf(x), we have

d2
−f(x|ξ)(u) ≤ d2

Lf(x|ξ)(u) ≤ d2
+f(x|ξ)(u).

If f is a C2 function with its first-order and second-order derivatives at x denoted by
∇f(x) and ∇2f(x), respectively, then, since ∂πf(x) = {∇f(x)}, these second-order
subderivatives coincide with each other and satisfy

d2
Lf(x|∇f(x))(u) = d2

−f(x|∇f(x))(u) = d2
+f(x|∇f(x))(u) =

1

2
〈∇2f(x)u, u〉.

For other second-order subderivatives, the reader is referred to [7, 17] and the refer-
ences therein.

For a nonempty set C in a normed linear space X, ψC denotes the indicator
function associated with the set C defined as below:

ψC(x) =

{
0 if x ∈ C,
+∞ otherwise.

2. Sufficient conditions in terms of subdifferentials. We recall the concept
of an abstract subdifferential introduced in [21].

Definition 2.1. Let X be a Banach space, and let f : X → (−∞,+∞] be
l.s.c. at x ∈ X with f(x) < +∞. A subset of X∗, denoted by ∂ωf(x), is called a
∂ω-subdifferential of f at x if it has the following properties:

(ω1) ∂ωg(x) = ∂ωf(x) if g = f near x.
(ω2) 0 ∈ ∂ωf(x) when f attains a local minimum at x.

(ω3) ∂ωf(x) ⊆ LB
∗
if f is convex and Lipschitz of L near x.

(ω4) If g : X → (−∞,+∞] is Lipschitz near x, then for each ξ ∈ ∂ω(f +g)(x) and
each δ > 0 there exist x1, x2 ∈ B(x, δ) such that

−δ < f(x1)−f(x) < δ, −δ < g(x2)−g(x) < δ, and ξ ∈ ∂ωf(x1)+∂ωg(x2)+δB
∗,
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where B∗ is the open unit ball in X∗ and B
∗
is its closure.

As indicated in [21], ∂ω-subdifferentials include the Clarke subdifferential and
the Michel–Penot subdifferential in a Banach space, the Fréchet subdifferential in an
Asplund space, the proximal subdifferential in a Hilbert space, and the lower Dini
subdifferential in Rn. Thus these subdifferentials can be taken as ∂ω-subdifferentials
in our main result of this section below whose proof is based on Ioffe’s technique [9].

Theorem 2.2. Let X be a Banach space and let f : X → (−∞,+∞] be l.s.c.
Suppose that, for some x0 ∈ X, 0 < δ ≤ +∞, 0 < µ < +∞, and 0 < ε ≤ δ/(2µ), the
set B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and

‖ξ‖∗ ≥ µ−1 for all ξ ∈ ∂ωf(x) and each x ∈ B(x0, δ) ∩ f−1(0, ε).

Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ B

(
x0,

δ

2

)
∩ f−1(−∞, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ δ/(2µ) can be replaced with 0 < ε ≤
+∞.

Proof. Obviously it suffices to prove that

dS(x) ≤ µf(x)+ for all x ∈ B

(
x0,

δ

2

)
∩ f−1(−∞, ε)

since this together with the nonemptiness of the set B(x0, δ/2) ∩ f−1(−∞, ε) implies
the nonemptiness of S.

Suppose that there were u ∈ B(x0, δ/2)∩ f−1(−∞, ε) such that dS(u) > µf(u)+.
Then u �∈ S and hence 0 < f(u) < ε. In addition, we can choose t > 1 and α > 0 such
that

dS(u) > tµf(u) := γ and

{
max{γ, ‖u− x0‖} ≤ δ

2+α for 0 < ε ≤ δ/(2µ);

‖u− x0‖ ≤ δ
2+α for x0 ∈ S and 0 < ε ≤ +∞.

(1)
Thus f(u)+ = f(u) = γ(tµ)−1 and hence

f(u)+ ≤ inf
v∈X

f(v)+ + γ(tµ)−1.

Note that the function f(·)+ is l.s.c. and bounded below. Applying Ekeland’s
variational principle [5] to f(·)+ with σ = γ(tµ)−1 and λ = γ, we find x ∈ X satisfying

f(x)+ ≤ f(u)+,(2)

‖x− u‖ ≤ γ,(3)

f(v)+ + (tµ)−1h(v) ≥ f(x)+ for all v ∈ X,(4)

where h(v) := ‖v − x‖. It follows from (1), (2), and (3) that 0 < f(x) < ε.
On the other hand, (4) implies that the function f(v)+ + (tµ)−1h(v) attains its

minimum on X at x. Hence, by property (ω2) in Definition 2.1,

0 ∈ ∂ω[f(x)+ + (tµ)−1h(x)].(5)

Since f is l.s.c. and 0 < f(x), there exists δ1 > 0 such that

0 < f(y) for all y ∈ B(x, δ1).
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Thus, by property (ω1) in Definition 2.1 and (5),

0 ∈ ∂ω(f + (tµ)−1h)(x).(6)

Let ε1 := min{f(x), (1−t−1)µ−1, δ1, ε−f(u), αδ(2+α)−1} > 0. Then by property
(ω4) in Definition 2.1 and (6) there exist x1 and x2 both in B(x, ε1) such that

f(x)− ε1 < f(x1) < f(x) + ε1

and

0 ∈ ∂ωf(x1) + ∂ω((tµ)
−1h)(x2) + ε1B

∗.

These inequalities with (2) mean that x1 ∈ B(x, ε1) ∩ f−1(0, ε). The inclusion, by
property (ω3) in Definition 2.1, implies that there exists ξ ∈ ∂ωf(x1) such that

‖ξ‖∗ < (tµ)−1 + ε1 ≤ (tµ)−1 + (1− t−1)µ−1 = µ−1,

which contradicts the assumption since x1 ∈ f−1(0, ε) and, by the triangle inequality
and (1),

‖x1 − x0‖ ≤ ‖x1 − x‖+ ‖x− u‖+ ‖u− x0‖ < ε1 + γ +
δ

2 + α

≤
{

αδ
2+α + 2δ

2+α = δ for 0 < ε ≤ δ/(2µ);
(1+α)δ
2+α + dS(u) ≤ (1+α)δ

2+α + ‖u− x0‖ ≤ δ for x0 ∈ S and 0 < ε ≤ +∞.

Remark 2.1. Note that the nonemptiness of S in Theorem 2.2 is a natural re-
sult of the inequality for error bounds and the nonemptiness of the set B(x0, δ/2) ∩
f−1(−∞, ε). It is worth comparing Theorem 2.2 with [22, Theorem 4], in which the
nonemptiness of S can follow from an existence theorem of minimum in [18]. When
f is regular, f−(x; v) = f◦(x; v) holds for each x ∈ X and v ∈ X. The condition
that f−(x;hx) ≤ −µ−1 for some µ > 0, each x ∈ f−1(0, ε), and corresponding hx

in [22, Theorem 4] turns into f◦(x;hx) ≤ −µ−1, which implies that ‖ξ‖∗ ≥ µ−1 for
each ξ ∈ ∂◦f(x). So the corresponding result of [22, Theorem 4] can be obtained
from Theorem 2.2 by taking δ = +∞ and ∂ω = ∂◦. Hence Theorem 2.2 provides a
weaker condition for the existence of solutions for an inequality system than that in
[22, Theorem 4].

Theorem 2.2 is an extension of [21, Theorem 3.1] in that B(x0, δ)∩ f−1(0, ε), not
just B(x0, δ) or f−1(0, ε), can be taken as a test set T. In particular, for the case
where the test set T = f−1(0, ε), Theorem 2.2 is a refinement of [21, Theorem 3.1],
in which the nonemptiness of S is a part of the assumption, not of the conclusion. In
addition, the inequality dS(x) ≤ µf(x)+ in [21, Theorem 3.1] holds only for all x ∈ X
with f(x) < ε/2 instead of for all x ∈ X with f(x) < ε, as in Theorem 2.2. We thank
Dr. Qiji Jim Zhu for his help in the proof of this improvement.

For an l.s.c. function f on a Hilbert space X, the limiting subdifferential ∂Lf(x)
of f at x ∈ domf is a set defined by

∂Lf(x) := {w- lim ξi : ξi ∈ ∂πf(xi), xi → x, f(xi) → f(x)}.

That is, ∂Lf(x) consists of all vectors, each of which is the weak limit (that is what
w-lim ξi signifies) of a weak convergent sequence {ξi}, where ξi ∈ ∂πf(xi) with xi → x
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and f(xi) → f(x). It is easy to check that the limiting subdifferential satisfies (ω1)–
(ω3) in Definition 2.1. In addition, if at least one of functions f and g is Lipschitz
near x, then

∂L(f + g)(x) ⊆ ∂Lf(x) + ∂Lg(x)

[4, Proposition 10.1, p. 62]; that is, the sum rule holds. So the limiting subdifferential
is a ∂ω-subdifferential and Theorem 2.2 is applicable to it. The following is a version
of Theorem 2.2 with ∂ω = ∂L and f replaced with f + ψC .

Corollary 2.3. Let X be a Hilbert space, let C be a closed subset of X, and let
fi : X → R be locally Lipschitz continuous for each i ∈ I. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ X.

Suppose that, for some x0 ∈ X, 0 < δ ≤ +∞, 0 < µ < +∞, and 0 < ε ≤ δ/(2µ), the
set C ∩B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and

‖ξ‖∗ ≥ µ−1 for all ξ ∈ co{∂Lfi(x) : i ∈ I(x)}+NL
C (x) for all x ∈ C∩B(x0, δ)∩f−1(0, ε),

where coA denotes the convex hull of a set A and NL
C (x) := ∂LψC(x). Then S :=

{x ∈ C : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ C ∩B

(
x0,

δ

2

)
∩ f−1(−∞, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ δ/(2µ) can be replaced with 0 < ε ≤
+∞.

Proof. For each ξ ∈ ∂Lf(x), by the conclusion in [4, Problem 11.17, p. 65] and
the sum rule, there exist γi ≥ 0 (i ∈ I(x)) with

∑
i∈I(x) γi = 1 such that

ξ ∈ ∂L


 ∑

i∈I(x)

γifi


 (x) ⊆ co{∂Lfi(x) : i ∈ I(x)}.

Hence applying Theorem 2.2 to ∂ω = ∂L with f replaced with f + ψC completes the
proof.

Next we use Theorem 2.2 to prove a result about the regularity of a set at a point.
Theorem 2.4. Let X be a separable Hilbert space, C a closed subset of X, and

x0 ∈ C. Suppose that g : X → Rm and h : X → Rn are Lipschitz near x0 and

f(x) = max
i, j

{gi(x), |hj(x)|}.

If the constraint qualification

0 ≤ γ ∈ Rm, γi[gi(x0)− f(x0)] = 0, i ∈ I

λ ∈ Rn, λj [|hj(x0)| − f(x0)] = 0, j ∈ J

0 ∈ ∂L[〈γ, g〉+ 〈λ, h〉](x0) +NL
C (x0)


 ⇒ γ = 0 and λ = 0

(where NL
C (x0) := ∂LψC(x0)) is satisfied at x0, then there exist 0 < δ < +∞ and

0 < µ < +∞ such that

‖ξ‖ ≥ µ−1 for all ξ ∈ ∂π(f + ψC)(x) and each x ∈ C ∩B(x0, δ) ∩ f−1(0,+∞).
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Moreover, if the set C ∩B(x0, δ/2) ∩ f−1[0, ε) is nonempty for some 0 < ε ≤ δ/(2µ),
then the set S := {x ∈ C : g(x) ≤ 0, h(x) = 0} is nonempty and

dS(x) ≤ µf(x) for all x ∈ C ∩B

(
x0,

δ

2

)
∩ f−1(0, ε).

In particular, if x0 ∈ S, then S is metrically regular at x0. If x0 lies in the interior
of C, then the above conclusions hold in every Hilbert space X.

Proof. Suppose that there did not exist 0 < δ < +∞ and 0 < µ < +∞ such that

‖ξ‖ ≥ µ−1 for all ξ ∈ ∂π(f + ψC)(x) and each x ∈ C ∩B(x0, δ) ∩ f−1(0,+∞).

Then there would exist sequences

C � xk → x0, f(xk) > 0, ξk ∈ ∂π(f + ψC)(xk), ‖ξk‖ → 0.

If x0 is in the interior of C, then ξk ∈ ∂πf(xk) and ‖ξk‖ → 0 imply that 0 ∈
∂Lf(x0). Thus there exist 0 ≤ γ ∈ Rm and λ ∈ Rn such that

γi[gi(x0)− f(x0)] = 0 for i ∈ I,(7)

λj [|hj(x0)| − f(x0)] = 0 for j ∈ J,(8)
m∑
i=1

γi +

n∑
j=1

|λj | = 1,(9)

0 ∈ ∂L[〈γ, g〉+ 〈λ, h〉](x0)

(see [4, Problem 1.11.17, p. 65]), which contradicts the assumption.
If x0 is not in the interior of C, then since f is Lipschitz near xk when k is large

enough, by [4, Theorem 1.8.3, p. 56], there exist yk → x0, C � zk → x0, ηk ∈ ∂πf(yk),
and ζk ∈ ∂πψC(zk) such that f(yk) > 0 and

ξk ∈ ηk + ζk +B

(
x0,

1

k

)
.(10)

Since ∂πf(yk) ⊆ ∂Lf(yk), for k large enough so that yk enters some prescribed neigh-
borhood of x0 on which f is Lipschitz, there exist 0 ≤ γk ∈ Rm and λk ∈ Rn such
that

γk
i [gi(yk)− f(yk)] = 0 for i ∈ I,

λk
j [|hj(yk)| − f(yk)] = 0 for j ∈ J,

m∑
i=1

γk
i +

n∑
j=1

|λk
j | = 1,

ηk ∈ ∂L[〈γk, g〉+ 〈λk, h〉](yk).

By extracting convergent subsequences of {γk} and {λk} (we do not relabel them)
and taking the limit of (γk, λk), we obtain a nonzero (γ, λ) ∈ Rm × Rn satisfying
(7)–(9).

Note that

∂L[〈γk, g〉+ 〈λk, h〉](yk) ⊆ ∂◦[〈γk, g〉+ 〈λk, h〉](yk)
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and the set on the right-hand side is contained in a ball of the form LB∗ (for some
positive L) which is weak* compact when k is large enough. There is a weakly
convergent subsequence of {ηk} (without relabeling) corresponding to (γk, λk) whose
weak limit lies in

∂L[〈γ, g〉+ 〈λ, h〉](x0)

since X is a separable Hilbert space (see [4, Problem 1.11.21, p. 66]).
In addition, corresponding to ηk, by (10), the sequence {ζk} contains a weakly

convergent subsequence with its limit belonging to NL
C (x0). Therefore we have

0 ∈ ∂L[〈γ, g〉+ 〈λ, h〉](x0) +NL
C (x0),

but (γ, λ) is nonzero. This is again a contradiction.
The rest follows immediately from the conclusion shown above and from Theo-

rem 2.2.
Remark 2.2. Theorem 2.4 is a refinement of [4, Theorem 3.8, p. 131] in that x0

may not be in S and an abstract constraint set is allowed. In a general Banach space,
one relevant result about metrical regularity in terms of Clarke subdifferentials can be
found in [3, Theorem 6.6.1]. However, in Hilbert space where limiting subdifferential
is applicable, our constraint qualification is weaker than that in [3, Theorem 6.6.1].

If x0 ∈ S, g1, . . . , gm, h1, h2, . . . , hn are all C1 functions and C = X, the constraint
qualification in Theorem 2.4 is equivalent to the Mangasarian–Fromovitz constraint
qualification in mathematical programming. In particular, if

∇g1(x0), . . . ,∇gm(x0),∇h1(x0), . . . ,∇hn(x0)

are linearly independent, then the Mangasarian–Fromovitz constraint qualification is
satisfied at x0.

Example 2.1. For x ∈ R3, let

f1(x) := ax1 + g1(x2, x3), f2(x) = bx2 + g2(x3), f3(x) = cx3,

where a, b, and c are nonzero constants while g1 and g2 are locally Lipschitz con-
tinuous. Since, for any point x0 ∈ R3, ∇f1(x0),∇f2(x0),∇f3(x0) are linearly in-
dependent, by Theorem 2.4, the system S = {x ∈ R3 : f(x) ≤ 0} with f(x) :=
max{f1(x), f2(x), f3(x)} is metrically regular at any x0 ∈ S.

Note that for an l.s.c. convex function f on a Banach space X the Clarke subdif-
ferential of f at x ∈ X reduces to the subdifferential of f at x in the sense of convex
analysis given by

∂f(x) := {ξ ∈ X∗ : 〈ξ, y − x〉 ≤ f(y)− f(x) for all y ∈ X}.

It has been shown in [22] that for a convex inequality system a global error bound
exists iff a local error bound does, and many first-order sufficient conditions for the
existence of error bounds become necessary as well. In the following result, we use
∂f(x) to develop the sufficient condition stated in Theorem 2.2 into a necessary one
for a convex system.

Theorem 2.5. Let X be a Banach space, let f : X → (−∞,+∞] be l.s.c. and
convex, and let S := {x ∈ X : f(x) ≤ 0}. Then for some x0 ∈ X and 0 < µ < +∞
the following are equivalent:
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(i) For some 0 < δ ≤ +∞, each 0 < ε ≤ δ/(2µ), and each δ′ ∈ (0, δ) the set
B(x0, δ

′) ∩ f−1(−∞, ε) is nonempty and

‖ξ‖∗ ≥ µ−1 for all ξ ∈ ∂f(x) and each x ∈ B(x0, δ) ∩ f−1(0, ε).

(ii) For some 0 < δ ≤ +∞, each 0 < ε ≤ δ/(2µ), and each δ′ ∈ (0, δ) the set
B(x0, δ

′) ∩ f−1(−∞, ε) is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ B(x0, δ) ∩ f−1(−∞, ε).

In particular, if x0 ∈ S, then (i) and (ii) are equivalent to each other with “each
0 < ε ≤ δ/(2µ)” in both replaced by “some 0 < ε ≤ +∞.”

Proof. (i) ⇒ (ii) This is immediate from Theorem 2.2 by taking ∂ωf(x) = ∂f(x).
(ii) ⇒ (i) Let x ∈ B(x0, δ) ∩ f−1(0, ε). Then dS(x) > 0 and for any ξ ∈ ∂f(x) we

have

‖ξ‖∗ · ‖y − x‖ ≥ −〈ξ, y − x〉 ≥ −[f(y)− f(x)] ≥ f(x) for all y ∈ S.

This implies ‖ξ‖∗ · dS(x) ≥ f(x), from which we have

‖ξ‖∗ ≥ f(x)

dS(x)
≥ µ−1.

Therefore the desired inequality follows.

3. Second-order conditions. In mathematical programming, it is known that
a second-order sufficient condition implies strict local minimum of order 2. This idea
can be applied to error bounds. For a nonnegative function f : Rn → R, consider
the inequality system S = {x ∈ Rn : f(x) ≤ 0}. If x0 ∈ S, f is twice continuously
differentiable near x0, and there exist µ > 0 and δ > 0 such that

〈∇2f(x′)u, u〉 ≥ µ−1 for each unit vector u ∈ Rn and x′ ∈ B(x0, δ),(11)

then for each x ∈ B(x0, δ), by the Taylor expansion, there exists x′ ∈ [x0, x] such that

f(x) =
1

2
〈∇2f(x′)(x− x0), x− x0〉,

which along with (11) implies that

f(x) ≥ 1

2µ
‖x− x0‖2.

Thus

d2
S(x) ≤ 2µf+(x) for all x ∈ B(x0, δ).

Note that under the above assumption, S must be a singleton. In studying weak
sharp minima, several authors, including Bonnans and Ioffe [1, 2] and Ward [20]
have extended the above result to include the case where f is not twice continuously
differentiable and the solution set S is not a singleton by using certain second-order
subderivatives. In the following main result in this section, we present a second-order
sufficient condition for the existence of error bound with exponent 1/2. Note that if f
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is nonnegative and twice continuously differentiable, then our second-order condition
in Theorem 3.1 amounts to

〈∇2f(x)ux, ux〉 ≤ −4µ−1 for some unit vector ux ∈ X and each x �∈ S.

Hence, unlike the second-order condition of type (11), which requires certain convexity,
our second-order condition is suitable for nonconvex systems.

Theorem 3.1. Let X be a Hilbert space and let f : X → (−∞,+∞] be l.s.c. Sup-
pose that, for some x0 ∈ X, 0 < δ ≤ +∞, 0 < µ, and 0 < ε ≤ (2µ)−1(δ/2)2, the set
B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and that, for each x ∈ B(x0, δ)∩ f−1(0, ε), one
of the following is satisfied for each ξ ∈ ∂πf(x) with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1}:

(i) There exists a unit vector ux such that d2
−f(x|ξ)(ux) ≤ −2µ−1.

(ii) There exist sequences tn → 0+ in R and {un} in X such that limn→+∞ ‖un‖ =
1 and

lim
n→+∞

f(x+ tnun)+ − f(x)+ − tn〈ξ, un〉
t2n

≤ −2µ−1.

Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

d2
S(x) ≤ 2µf(x)+ for all x ∈ B

(
x0,

δ

2

)
∩ f−1(0, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ (2µ)−1(δ/2)2 can be replaced with
0 < ε ≤ +∞.

Proof. By the definition of the second-order subderivative, condition (i) implies
condition (ii). Hence it suffices to prove the theorem under condition (ii).

We now prove the theorem by contradiction. Suppose that there were u ∈
B(x0, δ/2) ∩ f−1(0, ε) such that d2

S(u) > 2µf(u)+. We choose t > 1 such that

4γ := 2tµf(u) <

{
min{d2

S(u), (
δ
2 )

2} for 0 < ε ≤ (2µ)−1( δ2 )
2;

d2
S(u) for x0 ∈ S and 0 < ε ≤ +∞.

(12)

Thus f(u) = 2γ(tµ)−1 and hence

f(u)+ ≤ inf
v∈X

f(v)+ + 2γ(tµ)−1.

Note that the function f(·)+ is l.s.c. and bounded below. Applying smooth vari-
ational principle [4, Theorem 4.2, p. 43] to f(·)+ with σ = 2γ(tµ)−1 and λ =

√
γ, we

find x, y ∈ X satisfying

‖y − u‖ < λ, ‖x− y‖ < λ, f(x)+ ≤ f(u)+

and

f(v)+ + 2(tµ)−1h(v) ≥ f(x)+ + 2(tµ)−1h(x) for all v ∈ X,(13)

where h(v) := ‖v − y‖2. Thus

‖x− u‖ ≤ ‖x− y‖+ ‖y − u‖ < 2λ = 2
√
γ < dS(u)

and, by the triangle inequality and (12),

‖x− x0‖ ≤ ‖x− u‖+ ‖u− x0‖
<

{
2
√
γ + δ

2 < min{dS(u), δ2}+ δ
2 ≤ δ for 0 < ε ≤ (2µ)−1( δ2 )

2;
dS(u) + ‖u− x0‖ < δ for x0 ∈ S and 0 < ε ≤ +∞
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and hence x ∈ B(x0, δ) ∩ f−1(0, ε).
On the other hand, from (13) and [4, Proposition 1.2.11, p. 38], we have

0 ∈ ∂π(f(x) + 2(tµ)−1h(x)) = ∂πf(x) + 2(tµ)−1{2(x− y)}.(14)

This implies that ξ := 4(tµ)−1(y − x) ∈ ∂πf(x) and hence, by (12),

‖ξ‖ ≤ 4‖y − x‖(tµ)−1 < 4λ(tµ)−1 = 4
√
γ(tµ)−1 = 2

√
2tµf(u)(tµ)−1

≤ 2min

{√
2tµε, dS(u),

δ

2

}
(tµ)−1 < min{2

√
2ε µ−1/2, δµ−1}.

So for the sequences {tn} and {un} given in condition (ii) corresponding to ξ, by (13),
we have

lim
n→+∞

f(x+ tnun)+ − f(x)+ − tn〈ξ, un〉
t2n

= lim
n→+∞

f(x+ tnun)+ + 2(tµ)−1h(x+ tnun)− f(x)+ − 2(tµ)−1h(x)

t2n
− 2(tµ)−1

≥ −2(tµ)−1 > −2µ−1,

which contradicts condition (ii).
To put first-order and second-order conditions together, we will use the following

relation between a global error bound and a local error bound.
Proposition 3.2. Let (X, d) be a metric space, let f : X → (−∞,+∞] be

proper, and let S := f−1(−∞, 0]. Then the following are equivalent:
(i) There exist 0 < ε1 < ε2 ≤ +∞ and 0 < µ1, µ2 < +∞ such that

dS(x) ≤ µ1f(x)+ for all x ∈ f−1(0, ε1) and

dS1
(x) ≤ µ2f(x)+ for all x ∈ f−1[ε1, ε2),

where S1 := f−1(−∞, ε1).
(ii) There exist 0 < ε ≤ +∞ and 0 < µ < +∞ such that

dS(x) ≤ µf(x)+ for all x ∈ f−1(0, ε).

Proof. The implication (ii) ⇒ (i) is immediate. We only need to show (i) ⇒ (ii).
Let 0 < ε1 < ε2 ≤ +∞ and 0 < µ1, µ2 < +∞ satisfy

dS(x) ≤ µ1f(x)+ for all x ∈ f−1(0, ε1) and

dS1(x) ≤ µ2f(x)+ for all x ∈ f−1[ε1, ε2),

where S1 := f−1(−∞, ε1). Note that for any fixed x ∈ f−1[ε1, ε2) and each y ∈
f−1(−∞, ε1) we have

dS(x) ≤ dS(y) + d(x, y) ≤ µ1f(y)+ + d(x, y) ≤ µ1ε1 + d(x, y).

Taking the inferior of the right-hand side expression in the above inequalities for y
over f−1(−∞, ε1) yields dS(x) ≤ µ1ε1 + dS1

(x). And hence

dS(x) ≤ µ1ε1 + µ2f(x)+ ≤ (µ1 + µ2)f(x)+ = µf(x)+

for µ := µ1 + µ2. Therefore, (ii) holds for ε = ε2.
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Remark 3.1. When X is a normed linear space and f is convex, we can prove
that the nonemptiness of S and the first inequality in (i) of Proposition 3.2 imply the
second inequality in it. So Proposition 3.2 is an extension of [22, Proposition 2], which
states that for a convex system a local error bound implies a global error bound.

Next, we use Proposition 3.2 and Theorems 2.2 and 3.1 to give a mixed condition.
Theorem 3.3. Let X be a Hilbert space, and let f : X → (−∞,+∞] be contin-

uous. Denote

D(µ) := {x ∈ X : 0 < f(x) and ‖ξ‖ ≤ µ−1 for some ξ ∈ ∂πf(x)} for µ > 0.

Suppose that there exist 0 < ε1 < ε2 ≤ +∞ and 0 < µ1, µ2 such that the set
f−1(−∞, ε1) is nonempty and the following conditions hold:

(i) D(µ1) ⊆ f−1(ε1, ε2).
(ii) For each x ∈ f−1(ε1, ε2) there exists a unit vector ux such that

d2
−f(x|ξ)(ux) ≤ −2µ−1

2 for all ξ ∈ ∂πf(x) with ‖ξ‖ ≤ 2
√
2(ε2 − ε1)/µ2.

Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x) for all x ∈ f−1(0, ε2),

where µ = µ1 + (2µ2/ε1)
1/2.

Proof. Since condition (i) implies that

‖ξ‖ > µ−1
1 for all ξ ∈ ∂πf(x) and each x ∈ f−1(0, ε1),

applying Theorem 2.2 to the function f with ∂ω = ∂π, we obtain that S is nonempty
and

dS(x) ≤ µ1f(x)+ for all x ∈ f−1(−∞, ε1).

This also holds for all x ∈ X satisfying f(x) = ε1 by the continuity of f and dS .
Next, by applying Theorem 3.1 to the function f(·)− ε1, we have

df−1(−∞,ε1](x) ≤
√
2µ2[f(x)− ε1] <

√
2µ2

ε1
f(x) for all x ∈ f−1(ε1, ε2).

Thus, by Proposition 3.2, for µ = µ1 + (2µ2/ε1)
1/2 we have

dS(x) ≤ µf(x)+ for all x ∈ f−1(0, ε2).

Remark 3.2. Only in a Hilbert space is Theorem 3.3 established, unlike [7, Theo-
rem 3.2], which is given in a Banach space for the case ε2 = +∞. However, the function
f in [7, Theorem 3.2] needs to be not only continuous but also Gâteaux differentiable,
while the inequality d2

−f(x|ξ)(ux) ≤ −2µ−1
2 in (ii) is required to hold for each x in

D(µ1)\f
−1(−∞, ε1] and for all points in the corresponding interval (x, x + Tux) for

some T > 0. In Theorem 3.3, we do not restrict ε2 to equal +∞ nor require the
condition d2

−f(x|ξ)(ux) ≤ −2µ−1
2 to be satisfied in the interval (x, x+ Tux) for each

x ∈ f−1(ε1, ε2].
In what follows, we use Theorem 3.1 to develop sufficient conditions for a system

of inequalities, equalities, and an abstract constraint to have error bounds in terms of
the second-order subderivatives of the functions involved and certain tangent cones
to the abstract constraint set.



FIRST- AND SECOND-ORDER CONDITIONS FOR ERROR BOUNDS 633

We first review some concepts about tangent cone and contingent cone briefly.
For a closed subset C in a Banach space X and x ∈ C, the tangent cone to C at x,
denoted TC(x), is defined as

TC(x) := {v ∈ X : d◦C(x; v) = 0},
and the contingent (or the Bouligand tangent) cone to C at x, denoted KC(x), is
given by

KC(x) := {v ∈ X : d−C(x; v) = 0}.
It is well known that v ∈ TC(x) iff, for every sequence xn in C converging to x and

sequence tn in (0,+∞) decreasing to 0, there is a sequence vn inX converging to v such
that xn + tnvn ∈ C for all n and that v ∈ KC(x) iff there exist vn → v and tn → 0+

such that x+ tnvn ∈ C. Therefore we have the inclusive relation TC(x) ⊆ KC(x).
We also recall that a vector v is hypertangent to the set C at the point x in C if

there exists 0 < ε such that

y + tw ∈ C for all y ∈ B(x, ε) ∩ C, w ∈ B(v, ε), t ∈ (0, ε).

[3, Theorem 2.4.8] states that if the set of hypertangents to the set C at x is nonempty,
then it coincides with intTC(x), the interior of TC(x).

The above concepts turn out to be important for us to use Theorem 3.1 to give
sufficient conditions for an inequality system with an abstract constraint set to have
error bounds.

Theorem 3.4. Let X be a Hilbert space, let C be a nonempty closed set in X,
and let f : X → (−∞,+∞] be an l.s.c. function. Suppose that, for some x0 ∈ X,
0 < δ ≤ +∞, 0 < µ, and 0 < ε ≤ (2µ)−1(δ/2)2, the set C ∩B(x0, δ/2) ∩ f−1(−∞, ε)
is nonempty and that, for each x ∈ C ∩B(x0, δ)∩ f−1(0, ε), there exists a unit vector
ux ∈ X such that

(i) ux is hypertangent to C at x and satisfies

d2
−f(x|ξ)(ux) ≤ −2µ−1

for each ξ ∈ ∂π(f + ψC)(x) with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1}; or
(ii) ux ∈ KC(x) and satisfies

d2
+f(x|ξ)(ux) ≤ −2µ−1

for all ξ ∈ X with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1} and 〈ξ, ux〉 ≤ f+(x;ux).
Then S := {x ∈ C : f(x) ≤ 0} is nonempty and

d2
S(x) ≤ 2µf(x)+ for all x ∈ C ∩B

(
x0,

δ

2

)
∩ f−1(0, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ (2µ)−1(δ/2)2 can be replaced with
0 < ε ≤ +∞.

Proof. Let x ∈ C ∩B(x0, δ)∩ f−1(0, ε). Based on Theorem 3.1, it suffices to show
that there exists a unit vector ux ∈ X such that

d2
−(f + ψC)(x|ξ)(ux) ≤ −2µ−1

for each ξ ∈ ∂π(f + ψC)(x) with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1}.
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Now if ux is a unit hypertangent vector in (i), then, for each ξ ∈ ∂π(f + ψC)(x)
with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1}, we have sequences un → ux and tn → 0+ such
that x+ tnun ∈ C and

d2
−(f + ψC)(x|ξ)(ux) ≤ lim

n→+∞
f(x+ tnun)− f(x)− tn〈ξ, un〉

t2n

= d2
−f(x|ξ)(ux) ≤ −2µ−1.

If ux ∈ KC(x) is a unit vector in (ii), then there exist sequences un → ux and
tn → 0+ such that x + tnun ∈ C. It follows that for each ξ ∈ ∂π(f + ψC)(x) there
exists some M > 0 such that

f(x+ tnun)− f(x) ≥ tn〈ξ, un〉 −Mt2n‖un‖2

for sufficiently large n. This implies that 〈ξ, ux〉 ≤ f+(x;ux) for each ξ ∈ ∂π(f +
ψC)(x), that is,

∂π(f + ψC)(x) ⊆ {ξ ∈ X : 〈ξ, ux〉 ≤ f+(x;ux)}.

Thus for each ξ ∈ ∂π(f + ψC)(x) with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1} we have

d2
−(f + ψC)(x|ξ)(ux) ≤ lim sup

n→+∞
f(x+ tnun)− f(x)− tn〈ξ, un〉

t2n

≤ d2
+f(x|ξ)(ux) ≤ −2µ−1.

The proof is therefore complete.
Remark 3.3. From the above proof we see that Theorem 3.4 is a direct result of

Theorem 3.1. Note that if x is an interior point of a closed subset C of X, then the
set of hypertangents to the set C at x is just X. In particular, when C = X, each
unit vector ux is hypertangent to C at x ∈ X. In this case Theorem 3.4 reduces to
Theorem 3.1. So they are in fact equivalent.

To apply Theorem 3.1 to a system of inequalities, we first give a result about the
proximal subdifferential of the pointwise maxima function of several functions.

Proposition 3.5. Let fi : X → R be Lipschitz near x for each i ∈ I. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ X.

Suppose that ∂πfi(x) = ∂◦fi(x) for each i ∈ I(x). Then

∂πf(x) = co{∂πfi(x) : i ∈ I(x)} = ∂◦f(x),

where coA is the convex hull of a set A.
Proof. Since ∂πfi(x) = ∂◦fi(x) for each i ∈ I(x), by [3, Proposition 2.3.12], we

have

∂πf(x) ⊆ ∂◦f(x) ⊆ co{∂◦fi(x) : i ∈ I(x)} = co{∂πfi(x) : i ∈ I(x)}.

So it suffices to show that co{∂πfi(x) : i ∈ I(x)} ⊆ ∂πf(x).
For any fixed i ∈ I(x) and ξi ∈ ∂πfi(x), there exist M > 0 and δ > 0 such that

fi(y)− fi(x) +M‖y − x‖2 ≥ 〈ξi, y − x〉 for all y ∈ B(x, δ).
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It follows that

f(y)− f(x) +M‖y − x‖2 ≥ 〈ξi, y − x〉 for all y ∈ B(x, δ),

which implies that ξi ∈ ∂πf(x). Since i and ξi are arbitrary, ∂πfi(x) ⊆ ∂πf(x) for
each i ∈ I(x). In addition, ∂πf(x) is convex, so for any λi ≥ 0 with

∑
i∈I(x) λi = 1,∑

i∈I(x)

λiξi ∈ ∂πf(x).

This is what we need to prove.
Theorem 3.6. Let X be a Hilbert space, and let fi : X → R be an l.s.c. function

for each i ∈ I. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ X.

Suppose that, for some x0 ∈ X, 0 < δ ≤ +∞, 0 < µ, and 0 < ε ≤ (2µ)−1(δ/2)2, the
set B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and that, for each x ∈ B(x0, δ) ∩ f−1(0, ε)
and each i ∈ I(x),

(i) fi is Lipschitz near x and ∂πfi(x) = ∂◦fi(x); and
(ii) there exists a unit vector ux such that d2

Lfj(x|ξj)(ux) ≤ −2µ−1 and

lim
t→0+

fi(x+ tux)− [fj(x+ tux)− t〈ξj , ux〉]− t〈ξk, ux〉
t2

= 0

for some j ∈ I(x) and ξj ∈ ∂πfj(x), each i ∈ I(x) and ξi ∈ ∂πfi(x), and each
k ∈ I(x) and ξk ∈ ∂πfk(x).

Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

d2
S(x) ≤ 2µf(x)+ for all x ∈ B

(
x0,

δ

2

)
∩ f−1(0, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ (2µ)−1(δ/2)2 can be replaced with
0 < ε ≤ +∞.

Proof. Let x0 ∈ X, 0 < δ ≤ +∞, 0 < µ and let the set B(x0, δ/2)∩f−1(−∞, ε) be
nonempty for some 0 < ε < (2µ)−1(δ/2)2. If, for x ∈ B(x0, δ) ∩ f−1(0, ε), ∂πfi(x) =
∂◦fi(x) for each i ∈ I(x), then, for ξ ∈ ∂πf(x), by Proposition 3.5, ξ =

∑
i∈I(x) λiξi

for some λi ≥ 0 and ξi ∈ ∂πfi(x) with i ∈ I(x) and
∑

i∈I(x) λi = 1.
If ux is the unit vector stated in the assumption, then

d2
Lf(x|ξ)(ux) = lim inf

t→0+

max{fi(x+ tux) : i ∈ I(x)} − f(x)− t〈ξ, ux〉
t2

= lim inf
t→0+

max{fi(x+ tux) : i ∈ I(x)} − f(x)− t
∑

i∈I(x) λi〈ξi, ux〉
t2

= lim inf
t→0+

∑
i∈I(x)

λi
max{fi(x+ tux) : i ∈ I(x)} − f(x)− t〈ξi, ux〉

t2

≤ lim inf
t→0+

fj(x+ tux)− fj(x)− t〈ξj , ux〉
t2

+ lim
t→0+

∑
i∈I(x)

|fi(x+ tux)− [fj(x+ tux)− t〈ξj , ux〉]− t〈ξk, ux〉|
t2

= d2
Lfj(x|ξj)(ux) ≤ −2µ−1.
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Thus the conclusion follows from Theorem 3.1.
Remark 3.4. From the proof of Theorem 3.6 we see that condition (i) can be

replaced with the condition that fi be continuous at x and ∂πf(x) = co{∂πfi(x) : i ∈
I(x)}.

Theorem 3.7. Let X be a Hilbert space and, for each i ∈ I, let fi : X → R be
C1 and satisfy ∂πfi(x) = ∂◦fi(x) for x ∈ X. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ X.

Suppose that, for some x0 ∈ X, 0 < δ ≤ +∞, 0 < µ, and 0 < ε ≤ (2µ)−1(δ/2)2, the
set B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and that, for each x ∈ B(x0, δ) ∩ f−1(0, ε),
there exists a unit vector ux such that

〈∇fi(x), ux〉 = 〈∇fj(x), ux〉 and d2
+fi(x|∇fi(x))(ux) ≤ −2µ−1 for all i, j ∈ I(x).

Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

d2
S(x) ≤ 2µf(x)+ for all x ∈ B

(
x0,

δ

2

)
∩ f−1(0, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ (2µ)−1(δ/2)2 can be replaced with
0 < ε ≤ +∞.

Proof. Let x0, δ, µ, and ε be given as in the assumption. For each x ∈ B(x0, δ)∩
f−1(0, ε) and i ∈ I(x), fi is C1 and ∂πfi(x) = {∇fi(x)} = ∂◦fi(x), so for ξ ∈
∂πf(x), by Proposition 3.5, ξ =

∑
i∈I(x) λi∇fi(x) for some λi ≥ 0 with i ∈ I(x) and∑

i∈I(x) λi = 1.
If ux is the vector in the assumption, then there exists tn → 0 such that

d2
Lf(x|ξ)(ux) = lim

n→+∞
max{fi(x+ tnux) : i ∈ I(x)} − f(x)− tn〈ξ, ux〉

t2n

= lim
n→+∞

max{fi(x+ tnux) : i ∈ I(x)} − f(x)− tn
∑

i∈I(x) λi〈∇fi(x), ux〉
t2n

= lim
n→+∞

∑
i∈I(x)

λi
max{fi(x+ tnux) : i ∈ I(x)} − f(x)− tn〈∇fi(x), ux〉

t2n

≤ lim sup
n→+∞

max

{
fi(x+ tnux)− fi(x)− tn〈∇fi(x), ux〉

t2n
: i ∈ I(x)

}
≤ max{d2

+fi(x|∇fi(x))(ux) : i ∈ I(x)} ≤ −2µ−1;

that is, we have d2
Lf(x|ξ)(ux) ≤ −2µ−1. Therefore, upon using Theorem 3.1 to f , the

conclusion follows.
We now consider a system of quadratic inequalities

S = {x ∈ Rn : f1(x) ≤ 0, . . . , fm(x) ≤ 0},
where fi(x) = xtQix + btix + ci, Qi is a real n × n symmetric matrix, bi ∈ Rn, and
ci ∈ R for each i ∈ I with xt denoting the transpose of x. For the convex quadratic
system, i.e., when each Qi is positive semidefinite, Luo and Luo [12] and Wang and
Pang [19] show that the nonemptiness of S implies the existence of a positive integer
d ≤ n+ 1 and a positive scalar µ such that

dS(x) ≤ µ

[
f(x)+ + f(x)

1

2d

+

]
for all x ∈ Rn,(15)
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where f(x) = max{fi(x) : i ∈ I}. Furthermore, if S contains an interior point, then
d = 0.

For a nonconvex quadratic system, there are very few existing error bound results.
For the special case of a single quadratic function, Luo and Sturm [13] show that (15)
holds with d equal to 1; Ng and Zheng [15] further prove that for a single quadratic
function, global error bounds with either exponents 1 or 1/2 hold, and they also
classify the cases for exponents being 1 or 1/2. In the following theorem we apply
Theorem 3.7 to derive a sufficient condition for a nonconvex quadratic system. It is
worth pointing out that even for the case of a single quadratic system our theorem
offers something new since an error bound is explicitly given in terms of the eigenvalues
of matrices.

Corollary 3.8. For each i ∈ I, let

fi(x) = xtQix+ btix+ ci for x ∈ Rn,

where Qi is a real n× n symmetric matrix, bi ∈ Rn, and ci ∈ R. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ Rn.

Suppose that for each x ∈ f−1(0,+∞) and for each Qi there exists a negative eigen-
value λi with a common eigenvector u and 〈2Qix + bi, u〉 = 〈2Qjx + bj , u〉 for all
i, j ∈ I(x). Then S := {x ∈ Rn : f(x) ≤ 0} is nonempty and

d2
S(x) ≤ − 4

λ
f(x)+ for all x ∈ Rn,

where λ = max{λi : i ∈ I(x)}. In particular, if I = {1} and λ1 and λ2 are the smallest
eigenvalue and the largest eigenvalue of Q1 with λ1 < 0 < λ2, then S := {x ∈ Rn :
f1(x) = 0} is nonempty and

d2
S(x) ≤ − 4

λ
|f1(x)| for all x ∈ Rn,

where λ = max{λ1,−λ2}.
Proof. Let u be a common eigenvector of Qi corresponding to an eigenvalue λi < 0

for all i ∈ I(x). Then we have

fi(αu) = λiα
2utQiu+ αbtiu+ ci < 0

for sufficiently large positive scalar α. This implies that S := {x ∈ Rn : f(x) ≤ 0} is
nonempty.

Denote ux := u
‖u‖ . Then

〈∇fi(x), ux〉 = 〈2Qix+ bi, ux〉 = 〈2Qjx+ bj , ux〉 = 〈∇fj(x), ux〉 and

d2
+fi(x|∇fi(x))(ux) = ut

xQiux = λi ≤ λ.

Thus, by Theorem 3.7,

d2
S(x) ≤ − 4

λ
f(x)+ for all x ∈ Rn.

Now if I = {1}, we consider

f(x) := max{f1(x),−f1(x)} =
{

f1(x) if f1(x) ≥ 0,
−f1(x) if f1(x) < 0.
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It is easy to see that S := {x ∈ Rn : f1(x) = 0} is nonempty and that∇f(x) = ∇f1(x)
for x ∈ f−1(0,+∞) and ∇f(x) = −∇f1(x) for x ∈ f−1(−∞, 0). If u1 and u2 are unit
eigenvectors corresponding to λ1 and λ2, respectively, then, for each x ∈ f−1

1 (0,+∞),

d2
+f(x|∇f(x))(u1) = ut

1Q1u1 = λ1 ≤ λ

and, for each x ∈ f−1
1 (−∞, 0),

d2
+f(x|∇f(x))(u2) = −ut

2Q1u2 = −λ2 ≤ λ.

Therefore it follows from Theorem 3.7 that

d2
S(x) ≤ − 4

λ
|f1(x)| for all x ∈ Rn.

Example 3.1. For x ∈ R2, define

f1(x) = xtQ1x+ bt1x+ 1 and f2(x) = xtQ2x+ bt2x,

where

Q1 =

( −1 0
0 3

)
, b1 =

(
3
0

)
, Q2 =

( −1 0
0 −4

)
, and b2 =

(
3

−1
)
.

It is easy to see that λ = −1 is a common eigenvalue of Q1 and Q2 with a common
eigenvector u = (1, 0)t and that 〈2Q1x+b1, u〉 = −2x1+3 = 〈2Q2x+b2, u〉. Therefore,
by Corollary 3.8, S := {x ∈ R2 : f1(x) ≤ 0, f2(x) ≤ 0} is nonempty and

d2
S(x) ≤ 4max{f1(x), f2(x)}+ for all x ∈ R2.

4. Sufficient conditions in lower Dini derivatives. We note that in a general
Banach space the lower Dini subdifferential is not always a ∂ω-subdifferential (see
[10]). Thus Theorem 2.2 is not applicable to the lower Dini subdifferential in a general
Banach space. However, in this case the lower Dini derivative f−(x; ·) of function f
at x turns out to be more convenient for us to present a sufficient condition for error
bounds to exist. For this we first prove one of the main results in this section.

Theorem 4.1. Let (X, d) be a metric space and let f : X → (−∞,+∞] be an
l.s.c. function. For some 0 < ε ≤ +∞ and 0 < µ < +∞ we consider the following
statements:

(i) If the set f−1(−∞, ε) is nonempty and for each x ∈ f−1(0, ε) there exists a
point y ∈ f−1[0, ε) such that

0 < d(x, y) ≤ µ[f(x)− f(y)],

then S := {x ∈ X : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ f−1(−∞, ε).

(ii) If for some x0 ∈ X and 0 < δ < +∞ the set B(x0, δ) ∩ f−1(−∞, ε) is
nonempty and for some 0 < ρ < 1 and each x ∈ B(x0, δ) ∩ f−1(0, ε) there
exists a point y ∈ f−1[0, ε) such that

d(y, x0) ≤ max{ρδ, d(x, x0)} and 0 < d(x, y) ≤ µ[f(x)− f(y)],

then S := {x ∈ X : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ B(x0, δ) ∩ f−1(−∞, ε).
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(iii) If for some nonempty closed subset C of X the set C∩f−1(−∞, ε) is nonempty
and for some 0 < µ < +∞ and each x ∈ C ∩ f−1(0, ε) there exists a sequence
{xn} ⊆ C\{x} such that

lim
n→+∞

f(xn)+ − f(x)+
‖xn − x‖ ≤ −µ−1,(16)

then S := {x ∈ C : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ C ∩ f−1(−∞, ε).

In a metric space X, (i) ⇒ (ii); if X is also complete, then both (i) and (ii) hold. In
a normed space X, (i) ⇔ (iii); hence (iii) holds in a Banach space X.

Proof. We first prove that (i) implies (ii) in a metric space X.
Let x0 ∈ X, 0 < δ < +∞, and 0 < ρ < 1. For each m ∈ N (the set of

natural numbers) such that B(x0, ρδ) ⊆ Bm(x0, δ) := B(x0, (1 − 1/m)δ) and each
x ∈ Bm(x0, δ) ∩ f−1(0, ε) there exists y with the properties stated in (ii) such that
y ∈ Bm(x0, δ) since

d(y, x0) ≤ max{ρδ, d(x, x0)} ≤
(
1− 1

m

)
δ.

Upon applying (i) to the function f + ψBm(x0,δ)
, we obtain that Sm := Bm(x0, δ) ∩

f−1(−∞, 0] is nonempty and

dSm(x) ≤ µf(x)+ for all x ∈ Bm(x0, δ) ∩ f−1(−∞, ε).

This implies that (ii) holds since for each x ∈ B(x0, δ) ∩ f−1(−∞, ε) there exists an
m stated above such that x ∈ Bm(x0, δ) ∩ f−1(−∞, ε) and dS(x) ≤ dSm

(x).
Now it is known from [22, Theorem 3] that (i) holds in a complete metric space,

so (ii) also holds in a complete metric space.
Next, we prove that (i) and (iii) are equivalent in a normed space X.
Suppose that (i) is true. To prove (iii) to be also true, it suffices to show that for

any λ > 1 and x ∈ C ∩ f−1(0, ε) there exists a point y ∈ C ∩ (f+)
−1[0, ε) such that

0 < ‖x− y‖ ≤ λµ[f(x)+ − f(y)+].

Let λ > 1 be fixed. For each x ∈ C ∩ f−1(0, ε), by assumption, there exists a
sequence {xn} ⊆ C\{x} satisfying (16). Hence for sufficiently large n we have

f(xn)+ − f(x)+
‖xn − x‖ ≤ −(λµ)−1,

that is,

0 < ‖xn − x‖ ≤ λµ[f(x)+ − f(xn)+].

So we can take y = xn for any such an n.
Now, to prove (iii) ⇒ (i), we suppose that for each x ∈ f−1(0, ε) there exists a

point y ∈ f−1[0, ε) such that

0 < ‖x− y‖ ≤ µ[f(x)− f(y)].
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By taking xn = y we have

lim
n→+∞

f(xn)+ − f(x)+
‖xn − x‖ = lim

n→+∞
f(y)− f(x)

‖y − x‖ ≤ −µ−1.

It follows from statement (iii) with C = X that S is nonempty and satisfies

dS(x) ≤ µf(x)+ for all x ∈ f−1(−∞, ε).

Therefore (i) is valid.
As we indicated above, (i) holds in a complete metric space, so (iii) holds in a

Banach space.
Based on Theorem 4.1, we present some sufficient conditions in terms of Dini

derivatives of involved functions and tangent cones to a set as below.
Theorem 4.2. Let X be a Banach space and let C be a nonempty closed subset

in X. Suppose that f : X → (−∞,+∞] is an l.s.c. function and that for some 0 < ε ≤
+∞ the set C∩f−1(−∞, ε) is nonempty. If for some 0 < µ and each x ∈ C∩f−1(0, ε)
there exists a unit hypertangent vector ux to C at x such that f−(x;ux) ≤ −µ−1 or
ux ∈ KC(x) such that f+(x;ux) ≤ −µ−1, then S := {x ∈ C : f(x) ≤ 0} is nonempty
and

dS(x) ≤ µf(x)+ for all x ∈ C ∩ f−1(−∞, ε).

Proof. For some 0 < ε ≤ +∞, let x ∈ C ∩ f−1(0, ε). If ux is a unit hypertangent
vector to C at x satisfying f−(x;ux) ≤ −µ−1, then there exist sequences un → ux

and tn → 0+ such that

lim
n→+∞

f(x+ tnun)− f(x)

tn
= f−(x;ux) ≤ −µ−1

and x+ tnun ∈ C. If ux ∈ KC(x) and f+(x;ux) ≤ −µ−1, then there exist sequences
un → ux and tn → 0+ such that x+ tnun ∈ C, for which we have

lim inf
n→+∞

f(x+ tnun)− f(x)

tn
≤ f+(x;ux) ≤ −µ−1.

Now for the above sequences un → ux and tn → 0+ we have xn := x+ tnun ∈ C\{x}
and

lim inf
n→+∞

f(xn)+ − f(x)+
‖xn − x‖ = lim inf

n→+∞
f(xn)− f(x)

‖xn − x‖ ≤ −µ−1.

Hence there exists a subsequence {xnk
} satisfying the condition (iii) in Theorem 4.1.

Therefore the conclusion holds.
Similar to Theorem 3.4, Theorem 4.2 has the following equivalent result.
Theorem 4.3. Let X be a Banach space, and let f : X → (−∞,+∞] be an l.s.c.

function. Suppose that for some 0 < ε ≤ +∞ the set f−1(−∞, ε) is nonempty and
that for some 0 < µ and each x ∈ f−1(0, ε) there exists a unit vector ux in X such
that f−(x;ux) ≤ −µ−1. Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ f−1(−∞, ε).

In what follows we use Theorem 4.2 to establish error bounds for a system con-
taining functions f and gi : X → (−∞,+∞] (i ∈ I) for which we denote

g(x) := max{gi(x) : i ∈ I} and I(x) := {i ∈ I : gi(x) = g(x)} for x ∈ X.
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Theorem 4.4. Let C be a nonempty closed subset in a Banach space X, let
f : X → (−∞,+∞] be l.s.c., and let gi : X → (−∞,+∞) be locally Lipschitz for each
i ∈ I. Denote

C0 := {x ∈ C : gi(x) ≤ 0 for each i ∈ I}.
Suppose that for some 0 < ε ≤ +∞ the set C0∩f−1(−∞, ε) is nonempty. If, for some
0 < µ and each x ∈ C0 ∩ f−1(0, ε), there exists a unit vector ux ∈ KC(x) such that
f+(x;ux) ≤ −µ−1 and, for each x ∈ C0 ∩ f−1(0, ε) with g(x) = 0 and each i ∈ I(x),
g+
i (x;ux) < 0, then S := {x ∈ C0 : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ C0 ∩ f−1(−∞, ε).

Proof. Let x ∈ C0 ∩ f−1(0, ε) and let ux ∈ KC(x) be the unit vector in the
assumption. Then there exist sequences un → ux and tn → 0+ such that x+tnun ∈ C.
According to Theorem 4.2 , it suffices to show that ux ∈ KC0(x).

If g(x) < 0, then, by the continuity of g, g(x+ tnun) ≤ 0 when n is large enough.
This implies that x+ tnun ∈ C0 when n is large enough and hence ux ∈ KC0

(x).
If g(x) = 0, then, by the definition of g+

i (x;ux), there are δ > 0 and ε > 0 such
that for each i ∈ I(x) and all t ∈ (0, δ) we have

gi(x+ tux)− gi(x) ≤ −εt.
Since gi is Lipschitz near x, there exists a constant Li such that

gi(x+ tnun) ≤ gi(x+ tnux) + Litn‖un − ux‖
≤ gi(x) + tn(−ε+ Li‖un − ux‖) ≤ 0

for sufficiently large n. It follows that x + tnun ∈ C0 when n is large enough. Thus
ux belongs to KC0

(x).
Proposition 4.5. Let x be a point in a closed subset C of a Banach space X,

let fi : X → (−∞,+∞) be Lipschitz near x, let gi : X → (−∞,+∞] be Fréchet
differentiable at x for each i ∈ I, and let hj : X → (−∞,+∞) be continuous in a
neighborhood of x and Fréchet differentiable at x for each j ∈ J with the Fréchet
derivative ∇h(x) = (∇h1(x), . . . ,∇hn(x))

t being surjective. Denote

C1 := {x ∈ C : (fi + gi)(x) ≤ 0 for i ∈ I and hj(x) = 0 for j ∈ J} and

I(x) := {i ∈ I : (fi + gi)(x) = 0}.
Suppose that x ∈ C1 and there exists v∗ ∈ X such that f◦

i (x; v
∗) + g′i(x; v

∗) < 0 for
each i ∈ I(x) and h′

j(x; v
∗) = 0 for each j ∈ J. If the set of hypertangents to the set

C at x is nonempty, then

{v ∈ intTC(x) : f
+
i (x; v) + g′i(x; v) ≤ 0, i ∈ I(x); h′

j(x; v) = 0, j ∈ J} ⊆ KC1(x).

Proof. First, for v ∈ intTC(x) satisfying f+
i (x; v) + g′i(x; v) < 0 for each i ∈ I(x)

and h′
j(x; v) = 0 for each j ∈ J, we prove that v ∈ KC1(x).

Since ∇h(x) is surjective, by the correction theorem of Halkin [6, Theorem F] and
its proof, there exist a neighborhood U of x and a continuous mapping ξ from U into
X such that ξ(x) = 0, ∇ξ(x) = 0, and

hj(y + ξ(y)) = 〈∇hj(x), y − x〉 for all y ∈ U and each j ∈ J.



642 ZILI WU AND JANE J. YE

By taking y = x+ sv we have, for t > 0 small enough and all s ∈ (0, t),

hj(x+ sv + ξ(x+ sv)) = 〈∇hj(x), sv〉 = 0 for each j ∈ J.

Note that ξ(x) = 0 and ∇ξ(x) = 0, so ξ(x + tv)/t → 0 as t → 0. By the inequality
f+
i (x; v) + g′i(x; v) < 0, we can take ε > 0 and t > 0 small enough such that

(fi + gi)(x+ sv + ξ(x+ sv)) ≤ (fi + gi)(x)− εs = −εs
for all s ∈ (0, t) and each i ∈ I(x). Also, if v ∈ intTC(x), then v is hypertangent to C
at x. Hence

x+ sv + ξ(x+ sv) = x+ s

[
v +

ξ(x+ sv)

s

]
∈ C for all s ∈ (0, t)

when t > 0 is small enough. This implies that v ∈ KC1(x).
Now, if v∗ ∈ X satisfies f◦

i (x; v
∗)+g′i(x; v

∗) < 0 for each i ∈ I(x) and h′
j(x; v

∗) = 0

for each j ∈ J , then, for v ∈ intTC(x) with f+
i (x; v) + g′i(x; v) ≤ 0 for each i ∈ I(x)

and h′
j(x; v) = 0 for each j ∈ J, we can take t > 0 small enough such that, for all

s ∈ (0, t), v + sv∗ ∈ intTC(x) and

f+
i (x; v + sv∗) + g′i(x; v + sv∗)

≤ f+
i (x; v) + g′i(x; v + sv∗) + sup

u∈X
[f+

i (x;u+ sv∗)− f+
i (x;u)]

≤ f+
i (x; v) + g′i(x; v) + s[f◦

i (x; v
∗) + g′i(x; v

∗)] < 0

for each i ∈ I(x) and

h′
j(x; v + sv∗) = 〈∇hj(x), v + sv∗〉 = 0

for each j ∈ J. By the conclusion of the above paragraph, we have v + sv∗ ∈ KC1(x)
for all s > 0 small enough. This implies that v ∈ KC1

(x) since KC1
(x) is closed.

Combining Theorem 4.2 with Proposition 4.5, we obtain the following result.
Theorem 4.6. Let C be a nonempty closed subset in a Banach space X, let

f : X → (−∞,+∞] be l.s.c., let fi : X → (−∞,+∞) be locally Lipschitz and
gi : X → (−∞,+∞] Fréchet differentiable on C for each i ∈ I, and let hj : X →
(−∞,+∞] be continuous on C for each j ∈ J. Denote

C1 := {x ∈ C : (fi + gi)(x) ≤ 0 for i ∈ I and hj(x) = 0 for j ∈ J} and

I(x) := {i ∈ I : (fi + gi)(x) = 0} for x ∈ C1.

Suppose that for some 0 < ε ≤ +∞ the set C1 ∩ f−1(−∞, ε) is nonempty, that, for
each x ∈ C1 ∩ f−1(0, ε), hj is Fréchet differentiable at x for each j ∈ J with the
Fréchet derivative ∇h(x) = (∇h1(x), . . . ,∇hn(x))

t being surjective and there exists
v∗x ∈ X such that f◦

i (x; v
∗
x) + gi(x; v

∗
x) < 0 for each i ∈ I(x) and h′

j(x; v
∗
x) = 0 for

each j ∈ J , and that there exists a unit hypertangent vector ux to the set C at x such
that f+

i (x;ux) + g′i(x;ux) ≤ 0 for each i ∈ I(x), h′
j(x;ux) = 0 for each j ∈ J and

f+(x;ux) ≤ −µ−1 for some 0 < µ independent of x. Then S := {x ∈ C1 : f(x) ≤ 0}
is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ C1 ∩ f−1(−∞, ε).
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In what follows, we consider an inequality system determined by several inequal-
ities.

Theorem 4.7. Let C be a nonempty closed subset in a Banach space X and let
fi : X → R be continuous for each i ∈ I. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ X.

Suppose that, for some 0 < ε ≤ +∞, the set C ∩ f−1(−∞, ε) is nonempty and that,
for some 0 < µ, each x ∈ f−1(0, ε), and i ∈ I(x), there exists a unit vector ux such
that

(i) ux is hypertangent to C at x, f−
j (x;ux) ≤ −µ−1 for some j ∈ I(x) and

lim
v→ux

t→0+

fi(x+ tv)− fj(x+ tv)

t
= 0 for each i ∈ I(x); or

(ii) ux ∈ KC(x) and f+
i (x;ux) ≤ −µ−1 for each i ∈ I(x).

Then S := {x ∈ C : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ C ∩ f−1(0, ε).

Proof. Let 0 < µ, 0 < ε ≤ +∞, and x ∈ C ∩ f−1(0, ε). If ux is a unit vector
satisfying (i), then

f−(x;ux) = lim inf
v→ux

t→0+

max{fi(x+ tv) : i ∈ I(x)} − f(x)

t

≤ lim inf
v→ux

t→0+

fj(x+ tv)− fj(x)

t
+ lim

v→ux

t→0+

∑
i∈I(x)

|fi(x+ tv)− fj(x+ tv)|
t

= f−
j (x;ux) ≤ −µ−1,

where the first equality is obtained by the continuity of fi at x for each i ∈ I.
If ux satisfies (ii), then there exist un → ux and tn → 0+ such that

f+(x;ux) = lim
n→+∞

f(x+ tnun)− f(x)

tn

= lim
n→+∞max

{
fi(x+ tnun)− fi(x)

tn
: i ∈ I(x)

}
≤ max{f+

i (x;ux) : i ∈ I(x)} ≤ −µ−1.

Therefore, from Theorem 4.2, the required result follows.
Corollary 4.8. For each i ∈ I, let gi : Rn → R be differentiable and let

fi(x) := gi(x) + btix + ci, where bi = (bi1, . . . , bin)
t ∈ Rn and ci ∈ R. Suppose that

for all i ∈ I and some j ∈ J the coordinates bij have the same sign and all gi’s are
independent of the jth coordinate xj of x ∈ Rn. Then

S := {x ∈ Rn : fi(x) ≤ 0 for all each i ∈ I}
is nonempty and for some 0 < µ there holds dS(x) ≤ µf(x)+ for all x ∈ Rn.

Proof. In fact, for x ∈ f−1(0,+∞) and i ∈ I(x) and ux := (0, . . . , 0,−sgn bij , 0, . . . ,
0)t we have

f ′
i(x;ux) = 〈∇fi(x), ux〉 = 〈∇gi(x) + bi, ux〉 = −|bij | for each i ∈ I(x).
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Taking µ−1 = min{|bij | : i ∈ I} and applying Theorem 4.7, we arrive at the conclu-
sion.

Example 4.1. We consider the functions

f1(x) = g1(x1, x2) + 2x1 − x2 + 3x3,

f2(x) = g2(x1, x2) + 2x3,

f3(x) = g3(x1, x2) + 2x1 + 6x3 − 4,

where g1, g2, and g3 are differentiable and independent of x3. Since the coefficients
of x3 in fi’s are all positive and their minimum is 2,

S := {x ∈ R3 : fi(x) ≤ 0 for i = 1, 2, 3}
is nonempty and dS(x) ≤ 1

2f(x)+ holds for all x ∈ R3.
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