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1. Introduction. In this paper we study Lagrange multiplier rules and con-
straint qualifications (CQs) for the following optimization problem with equality and
inequality constraints:

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . , I,(P)

hj(x) = 0, j = 1, 2, . . . , J,

where f, gi(i = 1, 2, . . . , I), hj(j = 1, 2, . . . , J) are functions from a Banach space X
to R and I, J are given integers. Generally one has I ≥ 1, J ≥ 1, but we allow I or
J = 0 to signify the case in which there are no explicit constraints of the type. For
any feasible solution x̄ of problem (P), we denote by I(x̄) := {i : gi(x̄) = 0} the index
set of the binding constraints.

The classical Lagrange multiplier rule (see, e.g., [4, 16]) usually requires that
the objective function and the inequality constraints be Fréchet differentiable and
the equality constraints be continuously differentiable. Most extensions of the classi-
cal Lagrange multipliers are given under two different assumptions: differentiability
and Lipschitz continuity. On one hand, the classical multiplier rule was extended
in the direction of eliminating the smoothness assumption while keeping the dif-
ferentiability assumption such as in Halkin [9]. On the other hand, the classical
multiplier rule was generalized in the direction of replacing the usual gradient by
certain generalized gradients under Lipschitz assumptions such as in Rockafellar [22],
Clarke [7], Michel and Penot [17, 18], Ioffe [11, 12], Mordukhovich [19], and Treiman
[23, 24].

It is known that differentiability and Lipschitz continuity are two different kinds
of assumptions and may not imply each other in general. Hence for nonlinear pro-
gramming problems with mixed assumptions of differentiability and Lipschitz conti-
nuity, the only applicable optimality conditions in the literature were fuzzy multiplier
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rules for optimization problem with lower semicontinuous data (see, e.g., Borwein,
Treiman, and Zhu [6] and Ngai and Théra [20]). Although in a finite-dimensional
space the fuzzy multiplier rule reduces to an exact multiplier rule, it involves the
singular subdifferential of the non-Lipschitz functions. Another issue involved is
the size of the subdifferential. It is known that the Clarke generalized gradient of
a differentiable function which is not strictly differentiable may contain other ele-
ments which are not the usual derivative. Our purpose is to provide an exact (not
fuzzy) multiplier rule where the usual derivative (not the generalized gradient even
if it is also Lipschitz continuous) is used when a function is differentiable and the
generalized gradient is used when a function is not differentiable but Lipschitz con-
tinuous. Among various convex-valued generalized gradients which coincide with the
usual derivative when a function is Gâteaux differentiable, including the B-generalized
gradient of Treiman [23], the Michel–Penot (M-P) subdifferential is the smallest one,
and hence we aim to provide a multiplier rule in terms of the M-P subdifferential.
The multiplier rules in terms of other bigger generalized gradients follow immedi-
ately.

In Ye [27], under the mixed assumptions of Fréchet differentiability and Lip-
schitz continuity, and Fritz John and KKT Lagrange multiplier rules under generalized
Mangasarian–Fromovitz, metric regularity and calmness CQs were given where the
usual derivative is used when a function is differentiable.

In this paper we continue the study by considering the problem with mixed as-
sumptions of Gâteaux differentiability, Fréchet differentiability, Hadamard differen-
tiability (see, e.g., Definition 2.1), and Lipschitz continuity under other CQs that
were not considered in [27]. Our main result includes the following generalized La-
grange multiplier rule, which summarizes the results obtained in Theorem 3.1 and
Propositions 3.1–3.7.

Theorem 1.1 (nondifferentiable KKT necessary optimality condition). Let x̄ be
a local optimal solution of (P). Consider the following CQs at x̄:

(1) the nondifferentiable weak reverse convex CQ as in Definition 3.12;
(2) the nondifferentiable weak Slater CQ as in Definition 3.11;
(3) the nondifferentiable Arrow–Hurwicz–Uzawa CQ as in Definition 3.10;
(4) the generalized Zangwill CQ as in Definition 3.4;
(5) the nondifferentiable linear independence CQ as in Definition 3.8;
(6) the nondifferentiable Slater CQ as in Definition 3.9;
(7) the nondifferentiable Mangasarian–Fromovitz CQ as in Definition 3.7;
(8) the nondifferentiable Kuhn–Tucker CQ as in Definition 3.6;
(9) the nondifferentiable Abadie CQ as in Definition 3.3.

If f is either Gâteaux differentiable at x̄ or Lipschitz near x̄, then the KKT condition
in terms of the M-P subdifferential holds at x̄ under one of the CQs (1)–(4). If f
is either Fréchet differentiable at x̄ or Lipschitz near x̄, then the KKT condition in
terms of the M-P subdifferential holds at x̄ under one of the CQs (1)–(9). That is,
there exist scalars αi ≥ 0 (i ∈ I(x̄)), βj ≥ 0, γj ≥ 0 (j = 1, 2, . . . , J) such that

0 ∈ ∂�f(x̄) +
∑

i∈I(x̄)

αi∂
�gi(x̄) +

J∑
j=1

βj∂
�hj(x̄) −

J∑
j=1

γj∂
�hj(x̄),

where ∂� denotes the M-P subdifferential.
The relationships between the various constraint qualifications are given in the

following diagram:
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WRC (1) weak Slater (2)
⇓ ⇓

LICQ (5) Slater (6) AHU (3)
⇓ ⇓ ⇓

MFCQ (7) Zangwill (4)
⇓ ⇓
Kuhn–Tucker (8)

⇓
Abadie (9)

Note that Theorem 1.1 under CQ (7) was given in [27, Theorem 4.1]. The above
KKT condition, however, provides a nondifferentiable KKT condition under all CQs
(1)–(9). Moreover, the relationships between various CQs are given. Over the years,
many papers have been devoted to extensions of classical CQs of type (5)–(7) to non-
smooth optimization problems (see, e.g., [10, 14, 31]). To the best of the author’s
knowledge, CQs of type (1)–(4), (8)–(9) have never been extended to allow nondiffer-
entiability in the literature. One of the purposes of this paper is to fill this gap since
these nondifferentiable CQs are needed for studies of bilevel programming problems.

In Theorem 3.2 we also prove that the above KKT condition in terms of the
M-P subdifferential becomes sufficient when the objective function is M-P pseudo-
convex, the inequality constraints are M-P regular and quasiconvex, and the equality
constraints are Gâteaux differentiable and quasiaffine at the optimal solution x̄.

In the last section of this paper we apply the results obtained to the bilevel
optimization problem. One may reformulate the bilevel optimization as a single
level optimization problem by using either the value function or the KKT condi-
tion for the lower level problem. The difficulty is that the usual CQ, such as the
linear independence CQ, the Slater CQ, and the Mangasarian–Fromovitz CQ, does
not hold for such a single level optimization problem. In this paper we show that
the rest of the CQs (1), (3), (4), and (8)–(9) may hold for bilevel optimization
problems. In particular, no CQ is required for the generalized linear bilevel op-
timization problem, which generalizes the known result that no CQ is needed for
the linear bilevel programming problem. When the lower level problem is convex the
relationship between the multiplier rule for the single level formulation by the value
function approach and the one by the KKT approach is compared. It is found that
the multiplier rule for the single level formulation by the value function approach is
sharper than the one by the KKT approach.

We organize the paper as follows. In the next section, we provide preliminaries
and preliminary results to be used in the rest of the paper. Section 3 is devoted to
the discussion of CQs and the KKT necessary and sufficient optimality conditions. In
section 4, applications to the bilevel optimization problem are given. In this paper
unless otherwise specified, we denote by X a Banach space and by X∗ its dual space
equipped with the weak-star topology w∗. For A ⊆ X, we denote by coA, clA its
convex hull and its closure, respectively. We denote by B(v, δ) the open ball centered
at v ∈ X with radius δ > 0.

2. Preliminaries and preliminary results. We first recall some definitions
of the usual derivatives.

Definition 2.1 (usual derivatives). Let X,Y be Banach spaces, let x̄ ∈ X, and
let f : X → Y . The usual directional derivative of f at x̄ in the direction v ∈ X is
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given by

f ′(x̄; v) := lim
t↓0

f(x̄ + tv) − f(x̄)

t

when this limit exists. f is said to be Gâteaux differentiable if there exists Df(x̄), an
element of the space L(X,Y ) of continuous linear functionals from X to Y such that
for every v ∈ X, f ′(x̄; v) = 〈Df(x̄), v〉, where 〈·, ·〉 denotes the canonic pairing. f is
said to be Hadamard differentiable at x̄ if Df(x̄) ∈ L(X,Y ) and, for every v ∈ X,

lim
t↓0,v′→v

f(x̄ + tv′) − f(x̄)

t
= 〈Df(x̄), v〉.

f is said to be Fréchet differentiable at x̄ if Df(x̄) ∈ L(X,Y ) and the convergence in

f ′(x̄; v) := lim
t↓0

f(x̄ + tv) − f(x̄)

t
= 〈Df(x̄), v〉

is uniform with respect to v in bounded sets.
Remark 2.1. It is clear from the above definition that Fréchet differentiability

is stronger than Hadamard differentiability, which in turn is stronger than Gâteaux
differentiability.

Definition 2.2 (M-P subdifferential). Let x̄ ∈ X and let f : X → R be any
function. The M-P directional derivative of f at x̄ in the direction v ∈ X introduced
in [17] is given by

f�(x̄; v) := sup
w∈X

lim sup
t↓0

f(x̄ + t(v + w)) − f(x̄ + tw)

t
,

and the M-P subdifferential of f at x̄ is given by the set

∂�f(x̄) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ f�(x̄; v) ∀v ∈ X}.

The M-P subdifferential is a natural generalization of the Gâteaux derivative since
it is known (see [17, Proposition 1.3]) that when a function f is Gâteaux differentiable
at x̄, f�(x̄; v) = f ′(x̄; v) and ∂�f(x̄) = {Df(x̄)}. Moreover when a function f is con-
vex, the M-P subdifferential coincides with the subdifferential in the sense of convex
analysis.

Whenever the Clarke generalized directional derivative f◦(x̄; v) and the Clarke
generalized gradient ∂◦f(x̄) exist, one always has

f�(x̄; v) ≤ f◦(x̄; v), ∂�f(x̄) ⊆ ∂◦f(x̄).

Note that the above inequality and the inclusion may be strict even in the case when
f is Lipschitz continuous. For example, the function

f(x) =

{
x2 sin 1

x , x 
= 0,
0, x = 0

(1)

on R is Lipschitz near 0 and Fréchet differentiable at 0 with Df(0) = 0, and hence
∂�f(0) = {0} and f�(0; v) = f ′(0, v) = 0. However, ∂◦f(0) = [−1, 1] and f◦(0; v) =
|v|.
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Similar to the Clarke regularity [7], the following regularity concept was intro-
duced in [5] as semiregularity (see also [25]) for Lipschitz continuous functions. We
now extend the definition to any functions so that a Gâteaux differentiable function
is also M-P regular.

Definition 2.3 (M-P regularity). Let f : X → R be a function on X and let
x̄ ∈ X. We say that f is M-P regular at x̄ if the usual directional derivative f ′(x̄; v)
exists and f ′(x̄; v) = f�(x̄; v) for all v ∈ X.

The following properties of the M-P directional derivative and the M-P subdif-
ferential will be useful.

Proposition 2.1 (see [17, 18, 5]). Let X be a Banach space, let x̄ ∈ X, and
let f, g : X → R be either Gâteaux differentiable at x̄ or Lipschitz near x̄. Then the
following hold:

(i) The function v → f�(x̄; v) is finite, positively homogeneous, and subadditive
on X.

(ii) For any scalar λ, ∂�(λf)(x̄) = λ∂�f(x̄), and for every v ∈ X, f�(x̄;−v) =
(−f)�(x̄; v).

(iii) ∂�(f + g)(x̄) ⊆ ∂�f(x̄)+ ∂�g(x̄) and (f + g)�(x̄; v) ≤ f�(x̄; v)+ g�(x̄; v) for
all v ∈ X. The equalities hold if both f and g are M-P regular at x̄.

(iv) ∂�f(x̄) is a nonempty, convex, weak∗-compact subset of X∗, and for every v
in X, one has f�(x̄; v) = max{〈ξ∗, v〉 : ξ∗ ∈ ∂�f(x̄)}.

(v) If x̄ is a local minimum of f , then 0 ∈ ∂�f(x̄) and f�(x̄; v) ≥ 0 for all v ∈ X.
In [26, Proposition 3.1], it was shown that a Lipschitz function f is strictly dif-

ferentiable if and only if both f and −f are Clarke regular. Similarly we have the
following conclusion.

Proposition 2.2. Let f : X → R be a function which is Lipschitz near x̄ ∈ X.
Then f and −f are both M-P regular if and only if f is Gâteaux differentiable at x̄.

Proof. It is obvious that if f is Gâteaux differentiable at x̄, then both f and −f
are M-P regular. Now suppose that both f and −f are M-P regular; then by (iii) of
Proposition 2.1, one has

∂�f(x̄) + ∂�(−f)(x̄) = ∂�(f − f)(x̄) = {0},

which implies that ∂�f(x̄) is a singleton since both ∂�f(x̄) and ∂�(−f)(x̄) are
nonempty. Let ∂�f(x̄) = {ξ}. Since ξ ∈ X∗, to prove that f is Gâteaux differ-
entiable at x̄ it suffices to prove that f�(x̄; v) = 〈ξ, v〉 for each v ∈ X. By (iv) of
Proposition 2.1, for each v ∈ X, f�(x̄; v) ≥ 〈ξ, v〉. By the Hahn–Banach theorem
there exists ξ′ ∈ X∗ majorized by f�(x̄; ·) and agreeing with f�(x̄; ·) at v. It follows
that ξ′ ∈ ∂�f(x̄), and we have f�(x̄; v) = 〈ξ′, v〉 ≥ 〈ξ, v〉. If 〈ξ, v〉 were less than
f�(x̄; v), then ξ 
= ξ′, contrary to the fact that ∂�f(x̄) = {ξ}, and hence f is Gâteaux
differentiable at x̄.

Based on the M-P subdifferential, we extend the notions of pseudoconvexity and
pseudoconcavity to allow nondifferentiability. For a definition of this kind of general-
ization to a class of generalized gradients, we refer the reader to [21].

Definition 2.4 (M-P pseudoconvexity and pseudoconcavity). Let f be a func-
tion defined on a Banach space X. f is said to be M-P pseudoconvex at x̄ ∈ X if for
all x ∈ X,

f�(x̄;x− x̄) ≥ 0 ⇒ f(x) ≥ f(x̄).

f is said to be M-P pseudoconcave at x̄ ∈ X if for all x ∈ X,

f�(x̄;x− x̄) ≤ 0 ⇒ f(x) ≤ f(x̄).



NONDIFFERENTIABLE LAGRANGE MULTIPLIER RULES 257

f is said to be M-P pseudoconvex (pseudoconcave) if it is M-P pseudoconvex
(pseudoconcave) at all x ∈ X.

f is said to be M-P pseudoaffine if it is both M-P pseudoconvex and M-P pseudo-
concave.

Remark 2.2. It is obvious that if f is Gâteaux differentiable at x̄, then f is M-P
pseudoconvex at x̄ if and only if −f is M-P pseudoconcave at x̄. Using Proposition 2.1
it is easy to show that if f is Lipschitz near x̄ and M-P pseudoconvex at x̄, then −f
is M-P pseudoconcave at x̄. However, the definitions for M-P pseudoconvexity and
pseudoconcavity for a nondifferentiable function are not symmetric since M-P pseu-
doconcavity of f at x may not imply M-P pseudoconvexity of −f at x̄. For example,
‖x‖ is both M-P pseudoconvex and pseudoconcave and hence M-P pseudoaffine, but
−‖x‖ is M-P pseudoconcave but not M-P pseudoconvex.

As in the differentiable case we have the following necessary and sufficient opti-
mality condition under the M-P pseudoconvexity.

Theorem 2.1. Let x̄ ∈ X and f be M-P pseudoconvex at x̄. Then x̄ is a global
minimum of the function f(x) if and only if f�(x̄;x − x̄) ≥ 0 for all x ∈ X, i.e.,
0 ∈ ∂�f(x̄).

Proof. Assume that x̄ is a global minimum of the function f(x); then for any
t ∈ (0, 1) one has

f(x̄ + t(x− x̄)) − f(x̄)

t
≥ 0,

and hence

f�(x̄;x− x̄) ≥ 0 ∀x ∈ X.

Conversely if the above inequality holds, then by definition of M-P pseudoconvexity,
one has f(x) ≥ f(x̄) and the proof is complete.

We now recall the definition for strictly quasiconvex (also referred to as semistrictly
quasiconvex) functions and quasiconvex functions.

Definition 2.5 (quasiconvexity and strict quasiconvexity). Let f be a function
defined on a Banach space X. f is said to be quasiconvex at x̄ ∈ X if for all x ∈ X,

f(x) ≤ f(x̄), 0 < λ < 1 ⇒ f((1 − λ)x̄ + λx) ≤ f(x̄).

f is said to be strictly quasiconvex at x̄ ∈ X if for all x ∈ X,

f(x) < f(x̄), 0 < λ < 1 ⇒ f((1 − λ)x̄ + λx) < f(x̄).

f is said to be quasiconcave (strictly quasiconcave) at x̄ if −f is quasiconvex
(strictly quasiconvex) at x̄.

f is said to be (strictly) quasiconvex (quasiconcave) if it is (strictly) quasiconvex
(quasiconcave) at all x ∈ X.

f is said to be quasiaffine if it is both quasiconvex and quasiconcave.
We relate M-P pseudoconvex functions to strictly quasiconvex functions and qua-

siconvex functions in the following proposition, which can be proved similarly to the
proof of [16, Theorem 9.5].

Proposition 2.3. Let f be a continuous and Gâteaux differentiable function on
X. If f is M-P pseudoconvex (M-P pseudoconcave), then f is strictly quasiconvex
(quasiconcave) and hence also quasiconvex (quasiconcave).
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3. Nondifferentiable multiplier rules and constraint qualifications. We
first recall the notions of the contingent cone (also called the cone of tangents) and
the cone of feasible directions.

Definition 3.1 (contingent cone). Let Ω ⊆ X and x̄ ∈ clΩ. The contingent
cone of Ω at x̄ is the closed cone defined by

TΩ(x̄) := {v ∈ X : ∃tn ↓ 0, vn → v s.t. x̄ + tnvn ∈ Ω ∀n}.

Definition 3.2 (cone of feasible directions). Let Ω ⊆ X and x̄ ∈ clΩ. The cone
of feasible directions of Ω at x̄ is the cone defined by

DΩ(x̄) := {v ∈ X : ∃δ > 0 s.t. x̄ + tv ∈ Ω ∀t ∈ (0, δ)}.

Based on the notions of contingent cone and M-P subdifferential, we extend the
Abadie CQ introduced in [2] to our nondifferentiable setting.

Definition 3.3 (nondifferentiable Abadie CQ). Let x̄ ∈ Ω := {x ∈ X : gi(x) ≤
0, i = 1, 2, . . . , I, hj(x) = 0, j = 1, 2, . . . , J}. We say that the nondifferentiable Abadie
CQ holds at x̄ if gi (i ∈ I(x̄)) and hj (j = 1, 2, . . . , J) are either Gâteaux differentiable
at x̄ or Lipschitz near x̄, the convex cone generated by

A :=
⋃

i∈I(x̄)

∂�gi(x̄) ∪
J⋃

j=1

∂�hj(x̄) ∪
J⋃

j=1

[−∂�hj(x̄)](2)

is closed, and

g�
i (x̄; v) ≤ 0 ∀i ∈ I(x̄),

h�
j (x̄; v) = 0 ∀j = 1, 2, . . . , J

}
⇒ v ∈ TΩ(x̄).

Based on the notions of the cone of feasible directions and the M-P subdifferential,
we extend the Zangwill CQ introduced in [32] from inequality constraints to inequality
and equality constraints in the nondifferentiable setting.

Definition 3.4 (generalized Zangwill CQ). Let x̄ ∈ Ω := {x ∈ X : gi(x) ≤ 0, i =
1, 2, . . . , I, hj(x) = 0, j = 1, 2, . . . , J}. We say that the generalized Zangwill CQ holds
at x̄ if gi (i ∈ I(x̄)) and hj (j = 1, 2, . . . , J) are either Gâteaux differentiable at x̄ or
Lipschitz near x̄, the convex cone generated by the set A defined by (2) is closed, and

g�
i (x̄; v) ≤ 0 ∀i ∈ I(x̄),

h�
j (x̄; v) = 0 ∀j = 1, 2, . . . , J

}
⇒ v ∈ clDΩ(x̄).

Lemma 3.1. Let Ω be a closed subset of X and let f : X → R be either Gâteaux
differentiable at x̄ or Lipschitz near x̄. If x̄ is a local minimum of f over Ω, then

f�(x̄; v) ≥ 0 ∀v ∈ clDΩ(x̄).(3)

Moreover if f is either Fréchet differentiable at x̄ or Lipschitz near x̄, then

f�(x̄; v) ≥ 0 ∀v ∈ TΩ(x̄).(4)

Proof. We first show that (3) holds. Suppose there exists v ∈ DΩ(x̄) such that
f�(x̄; v) < 0. Then

lim sup
t↓0

f(x̄ + tv) − f(x̄)

t
≤ f�(x̄; v) < 0,
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which implies that

f(x̄ + tv) − f(x̄) < 0 ∀t > 0 small enough.

But this contradicts the fact that x̄ is a local minimum of f over Ω, and hence

f�(x̄; v) ≥ 0 ∀v ∈ DΩ(x̄).

Consequently (3) follows from the continuity of f�(x̄; ·) (see (i) of Proposition 2.1).
Now suppose that there exists v ∈ TΩ(x̄) such that f�(x̄; v) < 0. Then there

exist r > 0, ε > 0 such that

f(x̄ + tv) − f(x̄) ≤ −rt ∀t ∈ (0, ε).

If f is Lipschitz near x̄, then there exists δ > 0 such that

f(x̄ + tv′) − f(x̄ + tv) ≤ Lf t‖v′ − v‖ ∀v′ ∈ B(v, δ),

where Lf is the Lipschitz constant. By definition of the contingent cone, there exists
tn ↓ 0, vn → v such that x̄+ tnvn ∈ Ω for all n. Therefore for n large enough, one has

‖vn − v‖ <
r

2Lf
, tn ∈ (0, ε)

and

f(x̄ + tnvn) − f(x̄)

= f(x̄ + tnvn) − f(x̄ + tnv) + f(x̄ + tnv) − f(x̄)

≤ Lf tn‖vn − v‖ − rtn

< −r

2
tn < 0.

But this contradicts the fact that x̄ is a local minimum of f over Ω, and hence (4)
holds.

We omit the proof for (4) under the Fréchet differentiability assumption since it
is a classical result (see, e.g., [13, Theorem 4.14]).

We now show that under the nondifferentiable Abadie CQ and the generalized
Zangwill CQ, the KKT condition holds. It is interesting to note that although the
nondifferentiable Abadie CQ is weaker than the generalized Zangwill CQ, the KKT
condition under the nondifferentiable Abadie CQ requires stronger assumptions on
the objective function.

Theorem 3.1 (KKT conditions under Abadie CQ and Zangwill CQ). Let x̄ be
a local optimal solution of (P). Under one of the following conditions,

(i) the generalized Zangwill CQ holds at x̄, and f is either Gâteaux differentiable
at x̄ or Lipschitz near x̄;

(ii) the nondifferentiable Abadie CQ holds at x̄, and f is either Fréchet differen-
tiable at x̄ or Lipschitz near x̄,

the KKT condition holds at x̄, i.e., there exist scalars αi ≥ 0 (i ∈ I(x̄)), βj ≥ 0,
γj ≥ 0 (j = 1, 2, . . . , J) such that

0 ∈ ∂�f(x̄) +
∑

i∈I(x̄)

αi∂
�gi(x̄) +

J∑
j=1

βj∂
�hj(x̄) −

J∑
j=1

γj∂
�hj(x̄).
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Proof. Under the assumptions of the theorem, by Lemma 3.1 and Proposition 2.1
it is easy to show that f�(x̄; v) ≥ 0 for all v satisfying the following system:

g�
i (x̄; v) ≤ 0 ∀i ∈ I(x̄),

h�
j (x̄; v) ≤ 0 ∀j = 1, 2, . . . , J,

(−hj)
�(x̄; v) ≤ 0 ∀j = 1, 2, . . . , J.

Since gi (i ∈ I(x̄)) are either Gâteaux differentiable at x̄ or Lipschitz near x̄ by (iv) of
Proposition 2.1, v satisfies the above system if and only if maxa∈A〈a, v〉 ≤ 0, where
A is the set defined by (2). Consequently,

f�(x̄; v) ≥ 0 whenever max
a∈C

〈a, v〉 ≤ 0,

where C denotes the convex cone generated by A. Thus the function f�(x̄; ·)+ δC0(·)
attains its minimum at 0, where C0 := {v ∈ X : 〈v, c〉 ≤ 0 for all v ∈ C} is the polar
cone of C and δC0 is the indicator function of set C0. Since f�(x̄; ·) is convex and
continuous by virtue of Proposition 2.1(i), by the sum rule (see, e.g., [7, Corollary 1,
p. 105]), one has

0 ∈ ∂φ(0) + ∂δC0(0),

where φ(·) := f�(x̄; ·) and ∂φ is the subdifferential in the sense of convex analysis.
Since ∂φ(0) = ∂�f(x̄) and ∂δC0(0) = C00 = C the above inclusion is the same as

0 ∈ ∂�f(x̄) + C.

Therefore there exist some ξ∗ ∈ ∂�f(x̄), η∗i ∈ ∂�gi(x̄) (i ∈ I(x̄)), ζ∗j , ν
∗
j ∈ ∂�hj(x̄) (j =

1, 2, . . . , J), αi ≥ 0 (i ∈ I(x̄)), βj ≥ 0, γj ≥ 0 (j = 1, 2, . . . , J) such that

0 = ξ∗ +
∑

i∈I(x̄)

αiη
∗
i +

J∑
j=1

βjζ
∗
j −

J∑
j=1

γjν
∗
j ,

which implies that the KKT condition holds.
In the following theorem, we extend the classical KKT sufficient condition as

given in [4, Theorem 4.3.8] to our nondifferentiable setting.
Theorem 3.2 (nondifferentiable KKT sufficient condition). Let x̄ be a feasible

solution of (P). Suppose that f, gi (i ∈ I(x̄)), hj (j = 1, 2, . . . , J) are either Gâteaux
differentiable at x̄ or Lipschitz near x̄ and there exist scalars αi ≥ 0 (i ∈ I(x̄)),
βj (j = 1, 2, . . . , J) such that

0 ∈ ∂�f(x̄) +
∑

i∈I(x̄)

αi∂
�gi(x̄) +

J∑
j=1

βj∂
�hj(x̄).(5)

Let J+ = {j : βj > 0} and J− = {j : βj < 0}. Further suppose that f is M-P
pseudoconvex at x̄, gi (i ∈ I(x̄)), hj (j ∈ J+), and −hj (j ∈ J−) are M-P regular and
quasiconvex at x̄. Then x̄ is a global optimal solution of (P).

Proof. Note that (5) is equivalent to the existence of

ξ∗ ∈ ∂�f(x̄), η∗i ∈ ∂�gi(x̄) (i ∈ I(x̄)),

γ∗
j ∈ ∂�hj (x̄) (j ∈ J+), ζ∗j ∈ ∂�(−hj)(x̄) (j ∈ J−)

such that
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0 = ξ∗ +
∑

i∈I(x̄)

αiη
∗
i +

∑
j∈J+

βjγ
∗
j −

∑
j∈J−

βjζ
∗
j .(6)

Let x be any feasible solution of (P); then for any i ∈ I(x̄),

gi(x) ≤ 0 = gi(x̄).

By the quasiconvexity of gi at x̄ it follows that

gi(x̄ + λ(x− x̄)) = gi(λx + (1 − λ)x̄) ≤ gi(x̄)(7)

for all λ ∈ (0, 1). This implies that

g�
i (x̄;x− x̄) = g′i(x̄;x− x̄) ≤ 0 ∀i ∈ I(x̄)(8)

by the M-P regularity. Similarly since hj(j ∈ J+) and −hj(j ∈ J−) are M-P regular
and quasiconvex at x̄, we have

h�
j (x̄;x− x̄) ≤ 0 ∀i ∈ J+,(9)

(−hj)
�(x̄;x− x̄) ≤ 0 ∀i ∈ J−.(10)

Note that (8)–(10) imply

〈η∗i , x− x̄) ≤ 0 ∀i ∈ I(x̄),(11)

〈γ∗
j , x− x̄) ≤ 0 ∀j ∈ J+,(12)

〈ζ∗j , x− x̄) ≤ 0 ∀j ∈ J−.(13)

Multiplying (11), (12), and (13) by αi ≥ 0 (i ∈ I(x̄)), βj > 0 (j ∈ J+), and −βj >
0 (j ∈ J−), respectively, and adding we get

〈 ∑
i∈I(x̄)

αiη
∗
i +

∑
j∈J+

βjγ
∗
j −

∑
j∈J−

βjζ
∗
j , x− x̄

〉
≤ 0.

By virtue of (6), the above inequality implies that

〈ξ∗, x− x̄〉 ≥ 0,

which implies by (iv) of Proposition 2.1 that

f�(x̄;x− x̄) ≥ 〈ξ∗, x− x̄〉 ≥ 0

since ξ∗ ∈ ∂�f(x̄). By the M-P pseudoconvexity of f at x̄, we must have f(x) ≥ f(x̄),
and the proof is complete.

We now extend the Kuhn–Tucker CQ introduced by Kuhn and Tucker in [15] to
the nondifferentiable setting.

Definition 3.5 (cone of attainable directions). Let Ω ⊆ X and x̄ ∈ clΩ. We
say that v ∈ AΩ(x̄), the cone of attainable directions of Ω at x̄ if there exist δ > 0,
and a mapping α : R → X such that α(τ) ∈ Ω for all τ ∈ (0, δ), α(0) = x̄, and

limτ↓0
α(τ)−α(0)

τ = v.
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The cone of attainable directions is also known as the adjacent cone (see, e.g.,
[1]) or the incident cone. In fact

AΩ(x̄) = lim inf
τ↓0

Ω − x̄

τ

and hence is a closed set.
Definition 3.6 (nondifferentiable Kuhn–Tucker CQ). Let x̄ ∈ Ω := {x ∈ X :

gi(x) ≤ 0, i = 1, 2, . . . , I, hj(x) = 0, j = 1, 2, . . . , J}. We say the nondifferentiable
Kuhn–Tucker CQ is satisfied at x̄ if gi (i ∈ I(x̄)) and hj (j = 1, 2, . . . , J) are either
Gâteaux differentiable at x̄ or Lipschitz near x̄, the convex cone generated by the set
(2) is closed, and

g�
i (x̄; v) ≤ 0 ∀i ∈ I(x̄),

h�
j (x̄; v) = 0 ∀j = 1, 2, . . . , J

}
⇒ v ∈ AΩ(x̄).

It is easy to see that clDΩ(x̄) ⊆ AΩ(x̄) ⊆ TΩ(x̄), and hence the following rela-
tionship among the generalized Zangwill CQ, the nondifferentiable Kuhn–Tucker CQ,
and the nondifferentiable Abadie CQ is obvious.

Proposition 3.1. The nondifferentiable Zangwilll CQ implies the nondiffer-
entiable Kuhn–Tucker CQ, and the nondifferentiable Kuhn–Tucker CQ implies the
nondifferentiable Abadie CQ. That is,

Zangwill CQ =⇒ Kuhn–Tucker CQ =⇒ Abadie CQ.

Definition 3.7 (nondifferentiable Mangasarian–Fromovitz CQ). Let x̄ be a fea-
sible solution of (P). We say that the nondifferentiable Mangasarian–Fromovitz CQ
is satisfied if gi (i ∈ I(x̄)) are either Hadamard differentiable at x̄ or Lipschitz near
x̄, gi (i 
∈ I(x̄)) are continuous at x̄, hj (j = 1, 2, . . . , J) are Fréchet differentiable at
x̄ and continuous in a neighborhood of x̄, {Dh1(x̄), . . . , DhJ(x̄)} are linearly indepen-
dent, and there exists v ∈ X such that

g�
i (x̄; v) < 0 ∀i ∈ I(x̄),(14)

〈Dhj(x̄), v〉 = 0 ∀j = 1, 2, . . . , J.(15)

Lemma 3.2. If gi (i ∈ I(x̄)) are either Hadamard differentiable at x̄ or Lipschitz
near x̄, gi (i 
∈ I(x̄)) are continuous at x̄, hj (j = 1, 2, . . . , J) are Fréchet differentiable
at x̄ and continuous in a neighborhood of x̄, then the nondifferentiable Mangasarian–
Fromovitz CQ is equivalent to the nonexistence of (α, β) ∈ RI

+×RJ such that (α, β) 
=
0 and

0 ∈
∑

i∈I(x̄)

αi∂
�gi(x̄) +

J∑
j=1

βjDhj(x̄).(16)

Proof. We prove the lemma by contradiction.
Suppose the nondifferentiable Mangasarian–Fromovitz CQ holds but there exists

a nonzero vector (α, β) ∈ RI
+ ×RJ such that

0 =
∑

i∈I(x̄)

αiξ
∗
i +

J∑
j=1

βjDhj(x̄)(17)
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for some ξ∗i ∈ ∂�gi(x̄), i ∈ I(x̄). Since the vectors Dhj(x̄) are linearly independent,
at least one αi is nonzero. By (17), for v which is a solution of (14), (15),

∑
i∈I(x̄)

αi〈ξ∗i , v〉 = −
J∑

j=1

βj〈Dhj(x̄), v〉.

But this is impossible since the right-hand side of the equation is zero while the left-
hand side of the equation is nonzero. Therefore the nondifferentiable Mangasarian–
Fromovitz CQ implies that there is no nonzero vector (α, β) ∈ RI

+ × RJ such that
(16) holds.

Conversely suppose that there is no nonzero vector (α, β) ∈ RI
+ × RJ such that

(16) holds. It is obvious that under this assumption, Dh1(x̄), . . . , DhJ(x̄) are linearly
independent. We first prove that for any given i ∈ I(x̄), there exists v ∈ X such that

g�
i (x̄; v) < 0,(18)

〈Dhj(x̄), v〉 = 0 ∀j = 1, 2, . . . , J.(19)

If, on the contrary, the above system has no solution, then v = 0 is a solution to the
following optimization problem:

min g�
i (x̄; v)

s.t. 〈Dhj(x̄), v〉 = 0 ∀j = 1, . . . , J.

Since the objective function is convex and the constraints are linear, by the Lagrange
multiplier rule and the fact that ∂φ(0) = ∂�gi(x̄) for φ(·) := g�

i (x̄; ·) there must exist
β ∈ RJ such that

0 ∈ ∂�gi(x̄) +

J∑
j=1

βjDhj(x̄),

which is a contradiction. Now we can show that for any two given i, i′ ∈ I(x̄), there
exists v ∈ X such that

g�
i′ (x̄; v) < 0,

g�
i (x̄; v) < 0,

〈Dhj(x̄), v〉 = 0 ∀j = 1, 2, . . . , J.

On the contrary, suppose that the above system does not have a solution. Then
g�
i′ (x̄; v) ≥ 0 for all v satisfying the system (18)–(19), which implies that v = 0 is a

solution to the following optimization problem with convex constraints:

min g�
i′ (x̄; v)

s.t. g�
i (x̄; v) ≤ 0,

〈Dhj(x̄, v) = 0 ∀j = 1, . . . , J.

Indeed, let v be any feasible solution of the above problem and let u be a solu-
tion of (18)–(19); then for any t > 0, u + tv is a solution of (18)–(19), and hence
g�
i′ (x̄; v+tu) ≥ 0 by the assumption, which implies that g�

i′ (x̄; v) ≥ 0 after taking limits
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as t → 0. By the Lagrange multiplier rule, since the Slater condition holds for the
above optimization problem, there must exist (αi, β) ∈ R+ ×RJ such that

0 ∈ ∂�gi′(x̄) + αi∂
�gi(x̄) +

J∑
j=1

βjDhj(x̄),

which is a contradiction. The rest of the proof follows from the mathematical induc-
tion.

Definition 3.8 (nondifferentiable linear independence CQ). Let x̄ be a feasible
solution of (P). We say that the nondifferentiable linear independence CQ is satisfied if
gi (i ∈ I(x̄)) are either Hadamard differentiable at x̄ or Lipschitz near x̄, gi (i 
∈ I(x̄))
are continuous at x̄, hj (j = 1, 2, . . . , J) are Fréchet differentiable at x̄ and continuous
in a neighborhood of x̄, and for any ξ∗i ∈ ∂�gi(x̄) {ξ∗i (i ∈ I(x̄)), Dh1(x̄), . . . , DhJ(x̄)}
are linearly independent.

The following is a straightforward consequence of Lemma 3.2.
Proposition 3.2 (LICQ implies MFCQ). The nondifferentiable linear indepen-

dence CQ implies the nondifferentiable Mangasarian–Fromovitz CQ.
Definition 3.9 (nondifferentiable Slater CQ). Let x̄ be a feasible solution of

(P). We say that the nondifferentiable Slater CQ is satisfied at x̄ if gi (i ∈ I(x̄)) are
M-P pseudoconvex at x̄ and either Hadamard differentiable at x̄ or Lipschitz near x̄;
gi (i 
∈ I(x̄)) are continuous at x̄; hj (j = 1, 2, . . . , J) are Fréchet differentiable at x̄,
continuous in a neighborhood of x̄, and quasiaffine at x̄; {Dh1(x̄), . . . , DhJ(x̄)} are
linearly independent; and there exists x̂ ∈ X such that

gi(x̂) < 0 ∀i ∈ I(x̄),

hj(x̂) = 0 ∀j = 1, 2, . . . , J.

Proposition 3.3 (Slater CQ implies MFCQ). The nondifferentiable Slater CQ
implies the nondifferentiable Mangasarian–Fromovitz CQ.

Proof. Since gi(x̂) < gi(x̄) for all i ∈ I(x̄), by the M-P pseudoconvexity of
gi (i ∈ I(x)) we have

g�
i (x̄; x̂− x̄) < 0, i ∈ I(x̄).

Also since hj(x̂) = hj(x̄) (j = 1, . . . , J), quasiconvexity and quasiconcavity of hj at x̄
implies that

〈Dhj(x̄), x̂− x̄〉 = 0, j = 1, . . . , J.

Thus the system (14)–(15) has a solution v = x̂ − x̄ and the nondifferentiable
Mangasarian–Fromovitz CQ is satisfied.

Proposition 3.4 (MFCQ implies Kuhn–Tucker CQ). The nondifferentiable
Mangasarian–Fromovitz CQ implies the nondifferentiable Kuhn–Tucker CQ.

Proof. We first show that the convex cone generated by the set

A =
⋃

i∈I(x̄)

∂�gi(x̄) ∪
J⋃

j=1

{±Dhj(x̄)}

is closed. It is easy to see that

coneA = cone
⋃

i∈I(x̄)

∂�gi(x̄) +

{
J∑

j=1

βjDhj(x̄) : βj ∈ R

}
,
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where coneA denotes the convex cone generated by set A. Since co
⋃

i∈I(x̄) ∂
�gi(x̄) is

a nonempty convex weak*-compact subset of X∗ not containing zero, as it is shown
in [22, Corollary 9.6.1], cone co

⋃
i∈I(x̄) ∂

�gi(x̄) is closed. But

cone
⋃

i∈I(x̄)

∂�gi(x̄) = cone co
⋃

i∈I(x̄)

∂�gi(x̄);

hence cone
⋃

i∈I(x̄) ∂
�gi(x̄) is a closed convex cone. By Lemma 3.2, for any nonzero

β ∈ RJ ,

J∑
j=1

βjDhj(x̄) 
∈ cone
⋃

i∈I(x̄)

∂�gi(x̄).

By the linear independence of {Dh1(x̄), . . . , DhJ(x̄)}, 0 
=
∑J

j=1 βjDhj(x̄) for any

nonzero β ∈ RJ . Therefore any nonzero element in the cone {
∑J

j=1 βjDhj(x̄) : βj ∈
R} is not in the closed convex cone cone

⋃
i∈I(x̄) ∂

�gi(x̄), which implies that coneA is

closed by [22, Corollary 9.1.2] (which obviously holds in any general Banach space as
well).

Let v be a solution of (14) and (15). Since {Dh1(x̄), . . . , DhJ(x̄)} are linearly
independent, by the correction theorem of Halkin [9, Theorem F], there exist a neigh-
borhood U of x̄ and a continuous mapping ζ from U into X such that ζ(x̄) = 0, ζ is
Fréchet differentiable at x̄ with Dζ(x̄) = 0, and

hj(x + ζ(x)) = 〈Dhj(x̄), x− x̄〉 ∀x ∈ U, j = 1, 2, . . . , J.(20)

For all t ∈ R such that x̄ + tv ∈ U , denote

α(t) := x̄ + tv + ζ(x̄ + tv).

Then hj(α(t)) = 0, j = 1, 2, . . . , J , for all t > 0 small enough. Let i ∈ I(x̄). If gi is
Hadamard differentiable at x̄, then since limt↓0 ζ(x̄ + tv)/t = Dζ(x̄) = 0 by (14)

gi(α(t)) < 0 ∀t > 0 small enough.

Now suppose that gi is Lipschitz near x̄. By (14) one has that there exists r > 0 such
that for t > 0 small enough

gi(x̄ + tv) − gi(x̄) < −rt.

Since gi is Lipschitz near x̄, for t > 0 small enough and any v′ ∈ X

gi(x̄ + tv′) − gi(x̄ + tv) ≤ Lgit‖v′ − v‖.

Since Dζ(x̄) = 0, ζ(x̄) = 0, one has

‖ζ(x̄ + tv)‖ <
r

2Lgi

t ∀t > 0 small enough,

and hence

gi(α(t)) = gi(x̄ + tv + ζ(x̄ + tv))

= gi

(
x̄ + t

[
v +

ζ(x̄ + tv)

t

])
− gi(x̄ + tv) + gi(x̄ + tv) − gi(x̄)

≤ Lgi‖ζ(x̄ + tv)‖ − rt

< −r

2
t < 0 for t > 0 small enough.
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By the continuity assumptions on gi(i 
∈ I(x̄)), one also has

gi(α(t)) < 0 ∀t > 0 small enough, i 
∈ I(x̄).

Hence v ∈ AΩ(x̄).
Now let v satisfy

g�
i (x̄; v) ≤ 0 ∀i ∈ I(x̄),

〈Dhj(x̄), v〉 = 0 ∀j = 1, 2, . . . , J.

By the assumption of the Mangasarian–Fromovitz CQ, there exists a sequence {vk}
such that

g�
i (x̄; vk) < 0 ∀i ∈ I(x̄),

〈Dhj(x̄), vk〉 = 0 ∀j = 1, 2, . . . , J,

and v = limk→∞ vk. By the proof above, vk ∈ AΩ(x̄), and so v = limk→∞ vk ∈
AΩ(x̄).

We now extend the Arrow–Hurwicz–Uzawa CQ introduced in [3] to the nondif-
ferentiable setting.

Definition 3.10 (nondifferentiable Arrow–Hurwicz–Uzawa CQ). Let x̄ be a fea-
sible solution of (P). We say that the nondifferentiable Arrow–Hurwicz–Uzawa CQ is
satisfied at x̄ if gi (i ∈ I(x̄)), hj (j = 1, 2, . . . , J) are either Gâteaux differentiable at
x̄ or Lipschitz near x̄, gi (i 
∈ I(x̄)) are continuous at x̄, hj (j = 1, 2, . . . , J) are M-P
pseudoaffine at x̄, the convex cone generated by the set (2) is closed, and there exists
v ∈ X such that

g�
i (x̄; v) < 0 ∀i ∈ W,(21)

g�
i (x̄; v) ≤ 0 ∀i ∈ V,(22)

h�
j (x̄; v) = 0 ∀j = 1, 2, . . . , J,(23)

where

V := {i ∈ I(x̄) : gi is M-P pseudoconcave at x̄},
W := I(x̄)\V.

Proposition 3.5 (AHUCQ implies Zangwill CQ). The nondifferentiable Arrow–
Hurwicz–Uzawa CQ implies the generalized Zangwill CQ.

Proof. Suppose that v satisfies (21)–(23). For any i ∈ W by virtue of (21), for all
τ ∈ (0, 1] small enough,

gi(x̄ + τv) < gi(x̄) = 0.

For i ∈ V by virtue of (22), g�
i (x̄; v) ≤ 0, which implies by the definition of the M-P

pseudoconcavity that gi(x̄+τv) ≤ gi(x̄) for all τ ≥ 0 small enough. By the continuity
assumptions at x̄ for gi (i 
∈ I(x̄)), for all τ ∈ (0, 1] small enough,

gi(x̄ + τv) < 0 ∀i 
∈ I(x̄).

Hence for all τ > 0 small enough,

gi(x̄ + τv) ≤ 0, i = 1, 2, . . . , I,

hj(x̄ + τv) = 0 ∀j = 1, 2, . . . , J,
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which implies that v ∈ DΩ(x̄) and the proof of the proposition is complete due to the
continuity of g�

i (x̄, ·) (i ∈ I(x̄)) and h�
j (x̄, ·) (j = 1, 2, . . . , J).

Definition 3.11 (nondifferentiable weak Slater CQ). Let x̄ be a feasible solution
of (P). We say the nondifferentiable weak Slater CQ holds at x̄ if gi (i ∈ I(x̄)) are
M-P pseudoconvex at x̄ and either Gâteaux differentiable at x̄ or Lipschitz near x̄;
gi (i 
∈ I(x̄)) are continuous at x̄; hj (j = 1, 2, . . . , J) are Gâteaux differentiable,
continuous, and M-P pseudoaffine; the convex cone generated by the set (2) is closed;
and there exists x̂ ∈ X such that

gi(x̂) < 0, i ∈ I(x̄),

hj(x̂) = 0, j = 1, 2, . . . , J.

Proposition 3.6 (weak Slater CQ implies AHUCQ). The nondifferentiable weak
Slater CQ implies the nonsmooth Arrow–Hurwicz–Uzawa CQ.

Proof. Take V = ∅ and W = I(x̄). Since gi(x̂) < gi(x̄) for all i ∈ I(x̄), by the
M-P pseudoconvexity of gi (i ∈ I(x)) we have

g�
i (x̄; x̂− x̄) < 0, i ∈ I(x̄).(24)

By Proposition 2.3, hj (j = 1, 2, . . . , J) are quasiaffine. Since hj(x̂) = hj(x̄) (j =
1, . . . , J), quasiconvexity and quasiconcavity of hj at x̄ implies that

h′
j(x̄; x̂− x̄) = 0.

Hence the system (21)–(23) has a solution v = x̂− x̄. The proof of the proposition is
complete.

Definition 3.12 (nondifferentiable weak reverse convex CQ). We say that the
nondifferentiable weak reverse convex CQ holds at x̄ if gi (i ∈ I(x̄)), hj (j = 1, 2, . . . , J)
are either Gâteaux differentiable at x̄ or Lipschitz near x̄, gi (i ∈ I(x̄)) are M-P pseu-
doconcave at x̄, gi (i 
∈ I(x̄)) are continuous at x̄, hj (j = 1, 2, . . . , J) are M-P
pseudoaffine, and the convex cone generated by the set (2) is closed.

Since (22)–(23) always has a solution v = 0, the following relationship between
the nondifferentiable weak reverse convex constraint CQ and the nondifferentiable
Arrow–Hurwicz–Uzawa CQ is immediate.

Proposition 3.7 (weak reverse convex CQ implies AHUCQ). The nondifferen-
tiable weak reverse convex constraint CQ implies the nondifferentiable Arrow–Hurwicz–
Uzawa CQ.

Finally we end this section with an equivalent condition to the nondifferentiable
Arrow–Hurwicz–Uzawa CQ. We omit the proof since the proof is similar to that of
Lemma 3.2.

Proposition 3.8. Suppose that gi (i ∈ I(x̄)), hj (j = 1, 2, . . . , J) are either
Gâteaux differentiable at x̄ or Lipschitz near x̄, gi (i 
∈ I(x̄)) are continuous at x̄,
hj (j = 1, 2, . . . , J) are M-P pseudoaffine at x̄, and the convex cone generated by the
set (2) is closed. The nondifferentiable Arrow–Hurwicz–Uzawa CQ is equivalent to
the nonexistence of (α, β) ∈ RI

+ ×RJ such that αW 
= 0 and

0 ∈
∑
i∈W

αi∂
�gi(x̄) +

∑
i∈V

αi∂
�gi(x̄) +

J∑
j=1

βj∂
�hj(x̄),(25)

where

V := {i ∈ I(x̄) : gi is M-P pseudoconcave at x̄},
W := I(x̄)\V.
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4. Bilevel optimization. In this section we apply the results obtained in the
previous section to the bilevel optimization problem,

min F (x, y)

s.t. y ∈ S(x),
(BP)

Gi(x, y) ≤ 0, i = 1, 2, . . . , I,

Hj(x, y) = 0, j = 1, 2, . . . , J,

where S(x) denotes the set of solutions of the lower level problem:

min
y

f(x, y)

(Px) s.t. gi(x, y) ≤ 0, i = 1, 2, . . . ,m,

hj(x, y) = 0, j = 1, 2, . . . , n,

and F,Gi, Hj , f, gi, hj are functions on the Banach space X × Y . For simplicity we
assume that S(x) is nonempty for all x ∈ X.

Define the value function of the lower level problem by

V (x) := min
y

{f(x, y) : gi(x, y) ≤ 0, hj(x, y) = 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n}.

Then (BP) can be reformulated as the following single level optimization problem:

min F (x, y)

s.t. f(x, y) − V (x) ≤ 0,

gi(x, y) ≤ 0, i = 1, 2, . . . ,m,
(SP)

hj(x, y) = 0, j = 1, 2, . . . , n,

Gi(x, y) ≤ 0, i = 1, 2, . . . , I,

Hj(x, y) = 0, j = 1, 2, . . . , J.

It is known that V (x) may not be differentiable in general, even in the case where
all problem data f, gi, hj are continuously differentiable, and hence a nonsmooth
multiplier rule must be used as in [28, 29]. Moreover it was shown in [28, Propo-
sition 3.2] that the CQs such as the linear independence CQ, the Slater CQ, and
the Mangasarian–Fromovitz CQ do not hold for (SP). It is obvious that the non-
differentiable weak Slater CQ will never be satisfied since the inequality constraint
f(x, y)− V (x) ≤ 0 is actually an equality constraint. In this section, we show that it
is possible for the nondifferentiable weak reverse convex CQ to hold; hence the nondif-
ferentiable Arrow–Hurwicz–Uzawa CQ, the generalized Zangwill CQ, the nondiffer-
entiable Kuhn–Tucker CQ, and the nondifferentiable Abadie CQ are also applicable
CQs for (SP).

Excluding the CQs that will never hold for (SP) such as (2), (5)–(7) in Theo-
rem 1.1, we derive the KKT condition for (SP) by using the calculus rules for the
M-P subdifferential in (ii)–(iii) of Proposition 2.1 as follows.

Theorem 4.1. Let (x̄, ȳ) be a local optimal solution of (SP). Suppose that the
objective function F (x, y) is either Gâteaux differentiable at (x̄, ȳ) or Lipschitz near
(x̄, ȳ) and the value function V (x) is Lipschitz near x̄. If one of the CQs such as
the nondifferentiable weak reverse convex CQ, the nondifferentiable Arrow–Hurwicz–
Uzawa CQ, the generalized Zangwill CQ, the nondifferentiable Kuhn–Tucker CQ, and
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the nondifferentiable Abadie CQ holds at (x̄, ȳ), then the KKT condition holds; i.e.,
there exist scalars λ ≥ 0, αi ≥ 0 (i = 1, 2, . . . ,m), βj (j = 1, 2, . . . , p), γi (i =
1, 2, . . . , I), ηj (j = 1, 2, . . . , J) such that

0 ∈ ∂�F (x̄, ȳ) + λ(∂�f(x̄, ȳ) − ∂�V (x̄) × {0}) +

m∑
i=1

αi∂
�gi(x̄, ȳ)

+

n∑
j=1

βj∂
�hj(x̄, ȳ) +

I∑
i=1

γi∂
�Gi(x̄, ȳ) +

J∑
j=1

ηj∂
�Hj(x̄, ȳ),

αigi(x̄, ȳ) = 0, i = 1, 2, . . . ,m,

γiGi(x̄, ȳ) = 0, i = 1, 2, . . . , I.

In the above KKT condition, we need to give an upper estimate for the term
∂�V (x̄). Such an estimate usually involves a convex combination of solutions and
multipliers for the lower level problem as in [28, Proposition 2.1], and a growth hy-
pothesis assumption is usually needed [7, Theorem 6.2]. However, in the case when
the value function is convex, no such convex combination and growth hypothesis are
needed, as the following result indicates.

Proposition 4.1. Let x ∈ X and y ∈ S(x). Suppose that f, gi (i = 1, 2, . . . , I),
hj (j = 1, 2, . . . , J) are Gâteaux differentiable at (x, y) and the KKT condition holds
for problem (26). If the value function V (x) is convex, then for any y ∈ S(x),

∂V (x) ⊆
{
Dxf(x, y) +

m∑
i=1

νiDxgi(x, y) +

n∑
j=1

πjDxhj(x, y) : (ν, π) ∈ M1(y)

}
,

where ∂V (x) denotes the subdifferential in the sense of convex analysis and M1(y) is
the set of multipliers for (Px):

M1(y) :=

{
(ν, π) ∈ Rm

+ ×Rn :
Dyf(x, y)+

∑m
i=1 νiDygi(x, y)+

∑n
j=1 πjDyhj(x, y)=0

νigi(x, y) = 0, i = 1, 2, . . . ,m

}
.

Proof. Now let ξ ∈ ∂V (x). Then by definition of the subdifferential in the sense
of convex analysis,

V (x′) − V (x) ≥ 〈ξ, x′ − x〉 ∀x′ ∈ X,

which implies by definition of the value function that for all (x′, y′) satisfying the
constraints

gi(x
′, y′) ≤ 0, i = 1, 2, . . . ,m, hj(x

′, y′) = 0, j = 1, 2, . . . , n,

one has

f(x′, y′) − f(x, y) ≥ 〈ξ, x′ − x〉.

That is, (x′, y′) = (x, y) is a solution to the following optimization problem:⎧⎨
⎩

minx′,y′ f(x′, y′) − 〈ξ, x′〉,
gi(x

′, y′) ≤ 0, i = 1, 2, . . . ,m,
hj(x

′, y′) = 0, i = 1, 2, . . . , n.
(26)
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By the KKT condition there exists (ν, π) ∈ Rm
+ ×Rp such that

0 = Dxf(x, y) − ξ +

m∑
i=1

νiDxgi(x, y) +

n∑
j=1

πjDxhj(x, y),

0 = Dyf(x, y) +

m∑
i=1

νiDygi(x, y) +

n∑
j=1

πjDyhj(x, y),

νigi(x, y) = 0, i = 1, 2, . . . ,m,

and hence the proof is complete.
Combining Theorem 4.1 and Proposition 4.1, we now have a KKT condition for

(SP) which does not involve the value function.
Theorem 4.2. Let (x̄, ȳ) be a local optimal solution of (SP). Suppose that F (x, y)

is either Gâteaux differentiable at (x̄, ȳ) or Lipschitz continuous near (x̄, ȳ), f, gi (i =
1, 2, . . . , I), hj (j = 1, 2, . . . , J) are Gâteaux differentiable; the KKT condition for
problem (26) holds; and the value function V (x) is convex. If one of the CQs, such as
the nondifferentiable weak reverse convex CQ, the nondifferentiable Arrow–Hurwicz–
Uzawa CQ, the generalized Zangwill CQ, the nondifferentiable Kuhn–Tucker CQ, or
the nondifferentiable Abadie CQ, holds at (x̄, ȳ), then there exist scalars λ ≥ 0, αi ≥
0, νi ≥ 0 (i = 1, 2, . . . ,m), βj , πj (j = 1, 2, . . . , n), γi ≥ 0 (i = 1, 2, . . . , I), ηj (j =
1, 2, . . . , J) such that

0 ∈ ∂�F (x̄, ȳ) +

m∑
i=1

(αi − λνi)Dgi(x̄, ȳ) +

n∑
j=1

βjDhj(x̄, ȳ)

+

I∑
i=1

γi∂
�Gi(x̄, ȳ) +

J∑
j=1

ηj∂
�Hj(x̄, ȳ),

0 = Dyf(x̄, ȳ) +

m∑
i=1

νiDygi(x̄, ȳ) +

n∑
j=1

πjDyhj(x̄, ȳ),

νigi(x̄, ȳ) = 0, i = 1, 2, . . . ,m,

αigi(x̄, ȳ) = 0, i = 1, 2, . . . ,m,

γiGi(x̄, ȳ) = 0, i = 1, 2, . . . , I.

Proof. Applying Theorem 4.1 and Proposition 4.1, we find scalars λ ≥ 0, αi ≥
0, νi ≥ 0 (i = 1, 2, . . . ,m), ζj , πj (j = 1, 2, . . . , n), γi ≥ 0 (i = 1, 2, . . . , I), ηj (j =
1, 2, . . . , J) such that

0 ∈ ∂�F (x̄, ȳ) − λ

[
m∑
i=1

νiDxgi(x̄, ȳ) +

n∑
j=1

πjDxhj(x̄, ȳ)

]
× {−Dyf(x̄, ȳ)}

+

m∑
i=1

αiDgi(x̄, ȳ) +

n∑
j=1

ζjDhj(x̄, ȳ) +

I∑
i=1

γi∂
�Gi(x̄, ȳ) +

J∑
j=1

ηj∂
�Hj(x̄, ȳ),(27)

0 = Dyf(x̄, ȳ) +

m∑
i=1

νiDygi(x̄, ȳ) +

n∑
j=1

πjDyhj(x̄, ȳ),(28)

νigi(x̄, ȳ) = 0, i = 1, 2, . . . ,m,

αigi(x̄, ȳ) = 0, i = 1, 2, . . . ,m,

γiGi(x̄, ȳ) = 0, i = 1, 2, . . . , I.
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From (28),

−Dyf(x̄, ȳ) =

m∑
i=1

νiDygi(x̄, ȳ) +

n∑
j=1

πjDyhj(x̄, ȳ).

Substituting the above into (27) and denoting βj = ζj−λπj completes the proof.
We now consider the special case when the lower level problem is linear; i.e.,

the functions f(x, y), gi(x, y), hj(x, y) are all jointly linear. It is known that for linear
bilevel programming problems, which are the bilevel optimization problems where the
lower level problem is jointly linear and there is no upper level constraints, no CQs
are needed. By Theorem 4.2 and the weak reverse convex CQ, we have the following
KKT condition for the following “generalized linear” bilevel optimization problem
where no constraint qualification is needed.

Corollary 4.1. Let (x̄, ȳ) be a local optimal solution of (SP). Suppose that
F (x, y) is either Gâteaux differentiable at (x̄, ȳ) or Lipschitz continuous near (x̄, ȳ),
f(x, y), gi(x, y) (i = 1, 2, . . . ,m), hj(x, y) (j = 1, 2, . . . , n) are jointly linear; Gi(x, y)
(i = 1, 2, . . . , I) are Gâteaux differentiable and M-P pseudoconcave at (x̄, ȳ); and
Hj(x, y)(j = 1, 2, . . . , J) are Gâteaux differentiable and M-P pseudoaffine at (x̄, ȳ).
Then there exist scalars λ ≥ 0, αi ≥ 0, νi ≥ 0 (i = 1, 2, . . . ,m), βj , πj (j = 1, 2, . . . , n),
γi ≥ 0 (i = 1, 2, . . . , I), ηj (j = 1, 2, . . . , J) such that

0 ∈ ∂�F (x̄, ȳ) +

m∑
i=1

(αi − λνi)Dgi(x̄, ȳ) +

n∑
j=1

βjDhj(x̄, ȳ)

+

I∑
i=1

γiDGi(x̄, ȳ) +

J∑
j=1

ηjDHj(x̄, ȳ),

0 = Dyf(x̄, ȳ) +

m∑
i=1

νiDygi(x̄, ȳ) +

n∑
j=1

πjDyhj(x̄, ȳ),

νigi(x̄, ȳ) = 0, i = 1, 2, . . . ,m,

αigi(x̄, ȳ) = 0, i = 1, 2, . . . ,m,

γiGi(x̄, ȳ) = 0, i = 1, 2, . . . , I.

Proof. By Theorem 4.2 and the weak reverse convex CQ, under the assumptions
of the corollary it suffices to prove that the convex cone generated by the set

A := [Df(x̄, ȳ) − ∂V (x̄) × {0}] ∪
m⋃
i=1

{Dgi} ∪
n⋃

j=1

{±Dhj} ∪
I⋃

i=1

{DGi} ∪
J⋃

j=1

{±DHj}

is closed, where the dependence of the derivatives on (x̄, ȳ) is omitted whenever there
is no confusion.

Since the lower level problem is linear, by [8, Proposition 2.13] (which obviously
holds in any general Banach space as well), the value function V (x) is a polyhedral
convex function, which implies by [22, Theorem 23.10] (which obviously holds in
any general Banach space as well) that ∂V (x̄) is a polyhedral convex set. Since by
the assumptions for the problem (SP) V (x) is finite and convex on X, ∂V (x̄) is
bounded and hence Df(x̄, ȳ) − ∂V (x̄) × {0} is a bounded polyhedral convex set.
Therefore, by definition, Df(x̄, ȳ) − ∂V (x̄) × {0} is a convex hull of a finite set of
points. Consequently, the convex hull of the set [A ∪ {0}] is a polyhedral convex
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set containing the origin. By [22, Corollary 19.7.1] (which also holds in any general
Banach space) the convex cone generated by co[A ∪ {0}] is polyhedral. But the
convex cone generated by A is the same as the convex cone generated by co[A∪ {0}],
so it is also polyhedral and hence closed. The proof of the corollary is therefore
complete.

It is interesting to compare the value function approach with the classical ap-
proach, in which the lower level problem is replaced by the KKT condition of the
lower level problem. Suppose the KKT condition is necessary and sufficient for opti-
mality of the lower level problem; then BP is equivalent to the following single level
optimization problem:

min
x,y,ν,π

F (x, y)

s.t. 0 = Dyf(x, y) +

m∑
i=1

νiDygi(x, y) +

n∑
j=1

πjDyhj(x, y),

m∑
i=1

νigi(x, y) ≥ 0

(KP)
νi ≥ 0, gi(x, y) ≤ 0, i = 1, 2, . . . ,m,

hj(x, y) = 0, j = 1, 2, . . . , n,

Gi(x, y) ≤ 0, i = 1, 2, . . . , I,

Hj(x, y) = 0, j = 1, 2, . . . , J.

It is known [30, Proposition 1.1] that usual CQs such as the Mangasarian–Fromovitz
CQ do not hold for problem (KP). However, if a suitable CQ is satisfied and the
functions f, gi (i = 1, . . . , I), hj (j = 1, . . . , J) are second order continuously differ-
entiable, then the KKT condition for problem (KP) is the existence of scalars λ ≥
0, µ, αi ≥ 0, νi ≥ 0 (i = 1, 2, . . . ,m), βj , πj (j = 1, 2, . . . , n), γi ≥ 0 (i = 1, 2, . . . , I),
ηj (j = 1, 2, . . . , J) such that

0 ∈ ∂�F (x̄, ȳ) +

m∑
i=1

(αi − λνi)Dgi(x̄, ȳ) +

n∑
j=1

βjDhj(x̄, ȳ)

+

I∑
i=1

γi∂
�Gi(x̄, ȳ) +

J∑
j=1

ηj∂
�Hj(x̄, ȳ)

+µD

[
Dyf +

m∑
i=1

νiDygi +

n∑
j=1

πjDyhj

]
(x̄, ȳ),

0 = Dyf(x̄, ȳ) +

m∑
i=1

νiDygi(x̄, ȳ) +

n∑
j=1

πjDyhj(x̄, ȳ),

νigi(x̄, ȳ) = 0, i = 1, 2, . . . ,m,

αigi(x̄, ȳ) = 0, i = 1, 2, . . . ,m,

γiGi(x̄, ȳ) = 0, i = 1, 2, . . . , I.

Comparing the KKT condition for (KP) with the KKT condition for (SP) in Theo-
rem 4.2, it is easy to see that if the value function is convex, then the fact that the
KKT condition holds for problem (SP) implies that the KKT condition for problem
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(KP) holds with µ = 0, and in the case when the lower level problem is linear, the
KKT condition for (SP) coincides with the KKT condition for problem (KP). This
establishes the relationship between the two approaches. Hence the nondifferentiable
Arrow–Hurwicz–Uzawa CQ is also an applicable CQ for problem (KP).
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