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NECESSARY OPTIMALITY CONDITIONS FOR TWO-STAGE
STOCHASTIC PROGRAMS WITH EQUILIBRIUM CONSTRAINTS∗

HUIFU XU† AND JANE J. YE‡

Abstract. Developing first order optimality conditions for two-stage stochastic mathematical
programs with equilibrium constraints (SMPECs) whose second stage problem has multiple equilib-
ria/solutions is a challenging undone work. In this paper we take this challenge by considering a
general class of two-stage SMPECs whose equilibrium constraints are represented by a parametric
variational inequality (where the first stage decision vector and a random vector are treated as pa-
rameters). We use the sensitivity analysis on deterministic mathematical programs with equilibrium
constraints (MPECs) as a tool to deal with the challenge: First, we extend a well-known theorem in
nonsmooth analysis about the exchange of the subdifferential operator with Aumann’s integration
from a nonatomic probability space to a general setting; second, we apply the extended result to-
gether with the existing sensitivity analysis results on the value function of the deterministic MPEC
and the bilevel programming to the value function of our second stage problem; third, we develop
various optimality conditions in terms of the subdifferential of the value function of the second stage
problem and its relaxations which are constructed through the gradients of the underlying function
at the second stage; finally we analyze special cases when the variational inequality constraint re-
duces to a complementarity problem and further to a system of nonlinear equalities and inequalities.
The subdifferential to be used in this paper is the limiting (Mordukhovich) subdifferential, and the
probability space is not necessarily nonatomic which means that Aumann’s integral of the limiting
subdifferential of a random function may be strictly smaller than that of Clarke’s.
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1. Introduction. In this paper we study the following two-stage stochastic pro-
gram:

(1.1)

min
x

f1(x) + E [v(x, ξ(ω))]

subject to (s.t.) G(x) ≤ 0,
H(x) = 0,
x ∈ Q,

where Q is a nonempty closed subset of R
n, f1 : R

n → R, G : R
n → R

s, and
H : Rn → R

r are locally Lipschitz continuous, ξ(ω) is a random vector defined on a
probability space (Ω,F , P ) with support set Ξ ⊂ R

d, and given x ∈ Q, ξ ∈ Ξ, v(x, ξ)
is the optimal value of the following second stage problem:

(1.2)

P(x, ξ) : min
(y,z)∈Rl×Rm

f2(x, y, z, ξ)

s.t. 0 ∈ F (x, y, z, ξ) +NC(z),
ψ(x, y, z, ξ) ≤ 0,
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where f2 : Rn × R
l × R

m × R
d → R, F : Rn × R

l × R
m × R

d → R
m, and ψ : Rn ×

R
l ×R

m ×R
d → R

p, C is a nonempty closed subset of Rm, NC(z) denotes the normal
cone to C at z ∈ C, and NC(z) := ∅ if z �∈ C. The precise definition of the normal cone
will be given in section 2. For the simplicity of exposition, we assume throughout
this paper that the underlying functions of the second stage problem are continuously
differentiable. When the functions are merely locally Lipschitz continuous, optimality
conditions similar to those derived in sections 3–5 can be derived in the same manner
by using [21, Theorem 3.6 and Corollary 3.7].

This is a two-stage stochastic programming framework for hierarchical decision
making under uncertainty in management science and engineering. At the first
stage, a decision maker needs to make a decision on x, restricted to the feasible
set X = {x ∈ Q : G(x) ≤ 0, H(x) = 0}, before the realization of the random data
ξ(ω). At the second stage, when x is given and a realization ξ = ξ(ω) is known, an
optimal decision on y and z is sought by solving (1.2) with x and ξ being treated as
parameters. Since a variational inequality is often used to represent an equilibrium in
economics and engineering, the second stage problem is also known as a parametric
mathematical program with equilibrium constraints (MPEC), and consequently our
model may be called a two-stage stochastic mathematical program with equilibrium
constraints (SMPEC).

It is important to note that the second stage problem (1.2) has two decision vectors
y and z. Let us use the well-known Stackelberg leader-followers problem to explain
this. At the first stage, a leader needs to make an optimal decision at present on its
investment or capacity expansion (denoted by x) before realization of uncertainty of
market demand (represented by ξ) in the future. The leader expects that, in any future
demand scenario at the time when the capacity expansion is completed, the followers
will compete for the residual demand (treating the leader’s capacity expansion x as
given), and they will reach an equilibrium represented by the variational inequality
in (1.2). Since there could be a number of possible market equilibria (that is, the
equilibrium constraint has multiple solutions), the leader may wish to input some
extra resources (represented by y) to influence such equilibria to improve his profit—
this reflects the leader’s short-term (e.g., daily operational) decision. Note that the
leader’s additional input (y) does not necessarily drive the followers’ competition to
a unique equilibrium which he prefers (the equilibrium constraint may have multiple
solutions for every y); the simultaneous optimal choice of y and z means that the
leader not only tries to intervene a short-term market equilibrium but also takes an
optimistic attitude towards the short-term market equilibrium.

Note also that under some moderate conditions, the two-stage SMPEC (1.1)–(1.2)
can be written in the following closed form:

(1.3)

min
x,y(·),z(·)

f1(x) + E [f2(x, y(ω), z(ω), ξ(ω))]

s.t. G(x) ≤ 0,
H(x) = 0,
x ∈ Q,
0 ∈ F (x, y(ω), z(ω), ξ(ω)) +NC(z(ω)) for a.e. ω,
ψ(x, y(ω), z(ω), ξ(ω)) ≤ 0 for a.e. ω.

This type of reformulation is well-documented for classical two-stage stochastic pro-
gramming problems; see Chapters 1 and 2 in the book of Rusczyński and Shapiro [43].
Patriksson and Wynter [33] first introduced a two-stage SMPEC model in the form
(1.3) which consists of two sets of decision variables: the upper/first stage variables
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(corresponding to x in our model) and the lower/second stage variables (corresponding
to z in our model). They investigated a number of fundamental theoretical issues such
as the existence of local and global optimal solutions, the strict convexity of the im-
plicit upper level objective function (a sufficient condition for the uniqueness of the
upper level global optimal solution), and the differentiability of the objective func-
tion (to facilitate the development of a numerical solution). Over the past few years
since the first SMPEC paper, SMPEC has developed as a new area of optimization
and operations research primarily driven by its potential in modeling hierarchical
decision-making problems in engineering design and management science. For in-
stance, Christiansen, Patriksson, and Wynter [5] proposed a two-stage SMPEC to
model a robust and cost-optimizing structural design problem where the optimal de-
sign of a linear-elastic structure, for example, a truss topology, is considered under
unilateral frictionless contact and under uncertainty in the data describing the load
conditions, the material properties, and the rigid foundation. The resulting stochas-
tic bilevel optimization model finds a structural design that responds the best to the
given probability distribution in the data. Werner [48] proposed a two-stage stochastic
bilevel programming model for studying competition in the Norwegian telecommuni-
cation industry [48] which can be reformulated as a two-stage SMPEC when the lower
level decision-making problem is convex. During the second revision of this paper,
we have seen new applications of two-stage SMPEC models in energy markets and
transportation networks. See [49, 47, 60].

On the computational aspects, Shapiro [44] first applied the well-known Monte
Carlo sampling method to solve a general class of two-stage SMPECs and presented a
convergence analysis of the method in terms of optimal values and global optimal solu-
tions as sample size increases. Along this direction, Shapiro and Xu [45] investigated a
particular two-stage SMPEC whose underlying function in the variational constraint
is uniformly strongly monotone in z. They established exponential convergence of
the method to sharp local optimal solutions and explained how the discretized sample
average approximate SMPEC can be solved by a nonlinear programming (NLP) code.

A particularly interesting case of the SMPEC model (1.1)–(1.2) is when the set
C becomes R

n
+, and consequently the equilibrium constraint reduces to a nonlinear

complementarity problem and the SMPEC becomes a stochastic mathematical pro-
gram with complementarity constraint (SMPCC). Lin, Chen, and Fukushima [20] first
investigated the SMPCC and proposed an implicit smoothing method for solving the
SMPCC where the complementarity is a P0-linear and the random variable has a fi-
nite discrete distribution. A slightly more general SMPCC model was further studied
by Xu [51], Xu and Meng [52], and Meng and Xu [24]. In the case when C = Rm,
the variational inequality constraint reduces to an equality constraint, and conse-
quently (1.1)–(1.2) become a classical two-stage stochastic program with equality and
inequality constraints.

The focus of this paper is on optimality conditions rather than numerical meth-
ods although they are essentially related to each other. Assuming that we can obtain
a closed form of E [v(x, ξ(ω))], then the first stage problem reduces to a determin-
istic minimization problem. Consequently, we may use certain subdifferentials of
E [v(x, ξ(ω))] to characterize the first order necessary optimality conditions. This
type of value function approach is well-known in deterministic MPECs and bilevel pro-
gramming [58, 55]. If we weaken the assumption by considering the subdifferentials of
v(x, ξ) instead of E[v(x, ξ)], then we may obtain a weaker optimality condition because
∂E[v(x, ξ(ω))] is smaller than E[∂xv(x, ξ(ω))] for many differential operators. These
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type of optimality conditions date back to the earlier work by Rockafellar and Wets
[41] who derived the so-called basic Kuhn–Tucker conditions in terms of the convex
subdifferential [40] for a class of two-stage stochastic programs with convex objective
and convex constraints, and to the necessary optimality condition derived by Hiriart-
Urruty for the nonconvex two-stage stochastic programs in [18]. More recently, Ralph
and Xu [35] derived some first order optimality conditions for the classical two-stage
stochastic minimization problems in terms of Clarke subdifferentials of the value func-
tion of the second stage problem, and by using Gauvin and Dubeau’s sensitivity results
for the value function of parametric programming [10], they also derived a so-called
relaxed optimality condition for the first stage problem where the Clarke subdifferen-
tial of the value function at the second stage is approximated by a collection of the
gradients of the Lagrange function of the second stage problem at stationary points.

In the context of SMPECs, Xu and Meng [52] considered a weak optimality condi-
tion in terms of Clarke subdifferentials for a class of two-stage stochastic programming
problems with nonsmooth equality constraints and applied it to an SMPCC which
has a unique feasible solution in the second stage. It is well-known that the value
function of a parametric MPEC is often nonconvex, and hence the Clarke subdiffer-
ential may be large under some circumstances. Over the past few decades, a number
of subdifferentials smaller than the Clarke subdifferential have been developed. A
popular one is called the limiting subdifferential (which is also known under vari-
ous names such as basic subdifferential [27, 28], Mordukhovich subdifferential, and
general subdifferential [42]). Using the limiting subdifferential, various first order op-
timality conditions for a range of deterministic MPECs and bilevel programming have
been studied by a number of researchers including Henrion, Kanzow, Mordukhovich,
Outrata, Treiman, Ye, Zhang, and their collaborators; see, e.g., Ye and Ye [57], Ye
[54, 56], Outrata [30, 31], Mordukhovich [28], and the references therein. These op-
timality conditions are significantly sharper than those presented in terms of Clarke
subdifferentials. In particular, when the equilibrium constraint reduces to a comple-
mentarity constraint, the optimality conditions lead to the well-known Mordukhovich
stationary points (M-stationary points) in the literature of MPECs. Outrata and
Römisch [32, Theorem 3.5] apparently first used the limiting subdifferential to de-
rive first order optimality conditions for classical two-stage stochastic programming
problems, and their focus is on the case when the probability space of the underlying
random variables is nonatomic.

The research of this paper is inspired by the sensitivity analysis of value functions
and optimality conditions in [21, 22, 54, 57] in that our second stage problem (1.2) is
a parametric MPEC. Specifically, we would like to use the existing sensitivity analysis
results to derive necessary optimality conditions of SMPEC (1.1)–(1.2) in terms of
the limiting subdifferentials of the value function of the second stage problem (1.2).
To this end, we need to tackle a number of technical challenges and complications
resulting from differentiation of nonsmooth random functions including the exchange
rule for the limiting subdifferential operator and Aumann’s integral of a random set-
valued mapping when they are both applied to a nonsmooth Lipschitz continuous
random function, and the measurable selection from random set-valued mappings.
We summarize our main contributions as follows:

• We derive a theorem (Theorem 2.9) which allows us to exchange the limiting
subdifferential operator with the mathematical expectation operator when
they are both applied to a random Lipschitz continuous function. The result
generalizes a similar result established by Mordukhovich (see [28, Lemma



STOCHASTIC MPECS 1689

6.18]) to allow the measure to be atomic, and it is therefore of independent
interest in variational analysis.

• We derive the first order necessary optimality conditions (Theorem 3.6) for
the first stage problem (1.1) in terms of the limiting subdifferential of the
value function of the second stage problem (1.2). As far as we are concerned,
no such conditions (not even in terms of the Clarke subdifferentials) are avail-
able in the literature for a two-stage SMPEC whose second stage problem has
multiple local and/or global optimal solutions. Moreover, we provide a de-
tailed discussion on the related constraint qualifications.

• Using Filippov’s measurable selection theorem, we present the optimality
conditions (Theorem 3.11) in terms of the gradient of the underlying function
of the second stage problem (with respect to the first stage decision vector)
and a measurable selection of M-multipliers of the second stage problem. As
far as we are concerned, these type of optimality conditions are first proposed
for SMPECs where the second stage problem has multiple feasible solutions.

• When the SMPEC reduces to an SMPCC, we show that the established op-
timality conditions lead to various optimality conditions characterizing the
well-known M-stationary points (Theorem 4.6) and S-stationary points (The-
orem 4.7). These type of optimality conditions are sharper than the existing
result of Xu and Meng [52] even when the second stage problem has a unique
feasible solution.

• When the variational inequality constraint reduces to a system of equalities
and inequalities, we derive optimality conditions (Theorem 5.2) which recover
(when the underlying probability measure is nonatomic) and sharpen (when
the underlying probability measure is atomic) their counterparts in [18, 32, 35]
for the classical two-stage stochastic program. Moreover, our necessary opti-
mality conditions are given under a very weak calmness condition which has
not been used for the classical two-stage stochastic program in the literature.

The rest of this paper are organized as follows. In section 2, we present some
preliminary definitions and results in variational analysis, set-valued analysis, and
sensitivity analysis of value functions. In section 3, we present the main first order
optimality conditions for the SMPEC (1.1)–(1.2) under various constraint qualifica-
tions. In section 4, we consider optimality conditions for SMPCCs. In section 5,
we consider the special case when the equilibrium constraint is dropped; that is, we
review optimality conditions derived in section 3 for the classical two-stage stochas-
tic program with equality and inequality constraints. Finally, in section 6 we make
some comments on how our optimality conditions can be possibly used for the conver-
gence analysis when the well-known Monte Carlo sampling method or the stochastic
approximation method is applied to our two-stage SMPEC.

2. Preliminary definitions and results.

2.1. Notation. Throughout this paper, we use the following notation. 〈a, b〉
denotes the scalar product of vectors a and b. ‖ · ‖ denotes the Euclidean norm
of a vector and a compact set of vectors. If M is a compact set of vectors, then
‖M‖ := maxM∈M ‖M‖. d(x,D) := infx′∈D ‖x − x′‖ denotes the distance from point
x to set D.

For an m-by-n matrix A and index sets I ⊂ {1, 2, . . . ,m}, J ⊂ {1, 2, . . . , n}, AI

and AI,J denote the submatrix of A with rows specified by I and the submatrix of A
with rows and columns specified by I and J , respectively. For a vector d ∈ R

n, di is
the ith component of d and dI is the subvector composed of the components di, i ∈ I.
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We use 〈a, b〉 to denote the scalar product of vectors a and b, and 0 ≤ a ⊥ b ≥ 0 to
denote the complementary relationship between a and b, i.e., ai, bi ≥ 0 and aibi = 0
for every pair of components. We use aT to denote the transpose of a vector a.

For a set-valued mapping Φ : Rm → 2R
q

(assigning to each z ∈ R
m a set Φ(z) ⊂

Rq which may be empty), we denote by gphΦ the graph of Φ, i.e., gphΦ := {(z, v) :∈
R

m × R
q : v ∈ Φ(z)}. int C, cl C, and co C denote the interior, the closure, and the

convex hull of a set C, respectively. We denote by B(x, δ) the open ball with radius
δ and center x, that is, B(x, δ) := {x′ : ‖x′ − x‖ < δ}. When δ is dropped, B(x)
represents a neighborhood of point x.

2.2. Variational analysis. We present some background materials on varia-
tional analysis which will be used throughout the paper. Detailed discussions on
these subjects can be found in [6, 7, 27, 28, 42].

Let Φ : Rm → 2R
m

be a set-valued mapping. We denote by lim supx→x̄ Φ(x) the
Painlevé–Kuratowski upper limit,1 i.e.,

lim sup
x→x̄

Φ(x) := {v ∈ Rm :∃ sequences xk → x̄, vk → v

with vk ∈ Φ(xk) ∀k = 1, 2, . . .}.
Definition 2.1 (normal cones). Let C be a nonempty subset of Rm. Given z ∈

cl C, the convex cone

N π
C (z) := {ζ ∈ Rm : ∃σ > 0 such that 〈ζ, z′ − z〉 ≤ σ‖z′ − z‖2 ∀z′ ∈ C}

is called the proximal normal cone to set C at point z, and the closed cone

NC(z) := lim sup
z′→z,z′∈C

N π
C (z

′)

is called the limiting normal cone (also known as the Mordukhovich normal cone or
basic normal cone) to C at point z.

The above construction of the limiting normal cone using the proximal normal
cone was given by Mordukhovich in [25]. In many publications, however, the limiting
normal cone is defined by the Fréchet (also called regular) normal cones; see [27,
Definition 1.1 (ii)]. The two definitions coincide in the finite dimensional space (see
[27, Theorem 1.6] for a proof and [27, page 141] or [42, page 345] for a discussion).
The limiting normal cone is in general smaller than the Clarke normal cone which
is equal to the convex hull coNC(z), and in the case when C is convex, the proximal
normal cone, the limiting normal cone, and the Clarke normal cone coincide with the
normal cone in the sense of the convex analysis, i.e.,

NC(z) := {ζ ∈ R
m : 〈ζ, z′ − z〉 ≤ 0 ∀ z′ ∈ C} .

For set-valued mappings, the definition for a limiting normal cone leads to the defini-
tion of the Mordukhovich coderivative which was first introduced in [26].

Definition 2.2 (coderivatives). Let Φ : Rm → 2R
q

be an arbitrary set-valued
mapping and (z̄, v̄) ∈ cl gphΦ. The coderivative of Φ at point (z̄, v̄) is defined as

D∗Φ(z̄, v̄)(η) := {ζ ∈ R
m : (ζ,−η) ∈ NgphΦ(z̄, v̄)} .

By convention, for (z̄, v̄) �∈ cl gphΦ, D∗Φ(z̄, v̄)(η) = ∅.
1In some references, it is also called outer limit; see [42].
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A particularly interesting case relevant to our discussions later on is when Φ(z) =
NC(z) and C is a closed convex set. By the definition of coderivatives,

ζ ∈ D∗NC(z̄, v̄)(η) ⇐⇒ (ζ,−η) ∈ NgphNC (z̄, v̄).

Hence the calculation of the coderivative D∗Φ(z̄, v̄)(η) depends on the calculation of
the limiting normal cone to the normal cone NgphNC (z̄, v̄). In the case when C = R

m
+ ,

the following explicit formula can be used. The proof of the formula follows easily from
the formula for the proximal normal cone in [53, Proposition 2.7] and the definition
of the limiting normal cones.

Proposition 2.3. For any (z̄,−v̄) ∈ gphNR
m
+
, let

L := L(z̄, v̄) := {i ∈ {1, 2, . . . ,m} : z̄i > 0, v̄i = 0},
I+ := I+(z̄, v̄) := {i ∈ {1, 2, . . . ,m} : z̄i = 0, v̄i > 0},
I0 := I0(z̄, v̄) := {i ∈ {1, 2, . . . ,m} : z̄i = 0, v̄i = 0}.

Then

NgphNRm
+
(z̄,−v̄) = {(α,−β) ∈ R

2m : αL = 0, βI+ = 0,

∀i ∈ I0, either αi < 0, βi < 0 or αiβi = 0}.

In the case when C is a polyhedral convex set, a formula for the normal cone to
the graph of the standard normal cone is given in the proof of [8, Theorem 2] and
also stated in [34, Proposition 4.4]. For recent results on calculating the normal cone
to the graph of a standard normal cone (coderivative of the standard normal cone
mapping), readers are referred to [14, 15] and [16, section 3]

Definition 2.4 (subdifferentials). Let f : Rn → R be a lower semicontinuous
function and finite at x ∈ R

n. The proximal subdifferential ([42, Definition 8.45]) of
f at x is defined as

∂πf(x) := {ζ ∈ R
n : ∃σ > 0, δ > 0 such that f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2

∀y ∈ B(x, δ)},

and the limiting (Mordukhovich or basic [27]) subdifferential of f at x is defined as

∂f(x) := lim sup

x′ f→ x

∂πf(x′),

where x′
f→ x signifies that x′ and f(x′) converge to x and f(x), respectively.

When f is Lipschitz continuous near x, the Clarke subdifferential [6] of f at x is
equal to co∂f(x).

Note that in his earlier work [25] Mordukhovich defined the limiting subgradient
via the limiting normal cones which was constructed by the proximal normal cones.
In his later work, Mordukhovich defined the limiting subgradient via Fréchet limiting
normal cones and Fréchet subgradients (also known as regular subgradients); see
[27, Theorem 1.89]. The equivalence of the two definitions is well-known; see the
commentary by Rockafellar and Wets [42, page 345]. The limiting subdifferential is in
general smaller than the Clarke subdifferential, and in the case when f is convex and
locally Lipschitz, the proximal subdifferential, the limiting subdifferential, and the
Clarke subdifferential coincide with the subdifferential in the sense of convex analysis
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[40]. In the case when f is continuously differentiable, these subdifferentials reduce
to normal gradient ∇f(x), i.e., ∂f(x) = {∇f(x)}.

In what follows, we state a well-known calculus rule in Proposition 2.5 for the
limiting subdifferentials of nonconvex functions. A proof of the proposition and its
extension to non-Lipschitz functions can be found in [27, Theorems 2.33 and 3.36].
In subsection 2.4, we will extend Proposition 2.5 to the case when the summation is
replaced by Aumann’s integral in our main result of this section, Theorem 2.9.

Proposition 2.5 (positive scalar multiplication and sum rule). Let fi: R
n → R,

i = 1, 2, . . . , N , be lower semicontinuous functions. Suppose that all but one of these
functions are Lipschitz near x̄ and λi ≥ 0 are constants. Then

∂

N∑
i=1

λifi(x̄) ⊂
N∑
i=1

λi∂fi(x̄).

2.3. Set-valued mappings and measurability. Let X be a closed subset of
R

n. A set-valued mapping Φ : X → 2R
m

is said to be closed at x̄ if for xk ∈ X ,
xk → x̄, yk ∈ Φ(xk) and yk → ȳ, we have ȳ ∈ Φ(x̄). Φ is said to be uniformly compact
near x̄ ∈ X if there is a neighborhood B(x̄) of x̄ such that the closure of

⋃
x∈B(x̄) Φ(x)

is compact. Φ is said to be upper semicontinuous at x̄ ∈ X if for every ε > 0, there
exists a δ > 0 such that

Φ(x̄+ δB) ⊂ Φ(x̄) + εB,
where B denotes the closed unit ball in R

m. The following result was known; see
[10, 19].

Proposition 2.6. Let Φ : X → 2R
m

be uniformly compact near x̄. Then Φ is
upper semicontinuous at x̄ if and only if Φ is closed.

Let us now consider a stochastic set-valued mapping. Let (Ω,F , P ) be a proba-
bility space. For fixed x, let A(x, ω) : Ω → 2R

n

be a set-valued mapping whose value
is a closed subset of Rn. Let B(Rn) or simply B denote the space of closed bounded
subsets of Rn endowed with topology τH generated by the Hausdorff distance H. We
consider the Borel σ-field G(B, τH) generated by the τH-open subsets of B. A set-
valued mapping A(x, ω) : Ω → 2R

n

is said to be F -measurable if, for every member
W of G(B, τH), one has A−1(W) ∈ F .

By a measurable selection ofA(x, ω), we refer to a vector A(x, ω) ∈ A(x, ω), which
is measurable. Note that such measurable selections exist if A(x, ω) is measurable;
see [1] and references therein.

For a general set-valued mapping which is not necessarily measurable, the ex-
pectation of A(x, ω), denoted by E[A(x, ω)], is defined as the collection of E[A(x, ω)]
where A(x, ω) is an integrable selection, and the integrability is in the sense of Au-
mann [4]. E[A(x, ω)] is regarded as well-defined if it is nonempty. A sufficient con-
dition of the well definedness of the expectation is that A(x, ω) is measurable and
E[‖A(x, ω)‖] := E[H(0,A(x, ω))] < ∞, in which case E[A(x, ω)] ∈ B. See [4, Theo-
rem 2]. In such a case, A is called integrably bounded in [4, 17].

Definition 2.7 (simple set-valued mapping). Let A(x, ω) : Ω → 2R
n

be a
measurable set-valued mapping. A is said to be a simple set-valued mapping if it takes
a finite number of Si ∈ B and there is an F-measurable partition {Ω1, . . . ,Ωk} of Ω
such that for any ω ∈ Ωi, i = 1, . . . , k,

A(ω) =

k∑
i=1

1Ωi(ω)Si,
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where

1Ωi(ω) :=

{
1 if ω ∈ Ωi,
0 if ω �∈ Ωi.

The expectation of the simple set-valued mapping A is

E[A(ω)] =

k∑
i=1

P (Ωi)Si.

The following result is well-known; see, e.g., [3, section 8.1, page 307] and [17,
Lemmas 3.1–3.2].

Lemma 2.8. If A(x, ω) : Ω → 2R
n

is a closed measurable set-valued mapping,
then A is a pointwise limit of a sequence of measurable simple set-valued mappings
on Ω.

In the case when A is single-valued, the above lemma indicates that a random
function is a pointwise limit of a sequence of random simple functions on Ω.

2.4. The exchange rule for Aumann’s integral and limiting subdifferen-
tial operator. Using Lemma 2.82 and Proposition 2.5, we are able to extend Propo-
sition 2.5 to the case when the summation is replaced by an integration (mathematical
expectation); that is, the integration and the limiting subdifferential operation can
be exchanged when they are both applied to a random function. The result is an
analogue of the exchange of an integral and the Clarke subdifferential operation in [6,
Theorem 2.7.2] and will be used to establish optimality conditions of (1.1) in terms of
the limiting subdifferential of the value functions of the second stage problem (1.2).
Note that an exchange of Aumann’s integral and the limiting subdifferential operator
is established by Mordukhovich in [28, Lemma 6.18]. The proof uses the well-known
Aumann’s identity, that is, that the expected value of the limiting subgradient coin-
cides with that of Clarke’s subdifferential when the probability space is nonatomic. In
Theorem 2.9 below, we derive an analogue of [28, Lemma 6.18] without the nonatomic
condition. The two results coincide when the probability space is nonatomic.

Theorem 2.9. Let φ(x, ξ) : Rn × Ξ → R be a continuous function where ξ :
(Ω,F , P ) → Ξ is a random vector with support set Ξ ⊂ R

m. Suppose (a) φ is Lipschitz
continuous with respect to x in a neighborhood of x̄ for every ξ and its Lipschitz
modulus is bounded by a nonnegative integrable function κ(ξ(ω)); (b) E[φ(x, ξ(ω))] <
∞. Let ψ(x) := E[φ(x, ξ(ω))]. Then the following conditions hold.

(i) ψ(x) is well-defined and Lipschitz continuous near x̄ with modulus E[κ(ξ(ω))].
(ii) E[∂xφ(x̄, ξ(ω))] is well-defined, and the following inclusion holds:

∂ψ(x̄) ⊂ E[∂xφ(x̄, ξ(ω))].(2.1)

(iii) The inclusion (2.1) coincides with (6.39) in [28, Lemma 6.18] when the prob-
ability space of ξ is nonatomic. In the case when φ(x, ξ) is Clarke regular [6]
at x̄, ψ is also Clarke regular and the equality holds in (2.1).

Proof. Part (i). The well definedness of ψ(x) and Lipschitz continuity of ψ(x)
for x close to x̄ is well-known under conditions (a) and (b). See, for instance, [43,
Proposition 2].

Part (ii). We first show the well definedness of E[∂xφ(x, ξ(ω))]; that is,
E[∂xφ(x, ξ(ω))] is a nonempty compact set. Following a discussion in [1, page 880] by

2In the proof, we will use an earlier counterpart of this result [29, Lemma V-2.4].
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Artstein and Vitale, it suffices to show that ∂xφ(x, ξ(ω)) is measurable and integrably
bounded. The latter is implied by our condition (a). We prove the former. Let d ∈ R

n

and ξ ∈ R
m be fixed. The subderivative of φ(x, ξ) with respect to x at a point x in

direction d is defined as

φ�x(x, ξ; d) := lim inf
d′→d

t→0

[φ(x + td′, ξ)− φ(x, ξ)]/t.

By [3, Lemma 8.2.12], φ�x(x, ξ; d) is measurable. Let

∂̂xφ(x, ξ) :=
{
h : hTd ≤ φ�x(x, ξ; d) ∀d},

where φ�x(x, ξ; d) is the support function of the set-valued mapping ∂̂xφ(x, ξ) (see,

e.g., [42, Exercise 8.4]). By [3, Theorem 8.2.14], ∂̂xφ(x, ξ(·)) is measurable. Since

∂xφ(x, ξ(·)) is the upper limit of ∂̂xφ(x, ξ(·)), the measurability of the former follows
from that of the latter by [3, Theorem 8.2.5].

Next, we prove (2.1). By [29, Lemma V-2.4] and its proof, there exists a sequence
{ξk}∞k=1 which is a dense subset of Ξ such that for each k there exist F -measurable
partitions of Ω denoted by {Ω1, . . . ,Ωk} satisfying

lim
k→∞

k∑
i=1

1Ωi(ω)ξ
i = ξ(ω)

for every ω ∈ Ω. Let

φk(x, ξ(ω)) :=
k∑

i=1

1Ωi(ω)φ(x, ξ
i)

and x be fixed. The continuity of φ in ξ implies that the sequence {φ(x, ξk)}∞k=1 is a
dense subset of φ(x,Ξ). Therefore

lim
k→∞

φk(x, ξ(ω)) = φ(x, ξ(ω)).(2.2)

Let ω ∈ Ω be fixed and ξ := ξ(ω). By the definition of the limiting subdifferential, it is
obvious that ∂xφ(x, ·) is a closed set-valued mapping. By virtue of the local Lipschitz
continuity of φ as assumed in the assumption (a) (see [27, Corollary 1.81]), it is also
uniformly compact at any fixed point ξ ∈ Ξ. Hence by Proposition 2.6, ∂xφ(x, ·) is
upper semicontinuous at ξ. Therefore for every fixed ω ∈ Ω,

lim
k→∞

k∑
i=1

1Ωi(ω)∂xφ(x, ξ
i) ⊂ ∂xφ(x, ξ(ω)).(2.3)

Since φk(x, ξ(ω)) is Lipschitz with respect to x with a uniform Lipschitz modulus, the
limit (2.2) holds uniformly with respect to x on a compact set. Moreover,

ψ(x) := E[φ(x, ξ(ω))] = E

[
lim
k→∞

φk(x, ξ(ω))

]

= lim
k→∞

E
[
φk(x, ξ(ω))

]
= lim

k→∞

k∑
i=1

φ(x, ξi)P (Ωi).
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The third equality is due to Lebesgue’s dominated convergence theorem because
φk(x, ξ(ω)) is bounded on any compact set of Rn and the above equalities hold uni-
formly with respect to x on any compact set of Rn. Let

ψk(x) :=
k∑

i=1

φ(x, ξi)P (Ωi)

and ζ ∈ ∂πψ(x). Then by definition, there exist constants σ > 0, δ > 0 such that

lim
k→∞

(ψk(y)− ψk(x)) > 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ B(x, δ) with y �= x.

We assume without loss of generality that the strict inequality above holds for any
y �= x. This can be achieved by choosing a sufficiently large σ. Therefore for k
sufficiently large,

ψk(y)− ψk(x) > 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ B(x, δ) with y �= x.

Consequently, for all large enough k, y = x is the unique local minimizer of the
problem

min
y
ψk(y) + σ‖y − x‖2 − 〈ζ, y − x〉

for y restricted in a compact neighborhood of x. The optimality condition in terms
of the limiting subdifferentials [42, Theorem 10.1] and the sum rule for limiting sub-
differentials (Proposition 2.5) indicate that

0 ∈ ∂ψk(x)− ζ.(2.4)

By Proposition 2.5,

∂ψk(x) ⊂
k∑

i=1

∂xφ(x, ξ
i)P (Ωi).(2.5)

Since ζ is any element from set ∂πψ(x), by (2.4) and (2.5),

∂πψ(x) ⊂
k∑

i=1

∂xφ(x, ξ
i)P (Ωi). = E

[
k∑

i=1

1Ωi(ω)∂xφ(x, ξ
i)

]
.

Taking the limit on both sides of the above equation and by virtue of [4, Proposition
4.1] and (2.3), we obtain that

(2.6) ∂πψ(x) ⊂ E[∂xφ(x, ξ(ω))].

By the definition of the limiting subdifferential and [4, Proposition 4.1],

∂ψ(x̄) = lim sup
x→x̄

∂πψ(x) ⊂ lim sup
x→x̄

E[∂xφ(x, ξ(ω))]

⊂ E

[
lim sup
x→x̄

∂xφ(x, ξ(ω))

]
⊂ E [∂xφ(x̄, ξ(ω))] .

This shows (2.1).
Part (iii). When the probability space of ξ is nonatomic, the inclusion (2.1) can

be established by virtue of Aumann’s identity (see [17, Theorem 5.4 (d)]); see (6.39)
in [28, Lemma 6.18].

The Lipschitz continuity of the function ψ and the last assertion of the theorem
follow from [6, Theorem 2.7.2] since when a function is Clarke regular, the limiting sub-
differential coincides with the Clarke subdifferential. This completes the proof.
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2.5. Sensitivity analysis on the value function of P(x, ξ). We now move
on to analyze the sensitivity of the value function of the second stage problem P(x, ξ).
Recall that v(x, ξ) denotes the value function of the second stage problem. We use
Γ(x, ξ) to denote the set of global optimal solutions to the second stage problem.

2.5.1. No nonzero abnormal multipliers constraint qualification
(NNAMCQ) and M-multipliers. For deterministic MPECs, it is well-known that
the usual NLP constraint qualifications such as the Mangasarian–Fromovitz constraint
qualification (MFCQ) do not hold (see [59, Proposition 1.1]), and hence Lagrange mul-
tipliers may not exist. This leads to the introduction of the following weaker concept
of multipliers (for the case of no inequality constraint, see [57], and for the case includ-
ing inequality constraints, see [54]). Since the set of M-multipliers (which were called
CD-multipliers in [21]) is nonempty under the MPEC variant of MFCQ, one can use
the set of M-multipliers to carry out the sensitivity analysis of the value functions for
MPECs.

Definition 2.10 (M-multipliers). Let (x, ξ) ∈ X × Ξ be fixed. Let (y, z) be a
feasible solution of the second stage problem P(x, ξ). We say that (y, z) is an M-
stationary point and (γ, η) ∈ R

p
+ × R

m is an M-multiplier of P(x, ξ) at (y, z) if

0 ∈ ∇yf2(x, y, z, ξ) +∇yψ(x, y, z, ξ)
Tγ +∇yF (x, y, z, ξ)

T η,

0 ∈ ∇zf2(x, y, z, ξ) +∇zψ(x, y, z, ξ)
Tγ

+∇zF (x, y, z, ξ)
T η +D∗NC(z,−F (x, y, z, ξ))(η),

0 = ψ(x, y, z, ξ)Tγ.

Here and later on, ∇F denotes the classical Jacobian of a vector-valued function F .
We use M(x, y, z, ξ) to denote the set of M-multipliers at stationary point (y, z).

From [54, 57], the setM(x, y, z, ξ) at any local optimal solution (y, z) of the second
stage problem P(x, ξ) is nonempty under the following constraint qualification.

Definition 2.11 (NNAMCQ). We say that NNAMCQ holds at a feasible point
(y, z) of problem P(x, ξ) if⎧⎨
⎩

0 ∈ ∇y,zψ(x, y, z, ξ)
Tγ

+∇y,zF (x, y, z, ξ)
T η + {0} ×D∗NC(z,−F (x, y, z, ξ))(η),

0 ≤ −ψ(x, y, z, ξ) ⊥ γ ≥ 0
=⇒ γ = 0, η = 0.

Here and later on we write the first order conditions in a closed form to save
space. In the case when there is no equilibrium constraint, NNAMCQ reduces to the
positive linear independence of the gradients of the active inequality constraints

∇y,zψi(x, y, z, ξ), i ∈ I(x̄, ξ),

where I(x, ξ) := {i : ψi(x, y, z, ξ) = 0}. By the Fakas lemma, the positive linear
independence of the gradients of the active inequality constraints is equivalent to the
MFCQ; i.e., there exists (d, h) ∈ R

l × R
m such that

〈∇y,zψi(x, y, z, ξ), (d, h)〉 > 0 ∀i ∈ I(x, ξ).

Hence NNAMCQ can be viewed as a dual form of the MFCQ. In NLP, it is well-known
that the MFCQ is equivalent to the compactness of the Lagrange multiplier sets (see,
e.g., [9]). This is also true for M-multipliers under NNAMCQ.
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Proposition 2.12. Let (x, ξ) ∈ X × Ξ be fixed and

M(x, ξ) :=
⋃

(y,z)∈Γ(x,ξ)

M(x, y, z, ξ).(2.7)

Assume (a) Γ(x, ξ) is compact and (b) NNAMCQ holds at any global optimal solution
point (y, z) ∈ Γ(x, ξ). Then M(x, ξ) is nonempty and compact.

Proof. Assume for the sake of a contradiction that M(x, ξ) is unbounded. Then
there exists a sequence {(yk, zk)} ⊂ Γ(x, ξ) and an unbounded sequence {(γk, ηk)} ∈
M(x, yk, zk, ξ) with (yk, zk) ∈ Γ(x, ξ) such that ‖γk‖ + ‖ηk‖ → ∞ as k → ∞. By
definition

0 ∈ ∇y,zf2(x, yk, zk, ξ) +∇y,zψ(x, yk, zk, ξ)
T γk

+∇y,zF (x, yk, zk, ξ)
T ηk + {0} ×D∗NC(zk,−F (x, yk, zk, ξ))(ηk).(2.8)

Dividing the above equation on both sides by ‖(γk, ηk)‖ and driving k to infinity, we
have from the compactness of Γ(x, ξ) and boundedness of (γk, ηk)/‖(γk, ηk)‖ that there
exist a subsequence (ykj , zkj ) → (y, z) ∈ Γ(x, ξ) and (γkj , ηkj )/‖(γkj , ηkj )‖ → (γ, η)
with ‖(γ, η)‖ = 1 and that

0 ∈ ∇y,zψ(x, y, z, ξ)
Tγ

+∇y,zF (x, y, z, ξ)
T η + {0} ×D∗NC(z,−F (x, y, z, ξ))(η),

0 = ψ(x, y, z, ξ)Tγ, γ ≥ 0.

This contradicts the NNAMCQ. Similarly we can prove that the set M(x, ξ) is closed
for each fixed (x, ξ), and hence the proof of the proposition is complete.

The NNAMCQ plays an essential role in the sensitivity analysis of the value
function of the second stage problem. It is therefore natural to consider sufficient
conditions for it. The proposition below lists a few sufficient conditions for NNAMCQ,
and they follow straightforwardly from [54, Theorem 4.7] and [57, Theorem 3.2].

Proposition 2.13. Let x ∈ X and ξ ∈ Ξ. Consider the second stage prob-
lem (1.2) without inequality constraint ψ ≤ 0. The following conditions suffice for
NNAMCQ.

(i) The strongly regular constraint qualification (SRCQ) holds at (y, z); i.e., the
generalized equation

0 ∈ F (x, y, z, ξ) +NC(z)

is strongly regular at (y, z) in the sense of Robinson [38].
(ii) −F is locally strongly monotone in z uniformly with respect to y; that is,

there exist a positive constant μ independent of y and neighborhoods U1 of y,
U2 of z such that

〈−F (x, y′, z′, ξ)+F (x, y′, z, ξ), z′−z〉 ≥ μ‖z′−z‖2 ∀z′ ∈ U2∩C, z ∈ C, y′ ∈ U1.

(iii) The rank of the matrix ∇yF (x, y, z, ξ) is m.

2.5.2. Sensitivity analysis of the value function. To ensure the existence
of a local optimal solution to the second stage problem P(x, ξ), we need the following
inf-compact conditions.
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Assumption 2.14 (inf-compactness). Let x ∈ X and ξ ∈ Ξ be fixed. There exists
a constant δ > 0 such that the set

{(y, z) : ψ(x, y, z, ξ) ≤ q, r ∈ F (x, y, z, ξ) +NC(z), f2(x, y, z, ξ) ≤ α, (r, q) ∈ B(0, δ)}

is bounded for every constant α.
Proposition 2.15. Consider the second stage problem (1.2). Let x̄ ∈ Q and

ξ̄ ∈ Ξ be fixed. Suppose that (a) Assumption 2.14 holds at x̄ and ξ̄ and (b) for every
(y, z) ∈ Γ(x̄, ξ̄), either NNAMCQ or the second stage problem (1.2) has no inequality
constraint and one of the constraint qualifications given in Proposition 2.13 holds.
Then

(i) (x, ξ) → v(x, ξ) is Lipschitz near x̄ and ξ̄;
(ii) ∂xv(x̄, ξ̄) ⊂ Ψ(x̄, ξ̄), where

Ψ(x, ξ) :=
⋃

(y,z)∈Γ(x,ξ)

⋃
(γ,η)∈M(x,y,z,ξ)

{∇xf2(x, y, z, ξ)(2.9)

+∇xψ(x, y, z, ξ)
Tγ +∇xF (x, y, z, ξ)

	η};

(iii) Γ(x̄, ξ̄) is compact.
Proof. Parts (i)–(ii) follow from [21, Corollaries 3.7 and 3.8], and part (iii) is

obvious.
Theorem 2.16. Let Assumption 2.14 hold for x̄ ∈ Q and every ξ ∈ Ξ, and let

V (x) := E[v(x, ξ(ω))]. Then
(i) v(x, ξ(·)) : Ω → R is measurable;
(ii) ∂xv(x̄, ξ(·)) : Ω → 2R

n

is measurable;
(iii) Γ(x, ξ(·)) : Ω → 2R

n

is measurable;
(iv) if E[v(x̄, ξ(ω))] is well-defined and the Lipschitz modulus of v(x, ξ) in x is

bounded by an integrable function κ(ξ), then V (x) is well-defined for all x ∈ Q
and it is locally Lipschitz at x̄. Moreover,

∂V (x̄) ⊂ E[∂xv(x̄, ξ(ω))].(2.10)

Furthermore, if v(x, ξ) is Clarke regular in x, then V (x) is Clarke regular and
the equality holds.

Proof. Parts (i) and (iii). These parts follow from the marginal map theorem in
the measurability theory of set-valued mappings; see [3, Theorem 8.2.11].

Part (ii). Under Assumption 2.14, it follows from Proposition 2.15 (i) that the
value function v(x, ξ) is Lipschitz continuous in ξ and from Proposition 2.15 (iii)
that its modulus is bounded by an integrable function. Consequently, we can show
the measurability of ∂xv(x̄, ξ(·)) in the same way as in the first part of the proof of
Theorem 2.9 (ii).

Part (iv). The well definedness of V (x) is obvious. The Lipschitz continuity of V
follows from [43, Chapter 2, Proposition 2]. Since the Lipschitz modulus of v(x, ξ) is
κ(ξ), and ∂xv(x, ξ) is contained by Clarke’s generalized gradient, by [6, Proposition
2.1.2], ‖∂xv(x, ξ)‖ ≤ κ(ξ). This and the measurability of ∂xv(x, ξ) ensure the well
definedness of E[∂xv(x, ξ)]. Finally the inclusion (2.10) and the rest of the conclusion
follow from Theorem 2.9.

3. Optimality conditions. In this section, we derive the first order necessary
optimality conditions of SMPEC (1.1)–(1.2). First, we derive optimality conditions
in terms of the limiting subdifferential of the expected value of the value function of
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the second stage problem (1.2) under the Clarke calmness condition (Theorem 3.6
(i)); second, we sharpen the optimality condition by taking a particular measurable
selection from the limiting subdifferential of the value function (Theorem 3.6 (ii)),
and finally we express the measurable selection in terms of the gradients and the M-
multipliers of the second stage problem (Theorem 3.7) at an optimal solution point
and/or a stationary point.

3.1. Clarke calmness and pseudo upper-Lipschitz continuity of set-
valued mappings. We start by considering Clarke’s calmness condition [6] for prob-
lem (1.1).

Definition 3.1. We say that the problem (1.1) is calm at a local optimal solution
x̄ if there exists μ > 0 such that x̄ is a local optimal solution to the penalized problem

(3.1)
min f1(x) + E [v(x, ξ(ω))] + μ[‖G(x)+‖+ ‖H(x)‖]
s.t. x ∈ Q.

The above calmness condition involves both the constraint functions and the
objective function; it is therefore not a constraint qualification in the classical sense.
Indeed it is a sufficient condition under which Karush–Kuhn–Tucker (KKT) type
necessary optimality conditions hold. The calmness condition may hold even when
the weakest constraint qualification does not hold. In practice one often uses some
verifiable constraint qualifications sufficient for the calmness condition.

Definition 3.2 (pseudo upper-Lipschitz continuity). A set-valued mapping Φ :
R

n → 2R
q

is said to be pseudo upper-Lipschitz continuous at (z̄, v̄) ∈ gphΦ if there
exist a constant μ > 0 and a neighborhood B(z̄) of z̄, a neighborhood B(v̄) of v̄ such
that

Φ(z) ∩B(v̄) ⊆ Φ(z̄) + μ‖z − z̄‖B ∀z ∈ B(z̄).

The concept of pseudo upper-Lipschitz continuity of a set-valued mapping was
first introduced by Ye and Ye [57] for the purpose of providing weak and applicable
constraint qualifications for the M-stationary conditions. The name “pseudo upper-
Lipschitz continuity” comes from the fact that it is a combination of Aubin’s pseudo
Lipschitz continuity [2] and Robinson’s upper-Lipschitz continuity [36, 37]. In some
references (see, for example, [42, 27, 12]), the pseudo upper-Lipschitz continuity is
also called calmness. Here we use the former terminology to avoid confusion with
Clarke’s calmness. For a recent discussion on the properties and the criterion of
pseudo upper-Lipschitz continuity of a set-valued mapping, see Henrion, Jourani, and
Outrata [12] and Henrion and Outrata [13]. In what follows, we consider the pseudo
upper-Lipschitz continuity of the perturbed feasible region of the constraint system

X(p, q) := {x : G(x) + p ≤ 0, H(x) + q = 0, x ∈ Q}, X(0, 0) := X(3.2)

at p = 0, q = 0 to establish the calmness of problem (1.1). The proposition below is an
easy consequence of Clarke’s exact penalty principle [6, Proposition 2.4.3] and pseudo
upper-Lipschitz continuity of the perturbed feasible region of the true problem. See
[54, Proposition 4.2] for a proof.

Proposition 3.3. If the objective function of problem (1.1) is Lipschitz near
x̄ ∈ X and the perturbed feasible region of the constraint system X(p, q) defined as in
(3.2) is pseudo upper-Lipschitz continuous at (0, x̄), then the first stage problem (1.1)
is calm at x̄.
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From the definition it is easy to verify that the set-valued mapping X(p, q) is
pseudo upper-Lipschitz continuous at (0, x̄) if and only if there exist a constant μ > 0
and B(x̄), a neighborhood of x̄, such that

d(x,X) ≤ μ(‖G(x)+‖+ ‖H(x)‖) ∀x ∈ B(x̄) ∩Q.
See [46, Theorem 3.1] for the equivalence in a more general setting. The above
property is also referred to as the existence of a local error bound for the feasible region
X or metric regularity. Hence any results on the existence of a local error bound or
metric regularity of the constraint system may be used as a sufficient condition for
pseudo upper-Lipschitz continuity of the perturbed feasible region (see, e.g., Wu and
Ye [50] for such sufficient conditions).

By virtue of Proposition 3.3, the following three constraint qualifications are
stronger than the calmness condition at a local minimizer when the objective function
of the problem (1.1) is Lipschitz continuous.

Proposition 3.4. Let X(p, q) be defined as in (3.2) and x̄ ∈ X. Then X(p, q)
is pseudo upper-Lipschitz continuous at (0, x̄) under one of the following constraint
qualifications:

(i) NNAMCQ for problem (1.1) holds at x̄,{
0 ∈ ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),
0 ≤ ηG ⊥ −G(x̄) ≥ 0

=⇒ ηG = 0, ηH = 0,

where

∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) = D∗G(x̄)(ηG) +D∗G(x̄)(ηH),

and when G and H are differentiable at x̄,

∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) = ∇G(x̄)T ηG +∇H(x̄)T ηH .

(ii) LICQ holds at x̄:

0 ∈ ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) =⇒ ηG = 0, ηH = 0.

(iii) G(x), H(x) are affine functions, and Q is a finite union of convex polyhedral
sets.

Proof. Part (ii) is obviously stronger than part (i). Under part (i), by [54, The-
orem 4.4], the perturbed feasible region of the constraint system is pseudo Lipschitz
continuous. Under part (iii), the graph of the set-valued mapping X ,

gphX(·, ·) := {(x, p, q) : G(x) + p ≤ 0, H(x) + q = 0, x ∈ Q, p ∈ R
s, q ∈ R

r}
is a union of convex polyhedral sets, and hence the perturbed feasible region of the
constraint system is upper-Lipschitz by Robinson [39].

3.2. First order necessary optimality conditions. In order to derive the
optimality conditions, we need the following assumption.

Assumption 3.5. Let x ∈ X be fixed. There exists a nonnegative function σ(ξ)
with E[σ(ξ(ω))] <∞ such that

max(‖∇xf2(x, y, z, ξ)‖, ‖∇xψ(x, y, z, ξ)‖, ‖∇xF (x, y, z, ξ)‖) ≤ σ(ξ)

for all (y, z) ∈ Γ(x, ξ).
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Theorem 3.6 (necessary optimality conditions based on the value function). Let
x̄ ∈ X be a local optimal solution of problem (1.1). Suppose (a) Assumptions 2.14 and
3.5 hold at x̄ for every ξ ∈ Ξ; (b) for every (y, z) ∈ Γ(x̄, ξ) and every ξ ∈ Ξ, either
NNAMCQ holds or (1.1) has no inequality constraint ψ ≤ 0 and one of the constraint
qualifications given in Proposition 2.13 holds; (c) problem (1.1) is calm at x̄. Then

(i) there exist multipliers ηG, ηH such that{
0 ∈ ∂f1(x̄) + ∂V (x̄) + ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),
0 ≤ ηG ⊥ −G(x̄) ≥ 0;

(3.3)

(ii) there exist multipliers ηG, ηH such that{
0 ∈ ∂f1(x̄) + E[∂xv(x̄, ξ)] + ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),
0 ≤ ηG ⊥ −G(x̄) ≥ 0;

(3.4)

(iii) there exists a measurable selection q(x̄, ω) ∈ ∂xv(x̄, ξ(ω)) and Lagrange mul-
tipliers ηG, ηH such that{

0 ∈ ∂f1(x̄) + E[q(x̄, ω)] + ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),
0 ≤ ηG ⊥ −G(x̄) ≥ 0.

(3.5)

Proof. Part (i). Under conditions (a) and (b) (Assumption 2.14), Proposition 2.15
states that v(x, ξ′) is Lipschitz near (x̄, ξ). By Proposition 2.15 (ii), it is easy to see
that under Assumption 3.5 there exists a constant c > 0 such that ‖∂xv(x̄, ξ)‖ ≤ cσ(ξ)
which implies that the Lipschitz constant of v(x, ξ) is bounded by a nonnegative in-
tegrable function κ(ξ) := cσ(ξ). By Theorem 2.16 (iv), V (x) is Lipschitz near x̄.
Applying the first order necessary optimality condition involving limiting subdifferen-
tials obtained by Mordukhovich in [26, Theorem 1 (b)] (see also [42, Corollary 6.15])
to the penalized problem (3.1), we obtain (3.3).

Part (ii). By Theorem 2.16, E[∂xv(x, ξ)] is well-defined and ∂V (x̄) ⊂
E[∂xv(x̄, ξ(ω))]. The conclusion follows from part (i).

Part (iii). By part (i), there exist q̂(x̄) ∈ ∂V (x̄) and Lagrange multipliers ηG, ηH

such that {
0 ∈ ∂f1(x̄) + q̂(x̄) + ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),
0 ≤ ηG ⊥ −G(x̄) ≥ 0.

(3.6)

Therefore for q̂(x̄), there exists a measurable selection q(x̄, ω) ∈ ∂xv(x̄, ξ(ω)) such
that q̂(x̄) = E[q(x̄, ω)]. The conclusion follows from part (ii).

The optimality conditions derived above utilize explicitly the limiting subdiffer-
ential of the value function of the second stage problem. In Theorem 3.6 (i), we
assume that ∂V (x̄) is computable while in parts (ii)–(iii) of the theorem we assume
that ∂xv(x, ξ) is computable. In some practical circumstances, calculating these sub-
differentials may be difficult or impossible. Consequently, we may use the sensitivity
analysis of the value function in section 2 to replace the subdifferentials with the
gradients of the underlying functions of the second stage problem at optimal solution
points. Specifically, we replace ∂xv(x, ξ) with set Ψ(x̄, ξ) defined in (2.10) although
the latter is larger in general. This motivates us to derive the following more general
necessary optimality conditions.

Theorem 3.7 (general necessary optimality condition for the true problem). Let
x̄ be a local optimal solution of the true problem (1.1). Assume conditions (a)–(c) of
Theorem 3.6 hold. Then
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(i) there exists ηG, ηH such that{
0 ∈ ∂f1(x̄) + E[Ψ(x̄, ξ(ω))] + ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),
0 ≤ ηG ⊥ −G(x̄) ≥ 0,

(3.7)

where Ψ(x, ξ) is defined as in (2.10);
(ii) there exist a selection

(y(ω), z(ω)) ∈ Γ(x̄, ξ(ω)), (γ(ω), η(ω)) ∈M(x̄, y(ω), z(ω), ξ(ω))

and multipliers ηG, ηH such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ∈ ∂f1(x̄) + E[∇xf2(x̄, y(ω), z(ω), ξ(ω))
+∇xψ(x̄, y(ω), z(ω), ξ(ω))

	γ(ω)
+∇xF (x̄, y(ω), z(ω), ξ(ω))

	η(ω)]
+∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),

0 ≤ ηG ⊥ −G(x̄) ≥ 0;

(3.8)

(iii) there exist M-stationary point (y(ω), z(ω)) of (1.2) and corresponding M-
multipliers γ(ω), η(ω), together with the first stage Lagrange multipliers
ηG, ηH , such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ ∂f1(x̄) + E[∇xf2(x̄, y(ω), z(ω), ξ(ω))
+∇xψ(x̄, y(ω), z(ω), ξ(ω))

	γ(ω)
+∇xF (x̄, y(ω), z(ω), ξ(ω))

	η(ω)]
+∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),

0 ≤ ηG ⊥ −G(x̄) ≥ 0,
0 ∈ ∇yf2(x̄, y(ω), z(ω), ξ(ω)) +∇yψ(x̄, y(ω), z(ω), ξ(ω))

	γ(ω)
+∇zF (x̄, y(ω), z(ω), ξ(ω))

	η(ω),
0 ∈ ∇zf2(x̄, y(ω), z(ω), ξ(ω)) +∇zψ(x̄, y(ω), z(ω), ξ(ω))

	γ(ω)
+∇zF (x̄, y(ω), z(ω), ξ(ω))

	η(ω)
+D∗NC(z(ω),−F (x̄, y(ω), z(ω), ξ(ω)))(η(ω)),

0 ∈ F (x̄, y(ω), z(ω), ξ(ω)) +NC(z(ω)),
0 ≤ −ψ(x̄, y(ω), z(ω), ξ(ω)) ⊥ γ(ω) ≥ 0.

(3.9)

Remark 3.8. Before presenting a proof, we make a few comments on the state-
ments of the theorem.

• First, let us compare the optimality conditions with those in Theorem 3.6.
Part (i) corresponds to Theorem 3.6 (ii), and the conditions here are weaker
in the sense that E[Ψ(x̄, ξ)] contains E[∂xv(x̄, ξ)]. Part (ii) is equivalent to
Theorem 3.6 (iii), but it is no longer described in terms of the subdifferential
of the value function here. This is a significant difference from the numerical
point of view in that E[∂xv(x̄, ξ)] requires the calculation of the subdifferential
of the optimal value function of the second stage problem which is numerically
difficult particularly when the problem is nonconvex.

• Now let us compare the statements of Theorem 3.7. The condition in part (ii)
is obviously sharper than that of part (i), and it uses only the derivatives of
the underlying function of the second stage problem at one optimal solution
and a single pair of the corresponding M-multipliers. Part (iii) is a simple re-
laxation from optimal solution to an M-stationary point so that the optimality
condition no longer includes an implicit constraint (y(ω), z(ω)) ∈ Γ(x̄, ξ(ω)).
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Proof of Theorem 3.7. Part (i). By Proposition 2.15 (ii), ∂xv(x̄, ξ) ⊂ Ψ(x̄, ξ). By
Theorem 2.16, the set-valued mapping ω → ∂xv(x̄, ξ(ω)) is measurable. Therefore
E[Ψ(x̄, ξ(ω))] is nonempty and E[∂xv(x̄, ξ(ω))] ⊂ E[Ψ(x̄, ξ(ω))]. From part (iii) of
Theorem 3.6, there exists a measurable selection q(x̄, ω) ∈ ∂xv(x̄, ξ(ω)) such that{

0 ∈ ∂f1(x̄) + E[q(x̄, ω)] + ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),
0 ≤ ηG ⊥ −G(x̄) ≥ 0.

Since q(x̄, ω) ∈ Ψ(x̄, ξ(ω)), then E[q(x̄, ω)] ∈ E[Ψ(x̄, ξ(ω))]. This shows part (i).
Part (ii). Since q(x̄, ω) ∈ Ψ(x̄, ξ(ω)), by the definition of Ψ(x̄, ξ(ω)), there must

be a selection (y(ω), z(ω)) ∈ Γ(x̄, ξ(ω)), (γ(ω), η(ω)) ∈ M(x̄, y(ω), z(ω), ξ(ω)) such
that

q(x̄, ξ(ω)) = ∇xf2(x̄, y(ω), z(ω), ξ(ω)) +∇xψ(x̄, y(ω), z(ω), ξ(ω))
	γ(ω)

+∇xF (x̄, y(ω), z(ω), ξ(ω))
	η(ω).

The conclusion follows.
Part (iii) follows from part (ii) because any optimal solution (y(ω), z(ω)) must be

an M-stationary point.
Note that in Theorem 3.7, we do not require the measurability of Ψ(x̄, ξ(ω)).

Indeed the well definedness (nonemptiness) comes from fact that Ψ(x̄, ξ(ω)) contains
a measurable and integrable subset ∂xv(x̄, ξ(ω)). Note also that we do not claim
in Theorem 3.7 (ii) the measurability of multipliers γ(ω) and η(ω). However, the
measurability of Ψ(x̄, ξ(ω)) and the multipliers are important properties when one
discusses the convergence of sample average approximation methods for solving the
SMPEC (1.1)–(1.2) (see [35]). In what follows, we obtain these properties under a
stronger inf-compactness condition and hence strengthen the optimality conditions of
Theorem 3.7.

Assumption 3.9 (uniform inf-compactness). Let x ∈ X fixed. For every ξ ∈ Ξ,
there exists a constant δ > 0 such that the set

{(y, z) : ψ(x, y, z, ξ′) ≤ q, r ∈ F (x, y, z, ξ′) +NC(z), f2(x, y, z, ξ′) ≤ α, (r, q) ∈ B(0, δ)}

is bounded for every constant α and every ξ′ in a closed neighborhood of ξ relative
to Ξ.

We need an intermediate result about the upper semicontinuity of M(x̄, ·, ·, ·).
Let ξ ∈ Ξ and B(ξ) denote a small closed neighborhood of ξ relative to Ξ. Let

H := {Γ(x̄, ξ′)× {ξ′} : ξ′ ∈ B(ξ)}.

Then H is a collection of certain sets in space R
l × R

m × Ξ. Let (y, z) ∈ Γ(x̄, ξ). We
say M(x̄, ·, ·, ·) is upper semicontinuous at (y, z, ξ) relative to set H if for every ν > 0,
there exists δ > 0 such that

M(x̄, y′, z′, ξ′) ⊂M(x̄, y, z, ξ) + νB

for all (y′, z′, ξ′) ∈ clB((y, z, ξ), δ) ∩H, where B denotes the closed unit ball in space
R

p+m and clB((y, z, ξ), δ) ∩ H denotes a closed ball in R
l × R

m × R
d with radius δ

and center (y, z, ξ).
Lemma 3.10. Let Assumption 3.9 hold, and let ξ ∈ Ξ and (y, z) ∈ Γ(x̄, ξ). Then

M(x̄, ·, ·, ·) is upper semicontinuous at (x, y, ξ) relative to set H.
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Proof. Let {ξk} ⊂ B(ξ) such that ξk → ξ as k → ∞. Consider a sequence
{(yk, zk)} ⊂ Γ(x̄, ξk), {(γk, ηk)} ⊂ M(x̄, yk, zk, ξk). Under Assumption 3.9, it is easy
to prove that both sequences {(yk, zk)} and {(γk, ηk)} are bounded.

Let (yk, zk) → (y, z), and assume by taking a subsequence if necessary that
(γk, ηk) → (γ, η). Using (2.8) and driving k to infinity, we know that (γ, η) ∈
M(x̄, y, z, ξ). This shows that M(x̄, ·, ·, ·) is closed at (y, z, ξ). It also implies that
M(x̄, ·, ·, ·) is uniformly compact near (y, z, ξ). The two properties give rise to the
upper semicontinuity of M(x̄, ·, ·, ·) at (x, y, ξ) relative to set H.

Using Lemma 3.10, we are able to obtain a stronger version of Theorem 3.7 with
multipliers γ(ω) and η(ω) being measurable.

Theorem 3.11 (general necessary optimality conditions with measurability). Let
x̄ be a local solution of the true problem (1.1). Assume conditions (a)–(c) of Theorem
3.6 and Assumption 3.9 hold at x̄. Then

(i) Ψ(x̄, ξ(ω)) is integrably bounded and measurable, and there exist multipliers
ηG, ηH such that (3.7) holds;

(ii) there exist (y(ω), z(ω)) ∈ Γ(x̄, ξ(ω)), a measurable selection

(γ(ω), η(ω)) ∈M(x̄, y(ω), z(ω), ξ(ω)),

and multipliers ηG, ηH such that (3.8) holds;
(iii) there exists a M-stationary point (y(ω), z(ω)) of (1.2) and a corresponding

measurable M-multiplier (γ(ω), η(ω)), together with the first stage Lagrange
multipliers ηG, ηH, such that (3.9) holds.

Proof. Part (i). We need only to show that Ψ(x̄, ξ(ω)) is measurable. To this
end, we show that the set-valued mapping Ψ(x̄, ·) is upper semicontinuous on Ξ.

Let ξ ∈ Ξ be fixed. Note that Assumption 3.9 implies the inf-compact condition
in Assumption 2.14. By Proposition 2.15 (iii), Γ(x̄, ξ) is compact for every ξ ∈ Ξ.
Moreover, under Assumption 3.9, Γ(x̄, ·) is closed at ξ. Let B(ξ) denote a small closed
neighborhood (hence compact) of ξ relative to Ξ and G(ξ) := ⋃

ξ′∈B(ξ){Γ(x̄, ξ′)}. The
properties of Γ stated above guarantee the boundedness of G(ξ) and closedness of G(·)
at ξ. This and Assumption 3.5 imply that there exists a constant positive constant
C such that

sup
ξ′∈B(ξ),(y,z)∈Γ(x̄,ξ′)

(‖∇xf2(x̄, y, z, ξ
′)‖, ‖∇xψ(x̄, y, z, ξ

′)‖, ‖∇xF (x̄, y, z, ξ
′)‖) ≤ C.

On the other hand, from Proposition 2.12, we know thatM(x̄, ξ) is bounded, where
M(x̄, ξ) is defined as in (2.7). Let {ξk} ⊂ B(ξ) be such that ξk → ξ. We show that⋃

ξ′∈B(ξ) M(x̄, ξ′) is bounded. Assume for the sake of contradiction that this is not

true. Then there exists a sequence {ξk} ⊂ B(ξ), {ξk} → ξ̄ ∈ Ξ, (yk, zk) ∈ Γ(x̄, ξk) ⊂⋃
ξ′∈B(ξ){Γ(x̄, ξ′)}, and (γk, ηk) ∈ M(x̄, ξk) such that {(γk, ηk)} is unbounded. Since⋃
ξ′∈B(ξ){Γ(x̄, ξ′)} is compact, we can assume by extracting a subsequence if necessary

that (yk, zk) → (ȳ, z̄) ∈ Γ(x̄, ξ) as ξk → ξ. Using a similar argument to that of the
proof of Proposition 2.12, we can obtain a contradiction to the NNAMCQ at (x̄, ȳ, z̄, ξ).
This shows the boundedness of

⋃
ξ′∈B(ξ) M(x̄, ξ′), and together with the boundedness

of G(ξ), this implies the boundedness of Ψ(x̄, ξ′) over B(ξ).
To show the closedness of Ψ(x̄, ·) at ξ, it suffices to show the closedness

of
⋃

ξ′∈B(ξ) M(x̄, ξ′). This can be done by considering a sequence {ξk} ⊂ B(ξ),
{ξk} → ξ ∈ Ξ, (yk, zk) ∈ Γ(x̄, ξk) ⊂ ⋃

ξ′∈B(ξ){Γ(x̄, ξ′)} with (yk, zk) → (y, z) and

(γk, ηk) ∈ M(x̄, ξk) with (γk, ηk) → (γ, η) and substituting them into (2.8). Taking a



STOCHASTIC MPECS 1705

limit on both sides of the equation, we can show that (γ, η) ∈M(x̄, y, z, ξ) ⊂ M(x̄, ξ)
and hence the closedness.

Through Proposition 2.6, this gives the upper semicontinuity of Ψ(x̄, ξ). The
measurability follows straightforwardly from [42, Corollary 14.14] because we can
view Ψ(x̄, ξ(ω)) as a composition of an upper semincontinuous set-valued mapping
Ψ(x̄, ·) and a random vector ξ(ω) (which is measurable).

Part (ii). For the given q(x̄, ω) specified in part (iii) of Theorem 3.6, we know
that q(x̄, ω) ∈ Ψ(x̄, ξ(ω)). Therefore there exists (y(ω), z(ω)) ∈ Γ(x̄, ξ(ω)) (which is
measurable by [3, Theorem 8.2.11]) such that

q(x̄, ω) ∈
⋃

(γ,η)∈M(x̄,y(ω),z(ω),ξ(ω))

{∇xf2(x̄, y(ω), z(ω), ξ(ω)) +∇xψ(x̄, y(ω), z(ω), ξ(ω))
Tγ

+∇xF (x̄, y(ω), z(ω), ξ(ω))
	η}.

We can rewrite the above inclusion as

q(x̄, ω)−∇xf2(x̄, y(ω), z(ω), ξ(ω)) ∈ R(ω,M(x̄, y(ω), z(ω), ξ(ω)))(3.10)

where

R(ω, u) := (∇xψ(x̄, y(ω), z(ω), ξ),∇xF (x̄, y(ω), z(ω), ξ(ω)))
Tu.

Note that R(ω, u) is a Carathéodory mapping; i.e., R(·, u) is measurable and R(ω, ·)
is continuous. Recall that in Lemma 3.10, we have shown that M(x̄, y, z, ξ) is upper
semicontinuous with respect to (y, z, ξ) relative to H. Viewing M(x̄, y(ω), z(ω), ξ(ω))
as a composition of M(x̄, ·, ·, ·) and a random vector (y(ω), z(ω), ξ(ω)), we obtain
the measurability of M(x̄, y(ω), z(ω), ξ(ω)) through [42, Corollary 14.14]. Applying
Filippov’s theorem [3, Theorem 8.2.10] to (3.10), we can obtain a measurable selection

(γ(ω), η(ω)) ∈M(x̄, y(ω), z(ω), ξ(ω))

such that

q(x̄, ω) = ∇xf2(x̄, y(ω), z(ω), ξ(ω)) +R(ω, (γ(ω), η(ω)))

= ∇xf2(x̄, y(ω), z(ω), ξ(ω)) +∇xψ(x̄, y(ω), z(ω), ξ(ω))
	γ(ω)

+∇xF (x̄, y(ω), z(ω), ξ(ω))
	η(ω).

The conclusion follows by combining this and (3.5).
Part (iii) is trivial3 as it follows from part (ii).

4. The case of complementarity constraints. In this section, we consider a
special case when C = Rm

+ in the second stage problem (1.2). Consequently, we can
write the problem as

(4.1)

min
(y,z)∈Rl×Rm

f2(x, y, z, ξ)

s.t. 0 ≤ F (x, y, z, ξ) ⊥ z ≥ 0,
ψ(x, y, z, ξ) ≤ 0,

3We added the statement following a referee’s comment that it might be of interest to present
first order necessary conditions with the second stage part characterized for stationary points instead
of global optimal solutions as in part (ii) even though the conditions are obviously weaker than those
stated in the part (ii).
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and the SMPEC (defined by (1.1) and (1.2)) becomes an SMPCC (defined by (1.1)
and (4.1)) or equivalently

(4.2)

min
x,y,z(·)

f1(x) + E [f2(x, y, z(ω), ξ(ω))]

s.t. G(x) ≤ 0,
H(x) = 0,
x ∈ Q,
0 ≤ F (x, y, z(ω), ξ(ω)) ⊥ z(ω) ≥ 0 for a.e. ω,
ψ(x, y, z(ω), ξ(ω)) ≤ 0 for a.e. ω.

Our focus here is to derive the first order necessary optimality conditions for the
SMPCC. While the optimality conditions derived in the previous section can be ap-
plied to SMPCC broadly speaking, it might be of independent interest to investigate
the specific features of the optimality conditions for this problem.

Before proceeding with further discussion, we introduce some notation specific
for this problem. We continue to use v(x, ξ) to denote the optimal value of (4.1) and
Γ(x, ξ) its optimal solution set. Let (x, ξ) ∈ X×Ξ be fixed. For each feasible solution
(y, z) of (4.1) we define the index sets

I(y, z) := {i : ψi(x, y, z, ξ) = 0},
L := L(y, z) := {i : zi > 0, Fi(x, y, z, ξ) = 0},

I+ := I+(y, z) := {i : zi = 0, Fi(x, y, z, ξ) > 0},
I0 := I0(y, z) := {i : zi = 0, Fi(x, y, z, ξ) = 0}.

It is important to note that these index sets depend on both x and ξ.

4.1. Constraint qualifications and stationary points. By using Proposi-
tion 2.3 to express the coderivative D∗NRm

+
(z,−F (x, y, z, ξ))(η) explicitly, we can

write an M-stationary point of (4.1) in the well-known form as in the following defini-
tion. Moreover as it is well-known in the literature (see, e.g., [56]) we can define the
Clarke stationary point (C-stationary point) and Strong stationary point (S-stationary
point).

Definition 4.1 (C-, M- and S-stationary points). Let x ∈ X be fixed, and let
(y, z) be a feasible solution of the second stage problem (4.1). We say that (y, z) is an
M-stationary point and (γ, η) ∈ R

p
+ × R

m is an M-multiplier for problem (4.1) if

0 = ∇y,zf2(x, y, z, ξ) +∇y,zψ(x, y, z, ξ)
Tγ +∇y,zF (x, y, z, ξ)

T η + {(0, ζ)},(4.3)

0 = ψ(x, y, z, ξ)Tγ,(4.4)

ζL = 0, ηI+ = 0,

∀i ∈ I0, either ζi < 0, ηi < 0, or ζiηi = 0.

We say that (y, z) is an S-stationary point and (γ, η) ∈ R
p
+ × R

m is an S-multiplier
for problem (4.1) if (4.3)–(4.4) hold and

ζL = 0, ηI+ = 0,

∀i ∈ I0, ζi ≤ 0, ηi ≤ 0.

We say that (y, z) is a C-stationary point and (γ, η) ∈ R
p
+ ×R

m is a C-multiplier for
problem (4.1) if (4.3)–(4.4) hold and

ζL = 0, ηI+ = 0,

∀i ∈ I0, ζiηi ≥ 0.
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It is easy to see that the following relationship between the various stationary
condition holds:

S-stationary condition ⇒ M-stationary condition ⇒ C-stationary condition.

Moreover, under the following MPEC linear independence constraint qualification
(MPEC-LICQ), a local optimal solution of an MPEC is an S-stationary point and the
set of S-multipliers is a singleton; see [23].

Definition 4.2 (MPEC-LICQ). Let x ∈ X be fixed and I(y, z) := {i :
ψ(x, y, z, ξ) = 0}. We say that MPEC-LICQ holds at a feasible point (y, z) of second
stage problem (4.1) if

0 = ∇y,zψ(x, y, z, ξ)
T γ +∇y,zF (x, y, z, ξ)

T η + {(0, ζ)},
γi = 0 if i ∈ I(y, z), ηI+ = 0, ζL = 0

imply that γ = 0, η = 0, and ζ = 0.
Definition 4.3 (NNAMCQ for the complementarity constraint). Let (x, ξ) ∈

X × Ξ be fixed. We say that NNAMCQ holds at feasible point (y, z) of second stage
problem (4.1) if⎧⎪⎪⎨

⎪⎪⎩
0 = ∇y,zψ(x, y, z, ξ)

Tγ +∇y,zF (x, y, z, ξ)
T η + {(0, ζ)},

0 = ψ(x, y, z, ξ)Tγ, γ ≥ 0,
ζL = 0, ηI+ = 0,
∀i ∈ I0, either ζi < 0, ηi < 0, or ζiηi = 0

⇒ γ = 0, η = 0.

It is proved in [54, Proposition 4.5] that the NNAMCQ is equivalent to an MPEC
variant of MFCQ defined as follows.

Definition 4.4 (MPEC-GMFCQ). We say that MPEC general-
ized Mangasarian–Fromovitz constraint qualification (MPEC-GMFCQ) holds at a
feasible point (y, z) of second stage problem (4.1) if one of the following holds:

(a) for every partition of I0 into sets P,O,R with R �= ∅, there exist vectors
d ∈ R

l, h ∈ R
m such that hI+ = 0, hO = 0, hR ≥ 0,

〈∇y,zψi(x, y, z, ξ), (d, h)〉 ≤ 0, i ∈ I(y, z),
〈∇y,zFi(x, y, z, ξ), (d, h)〉 = 0, i ∈ L ∪ P,
〈∇y,zFi(x, y, z, ξ), (d, h)〉 ≤ 0, i ∈ R,

and either hi > 0 or

〈∇y,zFi(x, y, z, ξ), (d, h)〉 > 0 for some i ∈ R;

(b) for every partition of I0 into the sets P,O, the matrix[ ∇yFL∪P (x, y, z, ξ) ∇zFL∪P,L∪P (x, y, z, ξ)
]

has full row rank and there exist vectors d ∈ R
l, h ∈ R

m such that

hI+ = 0, hO = 0,

〈∇y,zψi(x, y, z, ξ), (d, h)〉 < 0, i ∈ I(y, z),
〈∇y,zFi(x, y, z, ξ), (d, h)〉 = 0, i ∈ L ∪ P.
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Definition 4.5 (NNAMCQ for the complementarity constraint with C-
multipliers). Let (x, ξ) ∈ X × Ξ be fixed. We say that NNAMCQ with C-multipliers
holds at feasible point (y, z) of second stage problem (4.1) if⎧⎪⎪⎨

⎪⎪⎩
0 = ∇y,zψ(x, y, z, ξ)

Tγ +∇y,zF (x, y, z, ξ)
T η + {(0, ζ)},

0 = ψ(x, y, z, ξ)Tγ, γ ≥ 0,
ζL = 0, ηI+ = 0,
∀i ∈ I0, ζiηi ≥ 0

⇒ γ = 0, η = 0.

It is easy to see that the following relationship between the various constraint
qualification hold:

MPEC-LICQ ⇒ NNAMCQ ⇒ NNAMCQ with C-multipliers.

4.2. First order necessary optimality conditions. We revisit the necessary
optimality conditions established in Theorems 3.7 and 3.11 for the two-stage SMPCC
defined by (1.1) and (4.1). Note that Assumptions 2.14 and 3.9 can be a bit more
specific by writing the variational inequality

r ∈ F (x, y, z, ξ) +NC(z)

as a complementarity constraint

0 ≤ r − F (x, y, z, ξ) ⊥ z ≥ 0.(4.5)

Theorem 4.6. Let x̄ be a local optimal solution of the true problem defined by
(1.1) and (4.1). Assume (a) Assumptions 2.14 and 3.5 hold at x̄ for every ξ ∈ Ξ; (b)
for every (y, z) ∈ Γ(x̄, ξ) and every ξ ∈ Ξ; (b1) the NNAMCQ for complementarity
constraint (equivalently MPEC-GMFCQ) holds or (4.1) has no inequality constraints
and one of the following constraint qualifications holds:

(b2) (SRCQ) the matrix ∇zFL,L(x̄, y, z, ξ) is nonsingular, and the Schur comple-
ment of the above matrix in the matrix[ ∇zFL,L(x̄, y, z, ξ) ∇zFL,I0(x̄, y, z, ξ)

∇zFI0,L(x̄, y, z, ξ) ∇zFI0,I0(x̄, y, z, ξ)

]
has positive principle minors;

(b3) −F is locally strongly monotone in z uniformly with respect to y; i.e., there
exists positive constant δ independent of y, neighborhoods U1 of y and U2 of
z such that

〈−F (x̄, y′, z′, ξ) + F (x̄, y′, z, ξ), z′ − z〉 ≥ δ‖z′ − z‖2,
∀z′ ∈ U2 ∩Rm

+ ∀z′ ∈ Rm
+ , y

′ ∈ U1;

(b4) the rank of the matrix ∇yF (x̄, y, z, ξ) is m;
(c) the problem (1.1) is calm at x̄ .

Then there exists an M-stationary point (y(ω), z(ω)) and corresponding multipliers
γ(ω), η(ω), together with first stage multipliers ηG, ηH, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ ∂f1(x̄) + E[∇xf2(x̄, y(ω), z(ω), ξ(ω)) +∇xψ(x̄, y(ω), z(ω), ξ(ω))
	γ(ω)

+∇xF (x̄, y(ω), z(ω), ξ(ω))
	η(ω)] + ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),

0 ≤ ηG ⊥ −G(x̄) ≥ 0,
0 = ∇y,zf2(x̄, y(ω), z(ω), ξ(ω)) +∇y,zψ(x̄, y(ω), z(ω), ξ(ω))

Tγ(ω)
+∇y,zF (x̄, y(ω), z(ω), ξ)

T η(ω) + {(0, ζ(ω))},
0 = ψ(x̄, y(ω), z(ω), ξ)Tγ(ω), γ(ω) ≥ 0,
ζL(ω) = 0, ηI+(ω) = 0,
∀i ∈ I0, either ζi(ω) < 0, ηi(ω) < 0, or ζi(ω)ηi(ω) = 0.
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If, in addition, Assumption 3.9 holds, then there exist measurable (random) multipliers
γ(ω), η(ω) such that the above optimality conditions hold.

Proof. By Robinson [38, Theorem 3.1], condition (b2) is equivalent to the strong
regularity condition of the generalized equation

0 ∈ F (x̄, y, z, ξ) +NR
m
+
(z)

for each fixed (x̄, ξ). (b3) and (b4) are restatements of Proposition 2.13 parts (ii) and
(iii), respectively. By Theorem 3.7, there exist selections

(y(ω), z(ω)) ∈ Γ(x̄, ξ(ω)), (γ(ω), η(ω)) ∈M(x̄, y(ω), z(ω), ξ(ω))

such that⎧⎨
⎩

0 ∈ ∂f1(x̄) + E[∇xf2(x̄, y(ω), z(ω), ξ(ω)) +∇xψ(x̄, y(ω), z(ω), ξ(ω))
	γ(ω)

+∇xF (x̄, y(ω), z(ω), ξ(ω))
	η(ω)] + ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),

ηG ≥ 0, 〈ηG, G(x̄)〉 = 0.

By the definition of M(x̄, y(ω), z(ω), ξ(ω)), one has

0 ∈ ∇y,zf2(x̄, y(ω), z(ω), ξ(ω)) +∇y,zψ(x̄, y(ω), z(ω), ξ(ω))
	γ(ω)

+∇y,zF (x̄, y(ω), z(ω), ξ(ω))
	η(ω)

+{0} ×D∗NRm
+
(z(ξ(ω)),−F (x̄, y(ω), z(ω), ξ(ω)))(η(ω)),

0 = ψ(x̄, y(ω), z(ω), ξ(ω))Tγ(ξ(ω)), γ(ξ(ω)) ≥ 0.

Therefore there exists ζ(ω) ∈ D∗NR
m
+
(z(ξ(ω)),−F (x̄, y(ω), z(ω), ξ(ω)))(η(ω)) such

that

0 = ∇y,zf2(x̄, y(ω), z(ω), ξ) +∇y,zψ(x̄, y(ω), z(ω), ξ(ω))
Tγ(ω)

+∇y,zF (x̄, y(ω), z(ω), ξ)
T η(ω) + {(0, ζ(ω))},

0 = ψ(x̄, y(ω), z(ω), ξ(ω))Tγ(ξ(ω)), γ(ξ(ω)) ≥ 0.

By the definition of coderivative, ζ(ω) ∈ D∗NRm
+
(z(ω),−F (x̄, y(ω), z(ω), ξ(ω)))(η(ω))

if and only if (ζ(ω),−η(ω)) ∈ NgphNRm
+
(z(ω),−F (x̄, y(ω), z(ω), ξ(ω))). Consequently,

by Proposition 2.3, one has

0 = ψ(x̄, y(ω), z(ω), ξ(ω))Tγ(ω), γ(ω) ≥ 0,

ζL(ω) = 0, ηI+(ω) = 0,

∀i ∈ I0, either ζi(ω) < 0, ηi(ω) < 0, or ζi(ω)ηi(ω) = 0.

Since an optimal solution must be an M-stationary point, the conclusion follows.
The existence of measurable multipliers under Assumption 3.9 follows from
Theorem 3.11.

Recall that Xu and Meng [52] investigated a class of SMPCCs where the under-
lying function in the complementarity constraint is assumed to be uniformly strongly
monotone in z. They considered an optimality condition which is derived by reformu-
lating the complementarity constraints as a system of nonsmooth equations and then
characterized the optimality condition in terms of Clarke subdifferentials of the refor-
mulated nonsmooth functions together with the corresponding Lagrange multipliers.
Our result here has extended their optimality condition [52, Proposition 5.1] in the
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following aspects: (a) the element under expectation operator is a singleton rather
than a set as in [52, Proposition 5.1] which could be potentially large at a nonsmooth
point; (b) we have included an inequality constraint ψ ≤ 0; (c) the second stage
problem here may have multiple solutions; (d) we use the set of M-multipliers for the
second stage problem which may be strictly contained in the set of C-multipliers, and
hence the resulting necessary condition is sharper.

We can establish the following sharper necessary optimality condition which uti-
lizes S-multipliers instead of M-multipliers of the second stage problem.

Theorem 4.7 (necessary optimality condition with S-multipliers). Let x̄ be a
local solution of the true problem defined by (1.1) and (4.1). Suppose (a) Assumptions
2.14 and 3.5 hold at x̄ for every ξ ∈ Ξ; (b) for every (y, z) ∈ Γ(x̄, ξ), MPEC-LICQ
holds; (c) the SMPCC problem defined by (1.1) and (4.1) is calm at x̄. Then there exist
a measurable S-stationary point (y(ω), z(ω))and corresponding measurable multipliers
γ(ω), η(ω), together with the multipliers ηG, ηH, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ ∂f1(x̄) + E[∇xf2(x̄, y(ω), z(ω), ξ(ω)) +∇xψ(x̄, y(ω), z(ω), ξ(ω))
	γ(ω)

+∇xF (x̄, y(ω), z(ω), ξ(ω))
	η(ω)] + ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),

0 ≤ ηG ⊥ −G(x̄) ≥ 0,
0 = ∇y,zf2(x̄, y(ω), z(ω), ξ(ω)) +∇y,zψ(x̄, y(ω), z(ω), ξ(ω))

Tγ(ω)
+∇y,zF (x̄, y(ω), z(ω), ξ(ω))

T η(ω) + {(0, ζ(ω))},
0 = ψ(x̄, y(ω), z(ω), ξ(ω))Tγ(ω), γ(ω) ≥ 0,
ζL(ω) = 0, ηI+(ω) = 0,
∀i ∈ I0, ζi(ω) ≤ 0, ηi(ω) ≤ 0.

Proof. By Theorem 3.7 there exists a selection (y(ω), z(ω)) ∈ Γ(x̄, ξ(ω)) and
corresponding M-multiplier {(γ(ω), η(ω))} ∈ M(x̄, y(ω), z(ω), ξ(ω)) such that (3.8)
holds. Since under MPEC-LICQ, any local optimal solution is an S-stationary point
with a unique S-multiplier, the set of S-multipliers and the set of M-multipliers co-
incide (see [23, 53]). The precise expression in the theorem follows by applying the
definition of an S-stationary point to (3.8). We now prove the measurability result
under extra assumption (a). Recall from Theorem 3.6 that q(x̄, ξ(ω)) is a measurable
selection of ∂xv(x̄, ξ(ω)) and

q(x̄, ξ(ω)) = ∇xf2(x̄, y(ω), z(ω), ξ(ω)) +∇xψ(x̄, y(ω), z(ω), ξ(ω))
	γ(ω)

+∇xF (x̄, y(ω), z(ω), ξ(ω))
	η(ω).

Hence the measurability of (γ(ω), η(ω)) follows from the inverse image theorem for
the calculus of measurable maps (see [3, Theorem 8.2.9]).

It is important to note that the optimality conditions established in Theorem 4.7
do not require uniform inf-compactness as in Theorem 4.6. This is because the set of
S-multipliers at an S-stationary point is a singleton, and consequently we may use the
inverse image measurability instead of Filippov’s theorem to obtain the measurability
of S-multipliers. In fact if the set of M-multipliers M(x̄, y(ω), z(ω), ξ(ω)) in Theo-
rem 4.6 is a singleton, then we can also conclude the measurability of the selection
(γ(ω), η(ω)) without uniform inf-compactness in the same way.

To conclude this section, let us make a few more comments. The first order
necessary conditions established in Theorems 4.6 and 4.7 are in terms of M- and S-
stationarity. In deterministic MPEC, there are a number of other stationarities being
considered such as B-stationarity and C-stationarity. It is therefore natural to ask
whether we can derive the optimality conditions for SMPCC defined by (1.1) and
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(4.1) in terms of B- and C-stationarity. The answer is yes. Indeed, one can easily
use the sensitivity analysis in terms of C-multipliers by Lucet and Ye [21, Theorem
4.8] to derive the necessary optimality condition with C-multipliers under the weaker
NNAMCQ with C-multipliers. A similar result can be derived for the B-multipliers
under the piecewise MPEC MFCQ using [21, Theorem 4.11].

5. The classical two-stage stochastic program. In this section, we consider
the more specific case of the second stage problem (1.2) when C = R

m, and conse-
quently the variational inequality constraint reduces to an equality constraint and the
SMPEC problem (1.1)–(1.2) becomes an ordinary two-stage stochastic program

(5.1)

min f1(x) + E [v(x, ξ(ω))]
s.t. G(x) ≤ 0,

H(x) = 0,
x ∈ Q,

where v(x, ξ) is the optimal value of the second stage problem

(5.2)

min
y∈Rl

f2(x, y, ξ)

s.t. ψ(x, y, ξ) ≤ 0,
F (x, y, ξ) = 0.

The problem has been well-studied in the literature of stochastic programming.
For instance, Rockafellar and Wets [41] investigated first order necessary conditions
of a similar class of two-stage stochastic programming problems where the underly-
ing functions are convex but not necessarily continuously differentiable, and Hiriart-
Urruty [18] took them further to nonconvex cases. Outrata and Römisch [32] derived
first order necessary optimality conditions of the problem in terms of limiting sub-
gradients. Their approach is similar to ours, that is, through the limiting subgra-
dients of the value function of the second stage problem. However, since they used
Mordukhovich’s exchange rule [28, Lemma 6.18], their results require the probability
space of ξ to be nonatomic. More recently, inspired by the need for the convergence
analysis of the Monte Carlo sampling method applied to the two-stage stochastic pro-
gram, Ralph and Xu [35] derived a couple of optimality conditions for the first stage
problem by replacing the limiting subdifferential with the convex hull of the gradients
of the Lagrange function of the second stage problems at local optimal solutions and
stationary points. We will come back to this after our main results Theorem 5.2.

To proceed with the discussion, we need the standard boundedness condition As-
sumption 3.5 and the inf-compactness condition Assumption 2.14. The boundedness
condition remains the same, while the inf-compactness condition may be more specific
by replacing the variational inequality by an equality as follows.

Assumption 5.1 (inf-compactness). Let (x, ξ) ∈ X × Ξ be fixed. There exists a
constant δ > 0 such that the set

{y : ψ(x, y, ξ) ≤ q, F (x, y, ξ) = r, f2(x, y, ξ) ≤ α, (q, r) ∈ B(0, δ)}

is bounded for every constant α.
Theorem 5.2 (necessary optimality condition for the classical case). Let x̄ be

a local optimal solution of the classical two-stage stochatic program and Assumptions
3.5 and 5.1 hold at x̄ for every ξ ∈ Ξ. Assume that MFCQ holds for problem (5.2) at
every y ∈ Γ(x̄, ξ), and the problem (5.1) is calm at x̄. Then



1712 HUIFU XU AND JANE J. YE

(i) there exist ηG, ηH such that{
0 ∈ ∂f1(x̄) + E[Ψ(x̄, ξ(ω))] + ∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),
0 ≤ ηG ⊥ −G(x̄) ≥ 0,

(5.3)

where Ψ(x, ξ) is defined as

Ψ(x, ξ) :=
⋃

y∈Γ(x,ξ)

⋃

(γ,η)∈M(x,y,ξ)

{∇xf2(x, y, ξ) +∇xψ(x, y, ξ)
Tγ +∇xF (x, y, ξ)�η}

and M(x, y, ξ) is the set of Lagrange multipliers of the second stage problem
(5.2);

(ii) there exist y(ω) ∈ Γ(x̄, ξ(ω)) and γ(ω) ∈ R
p, η(ω) ∈ R

m, ηG ∈ R
s, ηH ∈ R

r

such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ ∂f1(x̄) + E[∇xf2(x̄, y(ω), ξ(ω)) +∇xψ(x̄, y(ω), ξ(ω))
	γ(ω)

+∇xF (x̄, y(ω), ξ(ω))
	η(ω)]

+∂〈G, ηG〉(x̄) + ∂〈H, ηH〉(x̄) +NQ(x̄),
0 ≤ ηG ⊥ −G(x̄) ≥ 0,
0 = ∇yf2(x̄, y(ω), ξ(ω)) +∇yψ(x̄, y(ω), ξ(ω))

	γ(ω)
+∇yF (x̄, y(ω), ξ(ω))

	η(ω),
〈ψ(x̄, y(ω), ξ(ω)), γ(ω)〉 = 0, γ(ω) ≥ 0;

(5.4)

(iii) there exist a stationary point y(ω) and corresponding Lagrange multipliers
γ(ω) ∈ R

p, η(ω) ∈ R
m, together with the first stage multipliers ηG ∈ R

s, ηH ∈
R

r, such that (5.4) holds.
If Assumption 5.1 is strengthened to be uniform with respect to ξ, then Ψ(x̄, ξ(ω))
is measurable in statement (i) and in statements (ii)–(iii), existence of measurable
multipliers γ(ω) ∈ R

p, η(ω) ∈ R
m are guaranteed.

Observe first that statement (ii) is indeed Outrata and Römisch’s Theorem 3.5 in
[32]. Our statement is more general in the sense that the probability space here does
not have to be nonatomic. See the theorem and its proof for details.

Let us drop f1(x). Then the strengthened version of Theorem 5.2 (i) under the
uniform inf-compactness coincides with one of the optimality conditions derived by
Ralph and Xu [35] when the probability measure of ξ is nonatomic. However, it might
be interesting to point out that the conditions are derived in a different way: In [35],
Ψ is considered as a relaxation of the Clarke subdifferential of the value function of
(5.2), while here it is a relaxation of the limiting subdifferential of the value function.
The results here are sharper when the probability measure is atomic.

Let us now discuss parts (ii) and (iii) of the theorem. The conditions are a
combination of the classical KKT conditions of the second stage problem and the
new optimality conditions of the first stage with the following characteristics: (a) the
expected value of a gradient of the Lagrange function of the second stage problem with
respect to x at a stationary point is used to reflect the derivative information from the
second stage problem; (b) the limiting subdifferential instead of Clarke subdifferential
of the first stage constraint functions is used; (c) the optimality condition is established
under Clarke’s calmness condition.

6. Final comments. The first order necessary optimality conditions we derived
in this paper have potential implications in the study of numerical methods for solv-
ing the two-stage SMPEC problem (1.1)–(1.2). To explain this, let us consider the
well-known Monte Carlo sampling method for the SMPEC. In [45], Shapiro and Xu
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sketched an NLP relaxation approach for a two-stage SMPEC discretized through
Monte Carlo sampling. The same approach can be applied to our problem albeit
our second stage problem may have multiple local and/or global solutions. However,
the convergence results might be significantly different: When we solve our two-stage
discretized SMPEC, we are more likely to obtain a stationary point or a local optimal
solution than a global optimal solution because our second stage problem is noncon-
vex and the variational inequality constraint has multiple solutions. Consequently, the
approximate stationary solution of the first stage problem might converge to a sta-
tionary point characterized by the optimality condition (3.7) or an M-stationary point
under some specific circumstances. This kind of asymptotic analysis has been recently
carried out by Ralph and Xu in [35] for a classical two-stage stochastic programming
problem where the second stage generally has multiple local and/or global optimal
solutions. The optimality conditions we derived here lay down a foundation for the
Monte Carlo sampling MPEC-NLP approach to be applied to the SMPEC problem
(1.1)–(1.2). They might also be used for the convergence analysis of a stochastic
approximation method proposed by Gaivoronski and Werner for solving a class of
two-stage stochastic bilevel programming problems [11] (where the equilibrium con-
ditions reformulated from KKT conditions of the lower level program typically have
multiple solutions).

In summary, the second stage problem in a two-stage SMPEC usually has multiple
local and/or global optimal solutions. The Monte Carlo sampling method coupled
with the NLP-MPEC relaxation or the stochastic approximation method may be
applied to solve it, and the statistical estimators obtained from the discretized SMPEC
often converge to a stationary point characterized by one of our optimality conditions.
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