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Abstract. This paper studies stability for parametric mathematical programs with geometric
constraints. We show that, under the no nonzero abnormal multiplier constraint qualification and
the second-order growth condition or second-order sufficient condition, the locally optimal solution
mapping and stationary point mapping are nonempty-valued and continuous with respect to the
perturbation parameter and, under some suitable conditions, the stationary pair mapping is calm.
Furthermore, we apply the above results to parametric mathematical programs with equilibrium
constraints. In particular, we show that the M-stationary pair mapping is calm with respect to
the perturbation parameter if the M-multiplier second-order sufficient condition is satisfied, and the
S-stationary pair mapping is calm if the S-multiplier second-order sufficient condition is satisfied and
the bidegenerate index set is empty.
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1. Introduction. Consider the following parametric mathematical programwith
geometric constraints:

(MPGCp) min
x

f(x, p)(1.1)

s.t. F (x, p) ∈ Λ,

where f : �n1+n2 → � and F : �n1+n2 → �l are both twice continuously differen-
tiable functions and Λ ⊆ �l is a nonempty closed set. Problem (1.1) is very general.
It includes as special cases the standard nonlinear programs and the problem con-
sidered by Robinson [26] where Λ is assumed to be a closed convex cone. When the
data of the problems are subject to small perturbations, the stability of solutions and
multipliers is an important issue. To the best of our knowledge, most research on this
issue has been devoted to the case where Λ is assumed to be closed and convex; see,
e.g., Kojima [18], Robinson [26], and Bonnans and Shapiro [4]. However, restricting
Λ in problem (1.1) to be convex significantly reduces the applicability of the model
since many practical optimization problems can be formulated as problem (1.1) with a
nonconvex set Λ. For example, the disjunctive programming problem [7] where Λ is a
union of finitely many convex sets is such a problem, whereas problems such as math-
ematical programs with equilibrium constraints [22, 25], mathematical programs with
vertical complementarity constraints [29], and mathematical programs with vanishing
constraints [1, 15] can be reformulated as disjunctive programming problems.

∗Received by the editors March 5, 2012; accepted for publication (in revised form) July 3, 2012;
published electronically September 27, 2012.

http://www.siam.org/journals/siopt/22-3/86865.html
†School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China (lei guo

opt@yahoo.com.cn, lin g h@yahoo.com.cn). The work of these authors was supported in part by
NSFC grant 11071028.

‡Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 3R4
Canada (janeye@uvic.ca). This author’s work was supported in part by NSERC.

1151



1152 LEI GUO, GUI-HUA LIN, AND JANE J. YE

For the case where Λ is nonconvex, Levy and Mordukhovich [19] and Mor-
dukhovich [23] have studied Aubin’s pseudo-Lipschitz continuity of stationary point
mapping and stationary pair mapping by making use of the advanced tools of vari-
ational analysis and coderivatives of set-valued mappings [23, 28]. In this paper, we
focus on the continuity of locally optimal solution mapping and stationary point map-
ping, and the calmness of stationary pair mapping. Our incentive for studying the
general problem (1.1) comes from the fact that the parametric mathematical program
with equilibrium constraints (MPEC),

(MPECp) min
x

f(x, p)

s.t. g(x, p) ≤ 0, h(x, p) = 0,(1.2)

0 ≤ G(x, p) ⊥ H(x, p) ≥ 0,

where f is the same as above, g : �n1+n2 → �m1 , h : �n1+n2 → �m2 , G,H :
�n1+n2 → �m are all twice continuously differentiable functions, and a ⊥ b means
that vector a is perpendicular to vector b, can be reformulated as a special case of
problem (1.1) by letting

F (x, p) :=

⎛
⎝ g(x, p)

h(x, p)
Ψ(x, p)

⎞
⎠ , Λ := �m1− × {0}m2 × Cm,(1.3)

where �− denotes the nonpositive orthant {x ∈ � | x ≤ 0} and

Ψ(x, p) :=

⎛
⎜⎜⎜⎜⎜⎝

−G1(x, p)
−H1(x, p)

...
−Gm(x, p)
−Hm(x, p)

⎞
⎟⎟⎟⎟⎟⎠ , C := { (a, b) ∈ �2 | 0 ≤ −a ⊥ −b ≥ 0}.(1.4)

We call the nonconvex cone Λ defined as in (1.3) the MPEC cone. Here, the minus
signs in Ψ are used only for convenience of the subsequent analysis.

It is well known that MPECs play a very important role in many fields such as
engineering design, economic equilibria, transportation science, multilevel games, and
mathematical programming itself. However, this kind of problem is generally diffi-
cult to deal with because their constraints fail to satisfy the standard Mangasarian–
Fromovitz constraint qualification (MFCQ) at any feasible point [34]. A lot of research
has been done during the last two decades to study the optimality conditions for
MPECs, including the Clarke (C-), Mordukhovich (M-), strong (S-), and Bouligand
(B-) stationarity conditions; see, e.g., [10, 11, 17, 29, 31, 32, 33, 34]. At the same time,
algorithms for solving MPECs have been proposed by using a number of approaches
such as the sequential quadratic programming approach, penalty function approach,
relaxation approach, and active set identification approach; see, e.g., [8, 21, 22, 25]
and the references therein.

Compared with the developments on optimality conditions and algorithms, lit-
tle research has been done with the stability for (MPECp). Lignola and Morgan
[20] studied the existence and continuity of the approximate globally optimal solu-
tions to parametric Stackelberg problems in a topological frame. Scheel and Scholtes
[29] considered the stability of C-stationarity and B-stationarity and showed that,
under the upper level strict complementarity and some regularity conditions, both
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the C-stationary and B-stationary points are locally unique for (MPECp). Izmailov
[14] studied some kind of semicontinuity and Lipschitz continuity of locally optimal
solution mapping under some mild conditions. More recently, Jongen, Shikhman,
and Steffensen [16] and Shikhman [30] studied the stability for C-stationarity and
S-stationarity and showed that, under suitable conditions, the C-/S-stationary points
are strongly stable in the sense of Kojima [18]. A natural question is, are there any
stability results for the M-stationarity?

When Λ is a closed convex cone, Robinson [26] showed that if the second-order
sufficient condition and Robinson’s constraint qualification hold at a locally optimal
solution of (MPGCp), the set of locally stationary points is nonempty and continuous
for sufficiently smooth perturbations of constraints and objective function and, if Λ
reduces to a polyhedral cone, the locally optimal solutions and stationary pairs obey
some type of Lipschitz condition. In this paper, we first extend various stability results
of Robinson [26] to the case where Λ is a closed set and then apply the obtained results
to (MPECp). Note that when F and Λ are defined as in (1.3), it can be shown that
the standard stationarity for (MPGCp) reduces to the M-stationarity for (MPECp).

The organization of the paper can be summarized as follows. In section 2, we
give some useful terminologies and results. In section 3, we show that under the no
nonzero abnormal multiplier constraint qualification and either second-order growth
condition or second-order sufficient condition, the locally optimal solution mapping
and stationary point mapping are nonempty-valued and continuous in the sense of
set-valued analysis with respect to the perturbation parameter. Section 4 is devoted
to the calmness of stationary pair mapping, which means that the mapping possesses
some kind of Lipschitz continuity. When Λ reduces to a polyhedral cone, the calmness
result given in section 4 improves Theorem 4.2 of [26] in that no constraint qualification
is required here. It also extends Lemma 2 of [12] from the linear perturbation case
to the smooth perturbation case. In section 5, we apply the results in sections 3
and 4 to (MPECp). In particular, we show that the M-stationary pair mapping
is calm with respect to the perturbation parameter under the M-multiplier second-
order sufficient condition, which complements the recent work of Jongen, Shikhman,
and Steffensen [16], and the S-stationary pair mapping is calm if the S-multiplier
second-order sufficient condition is satisfied and the bidegenerate index set is empty.
The results can be applied to mathematical programs with vertical complementarity
constraints [29] and mathematical programs with vanishing constraints [1, 15] in a
similar manner.

Throughout the paper, all vectors are viewed as column vectors. Moreover, we
denote by ‖ · ‖ the Euclidean norm and denote by Bδ(x) := {y ∈ �n | ‖y − x‖ < δ}
and B̄δ(x) := {y ∈ �n | ‖y − x‖ ≤ δ} the open and closed balls centered at x with
radius δ > 0, respectively. Given a set Ω ⊆ �n and a point x ∈ �n, the distance from
x to Ω is denoted by

dist(x,Ω) := inf {‖y − x‖ | y ∈ Ω}.

For a mapping Φ : �n → �m and a vector x ∈ �n, ∇Φ(x) denotes the transposed Ja-
cobian of Φ at x and gphΦ denotes the graph of Φ, i.e., gphΦ := {(z, v) ∈ �n+m | v ∈
Φ(z)}. Given a matrix A, [A]i denotes the transposed vector of its ith row vector. In
addition, for simplicity, x′ →Ω x means x′ → x with x′ ∈ Ω.

2. Preliminaries. In this section, we review some basic concepts and results,
which will be used later on.
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2.1. Variational analysis. We next give some background materials on varia-
tional analysis. See [5, 6, 23, 24, 28] for more details.

Let Φ : �n ⇒ �m be a set-valued mapping and let Ω ⊆ �n be a nonempty set.
We denote by lim supx→Ωx̄ Φ(x) the Painlevé–Kuratowski upper limit with respect to
Ω, i.e.,

lim sup
x→Ωx̄

Φ(x) := {v ∈ �m | ∃xk →Ω x̄, vk → v with vk ∈ Φ(xk) for each k}.

Definition 2.1. The tangent cone of Ω at x∗ ∈ Ω is a closed cone defined by

TΩ(x∗) := { d | d = lim
k→∞

tk(x
k − x∗) with tk ≥ 0 and xk →Ω x∗}.

The regular normal cone (also known as the Frechét normal cone) of Ω at x∗ ∈ Ω is
a closed cone defined by

N̂Ω(x
∗) := {d | dT (x− x∗) ≤ o(‖x− x∗‖) for each x ∈ Ω},

where o(α)
α → 0 as α ↓ 0. The limiting normal cone (also known as the Mordukhovich

normal cone or basic normal cone) of Ω at x∗ ∈ Ω is a closed cone defined by

NΩ(x
∗) := lim sup

x→Ωx∗
N̂Ω(x).

By straightforward calculation, we can obtain the formulas for the regular normal
cone and limiting normal cone of the set C defined in (1.4) as follows (see, e.g.,
[17, 31]).

Proposition 2.1. For any (a, b) ∈ C, we have

N̂C(a, b) =

⎧⎨
⎩(d1, d2)

∣∣∣∣∣∣
d1 ∈ �, d2 = 0 if a = 0 > b
d1 = 0, d2 ∈ � if a < 0 = b
d1 ≥ 0, d2 ≥ 0 if a = b = 0

⎫⎬
⎭ ,

NC(a, b) =

⎧⎨
⎩(d1, d2)

∣∣∣∣∣∣
d1 ∈ �, d2 = 0 if a = 0 > b
d1 = 0, d2 ∈ � if a < 0 = b

either d1 > 0, d2 > 0 or d1d2 = 0 if a = b = 0

⎫⎬
⎭ .

2.2. Set-valued mappings and semicontinuity. Let Ω be an open subset
of �n.

Definition 2.2. A set-valued mapping Φ : Ω ⇒ �m is said to be outer semicon-
tinuous or closed at x̄ ∈ Ω if

lim sup
x→Ωx̄

Φ(x) = Φ(x̄).

Φ is said to be calm at (x̄, ȳ) ∈ gphΦ if there exist δ > 0 and κ > 0 such that

Φ(x) ∩ Bδ(ȳ) ⊆ Φ(x̄) + κ‖x− x̄‖B̄1(0) ∀x ∈ Bδ(x̄).

Φ is said to be locally bounded at x̄ ∈ Ω or uniformly compact near x̄ ∈ Ω if there
is δ > 0 such that the closure of

⋃
x∈Bδ(x̄)

Φ(x) is compact. Φ is said to be upper
semicontinuous at x̄ ∈ Ω if, for every ε > 0, there exists δ > 0 such that

Φ(Bδ(x̄)) ⊂ Φ(x̄) + εB1(0).
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Φ is said to be lower semicontinuous at x̄ ∈ Ω if, for any open set V intersecting Φ(x̄),
there exists a neighborhood U of x̄ such that Φ(x) intersects V for each x ∈ U . Φ is
said to be continuous at x̄ if Φ is both upper semicontinuous and lower semicontinuous
at x̄.

Remark 2.1. Although the term “calmness” was coined in [28], the concept of
calmness for a set-valued mapping was first introduced by Ye and Ye in [33] under
the term “pseudo upper Lipschitz continuity,” which comes from the fact that it is
a weaker condition than either Aubin’s pseudo-Lipschitz continuity or Robinson’s
upper Lipschitz continuity. Hence, the calmness can be considered as a kind of weak
Lipschitz continuity.

We will need the following result; see, e.g., [28, Theorem 5.19].
Proposition 2.2. Let Φ : Ω ⇒ �m be uniformly compact near x̄. Then Φ is

outer semicontinuous at x̄ if and only if Φ is upper semicontinuous at x̄ and Φ(x̄) is
closed.

2.3. Optimality conditions for (MPECp). We next review some popular
stationarity concepts for (MPECp). In order to facilitate the notation, for a given
feasible point x∗ of (MPECp), we let

I∗g := { i | gi(x∗, p∗) = 0},
I∗g− := { i | gi(x∗, p∗) < 0},
I∗ := { i | Gi(x

∗, p∗) = 0 < Hi(x
∗, p∗)},

J ∗ := { i | Gi(x
∗, p∗) = 0 = Hi(x

∗, p∗)},
K∗ := { i | Gi(x

∗, p∗) > 0 = Hi(x
∗, p∗)}.

Obviously, {I∗,J ∗,K∗} is a partition of {1, 2, . . . ,m}. Moreover, given r ≥ 0 and
p ∈ �n2 , we define the generalized MPEC-Lagrangian of (MPECp) as

Lr
MPEC(x, p;λ, μ, u, v) := rf(x, p) + g(x, p)Tλ+ h(x, p)Tμ−G(x, p)Tu−H(x, p)T v.

Definition 2.3 (see [29, 32, 33]). Let x∗ be a given feasible point of (MPECp∗).
(1) We say that x∗ is generalized Mordukhovich stationary (generalized M-sta-

tionary) to (MPECp∗) if there exist vectors (r, λ, μ, u, v) �= 0 with r ≥ 0 such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇xL
r
MPEC(x

∗, p∗;λ, μ, u, v) = 0,

λ ≥ 0, g(x∗, p∗)Tλ = 0,

ui = 0, i ∈ K∗,
vi = 0, i ∈ I∗,
either uivi = 0 or ui > 0, vi > 0, i ∈ J ∗.

(2.1)

(2) We say that x∗ is generalized strongly stationary (generalized S-stationary)
to (MPECp∗) if there exist vectors (r, λ, μ, u, v) �= 0 with r ≥ 0 such that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇xL
r
MPEC(x

∗, p∗;λ, μ, u, v) = 0,

λ ≥ 0, g(x∗, p∗)Tλ = 0,

ui = 0, i ∈ K∗,
vi = 0, i ∈ I∗,
ui ≥ 0, vi ≥ 0, i ∈ J ∗.

(2.2)

(3) Given any r ≥ 0, we denote by Mr
M (x∗, p∗) and Mr

S(x
∗, p∗) the sets of

generalized multipliers (λ, μ, u, v) such that (r, λ, μ, u, v) �= 0 satisfies (2.1) and (2.2),



1156 LEI GUO, GUI-HUA LIN, AND JANE J. YE

respectively. If there exists (λ∗, μ∗, u∗, v∗) ∈ Mr
M (x∗, p∗) (or Mr

S(x
∗, p∗)) with r = 1,

we say that x∗ is M-stationary (or S-stationary) to (MPECp∗).
For a given x ∈ �n1 and index sets I1 ⊆ {1, . . . ,m2} and I2, I3 ⊆ {1, . . . ,m},

we let

G (x, p∗; I1, I2, I3) := {∇xhj(x, p
∗),∇xGı(x, p

∗),∇xHj(x, p
∗) | j ∈ I1, ı ∈ I2, j ∈ I3}.

Definition 2.4 (see [11, 29, 31, 32]). Let x∗ be a given feasible point of (MPECp∗).
(1) We say that the MPEC no nonzero abnormal multiplier constraint qualifica-

tion (MPEC-NNAMCQ) holds at x∗ if there is no nonzero multiplier (λ, μ, u, v) such
that ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇xg(x
∗, p∗)λ+∇xh(x

∗, p∗)μ−∇xG(x∗, p∗)u−∇xH(x∗, p∗)v = 0,

λ ≥ 0, g(x∗, p∗)Tλ = 0,

ui = 0, i ∈ K∗,
vi = 0, i ∈ I∗,
either uivi = 0 or ui > 0, vi > 0, i ∈ J ∗.

(2.3)

(2) We say that the MPEC linear constraint qualification holds if all functions
{g, h,G,H} are linear with respect to x.

(3) Let I1 ⊆ {1, . . . ,m2}, I2 ⊆ I∗, and I3 ⊆ K∗ be such that G (x∗, p∗; I1, I2, I3)
is a basis for spanG (x∗, p∗; {1, . . . ,m2}, I∗,K∗). We say that the MPEC relaxed
constant positive linear dependence (MPEC-RCPLD) condition holds at x∗ if there
exists δ > 0 such that

– G (x, p∗; {1, . . . ,m2}, I∗,K∗) has the same rank for each x ∈ Bδ(x
∗);

– for each I4 ⊆ I∗g and I5, I6 ⊆ J ∗, if there exist vectors {λ, μ, u, v} with
λi ≥ 0 for each i ∈ I4, either ulvl = 0 or ul > 0, vl > 0 for each l ∈ J ∗, which are
not all zero, such that∑

i∈I4

λi∇xgi(x
∗, p∗) +

∑
j∈I1

μj∇xhj(x
∗, p∗)−

∑
ı∈I2∪I5

uı∇Gı(x
∗, p∗)

−
∑

j∈I3∪I6

vj∇xHj(x
∗, p∗) = 0;

then, for any x ∈ Bδ(x
∗), the vectors

{∇xgi(x, p
∗)}i∈I4 , {∇xhj(x, p

∗)}j∈I1 , {∇xGı(x, p
∗)}ı∈I2∪I5, {∇xHj(x, p

∗)}j∈I3∪I6

are linearly dependent.
The MPEC-RCPLD was introduced in [11] to show the isolatedness of an M-

stationary point, and it was shown to be a constraint qualification for the M-stationarity
in [10]. The MPEC-RCPLD is a much weaker condition than the MPEC-NNAMCQ
and MPEC linear constraint qualification. In the case where there is no comple-
mentarity constraint, the MPEC-RCPLD reduces to the relaxed constant positive
linear dependence (RCPLD) condition introduced recently in [2] for standard nonlin-
ear programs.

3. Stability analysis for (MPGCp). In this section, we consider the stability
for (MPGCp). We denote by X (p) the feasible region of (MPGCp). Moreover, the
Lagrangian function of (MPGCp) is defined as

L(x, p; y) := f(x, p) + F (x, p)T y
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and the critical cone of (MPGCp) at x
∗ ∈ X (p∗) is defined as

C(x∗, p∗) := {d | ∇xf(x
∗, p∗)T d ≤ 0,∇xF (x∗, p∗)Td ∈ TΛ(F (x∗, p∗))}.

Then the stationarity system of (MPGCp) can be written as{
∇xL(x, p; y) = 0,
y ∈ NΛ(F (x, p)).

(3.1)

We define the multiplier mapping M : �n1+n2 ⇒ �l, the stationary point mapping
S : �n2 ⇒ �n1 , and the locally optimal solution mapping O : �n2 ⇒ �n1 as follows:

M(x, p) := {y | (x, y, p) satisfies (3.1)} ,
S(p) := {x | (x, y, p) satisfies (3.1) for some y} ,
O(p) := {x | x is a locally optimal solution of (MPGCp)}.

For standard nonlinear programs with equality and inequality constraints, it is
well known that the MFCQ holds at a feasible point if and only if the set of Lagrange
multipliers is nonempty and bounded; see, e.g., [4, 9]. For (MPGCp), we consider the
following constraint qualification, which is equivalent to the MFCQ in the case of stan-
dard nonlinear programs and equivalent to Robinson’s constraint qualification when
Λ reduces to a closed convex set; see, e.g., [28, Exercise 6.39] and [4, Proposition 2.97].

Definition 3.1 (see [28]). We say that the no nonzero abnormal multiplier con-
straint qualification (NNAMCQ) holds at x∗ ∈ X (p∗) if there is no nonzero multiplier
y ∈ �l such that {

∇xF (x∗, p∗)y = 0,
y ∈ NΛ(F (x∗, p∗)).

It is well known that, under the NNAMCQ, the set M(x∗, p∗) is nonempty and
compact for any fixed x∗ ∈ X (p∗). We next show that the multiplier mapping is
locally bounded (i.e., uniformly compact) and upper semicontinuous with respect to
(x, p). This extends Theorem 2.3 of Robinson [26] in that Λ is only assumed to be a
closed set here.

Theorem 3.1. If the NNAMCQ holds at x∗ ∈ X (p∗), then there exists δ > 0
such that the set-valued mappings M and S ∩ B̄δ(x

∗) are locally bounded and upper
semicontinuous on Bδ(x

∗)× Bδ(p
∗) and Bδ(p

∗), respectively.
Proof. We first show that M is locally bounded at (x∗, p∗). Suppose to the

contrary that there exist sequences {xk} → x∗, {pk} → p∗, and ‖yk‖ → ∞ with
yk ∈ M(xk, pk). This implies{

0 = ∇xf(x
k, pk) +∇xF (xk, pk)yk,

yk ∈ NΛ(F (xk, pk)).
(3.2)

Assume without loss of generality that yk/‖yk‖ → y∗ with ‖y∗‖ = 1. It follows from
(3.2) and the outer semicontinuity of NΛ (see, e.g., [28, Proposition 6.6]) that

0 = lim
k→∞

(∇xf(x
k, pk)

‖yk‖ +
∇xF (xk, pk)yk

‖yk‖

)
= ∇xF (x∗, p∗)y∗,

y∗ = lim
k→∞

yk

‖yk‖ ∈ lim sup
k→∞

NΛ(f(x
k, pk)) = NΛ(F (x∗, p∗)).
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This together with ‖y∗‖ = 1 contradicts the fact that the NNAMCQ holds at x∗ ∈
X (p∗), and hence the set-valued mapping M is locally bounded at (x∗, p∗); i.e., there
exist a number δ > 0 and a compact set K such that

M(x, p) ⊆ K ∀(x, p) ∈ Bδ(x
∗)× Bδ(p

∗).(3.3)

It follows from (3.3) that M is locally bounded at each point (x, p) ∈ Bδ(x
∗) ×

Bδ(p
∗). Since ∇xf and ∇xF are continuous and NΛ is outer semicontinuous, it

is easy to verify that the set-valued mapping M is outer semicontinuous at every
point (x, p) ∈ Bδ(x

∗) × Bδ(p
∗). Therefore, by virtue of Proposition 2.2, M is upper

semicontinuous on Bδ(x
∗)× Bδ(p

∗) as well.
Now consider the set-valued mapping S ∩ B̄δ(x

∗). Since

S(p) ∩ B̄δ(x
∗) =

{
x ∈ B̄δ(x

∗)
∣∣∣ ∃y ∈ NΛ(F (x, p))

s.t. ∇xf(x, p) +∇xF (x, p)y = 0

}
,(3.4)

it is clear that S ∩ B̄δ(x
∗) is locally bounded at every p̄ ∈ Bδ(p

∗). So it remains to
show that S ∩ B̄δ(x

∗) is outer semicontinuous at every p̄ ∈ Bδ(p
∗). Suppose that

xk ∈ S(pk) ∩ B̄δ(x
∗) and (xk, pk) → (x̄, p̄). Then there exists yk ∈ M(xk, pk). It

follows from (3.3) that yk ∈ K for each k sufficiently large. Without loss of generality,
we assume yk → ȳ. From the outer semicontinuity of NΛ, we have ȳ ∈ NΛ(F (x̄, p̄))
and ∇xf(x̄, p̄)+∇xF (x̄, p̄)ȳ = 0. Thus we have x̄ ∈ S(p̄)∩B̄δ(x

∗), which implies that
S ∩ B̄δ(x

∗) is outer semicontinuous at p̄. Therefore, by Proposition 2.2, S ∩ B̄δ(x
∗) is

upper semicontinuous on Bδ(p
∗) as well. This completes the proof.

Since for standard nonlinear programs the NNAMCQ (or, equivalently, the
MFCQ) is a necessary and sufficient condition for compactness of the set of mul-
tipliers, a natural question to ask is whether the compactness of the multiplier set
M(x∗, p∗) at x∗ ∈ X (p∗) implies the NNAMCQ at x∗. The following example shows
that the answer is negative.

Example 3.1. Consider the problem

min 2x1

s.t. F (x) :=

⎛
⎝ x2 − x2

1

x1

−x2

⎞
⎠ ∈ Λ := {0} × C,

where C is the same as in (1.4). Clearly, the only optimal solution of the above
problem is x∗ = (0, 0). The stationarity system at x∗ = (0, 0) is

[
2
0

]
+

[
0 1 0
1 0 −1

]⎡⎣ μ
u
v

⎤
⎦ =

[
0
0

]
,

⎡
⎣ μ

u
v

⎤
⎦ ∈ �×NC(0, 0).

By Proposition 2.1, we have

NC(0, 0) = {(u, v) | either u > 0, v > 0 or uv = 0}.
It is easy to verify that the set of multipliers is equal to the singleton {(0,−2, 0)}, which
is nonempty and bounded. However, there exists a nonzero vector y = (μ, u, v) =
(1, 0, 1) �= 0 such that

[
0 1 0
1 0 −1

]⎡
⎣ μ

u
v

⎤
⎦ =

[
0
0

]
,

⎡
⎣ μ

u
v

⎤
⎦ ∈ � ×NC(0, 0),

and hence the NNAMCQ does not hold at x∗ = (0, 0).
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It is well known that the NNAMCQ at x∗ ∈ X (p∗) implies the existence of local
error bound at x∗. In fact, as shown in the next lemma, this property is robust with
respect to small perturbation; i.e., under the NNAMCQ at x∗ ∈ X (p∗), the local error
bound property holds for all points in a neighborhood of (x∗, p∗).

Lemma 3.1. Suppose that the NNAMCQ holds at x∗ ∈ X (p∗). Then there exist
δ > 0 and κ > 0 such that

dist(x,X (p)) ≤ κ dist(F (x, p),Λ) ∀x ∈ Bδ(x
∗), ∀p ∈ Bδ(p

∗).

Proof. Let Sp(x) be a set-valued mapping defined by Sp(x) := F (x, p) − Λ and
let its inverse be defined by S−1

p (u) := {x | u ∈ Sp(x)}. It is not hard to see that
S−1
p (0) = {x | F (x, p) ∈ Λ} = X (p) and

x ∈ S−1
p (u) ⇐⇒ x ∈ S−1

p∗ (u+ F (x, p∗)− F (x, p)).

Since the NNAMCQ holds at x∗ ∈ X (p∗), it follows from [28, Example 9.44] (or the
Mordukhovich criterion) that there exists δ1 > 0 such that

dist(x,S−1
p∗ (u)) ≤ κ dist(u,Sp∗(x)) ∀x ∈ Bδ1(x

∗), ∀u ∈ Bδ1(0).(3.5)

Pick δ ∈ (0, δ1] such that if u ∈ Bδ(0), x ∈ Bδ(x
∗), and p ∈ Bδ(p

∗), then ‖u+F (x, p∗)−
F (x, p)‖ ≤ δ1, i.e., u + F (x, p∗) − F (x, p) ∈ Bδ1(0). It then follows from (3.5) that,
for each u ∈ Bδ(0), x ∈ Bδ(x

∗), and p ∈ Bδ(p
∗),

dist(x,S−1
p (u)) = dist(x,S−1

p∗ (u + F (x, p∗)− F (x, p)))

≤ κ dist(u+ F (x, p∗)− F (x, p),Sp∗(x))

= κ dist(u,Sp(x)).

Therefore, the desired result is obtained by letting u = 0. The proof is complete.
We next show that if x∗ ∈ X (p∗) satisfies the NNAMCQ and second-order growth

condition, then the locally optimal solution exists under small perturbation. This
improves Theorem 3.1 of Robinson [26], where the same conclusion was shown under
the stronger assumption that Λ is a closed convex cone and the second-order sufficient
condition holds, because the second-order sufficient condition implies the second-order
growth condition when Λ reduces to a closed convex set (see, e.g., [4, Theorem 3.63]).

Theorem 3.2. Suppose that the NNAMCQ and second-order growth condition
hold at x∗ ∈ X (p∗); i.e., there exist ε0 > 0 and δ0 > 0 such that

f(x, p∗) ≥ f(x∗, p∗) +
1

2
ε0‖x− x∗‖2 ∀x ∈ X (p∗) ∩ Bδ0(x

∗).

Then, for any ε > 0, there exists δ > 0 such that if p ∈ Bδ(p
∗), then (MPGCp) has a

locally optimal solution in Bε(x
∗).

Proof. Since the NNAMCQ holds at x∗, by Lemma 3.1, there exist δ1 > 0 and
κ > 0 such that

dist(x,X (p)) ≤ κ dist(F (x, p),Λ) ∀x ∈ Bδ1(x
∗), ∀p ∈ Bδ1(p

∗).(3.6)

By the second-order growth condition, there exist ε0 > 0 and δ2 ∈ (0, δ1) such that

f(x, p∗) ≥ f(x∗, p∗) +
1

2
ε0‖x− x∗‖2 ∀x ∈ X (p∗) ∩ Bδ2(x

∗).(3.7)
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Let ε > 0 and δ3 := 1
2 min(δ2, ε). Due to the uniform continuity of f and F over

B2δ3(x
∗) × Bδ3(p

∗), there exist α ∈ (0, δ3/2) and δ ∈ (0,min(δ3, α/κ)) such that, for
each p ∈ Bδ(p

∗) and x1, x2 ∈ B2δ3(x
∗) with ‖x1 − x2‖ ≤ α,

|f(x1, p∗)− f(x2, p)| < γ :=
ε0δ

2
3

16
(3.8)

and

κ‖F (x1, p∗)− F (x1, p)‖ ≤ min

(
α,

1

2
δ3

)
.(3.9)

Let p ∈ Bδ(p
∗). Then, by (3.6) and (3.9), we have

(3.10)

dist(x∗,X (p)) ≤ κ dist(F (x∗, p),Λ) ≤ κ‖F (x∗, p)− F (x∗, p∗)‖ ≤ min

(
α,

1

2
δ3

)
.

It is not hard to see from (3.10) that X (p)∩Bδ3(x
∗) is nonempty. Since f is continuous

in x and X (p) ∩ B̄δ3(x
∗) is nonempty compact, there exists x∗

p ∈ Xp ∩ B̄δ3(x
∗) such

that

f(x∗
p, p) ≤ f(x, p) ∀x ∈ X (p) ∩ B̄δ3(x

∗).(3.11)

It suffices to show that ‖x∗
p − x∗‖ < δ3 for each p ∈ Bδ(p

∗), which implies that x∗
p

is a locally optimal solution of (MPGCp). In fact, by (3.10), there exists x′ ∈ X (p)
such that ‖x∗ − x′‖ ≤ α. We then have from (3.8) that

|f(x∗, p∗)− f(x′, p)| ≤ γ

and hence

f(x′, p) ≤ f(x∗, p∗) + |f(x∗, p∗)− f(x′, p)| ≤ f(x∗, p∗) + γ.(3.12)

This together with (3.11) implies that

f(x∗
p, p) ≤ f(x∗, p∗) + γ.(3.13)

On the other hand, for each x ∈ X (p) with ‖x − x∗‖ = δ3, we have from (3.6) and
(3.9) that

dist(x,X (p∗)) ≤ κ dist(F (x, p∗),Λ) ≤ κ‖F (x, p∗)− F (x, p)‖ ≤ α.

Therefore, there exists x0 ∈ X (p∗) satisfying ‖x0 − x‖ ≤ α and hence

δ3
2

≤ ‖x− x∗‖ − ‖x− x0‖ ≤ ‖x0 − x∗‖ ≤ ‖x− x∗‖+ ‖x− x0‖ ≤ 2δ3.

It then follows from (3.7) and (3.8) that |f(x0, p∗)− f(x, p)| < γ and

f(x0, p∗) ≥ f(x∗, p∗) +
1

2
ε0‖x0 − x∗‖2 ≥ f(x∗, p∗) +

1

8
ε0δ

2
3 = f(x∗, p∗) + 2γ.

This together with (3.8) indicates that, for each x ∈ X (p) with p ∈ Bδ(p
∗) and

‖x− x∗‖ = δ3,

f(x, p) ≥ f(x0, p∗)− ‖f(x0, p∗)− f(x, p)| > f(x∗, p∗) + γ.(3.14)

It follows from (3.13) and (3.14) that ‖x∗
p − x∗‖ < δ3. The proof is completed by

noting that δ3 < ε.
We now study conditions under which a stationary point of (MPGCp) is isolated.

We will require Λ to satisfy one of the following two assumptions.
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Assumption 3.1.

(A1) If ak → a∗ and bk → b∗ with ak ∈ NΛ(b
k), there exists an infinite subset

K ⊆ N such that (ak)T (b∗ − bk) ≤ 0 and (a∗)T (bk − b∗) ≤ 0 for each k ∈ K.
(A2) If ak → a∗ and bk → b∗ with ak ∈ NΛ(b

k), there exists an infinite subset
K ⊆ N such that (ak)T (b∗ − bk) ≤ 0 and (a∗)T bk = 0 for each k ∈ K.

Note that (A2) implies (A1) and, by the outer semicontinuity of NΛ, a
k → a∗ and

bk → b∗ with ak ∈ NΛ(b
k) imply a∗ ∈ NΛ(b

∗). If Λ is a closed convex set, then Λ must
satisfy (A1). In fact, by the definition of a normal cone, we have (ak)T (b∗ − bk) ≤ 0
and (a∗)T (bk − b∗) ≤ 0. Moreover, a sufficient condition for both (A1) and (A2) to
hold is that ak ◦ bk = 0, where ◦ stands for the Hadamard product. Indeed, we can
show that aki b

∗
i = 0 and a∗i b

k
i = 0 for i = 1, . . . , l. If a∗i �= 0, then aki �= 0 for each

k sufficient large, which implies that bki = 0 for such k since aki b
k
i = 0. Similarly, we

have aki b
∗
i = 0 for i = 1, . . . , l. Hence, it follows that if Λ is a union of finitely many

half spaces �li1− ×{0}li2, then it satisfies (A1) and (A2) by ak ◦ bk = 0. Thus, since the
MPEC cone defined in (1.3) is a union of finitely many half spaces, it satisfies (A1)
and (A2) automatically.

In general, stability analysis for optimization problems requires some second-order
sufficient conditions. In what follows, we give several kinds of second-order sufficient
conditions for (MPGCp).

Definition 3.2. We say that the strong second-order sufficient condition
(SSOSC) for (MPGCp) holds at x∗ ∈ X (p∗) if M(x∗, p∗) �= ∅ and, for every
y∗ ∈ M(x∗, p∗),

dT∇2
xL(x

∗, p∗; y∗)d > 0 ∀d ∈ C(x∗, p∗)\{0}.

We say that the second-order sufficient condition (SOSC) for (MPGCp) holds at
(x∗, y∗) with y∗ ∈ M(x∗, p∗) if

dT∇2
xL(x

∗, p∗; y∗)d > 0 ∀d ∈ C(x∗, p∗)\{0}.

Definition 3.3. We say that the multiplier-stability for (MPGCp) holds at x
∗ ∈

X (p∗) if, for any stationary point sequence {xk} ⊆ S(p∗)\{x∗} converging to x∗, there
exists a multiplier sequence {yk ∈ M(xk, p∗)} containing a bounded subsequence.

Note that the sequence {yk} in Definition 3.3 may not be unique. It is clear from
Theorem 3.1 that if the NNAMCQ holds at x∗ ∈ X (p∗), then x∗ is multiplier-stable.
For Λ with some special structures, there may exist some weak conditions to ensure
the multiplier-stability. For example, the MPEC-RCPLD at x∗ is sufficient to ensure
the multiplier-stability when Λ is the MPEC cone; see the proof of Theorem 5.1
in [11]. Consequently, if F is linear with respect to x and Λ is the MPEC cone, the
MPEC linear constraint qualification holds and hence the multiplier-stability holds
at every feasible point. In fact, when F is linear with respect to x and Λ is a union
of polyhedral sets satisfying some kind of separability, the multiplier-stability holds.
Let Λ := ∪N

ν=1Λν .
– We say that Λ is locally separable at x if, for any sequence {xk} converging

to x, there exist ν0 ∈ {1, . . . , N} and a subsequence {xk}k∈K such that F (xk, p∗) ∈
Λν0\ ∪ν 	=ν0 Λν , k ∈ K.

For simplicity, assume that F (xk, p∗) := Axk + a and Λν := {x | Bνx ≤ bν}, ν =
1, . . . , N . Let x ∈ X (p∗). Pick an arbitrary sequence {xk} converging to x with the
associated multiplier sequence {yk} satisfying

∇xf(x
k, p∗) +AT yk = 0, yk ∈ NΛ(Ax

k + a).(3.15)
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By the separability assumption, we may assume without loss of generality that Axk+
a ∈ Λν0\ ∪ν 	=ν0 Λν for every k. Then we have from (3.15) that

∇xf(x
k, p∗) +AT yk = 0, yk ∈ NΛν0

(Axk + a).(3.16)

It follows from (3.16) and [28, Theorem 6.46] that

∇xf(x
k, p∗) +AT yk = 0, yk = (Bν0)Tλk,

0 ≤ λk ⊥ Bν0(Axk + a)− bν0 ≤ 0.

Let J k := {i | [Bν0 ]Ti (Ax
k + a)− bν0i = 0}. Then we have

∇xf(x
k, p∗) +

∑
i∈J k

λk
i [M ]i = 0, λk

i ≥ 0 (i ∈ J k), M := Bν0A.

By Carathéodory’s theorem for cone hulls (see, e.g., [3, Proposition 1.3.1]), we may as-
sume without loss of generality that {[M ]i, i ∈ J k} are linearly independent. Assume
further that J k ≡ J (otherwise, we can choose a subsequence). Then we have

∇xf(x
k, p∗) +

∑
i∈J

λk
i [M ]i = 0, λk

i ≥ 0 (i ∈ J ).

It is not hard to see that {λk} is bounded by setting λk
i = 0 if i /∈ J . Obviously, {yk}

is bounded by noting that yk = (Bν0)Tλk. Therefore, the multiplier-stability holds
at x if Λ is locally separable at x ∈ Λ.

Robinson [26, Theorem 2.4] showed the isolatedness of a stationary point under
the assumptions that Λ is a convex cone and the SSOSC holds, while Bonnans and
Shapiro [4, Proposition 4.52] showed the isolatedness when Λ is a polyhedral cone and
the second-order growth condition holds. In what follows, we show the isolatedness
under much weaker conditions, and hence our result improves both Robinson’s and
Bonnans and Shapiro’s results.

Since (A1) must hold if Λ is convex and Robinson’s constraint qualification implies
the multiplier-stability, the following result improves Theorem 2.4 of Robinson [26] in
that Λ is only needed to be a closed set satisfying (A1) instead of a closed convex cone
in [26].

Theorem 3.3. Let x∗ ∈ S(p∗) and let the set Λ satisfy (A1) in Assumption 3.1.
Suppose that the multiplier-stability and SSOSC hold at x∗. Then there exists a neigh-
borhood V of x∗ containing no other stationary point of (MPGCp) for p = p∗.

Proof. Suppose to the contrary that there exists a sequence {xk} ⊆ S(p∗)\{x∗}
converging to x∗. Since the multiplier-stability holds at x∗, we may assume without
loss of generality that there exists a multiplier sequence {yk} → y∗ such that{

0 = ∇xf(x
k, p∗) +∇xF (xk, p∗)yk,

yk ∈ NΛ(F (xk, p∗)).(3.17)

We further assume (xk−x∗)/‖xk−x∗‖ → d0 with ‖d0‖ = 1. It is clear from the outer
semicontinuity of NΛ that y∗ ∈ NΛ(F (x∗, p∗)) and hence y∗ ∈ M(x∗, p∗). Note that,
for each k,

Λ � F (xk, p∗) = F (x∗, p∗) +∇xF (x∗, p∗)T (xk − x∗) + o(‖xk − x∗‖)

and hence

∇xF (x∗, p∗)Td0 = lim
k→∞

F (xk, p∗)− F (x∗, p∗)
‖xk − x∗‖ ∈ TΛ(F (x∗, p∗)).(3.18)
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Since Λ satisfies (A1), there exists an infinite subset K such that, for each k ∈ K,

(y∗)T (F (xk, p∗)− F (x∗, p∗)) ≤ 0, (yk)T (F (x∗, p∗)− F (xk, p∗)) ≤ 0.(3.19)

Noting that {yk} is bounded, we have that, for each k ∈ K,

(yk)TF (xk, p∗)− (yk)TF (x∗, p∗) = (yk)T∇xF (x∗, p∗)T (xk − x∗) + o(‖xk − x∗‖).

It follows from (3.19) that, for each k ∈ K,

(yk)T∇xF (x∗, p∗)T (xk − x∗) + o(‖xk − x∗‖) ≥ 0.

Dividing it by ‖xk − x∗‖ and taking a limit, we obtain

(y∗)T∇xF (x∗, p∗)T d0 ≥ 0.

It follows from (3.17) that

0 = ∇xf(x
k, p∗)T (xk − x∗) + (yk)T∇xF (xk, p∗)T (xk − x∗).(3.20)

Dividing it by ‖xk−x∗‖ and taking a limit, we have ∇xf(x
∗, p∗)T d0 ≤ 0. Since (3.18)

holds, this indicates that d0 ∈ C(x∗, p∗) and hence, by the SSOSC at x∗,

(d0)T∇2
xL(x

∗, p∗; y∗)d0 > 0.(3.21)

It follows from (3.1), (3.17), (3.19), and the twice continuous differentiability of F
that, for each k ∈ K,

0 ≥ −(yk − y∗)T (F (xk, p∗)− F (x∗, p∗))
= (xk − x∗)T∇xL(x

k, p∗; yk)− (yk − y∗)T (F (xk, p∗)− F (x∗, p∗))
= (xk − x∗)T∇xL(x

k, p∗; y∗)− (yk − y∗)T (F (xk, p∗)− F (x∗, p∗)
− ∇xF (xk, p∗)T (xk − x∗))

= (xk − x∗)T∇2
xL(x

∗, p∗; y∗)(xk − x∗)

− 1

2
(yk − y∗)T (D2

xF (x∗, p∗)(xk − x∗, xk − x∗))

+ o(‖xk − x∗‖2),

where D2
xF (x∗, p∗) can be regarded as the second-order derivative of F at x∗ ∈ X (p∗).

Dividing the above inequality by ‖xk − x∗‖2 and taking a limit, we can get a contra-
diction to (3.21). This completes the proof.

The following result improves Proposition 4.52 of Bonnans and Shapiro [4] in that
Λ does not need to be a polyhedral cone.

Theorem 3.4. Let x∗ ∈ S(p∗) and let the set Λ satisfy (A2) in Assumption 3.1.
Suppose that the multiplier-stability and second-order growth condition hold at x∗.
Then there exists a neighborhood V of x∗ containing no other stationary point of
(MPGCp) for p = p∗.

Proof. Note that the SSOSC assumption in Theorem 3.3 is used to show (3.21).
For this theorem, it is sufficient to show (3.21) under the second-order growth condi-
tion at x∗. In fact, by the second-order growth condition, there exist δ > 0 and c > 0
such that

f(x, p∗) ≥ f(x∗, p∗) + c‖x− x∗‖2 ∀x ∈ X (p∗) ∩ Bδ(x
∗).(3.22)
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Since yk ∈ NΛ(F (xk, p∗)) and Λ satisfies (A2), there exists an infinite subset K such
that

(y∗)TF (xk, p∗) = 0 ∀k ∈ K.

This implies (y∗)TF (x∗, p∗) = 0 and hence L(xk, p∗; y∗) = f(xk, p∗), L(x∗, p∗; y∗) =
f(x∗, p∗). Thus, by (3.1) and (3.22), we have that, for each k ∈ K,

c‖xk − x∗‖2 ≤ L(xk, p∗; y∗)− L(x∗, p∗; y∗)

=
1

2
(xk − x∗)T∇2

xL(x
∗, p∗; y∗)(xk − x∗) + o(‖xk − x∗‖2),

which implies (3.21). This completes the proof.
Since the NNAMCQ implies the multiplier-stability, we have the following result

immediately.
Corollary 3.1. Let x∗ ∈ S(p∗) and the NNAMCQ hold at x∗. Suppose that

either (A1) and the SSOSC hold at x∗ or (A2) and the second-order growth condition
hold at x∗. Then there exists a neighborhood V of x∗ containing no other stationary
point of (MPGCp) for p = p∗.

It is interesting that, even for standard nonlinear programs, our result improves
the classical result. Note that the RCPLD is a very weak constraint qualification and
implies the multiplier-stability when Λ = �l1− × {0}l2. It is weaker than the relaxed
constant rank condition. It holds, for example, if all constraint functions are linear
with respect to x.

Corollary 3.2. Consider the standard nonlinear program, i.e., the set Λ :=
�l1− × {0}l2 . Let x∗ ∈ S(p∗). Suppose that the RCPLD and second-order growth
condition hold at x∗. Then there exists a neighborhood V of x∗ containing no other
stationary point of (MPGCp) for p = p∗.

The isolatedness of a stationary point has been shown under either the SSOSC
or the second-order growth condition. When Λ reduces to a closed convex set, the
SOSC implies the second-order growth condition; see, e.g., [4, Theorem 3.63]. For a
nonconvex set Λ, does the SSOSC imply the second-order growth condition or the
other way around? The answer is negative. We now give some examples to show
that the SSOSC neither implies nor is implied by the second-order growth condition.
The first example shows that the SSOSC holds but the second-order growth condition
does not hold.

Example 3.2. Consider the problem

min (x1 − 1)2 + x2
2

s.t. (−x1,−x2) ∈ C,

where C is the same as in (1.4). It is easy to see that x∗ = (x∗
1, x

∗
2) = (0, 0) is a

stationary point with the unique multiplier (u, v) = (−2, 0) ∈ NC(0, 0) (see Proposi-
tion 2.1) but it is not a locally optimal solution, which implies that the second-order
growth condition does not hold at x∗. However, it is easy to verify that

∇2
xL(x

∗;u, v) =
[

2 0
0 2

]
,

which is a positive definite matrix. Hence the SSOSC holds at x∗.
The following example shows that the second-order growth condition holds but

the SSOSC does not hold.
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Example 3.3. Consider the problem

min x2
1 + x2

2

s.t. (x2
1, x

2
2) ∈ C.

Obviously, x∗ = (0, 0) is the global optimal solution and the second-order growth
condition holds at x∗. On the other hand, the critical cone C(x∗) = �2 and, for any
(u, v),

∇2
xL(x

∗;u, v) =
[

2(1 + u) 0
0 2(1 + v)

]
.

Picking a multiplier (u, v) = (−2, 0) and d0 = (1, 0)T , we have

(d0)T∇2
xL(x

∗;u, v)d0 = −2 < 0.

Therefore, the SSOSC does not hold at x∗.
The rest of this section is devoted to studying the continuity of locally optimal

solutions and stationary points. The following result improves Theorem 3.2 of Robin-
son [26] in that Λ does not need to be a closed convex cone.

Theorem 3.5. Let x∗ ∈ S(p∗) and let the set Λ satisfy (A1) in Assumption 3.1.
Suppose that the NNAMCQ, SSOSC, and second-order growth condition hold at x∗.
Then there exist δ > 0 and ε > 0 such that both O ∩ Bδ(x

∗) and S ∩ Bδ(x
∗) are

continuous at p∗ and, for each p ∈ Bε(p
∗), ∅ �= O(p) ∩ Bδ(x

∗) ⊆ S(p) ∩ Bδ(x
∗).

Proof. Since the NNAMCQ and SSOSC hold at x∗, by Corollary 3.1, x∗ is an
isolated stationary point; i.e., there exists δ1 > 0 such that

S(p∗) ∩ Bδ1(x
∗) = {x∗}.

Since the second-order growth condition holds at x∗ and the NNAMCQ persists under
small perturbations (see, e.g., [28, proof of Theorem 6.14]), there exist ε1 > 0 and
δ2 ∈ (0, δ1) such that, for any ε′ ∈ (0, ε1] and δ′ ∈ (0, δ2],

O(p∗) ∩ Bδ′(x
∗) = S(p∗) ∩ Bδ′(x

∗) = {x∗},(3.23)

O(p) ∩ Bδ′(x
∗) ⊆ S(p) ∩ Bδ′(x

∗) ∀p ∈ Bε′(p
∗).(3.24)

Moreover, it follows from Theorem 3.1 that there exists δ ∈ (0, δ2) such that S∩Bδ(x
∗)

is upper semicontinuous at p∗. For such δ, since the NNAMCQ and second-order
growth condition hold at x∗, it follows from Theorem 3.2 that there exists ε ∈ (0, ε1)
such that

O(p) ∩ Bδ(x
∗) �= ∅ ∀p ∈ Bε(p

∗).(3.25)

This, together with (3.23)–(3.24), implies that O ∩ Bδ(x
∗) is upper semicontinuous

at p∗.
We next show that O∩Bδ(x

∗) and S∩Bδ(x
∗) are both lower semicontinuous at p∗.

To this end, let S ⊆ Bδ(x
∗) be an arbitrary open set with O(p∗) ∩ Bδ(x

∗) ∩ S �= ∅.
It is obvious from (3.23) that O(p∗) ∩ Bδ(x

∗) = {x∗} ⊆ S. Thus, we have from
Theorem 3.2 that there exists a neighborhood V of p∗ such that, for each p ∈ V ,
O(p) ∩ Bδ(x

∗) ∩ S �= ∅. Hence, O ∩ Bδ(x
∗) is lower semicontinuous at p∗. This,

together with (3.23)–(3.24), implies that S ∩ Bδ(x
∗) is lower semicontinuous at p∗.
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Therefore, both S ∩ Bδ(x
∗) and O ∩ Bδ(x

∗) are continuous at p∗. The proof is
completed by noting the condition (3.25).

By virtue of Theorems 3.2 and 3.4, we can get the following result in a way similar
to Theorem 3.5.

Theorem 3.6. Let x∗ ∈ S(p∗) and let the set Λ satisfy (A2) in Assumption 3.1.
Suppose that the NNAMCQ and second-order growth condition hold at x∗. Then there
exist δ > 0 and ε > 0 such that both O ∩ Bδ(x

∗) and S ∩ Bδ(x
∗) are continuous at p∗

and, for each p ∈ Bε(p
∗), ∅ �= O(p) ∩ Bδ(x

∗) ⊆ S(p) ∩ Bδ(x
∗).

4. Calmness of stationary point mapping. Theorems 3.5 and 3.6 show that
the stationary point mapping near x∗ is continuous at p∗ under some suitable con-
ditions, but it gives no measure of how it depends on p. In this section, we make
some additional assumptions on the set Λ and show that the stationary pair mapping
p → {(x, y) | (p, x, y) satisfies (3.1)} is calm with respect to p at (p∗, x∗, y∗) under
mild conditions.

Our study on calmness for (MPGCp) is based on its linearized problem, and the
linearized problem itself is also important just like the importance of the linear and
quadratic programming problems to the study of nonlinear programming problems.
Thus, we first consider the following quadratic program with linear geometric con-
straints:

(QP)(a,q) min
x

1

2
xTQx+ xT q(4.1)

s.t. Ax + a ∈ Λ,

where Q is a symmetric matrix, and A and {a, q} are a matrix and vectors with appro-
priate dimensions. Here, vectors {a, q} are considered to be perturbation parameters.
The stationarity system of (QP)(a,q) at a feasible point x with multiplier y can be
written as

Qx+AT y + q = 0, y ∈ NΛ(Ax+ a).(4.2)

Note that the SSOSC for (QP)(a,q) at a feasible point x is independent of the multi-
pliers, that is,

dTQd > 0 ∀d ∈ C(x) \ {0},

where C(x) := {d | (Qx + q)T d ≤ 0, ATd ∈ TΛ(Ax + a)} is the critical cone. In order
to study the calmness of stationary pair mapping for (QP)(a,q), we further make the
following assumptions on the set Λ.

Assumption 4.1.

(A3) The set-valued mapping NΛ : �l ⇒ �l is polyhedral [27]; i.e., the graph of
NΛ is a union of finitely many polyhedral sets.

(A4) Given y∗ ∈ NΛ(F (x∗, p∗)), there exists δ > 0 such that NΛ(F (x, p)) ∩
Bδ(y

∗) ⊆ NΛ(F (x∗, p∗)) for each (x, p) ∈ Bδ(x
∗, p∗).

(A3) holds when Λ is a union of polyhedral sets (e.g., the MPEC cone). For
simplicity, we assume that Λ is a union of two polyhedral sets, i.e., Λ := A ∪B with
A and B to be polyhedral. Let a ∈ Λ and assume without loss of generality that
a ∈ A ∩B. We have

NA∪B(a) = lim sup
a′→A∪B(a)

N̂A∪B(a
′)

= N̂A∪B(a) ∪ lim sup
a′→A\Ba

N̂A(a
′) ∪ lim sup

a′→B\Aa
N̂B(a

′) ∪ lim sup
a′→A∩Ba

N̂A∪B(a
′).
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By the polyhedron assumption of A and B, we see that NA∪B(a) is a union of finitely
many polyhedral sets and, by the polyhedron assumption again, its graph is a union
of finitely many polyhedral sets. Thus, (A3) holds. (A4) holds when Λ is a polyhedral
set. Moreover, we can show that (A4) also holds if Λ is an MPEC cone discussed in
the next section.

The following result extends Lemma 1 of Hager and Gowda [12] from the case
where Λ = �l1− × {0}l2 by noting that the multiplier-stability automatically holds in
the case.

Theorem 4.1. Suppose that x∗ is a stationary point of (QP)(a∗,q∗); i.e., there
exists y∗ such that (x∗, q∗, a∗, y∗) satisfies (4.2). Assume that x∗ is multiplier-stable
and the assumption (A3) holds. Assume also that either (A1) and the SSOSC hold
at x∗ or (A2) and the second-order growth condition hold at x∗. Then there exist
β > 0 and δ > 0 such that if (x, y) is a solution of (4.2) with (q, a) ∈ Bδ(q

∗, a∗) and
x ∈ Bδ(x

∗), then

‖x− x∗‖ ≤ β‖(q, a)− (q∗, a∗)‖.

Proof. Recall that any finite composition of polyhedral set-valued mappings is
polyhedral [27]. By (A3), the set {(x, a, y) | y ∈ NΛ(Ax + a)} is a union of finitely
many polyhedral sets. Define a set-valued mapping by

F(q, a) := {(x, y) | (q, a, x, y) satisfies (4.2)}.

It is not hard to see that its graph

gphF := {(q, a, x, y) | (q, a, x, y) satisfies (4.2)}

is a union of finitely many polyhedral sets. Thus, F is a polyhedral set-valued map-
ping. Let P1 be the projection operator defined by P1(x, y) := x. It follows that
P1 ◦ F is a polyhedral set-valued mapping.

By [27, Proposition 1], a polyhedral set-valued mapping is upper Lipschitz con-
tinuous; i.e., there exist β > 0 independent of (q∗, a∗) and δ1 > 0 such that

P1 ◦ F(q, a) ⊆ P1 ◦ F(q∗, a∗) + β‖(q, a)− (q∗, a∗)‖B̄1(0) ∀(q, a) ∈ Bδ1(q
∗, a∗).(4.3)

Moreover, by Theorems 3.3 and 3.4, the stationary point x∗ is isolated; i.e., there
exists δ2 ∈ (0, δ1) such that

P1 ◦ F(q∗, a∗) ∩ Bδ2(x
∗) = {x∗}.(4.4)

Letting δ := δ2/2, we have from (4.3) and (4.4) that, for each x ∈ P1 ◦F(q, a)∩Bδ(x
∗)

and (q, a) ∈ Bδ(q
∗, a∗),

‖x− x∗‖ = dist(x, P1 ◦ F(q∗, a∗) ∩ B2δ(x
∗))

= dist(x, P1 ◦ F(q∗, a∗)) ≤ β‖(q, a)− (q∗, a∗)‖.

This completes the proof.
We next extend the above results to (MPGCp). To this end, we first give an error

estimate for a union of polyhedral sets by using the well-known result in [13].
Lemma 4.1. Let S := ∪N

i=1Si, where Si := {x | Aix ≤ ai, Bix = bi} is nonempty
for each i. Then there exists c > 0 such that, for each x,

dist(x, S) = min
1≤i≤N

dist(x, Si) ≤ c min
1≤i≤N

(‖max{0, Aix− ai}‖+ ‖Bix− bi‖).
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Proof. Since each Si is polyhedral, it follows from [13] that, for each i, there exists
ci > 0 such that

dist(x, Si) ≤ ci
(
‖max{0, Aix− ai}‖+ ‖Bix− bi‖

)
.

Since S is closed, we have dist(x, S) = min1≤i≤N dist(x, Si). Letting c = max1≤i≤N ci,
we can get the desired result.

The following result shows the calmness of stationary pair mapping for (MPGCp).
Recall that the multiplier-stability automatically holds when Λ is a polyhedral set and
F is linear with respect to x. It is an improvement of Robinson’s result given in [26,
section 4] in that no constraint qualification is required here when Λ reduces to a
polyhedral cone. It also extends Lemma 2 of Hager and Gowda [12] from the case
where Λ = �l1− × {0}l2 and perturbation is additive.

Theorem 4.2. Let x∗ ∈ X (p∗) and y∗ ∈ M(x∗, p∗). Suppose that (A1) and
(A3)–(A4) are satisfied, the SOSC holds at (x∗, y∗), and x∗ is multiplier-stable for
(QP)(a∗,q∗) defined below. Then there exist δ > 0 and κ > 0 such that if y ∈ M(x, p)
with (x, y, p) ∈ Bδ(x

∗, y∗, p∗), then

‖x− x∗‖+ dist(y,M(x∗, p∗)) ≤ κ‖p− p∗‖.

Proof. Consider the following quadratic problem with geometric constraints:

(QP)(a∗,q∗) min
x

1

2
xTQx+ xT q∗

s.t. Ax+ a∗ ∈ Λ,

where ⎧⎪⎪⎨
⎪⎪⎩

Q := ∇2
xL(x

∗, p∗; y∗),
q∗ := ∇xf(x

∗, p∗)−∇2
xL(x

∗, p∗; y∗)x∗,
A := ∇xF (x∗, p∗)T ,
a∗ := F (x∗, p∗)−∇xF (x∗, p∗)Tx∗.

It is easy to check that (x∗, y∗) is a stationary pair of (MPGCp∗) and the SOSC holds
at (x∗, y∗) if and only if (x∗, y∗) is a stationary pair of (QP)(a∗,q∗) and the SOSC
holds at (x∗, y∗). Moreover, y ∈ M(x, p) if and only if

Qx+AT y + q = 0, y ∈ NΛ(Ax + a),

where q := ∇xL(x, p; y)− (Qx+AT y) and a := F (x, p)−Ax.
It is obvious that (q, a) → (q∗, a∗) as (x, y) → (x∗, y∗) and p → p∗. Thus,

we have from Theorem 4.1 that there exist δ1 > 0 and β > 0 such that, for each
(x, y) ∈ Bδ1(x

∗, y∗) and p ∈ Bδ1(p
∗),

‖x− x∗‖ ≤ β‖(q, a)− (q∗, a∗)‖.(4.5)

Note that

‖q − q∗‖ = ‖∇xL(x, p; y)−∇xL(x
∗, p∗; y)−Q(x− x∗)‖

≤ ‖∇xL(x, p; y)−∇xL(x
∗, p∗; y)−∇(∇x)(x,p)L(x

∗, p∗; y)(x− x∗, p− p∗)‖
+ ‖∇2

xL(x
∗, p∗; y)−Q‖‖x− x∗‖+ ‖∇2

xpL(x
∗, p∗; y)‖‖p− p∗‖.
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By Taylor’s theorem, for (x, p, y) near (x∗, p∗, y∗), it holds that

∇xL(x, p; y)−∇xL(x
∗, p∗; y)−∇(∇x)(x,p)L(x

∗, p∗; y)(x− x∗, p− p∗)
= o(‖(x− x∗, p− p∗)‖).

Hence, for any given ε′ > 0, there exist δ′ > 0 and κ′ such that, for each (x, y) ∈
Bδ′(x

∗, y∗) and p ∈ Bδ′(p
∗),

‖q − q∗‖ ≤ ε′‖x− x∗‖+ κ′‖p− p∗‖.

Let ε := 1
2β . It follows from the second-order differentiability of {f, F} with respect to

(x, p) that there exist δ2 ∈ (0, δ1) and κ1 > 0 such that, for each (x, y) ∈ Bδ2(x
∗, y∗)

and p ∈ Bδ2(p
∗),

‖(q, a)− (q∗, a∗)‖ ≤ ε‖x− x∗‖+ κ1‖p− p∗‖.(4.6)

We then have from (4.5) and (4.6) that, for each (x, y) ∈ Bδ2(x
∗, y∗) and p ∈ Bδ2(p

∗),

‖x− x∗‖ ≤ 2βκ1‖p− p∗‖.(4.7)

We next consider the multiplier part. Note that

M(x∗, p∗) := {y | ∇xL(x
∗, p∗; y) = 0, y ∈ NΛ(F (x∗, p∗))},

where ∇xL(x
∗, p∗; y) is a linear mapping in y and the set NΛ(F (x∗, p∗)) is a union of

finitely many polyhedral sets by the assumption (A3). Thus, M(x∗, p∗) is a union of
finitely many polyhedral sets. By the assumption (A4), there exists δ ∈ (0, δ2) such
that if y ∈ NΛ(F (x, p)) with (x, y, p) ∈ Bδ(x

∗, y∗, p∗), then y ∈ NΛ(F (x∗, p∗)). By
Lemma 4.1 and the Lipschitz continuity of ∇xL on Bδ(x

∗, y∗) × Bδ(p
∗), there exist

c > 0 and c′ > 0 such that, for each (x, y, p) ∈ Bδ(x
∗, y∗, p∗) with y ∈ M(x, p),

dist(y,M(x∗, p∗)) ≤ c‖∇xL(x
∗, p∗; y)‖

≤ c‖∇xL(x, p; y)‖+ c‖∇xL(x
∗p∗; y)−∇xL(x, p; y)‖

≤ cc′‖x− x∗‖+ cc′‖p− p∗‖.(4.8)

Therefore, from (4.7) and (4.8), we have

‖x− x∗‖+ dist(y,M(x∗, p∗)) ≤ (cc′ + 2βκ1 + 2cc′βκ1)‖p− p∗‖.

The proof is completed by setting κ := cc′ + 2βκ1 + 2cc′βκ1.

5. Applications to (MPECp). In this section, we apply the results obtained
in sections 3 and 4 to (MPECp) by reformulating the problem as a mathematical
program with geometric constraints (MPGCp) where the function F and the set Λ
are defined as in (1.3). Before our discussion, we emphasize that (MPECp) can also
be rewritten as a special case of (MPGCp) with a convex set Λ by letting

F (x, p) :=

⎛
⎜⎜⎜⎜⎝

g(x, p)
h(x, p)
−G(x, p)
−H(x, p)

G(x, p) ◦H(x, p)

⎞
⎟⎟⎟⎟⎠ , Λ := �m1− × {0}m2 ×�m

− ×�m
− ×�m

− ,
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but this formulation fails to satisfy the most commonly used constraint qualifications,
and hence the results given in section 3 cannot be applied. In what follows, we let F
and Λ be defined as in (1.3). Then the generalized MPEC-Lagrangian function can
be rewritten as

Lr
MPEC(x, p; y) = rf(x, p) + F (x, p)T y, y := (λ, μ, u1, v1, . . . , um, vm).

Based on the formulas for normal cones of set C in Proposition 2.1, we can easily
get the following properties.

Proposition 5.1. Let x∗ be a given feasible point of (MPECp∗).
(1) The generalized M-stationarity condition at x∗ is equivalent to

r∇xf(x
∗, p∗) +∇xF (x∗, p∗)y = 0, y ∈ NΛ(F (x∗, p∗)).

(2) The generalized S-stationarity condition at x∗ is equivalent to

r∇xf(x
∗, p∗) +∇xF (x∗, p∗)y = 0, y ∈ N̂Λ(F (x∗, p∗)).

(3) The MPEC-NNAMCQ at x∗ is equivalent to

∇xF (x∗, p∗)y = 0, y ∈ NΛ(F (x∗, p∗)) =⇒ y = 0.

We now give several kinds of second-order sufficient conditions for (MPECp) in
terms of M-multipliers and S-multipliers.

Definition 5.1 (see [11]). Let x∗ be a given feasible point of (MPECp∗). We
say that the M-multiplier strong second-order sufficient condition (M-SSOSC) holds
at x∗ if M1

M (x∗, p∗) �= ∅ and, for every y∗ ∈ M1
M (x∗, p∗),

dT∇2
xL

1
MPEC(x

∗, p∗; y∗)d > 0 ∀d ∈ C(x∗, p∗)\{0}.

We say that the S-multiplier refined second-order sufficient condition (S-RSOSC)
holds at x∗ if, for every d ∈ C(x∗, p∗)\{0}, there exist r ≥ 0 and y∗ ∈ Mr

S(x
∗, p∗)

such that

dT∇2
xL

r
MPEC(x

∗, p∗; y∗)d > 0.

Definition 5.2. We say that the M-multiplier second-order sufficient condition
(M-SOSC) holds at (x∗, y∗) with y∗ ∈ M1

M (x∗, p∗) if

dT∇2
xL

1
MPEC(x

∗, p∗; y∗)d > 0 ∀d ∈ C(x∗, p∗)\{0}.

We say that the S-multiplier second-order sufficient condition (S-SOSC) holds at
(x∗, y∗) with y∗ ∈ M1

S(x
∗, p∗) if

dT∇2
xL

1
MPEC(x

∗, p∗; y∗)d > 0 ∀d ∈ C(x∗, p∗)\{0}.

Note that, from Proposition 5.1, the M-stationarity for (MPECp) is equivalent to
the stationarity for (MPGCp), the M-SSOSC for (MPECp) is equivalent to the SSOSC
for (MPGCp), and the M-SOSC for (MPECp) is equivalent to the SOSC for (MPGCp).
We next consider the M-multiplier mapping M1

M : �n1+n2 → �m1+m2+2m, the M-
stationary point mapping SM : �n2 → �n1 , and the locally optimal solution mapping
O : �n2 → �n1 .
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Since, by Proposition 5.1, the MPEC-NNAMCQ for (MPECp) is equivalent to
the NNAMCQ for (MPGCp), we can obtain the next theorem from Theorem 3.1
immediately. Note that Izmailov [14, Theorem 6] considered the upper semicontinuity
of O near x∗ under the MFCQ for a branch of MPEC. The following result shows the
upper semicontinuity of S near x∗. Note that the MPEC-NNAMCQ neither implies
nor is implied by the MFCQ for a branch of MPEC.

Theorem 5.1. Let x∗ be a given feasible point of (MPECp∗). If the MPEC-
NNAMCQ holds at x∗, then there exists δ > 0 such that the M-multiplier mapping
M1

M and the M-stationary point mapping SM ∩ B̄δ(x
∗) are locally bounded and upper

semicontinuous on Bδ(x
∗)× Bδ(p

∗) and Bδ(p
∗), respectively.

We next show that if the S-RSOSC and MPEC-NNAMCQ hold at a locally op-
timal solution, then the local optimal solution persists under small perturbation. To
this end, we first introduce a lemma, which is an improvement of Theorem 7 of Scheel
and Scholtes [29] in that r can be taken as zero here. This improvement is significant
since, for MPECs, a locally optimal solution is always a generalized S-stationary point
with r = 0, and hence the S-RSOSC is not a strong condition; see, e.g., [11] for more
details.

Lemma 5.1 (see [11]). Let x∗ be a given feasible point of (MPECp∗). If the
S-RSOSC holds at x∗, then x∗ satisfies the second-order growth condition; i.e., there
exist δ > 0 and c > 0 such that

f(x, p∗) ≥ f(x∗, p∗) + c‖x− x∗‖2 ∀x ∈ X (p∗) ∩ Bδ(x
∗).

From Theorem 3.2 and Lemma 5.1, we can get the persistence of locally optimal
solutions for MPECs as follows.

Theorem 5.2. Let x∗ be a given feasible point of (MPECp∗). Suppose that the
MPEC-NNAMCQ and S-RSOSC hold at x∗. Then, for any ε > 0, there exists δ > 0
such that if p ∈ Bδ(p

∗), (MPECp) has a locally optimal solution in Bε(x
∗).

As stated in section 3, both (A1) and (A2) are satisfied for the MPEC cone. More-
over, the MPEC-RCPLD implies the multiplier-stability; see, e.g., [11, Theorem 5.1].
Note that the MPEC-RCPLD is a very weak MPEC constraint qualification since
either the MPEC linear constraint qualification or the MPEC-NNAMCQ implies the
MPEC-RCPLD. In consequence, we have the isolatedness of M-stationary point from
Theorems 3.3 and 3.4 immediately.

Theorem 5.3. Let x∗ ∈ X (p∗) be an M-stationary point of (MPECp∗). Sup-
pose that the MPEC-RCPLD holds at x∗. If the M-SSOSC or second-order growth
condition holds at x∗, then there exists a neighborhood V of x∗ containing no other
M-stationary point of (MPECp∗).

We further have the continuity of locally optimal solution mapping and M-sta-
tionary point mapping from Theorem 3.6 immediately.

Theorem 5.4. Suppose that the MPEC-NNAMCQ and second-order growth con-
dition hold at x∗ ∈ X (p∗). Then there exist δ > 0 and ε > 0 such that both O∩Bδ(x

∗)
and SM ∩Bδ(x

∗) are continuous at p∗ and, for each p ∈ Bε(p
∗), ∅ �= O(p)∩Bδ(x

∗) ⊆
SM (p) ∩ Bδ(x

∗).
The following corollary follows from Theorem 5.4 and Lemma 5.1.
Corollary 5.1. Suppose that the MPEC-NNAMCQ and S-RSOSC hold at x∗ ∈

X (p∗). Then there exist δ > 0 and ε > 0 such that both O ∩ Bδ(x
∗) and SM ∩ Bδ(x

∗)
are continuous at p∗ and, for each p ∈ Bε(p

∗), ∅ �= O(p)∩Bδ(x
∗) ⊆ SM (p)∩Bδ(x

∗).
We next apply the calmness result for (MPGCp) in Theorem 4.2 to (MPECp).

Since the MPEC cone is a finite union of half spaces, (A1)–(A3) hold. The following
result shows that (A4) also holds.
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Lemma 5.2. There exists δ > 0 such that NΛ(F (x, p)) ⊂ NΛ(F (x∗, p∗)) for each
(x, p) ∈ Bδ(x

∗, p∗).
Proof. By the continuity assumption, there exists δ > 0 such that, for each

(x, p) ∈ Bδ(x
∗, p∗) with x ∈ X (p),⎧⎪⎪⎨

⎪⎪⎩
I∗g− ⊆ Ig− := {i | gi(x, p) < 0},
I∗ ⊆ I := {i | Gi(x, p) = 0 < Hi(x, p)},
K∗ ⊆ K := {i | Gi(x, p) > 0 = Hi(x, p)},
J ∗ ⊇ J := {i | Gi(x, p) = 0 = Hi(x, p)}.

(5.1)

Let y ∈ NΛ(F (x, p)) with (x, p) ∈ Bδ(x
∗, p∗). From Proposition 2.1 and [28, Proposi-

tion 6.41], we have ⎧⎨
⎩

λ ≥ 0, λIg− = 0,
uK = 0, vI = 0,
ui ≥ 0, vi ≥ 0 or ui = 0 or vi = 0, i ∈ J .

(5.2)

Since I ∪ J ∪ K = I∗ ∪ J ∗ ∪ K∗, then i ∈ J ∗\J implies i ∈ I ∪ K. Note that
y ∈ NΛ(F (x∗, p∗)) means⎧⎨

⎩
λ ≥ 0, λI∗

g− = 0,

uK∗ = 0, vI∗ = 0,
ui ≥ 0, vi ≥ 0 or ui = 0 or vi = 0, i ∈ J ∗.

(5.3)

It follows from (5.1)–(5.3) that if y ∈ NΛ(F (x, p)) with (x, p) ∈ Bδ(x
∗, p∗), then

y ∈ NΛ(F (x∗, p∗)). The proof is complete.
As shown above, the MPEC cone Λ satisfies all the assumptions (A1)–(A4). More-

over, from the comments after Definition 3.3, we know that the multiplier-stability for
quadratic programs with geometric constraints holds at every feasible point. There-
fore, we have the following calmness result for (MPECp) from Theorem 4.2 immedi-
ately. Note that no constraint qualification is required here.

Theorem 5.5. Suppose that x∗ ∈ X (p∗) and there exists y∗ ∈ M1
M (x∗, p∗) such

that the M-SOSC holds at (x∗, y∗) for p = p∗. Then there exist δ > 0 and κ > 0 such
that if y ∈ M1

M (x, p) with p ∈ Bδ(p
∗) and (x, y) ∈ Bδ(x

∗, y∗), then

‖x− x∗‖+ dist(y,M1
M (x∗, p∗)) ≤ κ‖p− p∗‖.(5.4)

Jongen, Shikhman, and Steffensen [16] gave a counterexample to show that the C-
stationary points are strongly stable in the sense of Kojima [18], but the M-stationary
points are not strongly stable. We next show that although the counterexample given
in [16] does not satisfy the M-SOSC at the given point, the error estimate (5.4) still
holds.

Example 5.1 (see [16]). Consider the problem

min
x,y

−x− (y + t)2

s.t. 0 ≤ x ⊥ y ≥ 0.

It is not difficult to see that
– for t = 0, (x0, y0) = (0, 0) is an M-stationary point with a unique M-multiplier

vector (u0, v0) = (−1, 0);
– for t < 0, (xt, yt) = (0,−t) is an M-stationary point with a unique M-

multiplier (ut, vt) = (−1, 0);
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– for t > 0, there is no M-stationary point.
It is obvious that

‖(xt, yt)− (x0, y0)‖+ ‖(ut, vt)− (u0, v0)‖ = ‖t‖,

which implies that the error estimate (5.4) holds. In addition, it is easy to verify that
the M-SOSC does not hold at (x0, y0, u0, v0).

We now study the calmness of S-stationary pair mapping p → {(x, y) | ∇xL(x,
p; y) = 0, y ∈ N̂Λ(F (x, p))}. Note that, in contrast to Theorem 5.5, the bidegenerate
index set {i ∈ J ∗ | u∗

i = v∗i = 0} = ∅ is necessary in the following calmness result.
Theorem 5.6. Suppose that x∗ ∈ X (p∗) and there exists y∗ ∈ M1

S(x
∗, p∗) such

that {i ∈ J ∗ | u∗
i = v∗i = 0} = ∅ and the S-SOSC holds at (x∗, y∗). Then there exist

δ > 0 and κ > 0 such that if y ∈ M1
S(x, p) with p ∈ Bδ(p

∗) and (x, y) ∈ Bδ(x
∗, y∗),

then

‖x− x∗‖+ dist(y,M1
S(x

∗, p∗)) ≤ κ‖p− p∗‖.

Proof. Consider the problem (QP)(a∗,q∗) defined in the proof of Theorem 4.2. It
is easy to check that (x∗, y∗) is an S-stationary pair of (MPECp∗) and the S-SOSC
holds at x∗ if and only if (x∗, y∗) is an S-stationary pair of (QP)(a∗,q∗) and the S-SOSC
holds at x∗. Note that, from Proposition 5.1, M1

S(x
∗, p∗) is the solution set of the

system

∇xL(x
∗, p∗; y) = 0, y ∈ N̂Λ(F (x∗, p∗)).

It is not hard to see from Proposition 2.1 that the set N̂Λ(F (x∗, p∗)) is a union
of finitely many polyhedral sets and hence M(x∗, p∗) is a union of finitely many
polyhedral sets. From the proof of Theorem 4.2, it suffices to show that if y ∈
N̂Λ(F (x, p)), then y ∈ N̂Λ(F (x∗, p∗)) when (x, y, p) is sufficiently close to (x∗, y∗, p∗).
As in Lemma 5.2, by the continuity assumption, there exists δ1 > 0 such that, for
each (x, p) ∈ Bδ1(x

∗, p∗) with x ∈ X (p),

I∗g− ⊆ Ig−, I∗ ⊆ I, K∗ ⊆ K, J ∗ ⊇ J ,(5.5)

where Ig−, I,J ,K are the same as in Lemma 5.2. Define the index sets

J ∗
++ := {i ∈ J ∗ | u∗

i > 0, v∗i > 0},
J ∗
0+ := {i ∈ J ∗ | u∗

i = 0, v∗i > 0},
J ∗
+0 := {i ∈ J ∗ | u∗

i > 0, v∗i = 0}.

Since {i ∈ J ∗ | u∗
i = v∗i = 0} = ∅, it is obvious that J ∗

++, J ∗
0+, and J ∗

+0 constitute a

partition of J ∗. From Proposition 2.1 and [28, Proposition 6.41], y ∈ N̂Λ(F (x, p)) if
and only if ⎧⎨

⎩
λ ≥ 0, λIg− = 0,
uK = 0, vI = 0,
ui ≥ 0, vi ≥ 0 ∀i ∈ J .

(5.6)

We can show that there exists δ ∈ (0, δ1) independent of i such that, for each y ∈
Bδ(y

∗) ∩ N̂Λ(F (x, p)),

ui ≥ 0, vi ≥ 0 ∀i ∈ J ∗ = J ∗
++ ∪ J ∗

0+ ∪ J ∗
+0.(5.7)
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In fact, if i ∈ J ∗
++, we have ui > 0 and vi > 0 by the continuity. If i ∈ J ∗

0+, we have
vi > 0 by the continuity, which implies i ∈ K ∪ J by (5.6). If i ∈ K, we have ui = 0
from (5.6) and, if i ∈ J , we have ui ≥ 0. In a similar way, we can show ui ≥ 0 and
vi ≥ 0 when i ∈ J ∗

+0.

Note that y ∈ N̂Λ(F (x∗, p∗)) means

⎧⎨
⎩

λ ≥ 0, λI∗
g− = 0,

uK∗ = 0, vI∗ = 0,
ui ≥ 0, vi ≥ 0 ∀i ∈ J ∗.

(5.8)

It follows from (5.5)–(5.8) that if y ∈ N̂Λ(F (x, p)) with (x, p, y) ∈ Bδ(x
∗, p∗, y∗), then

y ∈ NΛ(F (x∗, p∗)). This completes the proof.

6. Concluding remarks. We have shown a number of results related to the sta-
bility for (MPGCp) and applied these results to the special case (MPECp). Actually,
there is no difficulty in applying the results for (MPGCp) to the parametric mathe-
matical program with vertical complementarity constraints, which was first considered
in [29],

min f(x, p)

s.t. g(x, p) ≤ 0, h(x, p) = 0,(6.1)

min{F1(x, p), . . . , F	(x, p)} = 0,

and the parametric mathematical program with vanishing constraints, which was first
considered in [1],

min f(x, p)

s.t. g(x, p) ≤ 0, h(x, p) = 0,(6.2)

H(x, p) ≥ 0, G(x, p) ◦H(x, p) ≤ 0,

where {f, g, h,G,H} are the same as before and Fi : �n1+n2 → �m (i = 1, . . . , �) are
all twice continuously differentiable functions. In fact, by introducing

C := {(a1, . . . , al) | min{a1, . . . , al} = 0}

or

C := {(a, b) | b ≥ 0, ab ≤ 0}

instead of the cone C in (1.3), we can rewrite (6.1) or (6.2) as a problem with geometric
constraints like (1.1). In particular, it is not difficult to verify that the assumptions
(A1)–(A4) hold for these two cases, and the multiplier-stability also holds when the
involved constraints are linear with respect to x. Therefore, in a similar way to
section 5, we can establish stability analysis for stationarity systems of (6.1) and (6.2)
accordingly.
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