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1 Introduction

In this paper we consider the following stochastic mathematical program with
equilibrium constraints (SMPEC):

min
x,y

E[ f (x, y, ξ(ω))]
s.t. (x, y) ∈ C,

0 ∈ E[F(x, y, ξ(ω))] + N Y(y), (1)

where C is a nonempty closed subset of IRn × IRm, f : IRn × IRm × IRd → IR is lo-
cally Lipschitz continuous, F : IRn × IRm × IRd → IRm is continuously differentiable,
ξ : � → � ⊂ IRd is a vector of random variables defined on probability space
(�,F , P), E[·] denotes the expected value with respect to the distribution of ξ , NY(y)

is the limiting normal cone to a closed set Y ⊂ IRm at point y with NY(y) := ∅ if
y �∈ Y. The precise definition of the normal cone will be given in Section 2. In fact
all results of this paper remain true if the normal cone operator NY is replaced by a
closed set-valued mapping.

This is an one-stage two-level stochastic mathematical program with equilibrium
constraints (SMPEC) where decision variables x and y must be chosen simultane-
ously before the realization of random variable ξ , and the relationship between
upper level decision variable x and lower level decision variable y is governed
by a constraint to be presented by a stochastic generalized equation that is often
used to characterize an equilibrium in practical application. Note as a referee
commented that in the case when Y is convex, the limiting normal cone reduces to the
classical normal cone in convex analysis and subsequently the generalized equation
reduces to a variational inequality. Note also that when ξ takes a single constant
value, the problem becomes a deterministic MPEC. The latter has been extensively
investigated over the past decade, see [19, 26, 28, 46] for comprehensive discussions
on theory, numerical methods and applications of MPECs.

Analogous to ordinary stochastic programming models, SMPEC arises from
practical needs in decision analysis and engineering where problem data involve
some uncertainties. When a problem involves several decision makers who are in
a hierarchical and/or competitive relationship, that is, some decision makers have
control of or influence on others (e.g. principal-agent problem [21], Stackelberg
leader-follower problem [38]), classical stochastic programming models are no longer
applicable, a new framework of stochastic programming with bilevel (or multi-level)
and/or equilibrium structure is needed where an equilibrium constraint is typically
used to characterize a state of competition of parties with conflicting interests.
Stochastic programming models as such were first considered by Christiansen et al.
[5] for an optimal decision problem in structural engineering design and were studied
more recently by Werner [39] to analyze optimal decision making/competition in
the Norwegian telecommunication industry. In these problems, simplification of the
random data through averaging may lead to an optimal decision to be achieved
with small probability. From this point of view, SMPEC models should not be
regarded as a generalization of deterministic MPEC, instead they are complements
of deterministic MPECs where the latter cannot adequately describe the intrinsic
stochastic nature of a decision making problem with equilibrium constraints.
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There are two simple but important cases that SMPEC may recover by choosing a
specific set Y. First, if Y = IRm

+ , then the SMPEC reduces to a stochastic mathemati-
cal program with complementarity constraints (SMPCC):

min
x,y

E[ f (x, y, ξ(ω))]
s.t. (x, y) ∈ C,

0 ≤ y ⊥ E[F(x, y, ξ(ω))] ≥ 0, (2)

where ⊥ denotes the perpendicularity of two vectors. The SMPCC model has been
well studied, see for instances [4, 14, 20] and references therein.

The other important special case of SMPEC (Eq. 1) is that Y = IRm. In such a
case, the model reduces to a classical stochastic programming problem:

min E[ f (x, y, ξ(ω))]
s.t. (x, y) ∈ C,

E[F(x, y, ξ(ω))] = 0. (3)

At this point, it is important to note that our SMPEC model (Eq. 1) may include two-
stage SMPECs by allowing f to be nonsmooth (i.e. not continuously differentiable).
To see this, let us consider the case when f (x, y, ξ) is the optimal value function of
the following second stage problem:

minz g(x, y, z, ξ)

s.t. 0 ≤ z ⊥ G(x, y, z, ξ) ≥ 0.
(4)

It is well-known in parametric programming that the optimal value function of
Eq. 4 is often Lipschitz continuous under some mild constraint qualifications (see
Lucet and Ye [17, 18]). Subsequently, our model (Eq. 1) may cover the following
mixed two-stage SMPEC (by exchanging the minimization w.r.t. z(·) with the expec-
tation as in [29]):

minx,y,z(·) E[g(x, y, z(ω), ξ(ω))]
s.t. (x, y) ∈ C,

0 ≤ z(ω) ⊥ G(x, y, z(ω), ξ) ≥ 0 a.e.,

0 ∈ E[F(x, y, ξ)] + NY(y), (5)

where g is a smooth real-valued function and G is a smooth vector valued function,
the optimal decision on the second stage decision variable z is chosen after the first
stage decision variables x, y are given and the uncertainty ξ is realized. The SMPEC
model (Eq. 5) may be used to analyze optimal decision of a firm which needs to
make decisions at present and then at some stage in future in a noncollaborative
oligopolistic market.

Here we include a brief literature review on the research of two-stage SMPECs.
A general two-stage SMPEC model (without the expected equilibrium constraint)
is first studied in [30]. It is regarded fundamentally as an extension of deterministic
MPEC. The model has been consequently studied in [13]. Shapiro [35] seems to be
the first to propose a Monte Carlo sampling method for solving a two-stage SMPEC.
His focus is on the asymptotic consistency of optimal values and solutions obtained
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from the sample average approximation problem. The approach has been further
studied in [36, 42] regarding the asymptotic convergence of statistical estimators of
Clarke stationary points.

In this paper we are concerned with the sample average approximation method
(SAA) for solving Eq. 1. SAA is a very popular method and is also known under
different names such as sample path optimization, Monte Carlo method, or stochastic
counterpart to name a few. The basic idea of the method is to use sample averages
to approximate expected values. Specifically, let ξ 1, · · · , ξ N be an independent and
identically distributed (iid) sampling of ξ . Then we may consider the following
sample average approximation of Eq. 1:

min
1
N

∑N

k=1
f (x, y, ξk)

s.t. (x, y) ∈ C,

0 ∈ 1
N

∑N

k=1
F(x, y, ξk) + NY(y). (6)

In a more recent development, sampling may be non-iid and hence may accommo-
date some popular numerical schemes such as the quasi-Monte Carlo method [27].
The main benefit of SAA is that it does not require any knowledge of the probability
distribution of ξ and/or the numerical approximation of a multiple integration.

Following the terminology in the literature of SAA methods, we call Eq. 1 the
true problem and Eq. 6 the SAA problem. Our focus in this paper is to study the
convergence of a sequence of stationary points of SAA problem (Eq. 6) to its true
counterpart. The main contribution of this paper can be summarized as follows:

• We derive the first order necessary optimality conditions for both the true
problem (Eq. 1) and the SAA problem (Eq. 6) in terms of the limiting sub-
differentials and the coderivatives (see the definitions in Section 2) of the
underlying functions under some standard constraint qualifications (no nonzero
abnormal multipliers constraint qualifications). This gives a unified treatment of
general equilibrium constraints including variational inequality constraints and
complementarity constraints as a special case.

• We use the graphical convergence of a set-valued mapping as a main tool
for analyzing the asymp totic convergence of a sequence of stationary points
obtained from solving the sample average approximate problem (Eq. 6) and
show under moderate conditions that w.p.1 a cluster point of such a sequence is
a stationary point of the true problem. Graphical convergence of sample average
random set-valued mapping is recently studied by Wets and Xu in [40]. Here
we consider graphical convergence of co-derivative mapping of a normal cone.
The analysis differs significantly from the existing asymptotic analysis in the
literature which is essentially based on the uniform law of large number for
random compact set-valued mappings [20, 41, 42].

• For the case of complementarity constraints, we derive almost sure (a.s. for
short) convergence of M-stationary point and C-stationary point obtained re-
spectively from solving the sample average problem (see e.g. [1, 12, 15] and the
references therein for computational algorithms) to their true counterpart as the
sample size increases. M-stationarity is generally sharper than C-stationarity, we
include the latter as many MPECs solvers only give rise to C-stationary points.
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The rest of this paper is organized as follows. In Section 2, we present some basic
notions and results on variational analysis and investigate the outer semicontinuity
of coderivative mappings. In Section 3, we develop first order optimality conditions
for both the true problem and the SAA problem in terms of limiting subdifferentials
and coderivatives under no nonzero abnormal multipliers constraint qualifications.
In Section 4, we carry out convergence analysis for stationary points obtained
from the SAA problem using the graphical convergence as a main tool. Finally in
Section 5, we show the asymptotic convergence of a sequence of M-,C-stationary
points of the SAA problem to their true counterpart when SMPEC reduces to
SMPCC.

2 Preliminaries

Throughout this paper, we use the following notation. ‖ · ‖ denotes the Euclidean
norm of a vector and a compact set of vectors. If M is a compact set of vectors, then

‖M‖ := max
M∈M

‖M‖.

d(x,D) := infx′∈D ‖x − x′‖ denotes the distance from point x to set D. For two
compact sets C and D,

D(C,D) := sup
x∈C

d(x,D)

denotes the deviation from set C to set D (in some references [10] also called excess
of C over D), and H(C,D) denotes the Hausdorff distance between the two sets,
that is,

H(C,D) := max (D(C,D), D(D, C)) .

We use C + D to denote the Minkowski addition of the two sets, that is,

{C + D : C ∈ C, D ∈ D}.
We use aTb to denote the scalar product of vectors a and b , where aT denotes the

transpose of vector a. When A is a matrix, ATb denotes matrix vector multiplication.
We use a ≥ 0 to denote the componentwise nonnegativity of a vector a, and a ⊥
b the perpendicularity vectors a and b . Specifically, 0 ≤ a ⊥ b ≥ 0 indicates the
complementary relationship between a and b , that is, the i.e., ai, bi ≥ 0, aib i = 0 and
one positive values forces the other to be zero for every pair of components.

For a set-valued mapping � : IRm → 2IRq
(assigning to each z ∈ IRm a set �(z) ⊂

Rq which may be empty), we denote by gph � the graph of �, i.e.,

gph � := {(z, v) :∈ IRm × IRq : v ∈ �(z)}.
conv C denotes the convex hull of a set C. We denote by B(x, δ) the open ball with
radius δ and center x, that is B(x, δ) := {x′ : ‖x′ − x‖ < δ}. When δ is dropped, B(x)

represents a neighborhood of point x. More specifically, we use B to denote a closed
unit ball in a finite dimensional space.
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2.1 Variational Analysis

Let � : IRm → 2IRm
be a set-valued mapping. We denote by lim supx→x̄ �(x) the

Painlevé–Kuratowski outer limit:

lim sup
x→x̄

�(x) := {v ∈ Rm : ∃ seqences xk → x̄, vk → v

with vk ∈ �(xk) ∀k = 1, 2, . . . }.

Definition 2.1 (Normal cones) Let C be a nonempty closed subset of IRm. Given z ∈
C, the convex cone

N π
C (z) := {ζ ∈ Rm : ∃σ > 0, such that ζ T(z′ − z) ≤ σ‖z′ − z‖2 ∀z′ ∈ C}

is called the proximal normal cone to set C at point z. By convention, for z �∈ C,
N π

C (z) = ∅. The closed cone

NC(z) := lim sup
z′→z

N π
C (z′)

is called the limiting normal cone (also known as Mordukhovich normal cone or basic
normal cone) to C at point z.

The above construction of the limiting normal cone using the proximal normal
cone was given by Mordukhovich in [23]. The limiting normal cone is in general
smaller than the Clarke normal cone, and in the case when C is convex, the proximal
normal cone, the limiting normal cone and the Clarke normal cone coincide with the
normal cone in convex analysis, i.e.,

NC(z) := {
ζ ∈ R

m : ζ T(z′ − z) ≤ 0, ∀ z′ ∈ C
}
.

For set-valued mappings, the definition of a limiting normal cone leads to the
definition of Mordukhovich’s coderivative which was first introduced in [24].

Definition 2.2 (Coderivatives of a set-valued mapping) Let � : IRm → 2IRq
be a set-

valued mapping and (z̄, v̄) ∈ gph�. The coderivative of � at point (z̄, v̄) is defined
as

D∗�(z̄, v̄)(η) := {
ζ ∈ IRm : (ζ, −η) ∈ Ngph �(z̄, v̄)

}
.

By convention, for (z̄, v̄) �∈ gph�, D∗�(z̄, v̄)(η) = ∅.

A particularly interesting case relevant to our discussion later on is when �(z) =
NC(z) and C is a closed subset of IRm. By the definition of coderivatives,

ζ ∈ D∗NC(z̄, v̄)(η) ⇐⇒ (ζ,−η) ∈ Ngph NC (z̄, v̄).

The calculation of the coderivative D∗�(z̄, v̄)(η) depends on that of the limiting
normal cone to the graph of the normal cone, denoted by Ngph NC (z̄, v̄). In the
case when C = IRm

+ , the following is well-known. The proof follows easily from the
formula for the proximal normal cone in [44, Proposition 2.7] and the definition of
the limiting normal cones.
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Proposition 2.3 For any (z̄,−v̄) ∈ gph NIRm
+ , let

L := L(z̄, v̄) := {i ∈ {1, 2, . . . , m} : z̄i > 0, v̄i = 0},
I+ := I+(z̄, v̄) := {i ∈ {1, 2, . . . , m} : z̄i = 0, v̄i > 0},
I0 := I0(z̄, v̄) := {i ∈ {1, 2, . . . , m} : z̄i = 0, v̄i = 0}.

Then

Ngph NIRm+
(z̄,−v̄) = {(α,−β) ∈ IR2m : αL = 0, βI+ = 0,

∀i ∈ I0, either αi < 0, βi < 0 or αiβi = 0}.

For recent results on calculating the normal cone to the graph of a standard
normal cone (coderivative of the standard normal cone mapping), see [7, 8] and [9,
Section 3].

Definition 2.4 (Subdifferentials) Let f : IRn → IR be a lower semicontinuous func-
tion and finite at x ∈ IRn. The proximal subdifferential of f at x is defined to be the
set

∂π f (x) := {ζ ∈ IRn :
∃σ > 0, δ > 0 such that f (y) ≥ f (x) + ζ T(y − x) − σ‖y − x‖2 ∀y ∈ B(x, δ)}

(7)

and the limiting (Mordukhovich or basic [25]) subdifferential of f at x to be the set

∂ f (x) = lim sup
x′ f→ x

∂π f (x′),

where x′ f→ x signifies that x′ and f (x′) converge to x and f (x) respectively. When
f is Lipschitz continuous near x, the Clarke subdifferential (or generalized gradient,
see p. 27 in [6]) of f at x is equal to conv ∂ f (x).

The limiting subdifferential is in general smaller than the Clarke subdifferential,
and in the case when f is convex and locally Lipschitz, the proximal subdifferential,
the limiting subdifferential and the Clarke subdifferential coincide with the sub-
differential in the sense of convex analysis [32]. In the case when f is continuously
differentiable, these subdifferentials reduce to classical gradient, denoted by ∇ f (x),
i.e., ∂ f (x) = {∇ f (x)}.

2.2 Outer Semicontinuity of Coderivative Mappings

The notion of the coderivative of a set-valued mapping is well studied and docu-
mented [25]. In this paper, we need some properties, namely outer semicontinuity, of
a coderivative as a set-valued mapping for the convergence analysis. These properties
are easy to derive but apparently not available in the literature. We give details of
them in this subsection.
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Let C be a closed subset of IRn. Recall that a set-valued mapping � : C → 2IRm
is

said to be closed at x̄ if for xk ⊂ C, xk → x̄, yk ∈ �(xk) and yk → ȳ implies ȳ ∈ �(x̄).
If C = IRn, then � : IRn → 2IRm

is closed if and only if its graph is a closed set.

Definition 2.5 A set-valued mapping � : IRn → 2IRm
is said to be outer semicontinu-

ous (osc) at x̄ ∈ X relative to X ⊂ IRn if lim supx∈X,x→x̄ �(x) ⊂ �(x̄) or equivalently
lim supx∈X,x→x̄ �(x) = �(x̄). � is said to be osc at x̄ if X = IRn in the above definition.

Proposition 2.6 [33, Proposition 5.12] Let � : IRn → 2IRm
be a closed set-valued

mapping and x̄ ∈ X ⊂ IRn. Then � is osc at x̄ relative to X if and only if for every
ε > 0 and every ρ > 0 there exists a neighborhood V of x̄ such that

�(x) ∩ ρB ⊂ �(x̄) + εB

for all x ∈ V ∩ X.

In what follows, we need to demonstrate that the coderivative of the normal cone
of a closed set-valued mapping is closed and outer semicontinuous.

Proposition 2.7 Let � : IRm → 2IRq
be a set-valued mapping with a closed graph and

C be a closed subset of IRn. Then the following statements hold.

(i) The graph of the coderative mapping D∗�(·, ·)(·) is closed.
(ii) The graph of the coderivative mapping D∗NC(·, ·)(·) is closed.

Proof

Part (i) Suppose that ζk → ζ and ηk → η, where ζk ∈ D∗�(zk, vk)(ηk) and

(zk, vk) ∈ gph �, (zk, vk) → (z, v).

By the definition of coderivative,

ζk ∈ D∗�(zk, vk)(ηk) ⇐⇒ (ξk,−ηk) ∈ Ngph �(zk, vk).

Since the normal cone mapping has a closed graph, by Proposition 6.6
in [33] or discussions in [25, p. 11] (ζ,−η) ∈ Ngph �(z, v), which implies
ζ ∈ D∗�(z, v)(η). This demonstrates the closedness of the coderivative
D∗�(·, ·)(·).

Part (ii) Since C is closed, by Proposition 6.6 in [33] or discussions in [25, p. 11],
the graph of the normal cone mapping gph NC(·) is closed. The conclusion
follows by applying part (i) to � := NC . ��

With the forgoing closedness property, we are able to derive the outer semiconti-
nuity of a coderivative mapping.

Proposition 2.8 Let � : IRm → 2IRq
be a set-valued mapping with a closed graph and

C be a closed subset of IRn. Then the following statements hold.

(i) D∗�(·, ·)(·) is osc on IRn.



Stationary Points of Stochastic Mathematical Programs 291

(ii) Let (z, v) ∈ gph � be f ixed and η ∈ IRq. Then for every ρ > 0 and ε > 0, there
exists a neighborhood V of (z, v, η) such that

D∗�(z′, v′)(η′) ∩ ρB ⊂ D∗�(z, v)(η) + εB,

for all (z′, v′, η′) ∈ V, where B denotes the closed unit ball in IRq.
(iii) Let (z, v) ∈ gph NC be f ixed. Then for any ρ > 0 and ε > 0, there exists a

neighborhood V of (z, v, η) such that

D∗NC(z′, v′)(η′) ∩ ρB ⊂ D∗NC(z, v)(η) + εB,

for all (z′, v′, η′) ∈ V, where B denotes the closed unit ball in IRn.

Proof Part (i). By Proposition 2.7, the graph of co-derivative mapping D∗�(·, ·)(·) is
closed. Through [33, Theorem 5.7 (a)], this is equivalent to the outer semicontinuity
of D∗�(·, ·)(·). Part (ii) follows from Proposition 2.6. Part (iii) is no more than an
application of Part (ii) to �(z) := NC(z). ��

2.3 Expectation of Random Set-Valued Mappings

Let X be a closed subset of IRn and S(·, ·) : X × IRd → 2IRm
be a set-valued mapping.

and ξ be a random vector defined on a probability space (�,F , P) and taking values
in IRd. Let x ∈ X be fixed and consider the measurability of the set-valued mapping
S(x, ξ(·)) : � → 2IRm

. Let B denote the space of nonempty, closed subsets of IRm.
Then S(x, ξ(·)) can be viewed as a single valued mapping from � to B. Using [33,
Theorem 14.4], we know that S(x, ξ(·)) is measurable if and only if for every B ∈ B,
S(x, ξ(·))−1 B is F -measurable.

Recall that A(x, ξ(ω)) ∈ S(x, ξ(ω)) is said to be a measurable selection of the
random set S(x, ξ(ω)), if A(x, ξ(ω)) is measurable. Measurable selections exist, see
[2] and references therein. The expectation of S(x, ξ(ω)), denoted by E[S(x, ξ(ω))],
is defined as the collection of E[A(x, ξ(ω))], where A(x, ξ(ω)) is an integrable
measurable selection of S(x, ξ(ω)). The expected value is also known as Aumann’s
integral [10] as it was first studied comprehensively by Aumann in [3]. E[S(x, ξ(ω))]
is regarded as well defined if E[S(x, ξ(ω))] ∈ B is nonempty. A sufficient condition
of this is E[‖S(x, ξ(ω))‖] := E[H(0, S(x, ξ(ω)))] < ∞, see [2, 22]. In such a case, S is
said to be integrably bounded [3, 10].

3 Optimality Conditions

In this section, we investigate the first order necessary optimality conditions for both
the true problem (Eq. 1) and the SAA problem (Eq. 6) in terms of the limiting
subdifferentials and the coderivatives of the underlying functions under standard
constraint qualifications.

3.1 First Order Necessary Conditions of the True Problem

Our aim here is to derive the first order optimality conditions for the true problem
and the SAA problem. To proceed the discussion, we need to make some standard
assumptions on the underlying functions and constraint qualifications.
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Assumption 3.1 Let f (x, y, ξ) and F(x, y, ξ) be def ined as in Eq. 1.

(a) E[ f (x, y, ξ)] and E[F(x, y, ξ)] are well-def ined for every x ∈ IRn and y ∈ IRm;
(b) there exists a positive function κ(ξ) such that

‖ f (x′, y′, ξ) − f (x, y, ξ)‖ ≤ κ(ξ)(‖x′ − x‖ + ‖y′ − y‖), ∀x′, x ∈ IRn, y′, y ∈ IRm

for almost every ξ , where E[κ(ξ)] < ∞;
(c) F is continuously dif ferentiable w.r.t. x, y for almost every ξ and ∇F(x, y, ξ)

is integrably bounded, that is, there exists a positive function κ(ξ) such that
‖∇F(x, y, ξ)‖ ≤ κ(ξ) for almost every ξ , where E[κ(ξ)] < ∞, where ∇F(x, y, ξ)

denotes the Jacobian of F with respect to (x, y).

Under Assumption 3.1 (a) and (b), the Aumann’s integral E[∂ f (x, y, ξ)], where
∂ f (x, y, ξ) denotes the limiting subdifferential of f with respect to (x, y), is well-
defined because the limiting subdifferential is contained in the Clarke subdifferential
and the latter is well-defined [43]. Moreover, under Assumption 3.1 (b) and (c),
E[F(x, y, ξ)] is continuously differentiable, and ∇E[F(x, y, ξ)] = E[∇F(x, y, ξ)].

We now consider constraint qualifications. A well-known constraint qualification
in the literature of deterministic MPECs is the so-called no nonzero abnormal multi-
plier constraint qualification (NNAMCQ) introduced by Ye et al. [47]. In a number
of papers such as [45, 47, 48], the first order necessary optimality conditions are
derived under NNAMCQ for deterministic optimization problems with variational
inequaity constraints where, in our context, Y needs to be a closed convex set. It is
easy to observe, however, that these results on optimality still hold if NY is replaced
by any closed set-valued mapping, in other words, Y is not necessarily convex. This
motivates us to use NNAMCQ to derive the first order optimality conditions of
Eq. 1 and its sample average approximation.

Definition 3.2 We call η ∈ IRm a vector of abnormal multipliers of true problem
(Eq. 1) at (x, y) if it satisfies

0 ∈ E[∇F(x, y, ξ)]Tη + {0n} × D∗NY(y,−E[F(x, y, ξ)])(η) + NC(x, y).

We say that the no nonzero abnormal multiplier constraint qualification
(NNAMCQ) for problem 1 holds at a feasible solution (x, y) if there does not exist
a nonzero abnormal multiplier at (x, y). Here and later on the differential operators
“∂” and “∇” are with respect to (x, y) and 0n denotes the zero vector in IRn.

Note that by virtue of [45, Theorem 4.4], NNAMCQ is a sufficient condition
for the pseudo-Lipschitz continuity (also called the Aubin property) of the set of
solutions to the perturbed generalized equation defined as follows:

F(q) := {(x, y) ∈ C : q ∈ E[F(x, y, ξ)] + NY(y)}.

The condition is not necessary under general circumstance. To see this, consider
the case when F is merely locally Lipschitz (not continuously differentiable) and
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there is no abstract constraint (x, y) ∈ C (i.e. NC(x, y) = {0n+m}). By the sum rule for
coderivatives,

D∗(E[F]+NY)((x̄, ȳ), 0)(η)⊆∂E[F(x̄, ȳ, ξ)]Tη+{0}×D∗NY(ȳ,−E[F(x̄, ȳ, ξ)])(η).

(8)

The Aubin property of �(q) requires

0 ∈ D∗(E[F] + NY)((x̄, ȳ), 0)(η) =⇒ η = 0.

In general this does not imply NNAMCQ because the inclusion in Eq. 8 may be strict.
Similar arguments apply to the case when there is an abstract constraint (x, y) ∈ C.

Theorem 3.3 (First order optimality condition of the true problem) Let Assumption
3.1 hold and (x, y) be a local optimal solution1 to the true problem (Eq. 1). Suppose
that NNAMCQ for problem (Eq. 1) holds at (x, y). Then there exists a vector of
multipliers η such that the following f irst order optimality conditions hold:

0 ∈ E[∂ f (x, y, ξ)] + E[∇F(x, y, ξ)]Tη + {0n} × D∗NY(y,−E[F(x, y, ξ)])(η)

+NC(x, y). (9)

Proof Under Assumption 3.1 (a) and (b), E[ f (x, y, ξ)] is Lipschitz continuous w.r.t.
x and y, hence the limiting subdifferential ∂E[ f (x, y, ξ)] is well defined. Moreover,
it follows from Theorem 2.9 (ii) in [43] that E[∂ f (x, y, ξ)] is also well-defined. Under
the NNAMCQ, we can use [45, Corollary 4.8(5)] to show that there exists a vector of
multipliers η, such that

0 ∈ ∂E[ f (x, y, ξ)] + ∇E[F(x, y, ξ)]Tη + {0n}
×∇ D∗NY(y,−E[F(x, y, ξ)])(η) + NC(x, y).

The rest follows from Theorem 2.9 (ii) in [43], that is, ∂E[ f (x, y, ξ)] ⊆ E[∂ f (x, y, ξ)].
��

For the convergence analysis in Section 4, we will require a slightly weaker version
of the first order optimality conditions than Eq. 9 defined as follows:

0 ∈ E[conv ∂ f (x, y, ξ)] + E[∇F(x, y, ξ)]Tη

+{0n} × D∗NY(y,−E[F(x, y, ξ)])(η) + NC(x, y). (10)

Here ‘weak’ is in the sense that a stationary point defined by Eq. 9 is a stationary
point defined by Eq. 10, but not vice versa in general. This is because

∂E[ f (x, y, ξ)] ⊂ E[∂ f (x, y, ξ)] ⊂ E[conv ∂ f (x, y, ξ)]
and the equality holds in the first inclusion when f is Clarke regular at x for
almost every ξ and the equality holds in the second inclusion when the probability

1For the simplicity of discussion, we assume throughout this paper that the true problem (Eq. 1) has
an optimal solution. Sufficient conditions for the existence of optimal solutions are covered by those
in the deterministic case (see e.g. [28, Proposition 1.1]) because the expected values of the underlying
random functions are deterministic.
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space (�,F , P) is non-atomic or the atoms are convex. The latter is known as
Aumann’s identity, see Aumann’s pioneering work [3] and a comprehensive review
of Aumann’s integral by Hess [10].

3.2 First Order Necessary Conditions of the SAA Problem

We now move on to discuss the first order optimality conditions of the SAA problem
(Eq. 6). Let us start by looking at the feasible set of the SAA problem (Eq. 6). For
the feasibility result in this section, we assume that C = X × IRm, where X is a closed
subset of IRn. Let G(x) denote the set of solutions of the parametric generalized
equation

0 ∈ E[F(x, y, ξ)] + NY(y)

for give x ∈ X and F = {x ∈ X : G(x) �= ∅}. Let

F̂ N(x, y) := 1
N

N∑

k=1

F(x, y, ξk) (11)

and GN(x) denote the set of solutions of the parametric generalized equation

0 ∈ F̂N(x, y) + NY(y) (12)

and FN = {x ∈ X : GN(x) �= ∅}. Assume that F is nonempty, that is, the feasible set
of the true problem is nonempty. We discuss the conditions under which the feasible
set FN is nonempty.

Definition 3.4 A set-valued mapping � : IRm → 2IRm
is said to be subinvertible at

(y∗, 0), if one has 0 ∈ �(y∗) and there exists a compact convex neighborhood U of y∗
in IRm, a positive constant ε > 0, and a nonempty convex-valued mapping G : εB ⇒
U ⊂ IRm such that the graph of G, denoted by gph G, is closed, the point y∗ belongs
G(0), and G(z) is contained in �−1(z) for all z ∈ εB.

An instance of �(y) being subinvertible at (y∗, 0) is that there exists a continuous
selection g(z) of �−1(z) on a compact neighborhood of 0 such that g(0) = y∗.

The concept of subinvertibility was proposed by King and Rockafellar [11] for the
study of existence of a perturbed generalized equation. Here we use the notion to
derive the nonemptiness of the feasible set FN .

Proposition 3.5 Let

�(x, y) := E[F(x, y, ξ)] + NY(y)

and x ∈ X. Assume: (a) Assumption 3.1 holds; (b) for every x ∈ X, there exists y∗ ∈
G(x) such that �(x, ·) is subinvertible at (y∗, 0) in IRm. Then

(i) w.p.1 FN is nonempty for N suf f iciently large;
(ii) for any scalar r > 0 such that rB ∩ F �= ∅, one has

lim
N→∞

FN ∩ rB = F ∩ rB

w.p.1.
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Proof

Part (i) Let x ∈ X. Under the subinvertibility condition, there exists y∗ ∈ G(x)

such that �(x, ·) is subinvertible at (y∗, 0) in IRm. It follows from [11,
Proposition 3.1] that there exists a compact neighborhood U of y∗ and
a small positive number ε such that when

sup
y∈U

∥∥∥E[F(x, y, ξ)] − F̂N(x, y)

∥∥∥ ≤ ε, (13)

GN(x) ∩ U �= ∅. On the other hand, for the given ε and under condition
(a), the classical law of large numbers (see e.g. [34, Lemma A]) ensures
that Eq. 13 holds w.p.1 for N sufficiently large. The conclusion follows.

Part (ii) Equation 13 holds if U is replaced by any compact subset of Y. The
conclusion then follows from Lemma 4.2 in [41]. ��

Remark 3.6 To see how strong the subinvertibility condition is in Proposition 3.5, let
us consider an example where � is derived from the first order optimality conditions
of the following one stage stochastic minimization problem:

min
y

E[h(x, y, ξ)]

s.t. y ∈ C,

E[g(x, y, ξ)] ∈ Ko, (14)

where C is a polyhedral set in IRm and Ko is the polar of a polyhedral cone K
in IRs. The problem is varied from a parametric nonlinear programming problem
considered by King and Rockafellar in [11] and earlier by Robinson in [31]. We
assume that for each fixed x ∈ IRn and ξ ∈ IRd, h(x, ·, ξ) and g(x, ·, ξ) are twice
continuously differentiable in a neighborhood of a considered point y∗ ∈ C and their
first and second order derivatives are integrably bounded. Let μ ∈ IRs and denote by

F(x, y, μ, ξ) := (∇yh(x, y, ξ) + ∇yg(x, y, ξ)Tμ,−g(x, y, ξ)).

Then the first order optimality conditions of Eq. 14 can be written as

0 ∈ �(x, y, μ) := E[F(x, y, μ, ξ)] + NC×K(y, μ). (15)

Let (y∗, μ∗) be a stationary pair which satisfies Eq. 15. Assume that Eq. 15 satisfies
Robinson’s regularity condition, that is,

0 ∈ int {E[g(x, y∗, ξ) + ∇yg(x, y∗, ξ)][C − y∗] − Ko},
where “int” denotes the interior of a set, and the second order sufficient condition is
satisfied at (y∗, μ∗), namely, for all u ∈ TC(y∗) with u nonzero and

E[∇yg(x, y∗, ξ)]u ∈ TKo(E[g(x, y∗, ξ)]) and E[∇yh(x, y∗, ξ)]u = 0

one has

uT∇2
y L(x, y∗, μ∗)u > 0,

where TC denotes the tangent cone in convex analysis and

L(x, y, μ) := E[h(x, y, ξ(ω))] + E[g(x, y, ξ(ω))]Tμ
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denotes the Lagrangian function. It follows from [11, Proposition 7.1] that �(x, y, μ)

is subinvertible at ((y∗, μ∗), 0).

In what follows, we derive the first order necessary conditions for the SAA
problem (Eq. 6).

Proposition 3.7 Suppose that for each N, (xN, yN, ηN) is a solution to the following
system:

0 ∈ ∇ F̂ N(xN, yN)Tη + {0n} × D∗NY

(
yN, −F̂ N(xN, yN)

)
(η) + NC(xN, yN), (16)

Suppose also that (x, y) is a cluster point of {(xN, yN)}, Assumption 3.1 is satisf ied and
NNAMCQ holds at (x, y). Then for N suf f iciently large, ηN = 0 w.p.1.

We delay the proof of this proposition to the appendix as it requires some
technical results related to graphical convergence which will be detailed in Section 4.

Following Proposition 3.7, we can derive, for N sufficiently large, the following
first order optimality conditions of the SAA problem (Eq. 6) hold with probability
one.

Theorem 3.8 (First order optimality condition of the SAA problem) Let (xN, yN)

be a local optimal solution to the SAA problem (Eq. 6) and (x, y) be a cluster point
of {(xN, yN)}. Suppose that Assumption 3.1 is satisf ied and NNAMCQ holds at (x, y).
Then there exists a vector of multipliers, denoted by ηN, such that (xN, yN, ηN) satisf ies
the following f irst order optimality conditions w.p.1:

0 ∈ AN(x, y) + ∇ F̂ N(x, y)Tη + {0n} × D∗NY

(
y,−F̂ N(x, y)

)
(η) + NC(x, y),(17)

where

AN(x, y) = 1
N

N∑

k=1

∂ f (x, y, ξk).

Moreover the sequence {ηN} must be bounded. We call a solution (xN, yN, ηN) to the
above f irst order optimality condition a stationary pair of the SAA problem (Eq. 6).

Similar to Proposition 3.7, the proof of this theorem requires some technical
details of the graphical convergence to be detailed in Section 4, therefore we delay it
to the Appendix.

4 Convergence Analysis

In this section, we analyze the convergence of the stationary point (xN, yN) defined
by the first order optimality condition (Eq. 17) as sample size N increases. For the
simplicity of notation, let

H(x, y, η) := E[conv∂ f (x, y, ξ)] + E[∇F(x, y, ξ)]Tη

+{0n} × D∗NY(y,−E[F(x, y, ξ)])(η) + NC(x, y) (18)
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and

HN(x, y, η) := AN(x, y) + ∇ F̂ N(x, y)Tη

+{0n} × D∗NY

(
y,−F̂ N(x, y)

)
(η) + NC(x, y). (19)

The first order optimality conditions (Eqs. 10 and 17) can be written as

0 ∈ H(x, y, η) (20)

and

0 ∈ HN(x, y, η) (21)

respectively. Let (x∗, y∗, η∗) be a cluster point of sequence {xN, yN, ηN} w.p.1. Our
aim here is to show that 0 ∈ H(x∗, y∗, η∗) w.p.1. A well-known sufficient condition is
that HN converges uniformly to H over a compact set which contains the sequence
{(xN, yN, ηN)} w.p.1 and the considered cluster point (x∗, y∗, η∗). Unfortunately this
kind of uniform convergence is difficult to establish in that the underlying set-valued
mappings are unbounded.

To deal with the challenge, we resort to the concept of graphical convergence
of set-valued mappings. In this context, if HN converges to H graphically at the
considered cluster points, then the cluster points satisfy the first order optimality
conditions (Eq. 10) of the true problem. This kind of fundamental result belongs to
Rockfellar and Wets who dealt with a general deterministic set-valued mapping HN ,
see [33, Theorem 5.37]. More recently, Wets and Xu [40] extended the result to the
case when HN is the sample average of an unbounded random set-valued mapping,
see [40, Theorem 5.7]. Here we use [33, Theorem 5.37] instead of [40, Theorem 5.7]
in that HN is not the sample average of a random set-valued mapping. To this end,
we recall some basic definitions and results related to graphical convergence. The
materials are taken from Rockafellar and Wets’ book [33, Chapter 5].

Definition 4.1 For a sequence of set-valued mappings Sν : IRn → 2IRm
, the pointwise

outer limit and pointwise inner limit are the mappings (p − lim supν Sν)(x) and (p −
lim infν Sν)(x) defined at each point x by

(p − lim sup
ν

Sν)(x) := lim sup
ν

Sν(x),

and

(p − lim inf
ν

Sν)(x) := lim inf
ν

Sν(x)

respectively. When the pointwise outer and inner limits agree, the pointwise limit
(p − lim infν Sν)(x) is said to exist and it is denoted by limν Sν(x).

Definition 4.2 For a sequence of set-valued mappings Sν : IRn → 2IRm
, the graphical

outer limit, denoted by (g − lim supν Sν), is the mapping having as its graph of the set
lim supν(gph Sν):

gph (g − lim sup
ν

Sν) = lim sup
ν

(gph Sν).
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The graphical inner limit, denoted by (g − lim infν Sν), is the mapping having as its
graph of the set lim infν(gphSν):

gph(g − lim inf
ν

Sν) = lim inf
ν

(gphSν).

When the graphical outer and inner limits agree, the graphical limit (g − limν Sν) is
said to exist.

Definition 4.3 A sequence of set-valued mappings Sν : IRn → 2IRm
is said to be equi-

outer semicontinuous ( equi-osc for brevity) at x̄ relative to X (a set containing x̄) if
for every ε > 0 and ρ > 0, there exists a neighborhood V of x̄ such that

Sν(x) ∩ ρB ⊂ Sν(x̄) + εB, ∀x ∈ V ∩ X

for all ν and asymptotically equi-osc if the above relationship holds for all ν

sufficiently large.

Lemma 4.4 Let A, B ⊂ IRm be two closed sets and A bounded. Then for any number
ρ > 0 there exists ρ ′ > 0 such that

(A + B) ∩ ρB ⊂ A ∩ ρ ′B + B ∩ ρ ′B. (22)

This is perhaps a well known elementary result, see for instance [40].

Proposition 4.5 Let the set-valued mappings Sν : IRn → 2IRm
and Tν : IRn → 2IRm

be
asymptotically equi-osc at x̄ ∈ IRn. Suppose that either Sν(x) or Tν(x) is contained in
a compact subset of IRm for x close to x̄ when ν is suf f iciently large. Then the sum of
the set valued mappings Sν + Tν is asymptotically equi-osc at x̄.

Proof By Lemma 4.4, for any ρ > 0 there exists ρ ′ > 0 such that

(Sν(x) + Tν(x)) ∩ ρB ⊂ Sν(x) ∩ ρ ′B + Tν(x) ∩ ρ ′B

for ν being sufficiently large. Since Sν, Tν are equi-osc at x̄, for every ε > 0 and ρ ′ >

0, there exists V, a neighborhood of x̄ such that

Sν(x) ∩ ρ ′B ⊂ Sν(x̄) + εB,

Tν(x) ∩ ρ ′B ⊂ Tν(x̄) + εB,

for all x ∈ V and ν being sufficiently large. Hence it follows that

(Sν(x) + Tν(x)) ∩ ρB ⊂ Sν(x̄) + Tν(x̄) + 2εB

for all x ∈ V and ν being sufficiently large. ��

Proposition 4.6 Let Sν : IRn → 2IRm
, T : IRm → 2IRp

be set-valued mappings. Let
x ∈ IRn be f ixed. Suppose: (a) Sν is pointwise convergent at x and there exists a
neighborhood V of x and ρ > 0 such that Sν(V) ⊂ ρB for ν suf f iciently large; (b) T
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is osc in ρB. Then the sequence of the composite mappings {T ◦ Sν} is asymptotically
equi-osc at x ∈ IRn if one of the following conditions holds:

(c) Sν is graphical-osc at x and T is uniformly osc at S(x) in the sense that for any
ε > 0 and ρ ′ > 0, there exists γ > 0 such that

T(y + γB) ∩ ρ ′B ⊂ T(y) + εB

for every y ∈ S(x), where S(x) = lim supν→∞ Sν(x);
(d) Sν is equi-osc at x and T is uniformly osc at S(x);
(e) T is uniformly osc in a neighborhood of S(x), there is an open or closed

neighborhood V of x such that Sν is continuous in V and uniformly convergent
to S over V;

(f) there is an open or closed neighborhood V of x such that Sν is single valued,
continuous in V and uniformly convergent to S over V.

Proof By Assumption, Sν is pointwise convergent at x. Therefore, (d) implies (c) via
Theorem 5.40 in Rockafellar and Wets [33]. Hence it suffices to prove the conclusion
for (c), (e) and (f).

Assume condition (c). By [33, Eq. 5(9), p. 168 and Theorem 4.10 (b)], for every
γ > 0, there exists a δ > 0 such that x + δB ⊂ V and under (a)

Sν(x + δB) = Sν(x + δB) ∩ ρB ⊂ S(x) + γB (23)

for all ν sufficiently large. Since T is uniformly osc in a neighborhood of S(x) by
assumption, for any ε > 0 and ρ ′ > 0, we can set γ sufficiently small such that S(x) +
γB ⊂ ρB and

T(y′) ∩ ρ ′B ⊂ T(y) + εB

for all y′ ∈ y + γB and y ∈ S(x), which implies

T(S(x) + γB) ∩ ρ ′B ⊂ T(S(x)) + εB. (24)

Combining Eqs. 23 and 24, we have that for any ε > 0 and ρ ′ > 0, there exists δ > 0
such that

T(Sν(x + δB)) ∩ ρ ′B ⊂ T(S(x) + γB) ∩ ρ ′B ⊂ T(S(x)) + εB,

which yields the equi-osc of T ◦ Sν at x.
Let us now assume (e). By [33, Proposition 5.46 (b)], the uniform convergence

implies that Sν converges graphically to S over V. The rest follows from (c).
Finally assume (f). As far as Sν is concerned, this is a special case of (e). So the

graphical of Sν to S over V is guaranteed. As for mapping T, we have removed the
assumption of its uniform outer semicontinuity over set S(x). However, we do not
really need this assumption because S(x) is single-valued and Eq. 24 holds. The proof
is complete. ��

Remark 4.7 In the proof of Theorem 4.8, we only need Proposition 4.6 under
conditions (a), (b) and (f) with Sν being single valued. The other conditions (c), (d)
and (e) are presented not only for the proof of the conclusion under (e) but also for
general interest beyond the scope of this paper.
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We are now ready to state our main convergence results.

Theorem 4.8 Let HN : IRn × IRm × IRm → 2IRn
and H : IRn × IRm × IRm → 2IRn

be
def ined as in Eqs. 19 and 18, respectively. Suppose that Assumption 3.1 holds and
there exists κ1(ξ) > 0 such that

‖∇F(x′, y′, ξ) − ∇F(x, y, ξ)‖ ≤ κ1(ξ)(‖x′ − x‖ + ‖y′ − y‖), ∀(x′, y′), (x, y) ∈ C,

where E[κ1(ξ)] < ∞. Then the following assertions hold.

(i) HN is asymptotically equi-osc at any point (x, y, η) ∈ C × IRm with y ∈ G(x), and

(g − lim sup
N

HN)(x, y, η) = (p − lim sup
N

HN)(x, y, η) ⊂ H(x, y, η). (25)

(ii) Let {(xN, yN)} be a sequence of stationary points satisfying Eq. 17 and (x∗, y∗) a
cluster point of {(xN, yN)} w.p.1. Assume that w.p.1 the sequence is contained in
a compact subset W of C and NNAMCQ holds at (x∗, y∗). Then (x∗, y∗) satisf ies
Eq. 10 w.p.1.

Proof

Part (i) Let (x, y, η) ∈ C × IRm be fixed. By Theorem 5.40 [33], it suffices to prove
that

(p − lim sup
N

HN)(x, y, η) ⊂ H(x, y, η) (26)

and HN is equi-osc at (x, y, η). Note that since y ∈ G(x),
(y,−E[F(x, y, ξ)]) ∈ gph NY , which implies

D∗NY(y,−E[F(x, y, ξ)])(η) �= ∅,

and further that H(x, y, η) �= ∅. For clarity, we divide the rest of the proof
into four steps.

Step 1 We prove Eq. 26. Under Assumption 3.1 and Lipschitz continuity
of ∇F, it follows by the classical uniform law of large numbers
(see e.g. [34, Sections 2.6 and 6.2]),

lim
N→∞

F̂ N(x′, y′) = E[F(x′, y′, ξ)],

lim
N→∞

F̂ N(x′, y′)Tη′ = E[∇F(x′, y′, ξ)]�η′,

w.p.1 uniformly for (x′, y′, η′) over any compact set, where F̂ N

denotes the sample average of F(x, ξ) as defined in Eq. 11. In
particular, for fixed (x, y, η), we have

(p − lim sup
N

∇ F̂ N)(x, y)Tη = lim
N→∞

∇ F̂ N(x, y)�η

= E[∇F(x, y, ξ)]�η, (27)
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w.p.1. In what follows, we show

lim
N→∞

D∗NY(y,−F̂ N(x, y))(η) ⊂ D∗NY(y,−E[F(x, y, ξ)])(η).

(28)
The conclusion is trivial if D∗NY(y,−F̂ N(x, y))(η) = ∅ be-
cause this would imply HN(x, y, η) = ∅. Therefore, we assume
D∗NY(y,−F̂ N(x, y))(η) �= ∅. Let ζ N ∈ D∗NY(y,−F̂ N(x, y))(η)

and without loss of generality that ζ N → ζ . By the definition of
coderivative,

(ζ N,−η) ∈ Ngph NY (y,−F̂ N(x, y)).

Since F̂ N(x, y) converges to E[F(x, y, ξ)] w.p.1 and both NY and
Ngph NY have a closed graph (by virtue of Proposition 6.6 in [33]
twice), then

(ζ,−η) ∈ Ngph NY (y,−E[F(x, y, ξ)])

which implies Eq. 28.
On the other hand, under Assumption 3.1, Artstein and Vitale’s
law of large numbers for random set-valued mappings [2] implies
that for fixed x, y,

lim
N→∞

AN(x, y) = E[conv ∂ f (x, y, ξ)] (29)

w.p.1. Combining Eqs. 27–29, we obtain Eq. 26.
Step 2 For the fixed (x, y), we show that AN(x, y) is equi-outer semi-

continuous at (x, y). This is indeed covered by a similar result
in Wets and Xu [40] for the sample average of an integrably
bounded, closed set-valued mapping. We omit the details.

Step 3 We show that the set-valued mapping D∗NY(·, −F̂ N(·, ·))(η) is
equi-osc at (x, y). Recall that in Proposition 2.8 (iii) we proved
that the set-valued mapping D∗NY(·, ·)(·) is osc. On the other
hand, at Step 1, we have shown that F̂ N(x′, y′) is uniformly
convergent to E[F(x′, y′, ξ)] in any compact subset of X × Y.
Moreover, from the proofs in Steps 1–2, we can observe that
AN(x′, y′), F̂ N(x′, y′) and ∇ F̂ N(x′, y′) may be contained in a com-
pact set for all (x′, y′) close to (x, y) w.p.1 when N is sufficiently
large. All these allow us to use Proposition 4.6 (f) to claim that
the set-valued mapping D∗NY(y′,−F̂ N(x′, y′))(η′) is equi-osc at
(x, y, η), and hence by virtue of Proposition 4.5 the asymptotic
equi-outer semi-continuity of HN at (x, y, η) in that HN is the sum
of three set-valued mappings where two of them are contained in
a compact set w.p.1 for N sufficiently large.

Step 4 The asymptotic equi-outer semi-continuity of HN at (x, y, η) and
Eq. 26 implies Eq. 25 through Theorem 5.40 in [33].
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Part (ii) follows from the boundedness of ηN under NNAMCQ at (x∗, y∗) (through
Theorem 3.8 and (i)), Eq. 26 and Theorem 5.37 in [33]. The proof is
complete. ��

Remark 4.9 In the literature of stochastic programming, sample average approx-
imation is said to use the so-called empirical probability measure for discretiz-
ing/approximating the original probability measure. That is, if we define

PN := 1
N

N∑

k=1

1ξk(ω)

where ξ 1, · · · , ξ N is an independent and identically distributed sampling of ξ and
1ξk(ω) denotes the probability mass at ξk, then

EPN [ f (x, y, ξ)] = 1
N

N∑

k=1

f (x, y, ξk).

The empirical probability measure converges to E in distribution w.p.1 [37]. Under
the condition that the Lipschitz modulus of f (x, y, ξ) is bounded by a constant
(independent of ξ), it follows from [16, Lemma 5.1] that

lim
N→∞

sup
(x,y)∈X

H(∂EPN [ f (x, y, ξ)], ∂E[ f (x, y, ξ)]) = 0 w.p.1

for any compact set X ⊂ C. This implies that if we obtain a stationary pair
(xN, yN, ηN) from solving Eq. 6 which satisfies

0 ∈ ∂

(
1
N

N∑

k=1

f (x, y, ξk)

)
+ ∇ F̂ N(x, y)Tη

+{0n} × D∗NY

(
y,−F̂ N(x, y)

)
(η) + NC(x, y), (30)

then under the conditions of Theorem 4.8, we can claim that w.p.1 a cluster point
(x∗, y∗, η∗) of sequence {(xN, yN, ηN)} satisfies the following first order optimality
conditions:

0 ∈ ∂E[ f (x, y, ξ)] + ∇E[F(x, y, ξ)]Tη + {0n} × D∗NY(y,−E[F(x, y, ξ)])(η)

+NC(x, y). (31)

Obviously first order optimality conditions (Eqs. 30 and 31) are stronger than their
weak counterparts (Eqs. 17 and 9) in that

∂

(
1
N

N∑

k=1

f (x, y, ξk)

)
⊂ 1

N

N∑

k=1

∂ f (x, y, ξk) = AN(x, y),

(see [25, Theorems 2.33 and 3.36]) and ∂E[ f (x, y, ξ)] ⊂ E[∂ f (x, y, ξ)].
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5 Complementarity Case

In this section we focus on the complementarity case where Y = IRn
+. In this case,

problem 1 reduces to a SMPCC (Eq. 2) and the SAA problem (Eq. 6) can be written
as

min
1
N

∑N

k=1
f (x, y, ξk)

s.t.(x, y) ∈ C,

0 ≤ y ⊥ F̂ N(x, y) ≥ 0. (32)

We discuss the asymptotic convergence of M-stationary point and C-stationary point
of the SAA problem.

Throughout this section, “∂c” denotes the Clarke subdifferential operator or the
Clarke Jacobian.

Definition 5.1 (Stationary points for the true problem) Let (x, y) be a feasible
solution of the true problem SMPCC (Eq. 2). We say that (x, y) is an M-stationary
point of the true problem (Eq. 2) if there exists η, ζ such that

{
0 ∈ E[∂c f (x, y, ξ)] + ∇E[F(x, y, ξ)]Tη + (0, ζ ) + NC(x, y),

ζL = 0, ηI+ = 0,
(33)

and

∀i ∈ I0, either ζi < 0, ηi < 0, or ζiηi = 0, (34)

where

L := L(x, y) := {i : yi > 0, E[F(x, y, ξ)] = 0},
I+ := I+(x, y) := {i : yi = 0, E[F(x, y, ξ)] > 0},
I0 := I0(x, y) := {i : yi = 0, E[F(x, y, ξ)] = 0}.

(x, y) is called a C-stationary point if condition (34) is replaced by the following:

∀i ∈ I0, ζiηi ≥ 0.

Definition 5.2 (Stationary points of the SAA problem) Let (x, y) be a feasible
solution of the SAA problem (Eq. 6). We say that (x, y) is an M-stationary point
of the SAA problem (Eq. 6) if there exist η and ζ such that

{
0 ∈ AN(x, y) + ∇ F̂ N(x, y)Tη + (0, ζ ) + NC(x, y),

ζLN = 0, ηIN+ = 0,
(35)

and

∀i ∈ IN
0 , either ζi < 0, ηi < 0, or ζiηi = 0, (36)
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where the index sets are defined as:

LN := LN(x, y) := {i : yi > 0, F̂ N
i (x, y) = 0},

IN
+ := IN

+ (x, y) := {i : yi = 0, F̂ N
i (x, y) > 0},

IN
0 := IN

0 (x, y) := {i : yi = 0, F̂ N
i (x, y) = 0}.

(x, y) is called a C-stationary point if condition 36 is replaced by the following:

∀i ∈ IN
0 , ζiηi ≥ 0.

In what follows, we analyze the convergence of M-stationary points and C-
stationary point of the SAA problem (Eq. 32) as sample size N increases. Note
that from Eq. 10 and Theorem 3.8, we obtain through Proposition 2.3 the M-
stationary condition for the true problem and the M-stationary condition for the
complementarity problem (Eq. 32), respectively. The convergence results therefore
follow from Theorem 4.8.

In order to study the asymptotic convergence of C-stationary points of the SAA
problem, we reformulate the true problem (Eq. 2) as follows:

min
x,y

E[ f (x, y, ξ(ω))]
s.t. (x, y) ∈ C,

min{y, E[F(x, y, ξ(ω))]} = 0, (37)

where min is taken componentwise. The sample average approximation of Eq. 37 can
be written as:

min
1
N

∑N

k=1
f (x, y, ξk)

s.t.(x, y) ∈ C,

min{y, F̂ N(x, y)} = 0. (38)

To facilitate use of the notation, let ψ(a, b) := min(a, b) for real numbers a and b ,

�(x, y) = min{y, E[F(x, y, ξ(ω))]}
and

�̂N(x, y) = min{y, F̂ N(x, y)}.
Since E[F] is continuously differentiable and ψ(a, b) is globally Lipschitz continuous,
�(x, y) is locally Lipschitz continuous. Similar argument applies to �̂N(x, y). This
implies the Clarke generalized Jacobian of �(x, y) and �̂N(x, y) are well defined.
Applying the chain rule [6, Corollary, p. 75] to �(x, y), we obtain

∂c�(x, y) =
{
(Da, Db )

(
0m×n, Im×m

∇E[F(x, y, ξ)]
)

: (da
i , db

i ) ∈ ∂cψ(yi, E[Fi(x, y, ξ)]),

i = 1, · · · , m
}

,
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where Da = diag(da
1, · · · , da

m) ∈ IRm×m denotes the diagonal matrix with the (i, i)-
th entry being da

i , for i = 1, · · · , m, Db = diag(db
1 , · · · , db

m) ∈ IRm×m denotes the
diagonal matrix with the (i, i)-th entry being db

i , for i = 1, · · · , m, and Im×m denotes
the identity matrix in IRm×m. Likewise, we have

∂c�̂N(x, y)=
{
(Da, Db )

(
0m×n, Im×m

∇ F̂ N(x, y)

)
: (da

i , db
i )∈∂cψ(yi, F̂ N

i (x, y)), i = 1, · · · , m
}

.

Using the Clarke generalized Jacobians, we can write down the weak first order
optimality conditions of true problem (Eq. 37):

0 ∈ E[∂c f (x, y, ξ)] + ∂c�(x, y)η + NC(x, y), (39)

and first order optimality conditions for the SAA problem (Eq. 38):

0 ∈ AN f (x, y) + ∂c�̂N(x, y)η + NC(x, y). (40)

It is easy to see that feasible solution (x, y) satisfying Eqs. 39 and 40 is a C-stationary
point of the true problem and the SAA problem, respectively.

Theorem 5.3 Let {(xN, yN)} be a sequence of C-stationary points and (x∗, y∗) a cluster
point w.p.1. Suppose: (a) Assumption 3.1 hold, (b) w.p.1 the sequence {(xN, yN)} is
contained in a compact subset of C and (x∗, y∗) ∈ C, (c) NNAMCQ for problem
37 holds at (x∗, y∗). Then w.p.1 (x∗, y∗) is a C-stationary point of the true problem
(Eq. 2).

Proof We use Lemma 4.2 in [41] to prove the result. Let W be a compact subset
of C such that w.p.1 {(xN, yN)} is contained in W for N sufficiently large. Under
condition (b), (x∗, y∗) ∈ W . Let ηN be a corresponding Lagrangian multiplier. Under
NNAMCQ at (x∗, y∗), it is not difficult to prove that there exists a compact subset
V in IRm such that the {ηN} ⊂ V w.p.1 for N sufficiently large. To see this, we note
that ∂ f (x, y, ξ) and ∂ F(x, y, ξ) are integrably bounded under Assumption 3.1 and
therefore AN f (x, y) and ∂�̂N(x, y) are uniformly bounded for (x, y) ∈ W w.p.1. If
ηN is unbounded w.p.1, then it follows from Eq. 40 that

0 ∈ 1
‖ηN‖A

N f (xN, yN) + ∂�̂N(xN, yN)
ηN

‖ηN‖ + NC(xN, yN).

By taking a subsequence if necessary, we may assume that (xN, yN) → (x∗, y∗) as
N → ∞ w.p.1. Driving N to infinity, we have from the equation above

0 ∈ �(x∗, y∗)η̃ + NC(x∗, y∗),

where η̃ is a nonzero unit vector. This contradicts NNAMCQ at (x∗, y∗). Therefore
it suffices to show that for every δ > 0, there exists an integer N̄ > 0 such that

sup
(x,y,η)∈W×V

D
(
AN f (x, y) + ∂�̂N(x, y)η, E[∂ f (x, y, ξ)] + ∂�(x, y)η

) ≤ δ (41)

w.p.1 for N > N̄. Under Assumption 3.1, we can easily show, similar to the proof of
Theorem 4.8 at Step 2, that for any δ1 > 0,

sup
(x,y,η)∈W×V

D
(
AN f (x, y), E[∂ f (x, y, ξ)]) ≤ δ1
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w.p.1 for N ≥ N0. On the other hand, since F̂ N(x, y) converges to E[F(x, y, ξ)]
uniformly and the Clarke subdifferential ∂ψ is osc, for any δ2 > 0, there exists
N1 ≥ N0 such that

sup
(x,y,η)∈W×V

D
(
∂�̂N(x, y)η, ∂�(x, y)η

) ≤ δ2

w.p.1 for N ≥ N1. Equation 41 follows by choosing δ1, δ2 such that δ1 + δ2 ≤ δ. ��

Acknowledgements We are grateful to Professor Boris Mordukhovich for pointing out the closed-
ness of co-derivative mappings defined in finite dimensional spaces and an anonymous referee for
the constructive comments which significantly helped improve the presentation of the paper.

Appendix

Proof of Proposition 3.7

Observe first that if ηN is a solution to the system (Eq. 16), then tηN is also a solution
for any t > 0 because

D∗NY

(
yN,− 1

N

N∑

k=1

F(xN, yN, ξk)

)
(tηN)

= tD∗NY

(
yN, − 1

N

N∑

k=1

F(xN, yN, ξk)

)
(ηN)

and tNC(x, y) = NC(x, y). Therefore we may normalize ηN to length 1. Assume
without loss of generality that {ηN} → η̂ as N → ∞. Let

HN(x, y, η) := ∇ F̂ N(x, y)Tη + {0n} × D∗NY

(
y,−F̂ N(x, y)

)
(η) + NC(x, y)

and

H(x, y, η) := E[∇F(x, y, ξ)]Tη + {0n} × D∗NY(y,−E[F(x, y, ξ)])(η) + NC(x, y).

Analogous to the proof of Theorem 4.8, we can show that the graphical convergence
of HN to H at the cluster point (x, y, η̂) (note that the graphical convergence in
Theorem 4.8 does not require any result in Propositions 3.7 and 2.8), and hence
the condition 0 ∈ H(xN, yN, ηN) implies that w.p. 1, 0 ∈ H(x, y, η̂) with ‖η̂‖ = 1, a
contradiction to NNAMCQ at (x, y). ��



Stationary Points of Stochastic Mathematical Programs 307

Proof of Theorem 3.8

By Proposition 3.7, NNAMCQ holds at (xN, yN) w.p.1 when N is sufficiently large.
By [47, Theorem 3.2(c)] or [45, Corollary 4.8(5)], (xN, yN, ηN) must satisfy the
following conditions:

0 ∈ ∂

[
1
N

N∑

k=1

∂ f (x, y, ξk)

]
+ 1

N

N∑

k=1

∇F(x, y, ξk)TηN

+{0n} × D∗NY

(
y,− 1

N

N∑

k=1

F(x, y, ξk)

)
(ηN) + NC(x, y).

The desired first order necessary optimality condition follows by applying the sum
rule [26, Theorems 2.33 and 3.36] to the limiting subdifferential of 1

N

∑N
k=1 f (x, y, ξk),

that is,

∂

[
1
N

N∑

k=1

f (x, y, ξk)

]
⊂ 1

N

N∑

k=1

∂ f (x, y, ξk)

and the equality hold when Clarke regularity holds.
To prove the boundedness of ηN , assume for the sake of a contradiction that ηN →

∞. Dividing the first order optimality conditions by ‖ηN‖ and taking limits as N →
∞, we get a contradiction as desired to the NNAMCQ at (x, y) similar to the proof
of Proposition 3.7. ��
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